IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人日本原子力研究開発機構の特許一覧 ▶ 国立大学法人名古屋大学の特許一覧

特許7301288放射線強度分布測定装置、放射線強度分布測定方法
<>
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図1
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図2
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図3
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図4
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図5
  • 特許-放射線強度分布測定装置、放射線強度分布測定方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-23
(45)【発行日】2023-07-03
(54)【発明の名称】放射線強度分布測定装置、放射線強度分布測定方法
(51)【国際特許分類】
   G01T 1/16 20060101AFI20230626BHJP
   G01T 1/00 20060101ALI20230626BHJP
   G01T 1/20 20060101ALI20230626BHJP
【FI】
G01T1/16 A
G01T1/00 A
G01T1/20 D
G01T1/20 C
G01T1/20 B
G01T1/20 G
【請求項の数】 6
(21)【出願番号】P 2019150991
(22)【出願日】2019-08-21
(65)【公開番号】P2021032627
(43)【公開日】2021-03-01
【審査請求日】2022-07-19
(73)【特許権者】
【識別番号】505374783
【氏名又は名称】国立研究開発法人日本原子力研究開発機構
(73)【特許権者】
【識別番号】504139662
【氏名又は名称】国立大学法人東海国立大学機構
(74)【代理人】
【識別番号】100097113
【弁理士】
【氏名又は名称】堀 城之
(74)【代理人】
【識別番号】100162363
【弁理士】
【氏名又は名称】前島 幸彦
(74)【代理人】
【識別番号】100194283
【弁理士】
【氏名又は名称】村上 大勇
(72)【発明者】
【氏名】寺阪 祐太
(72)【発明者】
【氏名】瓜谷 章
(72)【発明者】
【氏名】渡辺 賢一
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開2019-190857(JP,A)
【文献】Yasuhiro Tsutsumi et al.,Position-sensitive detectors based on redshifts in photoluminescence spectra,Optical Engineering,2019年07月,volume 58, issue 7, #077108
(58)【調査した分野】(Int.Cl.,DB名)
G01T 1
(57)【特許請求の範囲】
【請求項1】
光ファイバーの長さ方向に沿った放射線の強度分布を測定する放射線強度分布測定装置であって、
前記光ファイバーは、前記放射線を吸収することによって蛍光を発すると共に前記蛍光を伝搬させ、
前記光ファイバーの長さ方向における一方の端部側において、前記光ファイバーから伝搬した光の波長スペクトルを測定する分光器と、
前記波長スペクトルをビンニングして離散化した複数の成分をもつ波長スペクトルデータと、前記強度分布をビンニングして離散化した複数の成分をもつ放射線強度分布データとを、前記蛍光の前記光ファイバー中での伝搬における減衰特性を考慮した上で一次関係で結びつける係数の行列である係数行列を予め認識し、当該係数行列を用いて、前記波長スペクトルデータより前記放射線強度分布データを算出する解析部と、
を具備することを特徴とする放射線強度分布測定装置。
【請求項2】
前記係数行列を記憶する記憶部を具備することを特徴とする請求項に記載の放射線強度分布測定装置。
【請求項3】
前記光ファイバーにおける他方の端部側に無反射処理が施されたことを特徴とする請求項1又は2に記載の放射線強度分布測定装置。
【請求項4】
前記光ファイバーと前記分光器との間に、前記光ファイバーとは異なる材料で構成された他の光ファイバーが介在されたことを特徴とする請求項1から請求項までのいずれか1項に記載の放射線強度分布測定装置。
【請求項5】
光ファイバーの長さ方向に沿った放射線の強度分布を測定する放射線強度分布測定方法であって、
