IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 清水建設株式会社の特許一覧

<>
  • 特許-制振装置 図1
  • 特許-制振装置 図2
  • 特許-制振装置 図3
  • 特許-制振装置 図4
  • 特許-制振装置 図5
  • 特許-制振装置 図6
  • 特許-制振装置 図7
  • 特許-制振装置 図8
  • 特許-制振装置 図9
  • 特許-制振装置 図10
  • 特許-制振装置 図11
  • 特許-制振装置 図12
  • 特許-制振装置 図13
  • 特許-制振装置 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-22
(45)【発行日】2023-06-30
(54)【発明の名称】制振装置
(51)【国際特許分類】
   E04H 9/02 20060101AFI20230623BHJP
   E04B 1/58 20060101ALI20230623BHJP
   F16F 15/02 20060101ALI20230623BHJP
【FI】
E04H9/02 311
E04H9/02 351
E04B1/58 G
F16F15/02 L
【請求項の数】 3
(21)【出願番号】P 2019155726
(22)【出願日】2019-08-28
(65)【公開番号】P2021032015
(43)【公開日】2021-03-01
【審査請求日】2022-06-27
(73)【特許権者】
【識別番号】000002299
【氏名又は名称】清水建設株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100161506
【弁理士】
【氏名又は名称】川渕 健一
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(72)【発明者】
【氏名】村瀬 充
(72)【発明者】
【氏名】石井 大吾
【審査官】沖原 有里奈
(56)【参考文献】
【文献】特開2000-220211(JP,A)
【文献】特開2002-146905(JP,A)
【文献】特開2011-111831(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E04H 9/00-9/16
E04B 1/58
F16F 15/00-15/36
(57)【特許請求の範囲】
【請求項1】
架構内の対角位置にそれぞれ設けられたガセットプレートに接合されるブレース型の制振ダンパーを有する制振装置において、
前記制振ダンパーは、
制振機能を有する制振ダンパー本体と、
前記ガセットプレートと接合されるガセットプレート接合部と、
前記制振ダンパー本体と前記ガセットプレート接合部との間に介在し、前記制振ダンパー本体および前記ガセットプレート接合部よりも曲げ剛性が小さい曲げ変形集中領域と、を有し、
前記制振ダンパーは、軸線方向に延びて断面形状が十字形となる芯材を有し、
前記芯材は、前記十字形を形成するように放射状に配置された第1芯材板部、第2芯材板部、第3芯材板部および第4芯材板部を有し、
前記第1芯材板部および前記第2芯材板部は、前記第3芯材板部および前記第4芯材板部よりも軸線方向に突出する突出部分を有し、
前記突出部分には、前記ガセットプレート接合部および前記曲げ変形集中領域が設けられていることを特徴とする制振装置。
【請求項2】
前記曲げ変形集中領域は、前記制振ダンパー本体および前記ガセットプレート接合部よりも断面二次モーメントが小さく設定されている請求項1に記載の制振装置。
【請求項3】
前記芯材は、前記第1芯材板部と前記第2芯材板部とが同一面内に配置され、前記第3芯材板部と前記第4芯材板部とが前記第1芯材板部および前記第2芯材板部と直交する同一面内に配置され、前記第1芯材板部と、前記第2芯材板部とが前記ガセットプレートを挟んだ状態で前記ガセットプレートに接合されている請求項に記載の制振装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、制振装置に関する。
【背景技術】
【0002】
制振建物に用いられる各種制振装置のうち、ブレース型の制振ダンパーを有する制振装置は、ガセットプレートを介して建物に設置される場合が一般的である。制振ダンパーとガセットプレートとを剛接合とすると、地震時に、制振ダンパーに軸力だけでなく曲げモーメントも入力されることになる。制振ダンパーとガセットプレートとの接合部に曲げモーメントが生じると、制振ダンパーに首折れ座屈などが発生し、制振ダンパーが所定の性能を発揮できない虞がある。