前記放射線を吸収することによって蛍光を発すると共に、前記蛍光を伝搬させる前記光ファイバーを用い、
前記光ファイバーの長さ方向における一方の端部側における、前記光ファイバーから伝搬した光の波長スペクトルを測定するスペクトル取得工程と、
前記波長スペクトルをビンニングして離散化した複数の成分をもつ波長スペクトルデータと、前記強度分布をビンニングして離散化した複数の成分をもつ放射線強度分布データとを、前記蛍光の前記光ファイバー中での伝搬における減衰特性を考慮した上で一次関係で結びつける係数の行列である係数行列を予め認識し、当該係数行列を用いて、前記波長スペクトルデータより前記放射線強度分布データを算出する算出工程と、
を具備することを特徴とする放射線強度分布測定方法。
【請求項6】
前記算出工程において、
前記放射線強度分布データの各成分をフィッティングパラメータとして前記係数行列を用いて前記波長スペクトルデータに対応した比較用波長スペクトルデータを算出し、前記比較用波長スペクトルデータの各成分と、対応する前記波長スペクトルデータの各成分差の二乗和が最小となるような、前記放射線強度分布データの各成分を算出することを特徴とする請求項に記載の放射線強度分布測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線強度の空間分布を測定する放射線強度分布測定装置、放射線強度分布測定方法に関する。
【背景技術】
【0002】
放射線源の空間分布を測定するためには、放射線強度の空間分布を測定することが有効である。特にこうした測定は、測定箇所から遠隔した地点にいる作業者の操作により行われる。光ファイバーを用いた単純な構成によってこのような測定を行う構成については、例えば非特許文献1に記載されている。
【0003】
図5(a)は、このような放射線強度分布測定装置90の構成を模式化して示す図である。放射線強度分布測定装置90においては、長さに対して径が無視できる程度の長いシンチレーション光ファイバー(光ファイバー)10が用いられ、その両端にそれぞれ第1検出器91、第2検出器92が配される。この放射線強度分布測定装置90においては、光ファイバー10の長さ(図中左右方向)方向における放射線の入射位置が検出される。光ファイバー10は、放射線のエネルギーを吸収することによって可視光(蛍光)を発するシンチレータ材料で構成されると共に、このような可視光を長さ方向に伝搬させる光ファイバーとしての機能を有する。こうした光ファイバー10は、プラスチックシンチレータ材料を用いて構成することができる。
【0004】
図5(a)において、例えばγ線光子Gが入射地点Pにおいて時刻t0に光ファイバー10に入射した場合、前記の蛍光は、左右に向けて発せられる。このうち、左側に向かう蛍光F1は光ファイバー10の左側に達して第1検出器91で検出され、右側に向かう蛍光F2は光ファイバー10の右側に達して第2検出器92で検出される。蛍光F1の経路長はL1、蛍光F2の経路長はL2となる。第1検出器91、第2検出器92として、このような微弱な蛍光F1、F2(可視光)を高い時間分解能で検出可能な光電子増倍管等を用いることができる。
【0005】
図5(b)は、この場合において第1検出器91、第2検出器92がそれぞれ蛍光F1、F2を検出した際の出力の時間経過を模式的に示す、この出力はパルス状であるため、蛍光F1の第1検出器91による検出時刻をt1、蛍光t2の第2検出器92による検出タイミングをt2と認識することができる。蛍光F1の経路長L1>蛍光F2の経路長L2であるため、t1はt2よりも後になる。この場合、図5(a)においてγ線光子Gの入射位置の光ファイバー10の中心Aからの距離をyとして、y=(t1-t2)×c/2となる。ここで、cは光ファイバー10内における光(蛍光)の伝搬速度である。すなわち、t1、t2を認識することによって、入射地点Pの位置(入射位置)を認識することができる。
【0006】
図5(a)においては、光ファイバー10は直線状とされ、その長さ方向におけるγ線光子Gの入射位置(y)が上記のように算出される。しかしながら、可撓性の光ファイバー10を用い、これを多数回屈曲させて2次元平面のある領域内を覆うように敷設すれば、光ファイバー10の長さ方向における位置(上記のy)と、この領域内の2次元平面内の位置とを1対1に対応させることもできる。この場合には、図5(a)の構成により放射線強度の2次元分布を測定することもできる。図5(a)の構成は、上記のような光ファイバー10と2つの検出器(光電子増倍管)を用いて実現することができるため、この放射線強度分布測定装置90を安価とすることができる。また、上記の例ではγ線が検出対象となったが、光ファイバー10を構成するシンチレータ材料を用いて検出可能な全ての放射線(α線、β線、γ線、中性子線等)に対して、同様の測定を行うことができる。