制振ダンパーへの曲げモーメントの入力を回避する方法として、制振ダンパーとガセットプレートとをピン接合することが知られている。制振ダンパーとガセットプレートとをピン接合するためには、制振ダンパーとガセットプレートとの接合にボールベアリングやクレビスなどの特殊部材を用いている(例えば、特許文献1および2参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-31822号公報
【文献】特開2008-57281号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、ボールベアリングやクレビスなどの特殊部材を用いて制振ダンパーをガセットプレートに接合すると、制振装置の構造が複雑となり、設計や施工が煩雑になるとともにコストがかかるという問題がある。
【0005】
そこで、本発明は、簡便な構造で、制振ダンパーとガセットプレートとの接合部に生じる曲げモーメントを低減させることができる制振装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明に係る制振装置は、架構内の対角位置にそれぞれ設けられたガセットプレートに接合されるブレース型の制振ダンパーを有する制振装置において、前記制振ダンパーは、制振機能を有する制振ダンパー本体と、前記ガセットプレートと接合されるガセットプレート接合部と、前記制振ダンパー本体と前記ガセットプレート接合部との間に介在し、前記制振ダンパー本体および前記ガセットプレート接合部よりも曲げ剛性が小さい曲げ変形集中領域と、を有し、前記制振ダンパーは、軸線方向に延びて断面形状が十字形となる芯材を有し、前記芯材は、前記十字形を形成するように放射状に配置された第1芯材板部、第2芯材板部、第3芯材板部および第4芯材板部を有し、前記第1芯材板部および前記第2芯材板部は、前記第3芯材板部および前記第4芯材板部よりも軸線方向に突出する突出部分を有し、前記突出部分には、前記ガセットプレート接合部および前記曲げ変形集中領域が設けられていることを特徴とする。
【0007】
本発明では、制振ダンパー本体とガセットプレート接合部との間に制振ダンパー本体およびガセットプレート接合部よりも曲げ剛性が小さい曲げ変形集中領域が設けられていることにより、曲げ変形集中領域を設けずに制振ダンパーをガセットプレートに剛接合する場合と比べて、地震時に制振ダンパーとガセットプレートとの接合部に生じる曲げモーメントを低減させることができる。
本発明に係る制振装置では、制振ダンパーとガセットプレートとの接合にボールベアリングやクレビスなどの特殊部材を用いる構成ではないため、簡便な構造とすることができる。
また、曲げ変形集中領域を容易に設けることができる。
【0008】
本発明に係る制振装置では、前記曲げ変形集中領域は、前記制振ダンパー本体および前記ガセットプレート接合部よりも断面二次モーメントが小さく設定されていてもよい。
このような構成とすることにより、曲げ変形集中領域を、制振ダンパー本体およびガセットプレート接合部よりも曲げ剛性が小さい領域とすることができる。
【0010】
本発明に係る制振装置では、前記芯材は、前記第1芯材板部と前記第2芯材板部とが同一面内に配置され、前記第3芯材板部と前記第4芯材板部とが前記第1芯材板部および前記第2芯材板部と直交する同一面内に配置され、前記第1芯材板部と、前記第2芯材板部とが前記ガセットプレートを挟んだ状態で前記ガセットプレートに接合されていてもよい。
このような構成とすることにより、芯材をガセットプレートに容易に接合することができる。
【発明の効果】
【0011】
本発明によれば、簡便な構造で、制振ダンパーとガセットプレートとの接合部に生じる曲げモーメントを低減させることができる。
【図面の簡単な説明】
【0012】
図1】本発明の実施形態による制振装置の一例を示す正面図である。
図2図1のA部分の拡大図である。
図3図2のB方向矢視図である。
図4】(a)は図のC-C線断面図、(b)は図のD-D線断面図(c)は図のE-E線断面図である。
図5】(a)は従来の制振装置に生じる曲げモーメントを示す図、(b)は本実施形態による制振装置に生じる曲げモーメントを示す図である。
図6】層間変形角に対するガセットプレートの回転角を説明するモデル図である。