【先行技術文献】
【非特許文献】
【0007】
【文献】E.Takada、K.Sugiyama、H.Takahashi、T.Iguchi、and M.Nakazawa、「Neutron Radiation Distribution Sensor Using Flexible Plastic Scintillating Fiber Combined With The Time-Of-Flight Technique」、IEEE Transactions on Nuclear Science、Vol.42、No.4、p570(1995)
【発明の概要】
【発明が解決しようとする課題】
【0008】
図5(a)においては、長い光ファイバー10内の1箇所である入射地点Pで一つのγ線光子Gのみが入射するものとしており、この放射線強度分布測定装置90の測定対象が低線量率である場合にはこうした状況となる。この場合には、第1検出器91が検出する蛍光F1、第2検出器92が検出する蛍光F2は、このγ線光子Gに起因して発せられたものであることが明らかであるために、上記のようにt1、t2よりyが算出できる。一方、図6は、高線量率の測定対象に対しての状況を図5に対応させて示す。測定対象が高線量率である場合、図6(a)に示されるように、光ファイバー10内における前記の入射地点Pとは別の他の入射地点P’に、他のγ線光子G’が、時刻t0に近い時刻t0’で入射する場合があり、この場合には入射地点P’からも蛍光が左右にそれぞれ発せられる。
【0009】
この場合、図6(b)に示されるように、例えば蛍光F1が第1検出器91で検出されたタイミングt1と蛍光F1’が第1検出器91で検出されたタイミングt1’、あるいは蛍光F2がそれぞれ第2検出器92で検出されたタイミングt2と蛍光F2’が第2検出器92で検出されたタイミングt2’とがそれぞれ近接する。この場合には、第1検出器91、第2検出器92が検出した蛍光が、γ線光子G、G’のどちらに起因するかを識別することは困難となる。このため、例えば本来はt1-t2、t1’-t2’を算出すべきところ、誤ってt1-t2’、t1’-t2等が算出される場合がある。
【0010】
すなわち、図6(b)の場合には、上記のt1-t2、あるいはt1’-t2’を適正に算出することによりγ線光子G、G’の入射位置を算出することが困難となった。図6の例ではγ線光子G、G’の2つが光ファイバー10に入射する設定とされたが、測定対象が高線量率である場合においては、短時間の間により多くのγ線光子(放射線)が光ファイバー10に入射する場合がある。この場合においては、放射線の入射位置の算出は更に困難となる。このため、前記の放射線強度分布測定装置90は、特に高線量率の測定対象における放射線強度分布を測定することができなかった。
【0011】
このため、高線量率の測定対象に対しても、簡易な装置構成で放射線強度分布を測定できることが望まれた。
【0012】
本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の放射線強度分布測定装置は、光ファイバーの長さ方向に沿った放射線の強度分布を測定する放射線強度分布測定装置であって、前記光ファイバーは、前記放射線を吸収することによって蛍光を発すると共に前記蛍光を伝搬させ、前記光ファイバーの長さ方向における一方の端部側において、前記光ファイバーから伝搬した光の波長スペクトルを測定する分光器と、前記波長スペクトルをビンニングして離散化した複数の成分をもつ波長スペクトルデータと、前記強度分布をビンニングして離散化した複数の成分をもつ放射線強度分布データとを、前記蛍光の前記光ファイバー中での伝搬における減衰特性を考慮した上で一次関係で結びつける係数の行列である係数行列を予め認識し、当該係数行列を用いて、前記波長スペクトルデータより前記放射線強度分布データを算出する解析部と、を具備することを特徴とする
本発明の放射線強度分布測定装置は、前記係数行列を記憶する記憶部を具備することを特徴とする。
本発明の放射線強度分布測定装置は、前記光ファイバーにおける他方の端部側に無反射処理が施されたことを特徴とする。
本発明の放射線強度分布測定装置は、前記光ファイバーと前記分光器との間に、前記光ファイバーとは異なる材料で構成された他の光ファイバーが介在されたことを特徴とする。
本発明の放射線強度分布測定方法は、光ファイバーの長さ方向に沿った放射線の強度分布を測定する放射線強度分布測定方法であって、前記放射線を吸収することによって蛍光を発すると共に、前記蛍光を伝搬させる前記光ファイバーを用い、前記光ファイバーの長さ方向における一方の端部側における、前記光ファイバーから伝搬した光の波長スペクトルを測定するスペクトル取得工程と、前記波長スペクトルをビンニングして離散化した複数の成分をもつ波長スペクトルデータと、前記強度分布をビンニングして離散化した複数の成分をもつ放射線強度分布データとを、前記蛍光の前記光ファイバー中での伝搬における減衰特性を考慮した上で一次関係で結びつける係数の行列である係数行列を予め認識し、当該係数行列を用いて、前記波長スペクトルデータより前記放射線強度分布データを算出する算出工程と、を具備することを特徴とする
本発明の放射線強度分布測定方法は、前記算出工程において、前記放射線強度分布データの各成分をフィッティングパラメータとして前記係数行列を用いて前記波長スペクトルデータに対応した比較用波長スペクトルデータを算出し、前記比較用波長スペクトルデータの各成分と、対応する前記波長スペクトルデータの各成分差の二乗和が最小となるような、前記放射線強度分布データの各成分を算出することを特徴とする。
【発明の効果】
【0014】
本発明は以上のように構成されているので、高線量率の測定対象に対しても、簡易な装置構成で放射線強度分布を測定することができる。
【図面の簡単な説明】
【0015】
図1】本発明の実施の形態に係る放射線強度分布測定装置の構成を示す図である。
図2】分光器によって計測される蛍光の波長スペクトルの、蛍光の伝搬距離依存性を調べた結果である。
図3】本発明の実施の形態に係る放射線強度分布測定方法において計算に用いられる波長スペクトルデータ(a)、放射線強度分布データ(b)の例である。
図4】本発明の実施の形態に係る放射線強度分布測定方法によって算出された放射線強度分布の3つの例である。
図5】従来の放射線強度分布測定装置の構成(a)、及びその原理(b)を、測定対象が低線量率である場合において説明する図である。
図6】従来の放射線強度分布測定装置の構成(a)、及びその原理(b)を、測定対象が高線量率である場合において説明する図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態に係る放射線強度分布測定装置、放射線強度分布測定方法について説明する。図1は、この放射線強度分布測定装置1の構成を示す図である。この温度測定装置1においても、前記と同様にシンチレータ(プラスチックシンチレータ)材料で構成された長いシンチレーション光ファイバー(光ファイバー)10が用いられ、光ファイバー10の長さ(図中左右方向)方向における放射線の入射位置が検出される。このため、γ線光子Gがこの光ファイバー10のある地点(入射地点P)に入射すると、蛍光F1、F2が発せられ、かつこれらが光ファイバー10中を伝搬する点についても同様である。
【0017】
ここでは、前記の光検出器91、92(光電子増倍管)の代わりに、この光ファイバー10が発する蛍光(可視光)のスペクトルを測定可能な分光器20が、光ファイバー10の一方(図中右側)の端部においてのみ設けられる。前記の光検出器91、92としては、蛍光の検出時刻を精密に認識できるように、高い時間分解能が要求されたのに対し、ここで分光器20によって測定されるのは、一定の時間範囲において検出された光ファイバー10側から発せられた多くの蛍光F2に対応した発光スペクトルである。このため、分光器20としては、この蛍光に起因するスペクトル(波長スペクトル)を測定可能なものが適宜用いられる。
【0018】
一方、光ファイバー10の他端(図中左側)の端部は、この部分で光ファイバー10中を他端側に向かう光(蛍光F1に対応)が反射しないように、無反射処理される。これによって、分光器20によって検出される光を、γ線光子Gの入射によって発せられた蛍光F1、F2のうち、右側に進行する蛍光F2のみとすることができる。
【0019】
解析部30はパーソナルコンピュータであり、分光器20を制御し、上記のように得られた発光スペクトルから、放射線強度を、光ファイバー10中における分光器20からの距離xの関数として算出する。記憶部40は、例えばハードディスクであり、この算出に際して必要となる定数等を記憶する。
【0020】
なお、放射線(γ線光子G)を直接受ける光ファイバー10とは異なり、分光器20、解析部30、記憶部40は、高線量の環境下に載置されないことが好ましい。このため、光ファイバー10と分光器20との間に、シンチレータとしての機能(γ線光子Gを吸収して蛍光を発する機能)はもたず蛍光を伝搬させる機能のみをもつ他の光ファイバーを介在させることにより、光ファイバー10と分光器20、解析部30、記憶部40とを離間させてもよい。この場合においては、前記の光ファイバー10と比べて伝搬効率が高い(減衰の小さい)ものを用いることができる。こうした場合においても、以下の解析を同様に行わせることができる。
【0021】