図7】図のガセットプレートの周辺を示す図である。
図8】曲げ変形集中領域におけるPδ付加曲げモーメントの導出を示す図である。
図9】制振装置のモデル図である。
図10】応力ひずみ図である。
図11】制振ダンパー本体における芯材の断面図である。
図12】曲げ変形集中領域における芯材の断面図である。
図13】ケース1の荷重と変形の関係を示すグラフである。
図14】ケース3の荷重と変形の関係を示すグラフである。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態による制振装置について、図1図8に基づいて説明する。
図1に示すように、本実施形態による制振装置1は、建物の柱12,13と梁14,15とによって囲まれる架構11に配置されている。柱12,13および梁14,15の軸線は、同一の鉛直面(架構11の設置構面11a)に沿って設けられている。本実施形態では、柱12,13および梁14,15は、形鋼で構成されている。
【0014】
柱12,13は、水平方向に間隔をあけて設けられている。柱12,13のうちの一方の柱を第1柱12とし、他方の柱を第2柱13とする。
梁14,15は、上下方向に間隔をあけて設けられている。梁14,15のうちの上側に設けられた梁を第1梁14とし、下側に設けられた梁を第2梁15とする。
第1柱12と第2柱13とを結ぶ水平方向をX方向(図1の左右方向)とし、X方向に直交する水平方向をY方向(図1の紙面に直交する方向)とする。
X方向において、第2柱13に対して第1柱12が設けられている側を一方側とし、第1柱12に対して第2柱13が設けられている側を他方側とする。
【0015】
第1梁14および第2梁15は、それぞれX方向に延びていてX方向一方の端部が第1柱12に接合され、X方向の他方の端部が第2柱13に接合されている。
第1柱12と第1梁14との接合箇所には、第1ガセットプレート16(ガセットプレート)が設けられ、第2柱13と第2梁15との接合箇所には第2ガセットプレート17(ガセットプレート)が設けられている。
第1ガセットプレート16と第2ガセットプレート17とは、取り付け向きが互いに異なるが同一の形状に形成されている。
【0016】
第1ガセットプレート16および第2ガセットプレート17は、例えば、鋼板を加工した平板の部材で、板面が架構11の設置構面11aに沿った向きに配置されている。第1ガセットプレート16および第2ガセットプレート17は、接合鋼板を介して柱12,13および梁14,15に接合されている。
【0017】
制振ダンパー2は、例えば、摩擦ダンパー、オイルダンパー、アンボンドダンパー(登録商標)などで、架構11の対角位置となる第1ガセットプレート16と、第2ガセットプレート17とに接合されるブレース型のダンパーである。制振ダンパー2は、軸線が第1ガセットプレート16と、第2ガセットプレート17とを結ぶ斜め方向(以下、第1斜め方向とする)に延びている。
制振ダンパー2は、軸線方向の一方の端部が第1ガセットプレート16に接合され、他方の端部が第2ガセットプレート17に接合されている。
【0018】
第1斜め方向において、第2ガセットプレート17に対して第1ガセットプレート16が設けられている側(上側かつX方向の一方側)を一方側とし、第1ガセットプレート16に対して第2ガセットプレート17が設けられている側(下側かつX方向の他方側)を他方側とする。
第1斜め方向に直交する方向で、架構11の設置構面11aに沿った方向を第2斜め方向とする。なお、第1斜め方向も架構11の設置構面11aに沿った方向となっている。
【0019】
制振ダンパー2は、長尺に形成され、軸線に直交する断面形状が十字形となる芯材21を有している。芯材21は、軸線が第1斜め方向に延びる向きに配置され、第1ガセットプレート16および第2ガセットプレート17に接合されている。芯材21は、制振ダンパー2の形態によって、1つの部材であってもよいし、複数の部材、軸線方向配列されていてもよい。
芯材21が1つの部材で構成されている場合は、軸線方向の一方の端部が第1ガセットプレート16に接合され、軸線方向の他方の端部が第2接合プレート17に接合されている。芯材21が複数の部材で軸線方向に配列されている場合は、軸線方向の一方側に設けられた芯材21の軸線方向の一方側の端部が第1ガセットプレート16に接合され、軸線方向の他方の端部側に設けられた芯材21の他方の端部が第2接合プレート17に接合されている。
【0020】