以下に、上記の構成における放射線強度分布の測定の原理について説明する。この放射線強度分布測定方法においては、まず、一定の時間範囲内で分光器20によって前記のスペクトル(波長スペクトル)を得るスペクトル取得工程が行われ、その後に、このスペクトルより放射線強度分布(放射線強度のx依存性)を算出する算出工程が行われる。
【0022】
スペクトル取得工程において、測定対象が高線量率である場合には、短時間の間でγ線光子Gは光ファイバー10における複数の箇所に入射し、各々の点から蛍光F1、F2が発せられる。この蛍光F1、F2のスペクトルは、光ファイバー10を構成するプラスチックシンチレータの材料によって定まるため、この場合において、発せられた時点での全ての蛍光F1、F2の発光スペクトルは同一である。一方、この蛍光F1、F2を構成する可視光の光子は、光ファイバー10中を伝搬する際に一部が吸収される。
【0023】
この吸収(減衰)の影響は、蛍光F2が発せられてから分光器20に達するまでの伝搬距離xに依存する。図1におけるxが大きな地点で発せられた蛍光F2が分光器20に達するまでの伝搬距離と、xが小さな地点で発せられた蛍光F2が分光器20に達するまでの伝搬距離とは、大きく異なる。このため、蛍光F2のスペクトルは、これが発せられた地点においてはその位置(x)に依存しないが、分光器20によって検出されたこの蛍光F2のスペクトルには、この伝搬距離(x)に対する依存性が認められる。
【0024】
図2は、このようなプラスチックシンチレータの蛍光F2を分光器20で検出して得られたスペクトルの、伝搬距離(x)依存性を測定した結果である。ここでは、γ線光子Gの伝搬距離(入射位置)xを分光器20から1.0m~6.0mに変化させた場合における、分光器20で測定されたスペクトル(波長スペクトル)が示されている。前記のように伝搬距離に応じた吸収(減衰)が見られるが、この吸収は特に短波長側で大きく、長波長側で小さい。このため、図2における各スペクトルは、伝搬距離に応じて、ピーク値が異なるだけではなく、その形状が異なる。
【0025】
光ファイバー10における複数の異なる箇所にγ線光子Gが入射した場合には、入射の度に蛍光F2が発せられ、分光器20で検出されるスペクトル(波長スペクトル)は、各蛍光F2によるものの積算となる。ただし、この際の元となる個々の蛍光F2のスペクトルには、図2で示されたような距離依存性が存在する。仮にこのスペクトルの形状に距離依存性がなく、距離に応じてスペクトル全体が比例縮小(拡大)する場合には、分光器20で検出されるスペクトルの形状は、放射線強度分布によらず一定となる。
【0026】
しかしながら、図2に示されたように、光ファイバー10中における光吸収には波長依存性があるために、スペクトルの形状自身に距離依存性が認められる。このため、算出工程において、スペクトル取得工程で得られたスペクトルから放射線強度分布を求めることができる。
【0027】
図3は、この計算手法を説明するための図である。図3(a)は、分光器20によって直接測定されるスペクトル(波長スペクトル)を、波長λを1~iの区間に分割してビンニングした場合を示す。この場合、実測された波長毎の検出強度Q(点線)は、実線で示されたように1~iに対応して区間毎に算出されたQ、Q~Qを各成分とする波長スペクトルデータとして取り扱うことができる。
【0028】
同様に、図3(b)は、ここで測定されるべき放射線強度分布を、位置x(伝搬距離)を1~jの区間に分割してビンニングした場合を示す。この場合、測定されるべき放射線強度X(点線)は、実線で示されたように1~jに対応して区間毎にZ、Z~Zを各成分とする放射線強度分布データとして取り扱うことができる。Q、Q~Qは、分光器20によって実測される量あるいはこれから直接換算される量であり、解析部30が認識することができ、これからZ、Z~Zを算出することが求められる。
【0029】
実測されるQ、Q~Qの各々は、ある係数(重み付け係数)をZ、Z~Zの各々に乗じた上で加算した値に対応すると考えることができ、この重み付け係数は、図2に示されたようなスペクトルのx依存性によって定まる。すなわち、波長スペクトルデータ(Q、Q、・・・Q)と、放射線強度分布データ(Z、Z、・・・Z)の関係は(1)式で表される。
【0030】
【数1】
【0031】
ここで、Γm,n(m=1~i、n=1~j)を各成分とする係数行列Γが用いられ、前記の重み付け係数となるΓm,nは、図2の特性より算出することができる。例えば、図3(b)において、予め位置xにおけるkの区間にのみ放射線が入射し他の区間では放射線強度が零となるように設定した場合のスペクトルを分光器20で測定してQ~Qを得た場合、(1)式より、Q~Qの各々からΓ1,k~Γi,kを算出することができる。また、光ファイバー10の発する蛍光の発光スペクトルと、光ファイバー10中の可視光の吸収特性(吸収係数の波長依存性)が判明していれば、Γm,nを算出することもできる。いずれの場合も、実際の放射線強度分布の測定の前に、予め係数行列Γを求めることができる。なお、前記のように光ファイバー10と分光器20の間に他の光ファイバーを介した場合には、係数行列Γはこの光ファイバーによる減衰も考慮されて算出されるが、前記のように、この光ファイバーには減衰の小さなものを用いることができる。