芯材21は、形鋼や鋼板を加工して形成されている。芯材21は、断面形状における十字形の中心に軸線が配置されている。
図2図4に示すように、芯材21は、断面形状の十字形の中心(軸線)から四方に放射状に突出する4片を有している。これらの4片を、第1~第4芯材板部23~26とする。第1~第4芯材板部23~26は、それぞれ長尺の平板状に形成されている。本実施形態では、第1~第4芯材板部23~26は、略同じ厚さに形成されている。
【0021】
第1芯材板部23は、芯材21の軸線からY方向の一方側に突出している。第2芯材板部24は、芯材21の軸線からY方向の他方側に突出している。第1芯材板部23および第2芯材板部24は、同一面内に配置されている。
第3芯材板部25は、芯材21の軸線から上側に突出している。第4芯材板部26は、芯材21の軸線から下側に突出している。第3芯材板部25および第4芯材板部26は、それぞれ板面がY方向を向き、同一鉛直面内に配置されている。
【0022】
第1芯材板部23および第2芯材板部24は、第3芯材板部25および第4芯材板部26よりも第1斜め方向の一方側および他方側の両方に突出している。第1芯材板部23および第2芯材板部24における、第3芯材板部25および第4芯材板部26よりも第1斜め方向の一方側に突出している部分をそれぞれ第1突出部分231,241とし、第3芯材板部25および第4芯材板部26よりも第1斜め方向の他方側に突出している部分をそれぞれ第2突出部分232,242とする。
【0023】
第1芯材板部23の第1突出部分231と、第2芯材板部24の第1突出部分241との間には、第3芯材板部25(第4芯材板部26)の厚さ寸法分の隙間が形成されている。第1芯材板部23の第1突出部分231と、第2芯材板部24の第1突出部分241との隙間には、第1ガセットプレート16が挿し込まれている。
第1芯材板部23の第1突出部分231は、第1ガセットプレート16のY方向の一方側に配置され、Y方向の他方側の縁部が第1ガセットプレート16のY方向の一方側の面と当接している。
第2芯材板部24の第1突出部分241は、第1ガセットプレート16のY方向の他方側に配置され、Y方向の一方側の縁部が第1ガセットプレート16のY方向の他方側の面と当接している。
第1芯材板部23の第1突出部分231、および第2芯材板部24の第1突出部分241は、上記のように配置された状態で第1ガセットプレート16に接合されている。
第3芯材板部25および第4芯材板部26は、第1ガセットプレート16と接合されていない。
【0024】
第1芯材板部23の第1突出部分231、および第2芯材板部24の第1突出部分241は、断面形状がL字形となるL字鋼4を介して第1ガセットプレート16と接合されている。
L字鋼4は、L字形の一方の片となる第1板部41と、他方の片となり第1板部41と直交する第2板部とを有している。
【0025】
第1芯材板部23と第1ガセットプレート16とを接合するL字鋼4は、第1芯材板部23の第1突出部分231の第2斜め方向の両側に1つずつ配置されている。L字鋼4の第1板部41が第1芯材板部23の第1突出部分231に沿って配置され、L字鋼4の第2板部42が第1ガセットプレート16に沿って配置されている。
【0026】
第2芯材板部24と第1ガセットプレート16とを接合するL字鋼4も、第2芯材板部24の第1突出部分241の第2斜め方向の両側に1つずつ配置されている。L字鋼4の第1板部41が第2芯材板部24の第1突出部分241に沿って配置され、L字鋼4の第2板部42が第1ガセットプレート16に沿って配置されている。
【0027】
第1芯材板部23の第1突出部分231および第2芯材板部24の第1突出部分241は、第1ガセットプレート16と以下のように接合されている。
第1芯材板部23の第1突出部分231、およびその両側に配置された2つのL字鋼4のそれぞれの第1板部41は、重なって配置されて、それぞれを貫通するボルトによってボルト接合されている。第2芯材板部24の第1突出部分241、およびその両側に配置された2つのL字鋼4それぞれの第1板部41は、重なって配置されていて、それぞれを貫通するボルトによってボルト接合されている。
【0028】