【0032】
~Qは分光器20によって測定することができるため、解析部30は、(1)式における係数行列Γの逆行列を算出し、これを波長スペクトルデータ(Q、Q、・・・Q)からなる行列に乗じることによって、放射線強度分布データ(Z、Z、・・・Z)を算出することができる。
【0033】
ただし、実際には、実測される(Q、Q、・・・Q)には統計誤差が多く含まれているため、上記のような単純な算出方法では、算出された(Z、Z、・・・Z)の誤差は大きくなる。このため、実際には、係数行列Γを既知とし、実測された(Q、Q、・・・Q)と最も近いスペクトルを再現するような(Z、Z、・・・Z)が算出される。具体的には、(X、X、・・・X)をフィッティングパラメータとして(2)式によって算出された(Qres 1、・・・Qres i)について、(3)式で定義されるΔが最小となるように(X、X、・・・X)を設定する最小二乗法を適用することができる。この場合の(X、X、・・・X)が(Z、Z、・・・Z)であるとすることができる。
【0034】
【数2】
【数3】
【0035】
図4は、図2の特性の下で、この手法によって実際に放射線強度分布を算出した例である。図4(a)は、分光器20から1mの地点に点状の線源を置いた場合、図4(b)は、同じく2mの地点に点状の線源を置いた場合、図4(c)は、同じく1m、2m、3mの地点にそれぞれ点状の線源を置いた場合を示す。適正に線源の位置が認識されることが確認できる。すなわち、上記の方法によって放射線強度分布が適正に測定できた。
【0036】
上記の構成において、分光器20が検出するスペクトルは、計測時間内における全てのγ線光子Gによって光ファイバー10内で発せられた蛍光によって得られる。このため、測定対象が高線量率である場合においても、図1の放射線強度分布測定装置1によって、放射線強度の空間分布を測定することができる。
【0037】
また、上記の例ではγ線光子Gの強度分布が測定されるものとしたが、同様に光ファイバー10中で蛍光が発せられる限りにおいて、γ線以外の放射線、例えばα線、β線、中性子線等の強度分布も同様に測定できる。
【0038】
この際、前記の放射線強度分布測定装置90と同様に、可撓性の光ファイバー10を用いた場合には、放射線強度の1次元分布だけでなく、これを屈曲させて敷設することによって2次元分布を求めることもできる。また、前記の放射線強度分布測定装置90と比べて、第1検出器91、第2検出器92の代わりに分光器20が用いられている点が異なるが、分光器20としては、通常知られる一般的なもの(例えば蛍光に対応した可視光域用)を用いることができる。また、解析部30、記憶部40としては、通常のパーソナルコンピュータ及びその付帯機器を用いることができる。このため、この放射線強度分布測定装置を単純な構成とすることができる。
【0039】
なお、図1の構成においては、光ファイバー10の長さ方向における一方の側(右側)に分光器20が設けられ、他方の側(左側)には無反射処理が施された。しかしながら、左側にも同様に分光器を設けてもよい。この場合には、解析部は、左側の分光器を用いても同様の計算を行うことができる。
【0040】
また、図3において示されたビンニングは、分光器20の特性や要求される強度分布の位置分解能等に応じて、適宜設定が可能である。また、分光器20が検出する波長スペクトルの波長帯域は光ファイバー10内で発生する蛍光に応じて適宜設定される。また、上記の例では光ファイバー10を構成する材料はプラスチックシンチレータ材料であるとされたが、検出すべき放射線によって発光をし、かつこの光を分光器まで伝搬させることが可能な材料であれば、光ファイバー10の材料として用いることができる。
【0041】
また、上記の計算手法以外でも、蛍光の光ファイバー10中での伝搬における減衰特性を考慮して予め設定された係数を適宜用いることによって、実測された波長スペクトルから放射線強度分布を算出することができる。
【符号の説明】
【0042】
1、90 放射線強度分布測定装置
10 シンチレーション光ファイバー(光ファイバー)
20 分光器
30 解析部
40 記憶部
91 第1検出器
92 第2検出器
F1、F2、F1’、F2’ 蛍光
G、G’ γ線光子
P、P’ 入射地点
図1
図2
図3
図4
図5
図6