第1ガセットプレート16、第1芯材板部23の第1突出部分231の第2斜め方向の一方側に配置されたL字鋼4の第2板部42、および第2芯材板部24の第1突出部分241の第2斜め方向の一方側に配置されたL字鋼4の第2板部42は、重なって配置され、それぞれを貫通するボルト接合されている。第1ガセットプレート16、第1芯材板部23の第1突出部分231の第2斜め方向の他方側に配置されたL字鋼4の第2板部42はおよび第2芯材板部24の第1突出部分241の第2斜め方向の他方側に配置されたL字鋼4の第2板部42は、重なって配置され、それぞれを貫通するボルト接合されている。
【0029】
芯材21は、上記のように第1ガセットプレート16に接合されると、第3芯材板部25および第4芯材板部26の第1斜め方向の一方側の端部が第1ガセットプレート16と離間している。
芯材21における第1ガセットプレート16と重なって接合されている部分を第1ガセットプレート接合部271(ガセットプレート接合部)とし、第3芯材板部25および第4芯材板部26の第1斜め方向の一方側の端部と第1ガセットプレート16との間の領域を第1曲げ変形集中領域281(曲げ変形集中領域)とする。
L字鋼4は、第1ガセットプレート16から第1斜め方向の他方側に突出せず、第1曲げ変形集中領域281と重ならないように設けられている。第1曲げ変形集中領域281は、第1芯材板部23および第2芯材板部24のみで構成されている。
【0030】
図1に戻り、芯材21と第2ガセットプレート17とは、芯材21と第1ガセットプレート16と同様に接合されている。第2ガセットプレート17には、第1芯材板部23および第2芯材板部24の第2突出部分232,242が接合され、第3芯材板部25および第4芯材板部26は接合されていない、
【0031】
芯材21は、第2ガセットプレート17に接合されると、第3芯材板部25および第4芯材板部26の第1斜め方向の他方側の端部が第2ガセットプレート17と離間している。
芯材21における第2ガセットプレート17と重なって接合されている部分を第2ガセットプレート接合部272(ガセットプレート接合部)とし、第3芯材板部25および第4芯材板部26の第1斜め方向の他方側の端部と第2ガセットプレート17との間の領域を第2曲げ変形集中領域282(曲げ変形集中領域)とする。
L字鋼4は、第2ガセットプレート17から第1斜め方向の一方側に突出せず、第2曲げ変形集中領域282と重ならないように設けられている。第2曲げ変形集中領域282は、第1芯材板部23および第2芯材板部24のみで構成されている。
制振ダンパー2における、第1曲げ変形集中領域281と、第2曲げ変形集中領域282との間の部分で、第1~第4芯材板部が設けられている部分を制振ダンパー本体29とする。制振ダンパー本体29は、架構11の層間変形を減衰させる機能を有している。
制振ダンパー本体29には、第1曲げ変形集中領域281および第2曲げ変形集中領域282は含まないものとする。
【0032】
第1曲げ変形集中領域281および第2曲げ変形集中領域282は、第1ガセットプレート接合部271、第2ガセットプレート接合部272および制振ダンパー本体29よりも断面二次モーメントが小さく、曲げ剛性が小さく設定されている。
これにより、図5に示すように、本実施形態では、図5(a)に示す制振ダンパー102がガセットプレート16,17に剛接合されている場合と比べて、地震時に制振ダンパー2に生じる曲げモーメントを小さくすることができる。
図5(a)には、制振ダンパー102がガセットプレート16,17に剛接合されている場合に制振ダンパーに生じる曲げモーメントMが示されている。図5(b)には、本実施形態の第1曲げ変形集中領域281および第2曲げ変形集中領域282を設けた状態で制振ダンパー2が第1ガセットプレート16および第2ガセットプレート17に接合されている場合の制振ダンパー2に生じる曲げモーメントMが示されている。
【0033】
上記の制振装置1の第1曲げ変形集中領域281と、第2曲げ変形集中領域282は、一般的な建築物の圧縮材と同様に設計する。例えば、第1曲げ変形集中領域281と、第2曲げ変形集中領域282の許容圧縮力Naは、制振ダンパー2の最大軸力Nmaxを上回るように設計する。許容圧縮力は、日本建築学会の鋼構造座屈設計指針に従う。
これらに加え、上記の制振装置1の曲げ第1曲げ変形集中領域281と、第2曲げ変形集中領域282(以下、曲げ変形集中領域と称する)は、以下の式を満足するように設計する。
【0034】
(1)架構の変形により生じる強制曲げモーメントMの算出
図6および図7において、曲げ変形集中領域の曲げモーメントが一定であると仮定し、曲率が一定であるとすると、曲げ変形集中領域の回転角は次のように求められる。
【0035】
【数1】
【0036】
ここで、曲げ変形集中領域の長さをL、曲げ変形集中領域の回転角をθJiとし、(2)式に代入して変形すると、(3)式が得られる。
【0037】
【数2】
【0038】
また、層間変形角と制振ダンパーのなす角度は、鋼構造制振設計指針より(4)式で表される。
【0039】
【数3】
【0040】
(4)式を(3)式に代入すると、(5)式が得られる。
【0041】
【数4】
【0042】
ただし、
θJi :ガセットプレートと制振ダンパー間の回転角(rad)
φ :制振ダンパー角度(rad)
ξ :制振ダンパーの節点間長さに対する接合部の長さを表すパラメータ
:設計上想定する層間変形角(rad)
【0043】
図8に示すように、曲げ変形集中領域のPδ付加曲げモーメントMは、以下のように算出される。
【0044】
【数5】
【0045】
モーメントのつり合いより、以下の式が得られる。
【0046】
【数6】
【0047】
ここで、曲げ変形集中領域の長さをL、制振ダンパーの軸力をNmaxとし、(8)式に代入して変形すると、以下の式が得られる。
【0048】
【数7】
【0049】
よって、付加曲げモーメントMの最大値は以下のようになる。
【0050】
【数8】
【0051】
ただし、
δ :曲げ変形集中領域の変形(mm)
max :制振ダンパー最大軸力(kN)
【0052】
(5)式で求めた強制曲げモーメントMと、(9)式で求めた付加曲げモーメントM、および制振ダンパーの最大軸力Nmaxに対し、以下の(11)式を満たすように曲げ変形集中領域の断面を決定する。
【0053】
【数9】
【0054】
ただし、
Na :曲げ変形集中領域許容圧縮力(kN)
Ma :曲げ変形集中領域許容曲げモーメント(kNm)
【0055】
階高4.55m、スパン7.2mの鉄骨造建物を想定し、諸元を以下のように設定する。
【0056】
【表1】
【0057】
また、ケース(1)の曲げ変形集中領域の断面は以下の通りとする。
【0058】
【表2】
【0059】
ケース(1)を計算する。
【0060】
【数10】
【0061】
(5)式より、
【0062】
【数11】
【0063】
(10)式より、
【0064】
【数12】
【0065】
また、MaおよびNaは以下の通り。
【0066】
【数13】
【0067】
以上を(11)式に代入する。
【0068】
【数14】
【0069】
同様にケース(2)は断面を変化させ、以下の通りとする。
【0070】
【表3】
【0071】
ケース(2)計算する。(5)式より、
【0072】
【数15】
【0073】
(10)式より、
【0074】
【数16】
【0075】
また、MaおよびNaは以下の通り。
【0076】
【数17】
【0077】
以上を(11)式に代入する。
【0078】
【数18】
【0079】
次に、上記の本実施形態による制振装置の作用・効果について説明する。
上記の本実施形態による制振装置では、制振ダンパー本体29と第1ガセットプレート接合部271との間に制振ダンパー本体29および第1ガセットプレート接合部271よりも曲げ剛性が小さい第1曲げ変形集中領域281が設けられ、制振ダンパー本体29と第2ガセットプレート接合部272との間に制振ダンパー本体29および第2ガセットプレート接合部272よりも曲げ剛性が小さい第2曲げ変形集中領域282が設けられている。これにより、第1曲げ変形集中領域281および第2曲げ変形集中領域282を設けずに制振ダンパー1を第1ガセットプレート16および第2ガセットプレート17に剛接合する場合と比べて、地震時に制振ダンパー2と第1ガセットプレート16および第2ガセットプレート17との接合部に生じる曲げモーメントを低減させることができる。
本実施形態による制振装置1では、制振ダンパー2と第1ガセットプレート16および第2ガセットプレート17との接合にボールベアリングやクレビスなどの特殊部材を用いる構成ではないため、簡便な構造とすることができる。
【0080】
上記の本実施形態による制振装置では、第1曲げ変形集中領域281および第2曲げ変形集中領域282は、制振ダンパー本体29、第1ガセットプレート接合部271および第2ガセットプレート接合部272よりも断面二次モーメントが小さく設定されている。
このような構成とすることにより、第1曲げ変形集中領域281および第2曲げ変形集中領域282を、制振ダンパー本体29、第1ガセットプレート接合部271および第2ガセットプレート接合部272よりも曲げ剛性が小さい領域とすることができる。
【0081】
上記の本実施形態による制振装置では、制振ダンパー2は、軸線方向に延びて断面形状が十字形となる芯材21を有し、芯材21は、十字形を形成するように放射状に配置された第1芯材板部23、第2芯材板部24、第3芯材板部25および第4芯材板部26を有している。第1芯材板部23および第2芯材板部24は、第3芯材板部25および第4芯材板部26よりも軸線方向に突出する第1突出部分231,241および第2突出部分232,242を有している。第1突出部分231,241および第2突出部分232,242には、第1ガセットプレート接合部271、第2ガセットプレート接合部272、第1曲げ変形集中領域281,第2曲げ変形集中領域282が設けられている。
このような構成とすることにより、第1曲げ変形集中領域281,第2曲げ変形集中領域282を容易に設けることができる。
【0082】
上記の本実施形態による制振装置では、芯材21は、第1芯材板部23と第2芯材板部24とが同一面内に配置され、第3芯材板部25と第4芯材板部26とが第1芯材板部23および第2芯材板部24と直交する同一面内に配置されている。第1芯材板部23と、第2芯材板部24とが第1ガセットプレート16、第2ガセットプレート17を挟んだ状態で第1ガセットプレート16、第2ガセットプレート17に接合されている。
このような構成とすることにより、芯材17を第1ガセットプレート16、第2ガセットプレート17に容易に接合することができる。
【0083】
続いて、制振装置の制振ダンパーに摩擦ダンパーが用いられていて、制振ダンパーの大容量化を図るために摩擦ダンパーを並列配置する事例を検討する。
2つのダンパー(摩擦ダンパー)の摩擦力にばらつきが生じた場合、摩擦力が小さいダンパーがすべり始めた段階で、2つのダンパーには曲げ変形が発生し、ダンパー効率の低下およびダンパー部材の曲げ応力の増加が懸念される。
本検討では、上記の曲げ変形に対しダンパー端部の断面の曲げ剛性を意図的に減少させることで、端部をピン接合に近い状態とすることが可能なディテールにより、ダンパーに入力される曲げモーメントを低減させる。
また、上記の制振装置のディテールと通常の接合部との比較を行い、上記の制振装置のディテールの有用性を検証する。
なお、実際のダンパー接合部は、柱梁とガセットプレートにて接合され、ある回転剛性を有するが、本検討ではその部分のモデル化は行わず、端部支持条件は剛接合・ピン接合にて検討した(図9参照)。
【0084】
摩擦ダンパー部は、軸力に対し完全弾塑性挙動を示し、曲げに対しては弾性挙動を示すようモデル化を行う(図10参照)。
材料の非線形特性を以下のように設定した。初期剛性はE=205000N/mm2とし、切片の値は摩擦力が大きいダンパーはσ×A=2400kN、摩擦力が小さいダンパーはσ×A=1600kNとなるよう値を設定した。(摩擦力のばらつきは±400kN(中央値2000kNの±20%と設定した。)
第2勾配は、初期勾配の1/10000以下の値を設定した。
また、塑性化に伴い曲げ剛性が低減されるのを防ぐため、摩擦ダンパー部は軸断面積を0とし、弾性挙動を示すダンパー断面を並列入力した。図11にダンパー軸部断面を示し、図12に曲げ変形集中領域断面を示す。
【0085】
検討ケース
ケース1 上記の制振装置のディテールモデル
ケース2 完全ピンモデル
ケース3 完全剛モデル
端部支持条件による場合分け
a:片端ピン他端固定
b:両端ピン
c:両端剛(ケース1のみ)
【0086】
検討条件
変形量一定下における、ダンパー軸力(支点反力)・ダンパー端部曲げモーメントを比較する。
変形量は、強制変位部の変位量が6mm時点を採用した。4mmの時点で摩擦力が小さいダンパーに滑りが生じ、6mmの段階ではケース1-cのみ摩擦力が大きいダンパーにも滑りが生じる。
【0087】
検討結果を下表に示す。
【0088】
【表4】
【0089】
実際のダンパーの配置状況は、柱梁よりガセットプレートにて支持されるため、ある程度の回転拘束および剛性がある。よって、実際の応力状態は、それぞれのケースにおけるa(他端ピン)とc(両端剛)の間にあり、固定端側の値に近いと考えられる。ケース1~3それぞれのc(両端剛)では、ダンパー端部に曲げが生じないため、すべて同様の結果となる。
ケース1とケース3とを比較すると、同一の変形条件において支点反力は、ケース1よりもケース3の方が大きいため、ダンパーの効率は端部断面を軸部と同じとした方が良いことがわかる(図13および図14参照)。
上記の原因は、摩擦力が小さいダンパーが軸変形を起こした際に端部が回転変形することにより、片側のダンパーが滑った後の荷重変形関係の剛性が見かけ上低下することによると考えられる。
【0090】
一方、ダンパー端部の曲げモーメントは、曲げ変形集中領域を設けたケース1の方がケース3より大幅に小さい。
ケース3のダンパーに生じる曲げモーメントが21.35kNm(摩擦力小固定端側)のとき、曲げモーメントにより生じる摩擦力は21.35kNm/0.25m=85.4kNとなり、元の摩擦力1600kNの5.3%のロスが生じる。
ケース1のダンパーに生じる曲げモーメントが0.96kNm(摩擦力小固定端側)のとき、曲げモーメントにより生じる摩擦力は0.96kNm/0.25m=4kNとなり、元の摩擦力1600kNの0.3%のロスとなる。
よって、ダンパーに生じる曲げモーメントを低減させた上記の制振装置のディテールの方が、ダンパー容量において効率的であることが明らかとなった。
【0091】
曲げ変形集中領域を設けるディテールは、通常の接合部に比べ、端部をピン接合にした場合に近い結果となり、ダンパーに生じる曲げモーメントを大幅に低減可能である。
通常の接合部に比べ、上記の制振装置のディテールは摩擦力が小さいダンパーに滑りが生じた後、ダンパー効率(ダンパー軸力/変形量)が低下する。
ただし、ダンパーに生じる曲げモーメントが小さいため、ダンパーの摩擦力のロスが小さく、上記の制振装置のディテールの方がダンパー容量は大きい。
実際の設計においては、ダンパー接合部(柱梁とダンパーの接合部)の回転剛性を考慮し、ダンパー端部に生じる曲げモーメントを算出する必要がある。
【0092】
曲げ変形集中領域を設けることで、従来の剛接合形式の場合に比べ地震時に制振ダンパー2に生じる曲げモーメントを低減できる。
曲げモーメントを低減することで、ダンパー容量のロスが少なく効率的である。
【0093】
以上、本発明による制振装置の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記の本実施形態による制振装置では、制振ダンパー2の芯材21は、断面形状が十字形で、第1芯材板部23および第2芯材板部24が第1ガセットプレート16および第2ガセットプレート17と接合され、第3芯材板部25および第4芯材板部26は、軸線方向の先端部が第1ガセットプレート16および第2ガセットプレート17に達しておらず第1ガセットプレート16および第2ガセットプレート17と軸線方向に離間して配置されている。第1曲げ変形集中領域281は、第3芯材板部25および第4芯材板部26の軸線方向の先端部と第1ガセットプレート16との間に設けられ、第2曲げ変形集中領域282は、第3芯材板部25および第4芯材板部26の軸線方向の先端部と第2ガセットプレート17との間に設けられている。
これに対し、曲げ変形集中領域281,282は、曲げ剛性が小さく設定されていれば、上記以外の形態であってもよい。
【0094】
上記の実施形態では、芯材21は、第1芯材板部23と第2芯材板部24とが同一面内に配置され、第3芯材板部25と第4芯材板部26とが第1芯材板部23および第2芯材板部24と直交する同一面内に配置されている。第1芯材板部23と、第2芯材板部24とが第1ガセットプレート16、第2ガセットプレート17を挟んだ状態で第1ガセットプレート16、第2ガセットプレート17に接合されている。
これに対し、第1芯材板部23と第2芯材板部24とが同一面内に配置されていなくてもよいし、第1ガセットプレート16、第2ガセットプレート17を挟まずに第1ガセットプレート16、第2ガセットプレート17の同じ面に接合されていてもよい。
【符号の説明】
【0095】
1 制振装置
2 制振ダンパー
11 架構
16 第1ガセットプレート(ガセットプレート)
17 第2ガセットプレート(ガセットプレート)
21 芯材
23 第1芯材板部
24 第2芯材板部
25 第3芯材板部
26 第4芯材板部
29 制振ダンパー本体
231,241 第1突出部分(突出部分)
232,242 第2突出部分(突出部分)
271 第1ガセットプレート接合部(ガセットプレート接合部)
272 第2ガセットプレート接合部(ガセットプレート接合部)
281 第1曲げ変形集中領域(曲げ変形集中領域)
282 第2曲げ変形集中領域(曲げ変形集中領域)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14