IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ボストン ダイナミクス,インコーポレイテッドの特許一覧

特許7303840脚付きロボット用の一体化された過負荷保護を有する伝動装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-27
(45)【発行日】2023-07-05
(54)【発明の名称】脚付きロボット用の一体化された過負荷保護を有する伝動装置
(51)【国際特許分類】
   B25J 17/00 20060101AFI20230628BHJP
   B25J 19/06 20060101ALI20230628BHJP
【FI】
B25J17/00 E
B25J19/06
【請求項の数】 19
【外国語出願】
(21)【出願番号】P 2021051465
(22)【出願日】2021-03-25
(62)【分割の表示】P 2019522496の分割
【原出願日】2017-12-13
(65)【公開番号】P2021094694
(43)【公開日】2021-06-24
【審査請求日】2021-03-26
(31)【優先権主張番号】15/380,687
(32)【優先日】2016-12-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518096722
【氏名又は名称】ボストン ダイナミクス,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ジャコウスキ,ザッカリー,ジョン
(72)【発明者】
【氏名】ヤング,アダム
【審査官】神山 貴行
(56)【参考文献】
【文献】特開2009-291874(JP,A)
【文献】特開平09-145497(JP,A)
【文献】英国特許出願公告第01511609(GB,A)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 1/00-21/02
(57)【特許請求の範囲】
【請求項1】
ロボットであって、
前記ロボットの部材の動きを制御するように構成された、関節に配置されたモーターと、
前記モーターに結合され、前記モーターと共に回転するように構成されたウェーブ・ジェネレータ、
フレクスプライン、および
サーキュラ・スプライン
を含むハーモニック・ドライブであって、前記ウェーブ・ジェネレータが回転する時、前記フレクスプラインは、前記サーキュラ・スプラインが前記ウェーブ・ジェネレータと異なる速度で回転する間、回転方向に固定される、ハーモニック・ドライブと、
前記サーキュラ・スプラインおよび前記ロボットの前記部材に摩擦によって結合された1つまたは複数のパッドであって、前記サーキュラ・スプラインの前記モーターに対する遠位側表面および前記ロボットの前記部材の両方に摩擦によって結合された第1のパッドと、前記サーキュラ・スプラインの前記モーターに対する近位側表面に摩擦によって結合された第2のパッドとを含む、1つまたは複数のパッドと、
前記第1および第2のパッドに軸方向予荷重を印加するように構成されたコンプライアンスのある部材であって、前記軸方向予荷重は、トルク限界を定義する、コンプライアンスのある部材と
を含み、前記ロボットの前記部材に対するトルク荷重が前記トルク限界を超えるまで、前記サーキュラ・スプラインが前記第1および第2のパッドに摩擦によって結合され、前記ロボットの前記部材に対するトルク荷重が前記トルク限界を超える時に、前記サーキュラ・スプラインが前記第1および第2のパッドのうちの少なくとも1つに対して相対的に滑る、ロボット。
【請求項2】
前記モーターのハウジングに取り付けられ、前記サーキュラ・スプラインに結合されたたトルク・センサをさらに含み、前記トルク・センサは、前記ロボットの前記部材に対する前記トルク荷重を測定するように構成される、請求項1に記載のロボット。
【請求項3】
前記ロボットの前記部材は、前記ロボットの脚に対応する、請求項1に記載のロボット。
【請求項4】
前記関節は、前記ロボットの前記脚の股関節に対応する、請求項3に記載のロボット。
【請求項5】
前記第2のパッドは、押さえ板に結合され、前記押さえ板は、前記ロボットの前記部材に結合される、請求項1に記載のロボット。
【請求項6】
前記第1のパッドまたは前記第2のパッドによって画定された第2の環状空間内に取り付けられたOリングをさらに含む、請求項1に記載のロボット。
【請求項7】
前記ロボットの前記部材に結合された拘束リングをさらに含み、前記拘束リングは、前記サーキュラ・スプラインが取り付けられる開いた環状空間を画定する、請求項1に記載のロボット。
【請求項8】
前記拘束リングと前記サーキュラ・スプラインとの間に取り付けられた拘束ブッシングをさらに含み、前記拘束ブッシングは、前記拘束リングの内側周縁部表面とインターフェースする外側周縁部表面と、前記サーキュラ・スプラインの外側周縁部表面とインターフェースする内側周縁部表面とを含む、請求項7に記載のロボット。
【請求項9】
前記ロボットは、二足ロボットである、請求項1に記載のロボット。
【請求項10】
前記ロボットは、四足ロボットである、請求項1に記載のロボット。
【請求項11】
ロボットの脚の股関節に配置され、前記ロボットの前記脚の動きを制御するように構成された、モーターと、
前記モーターに結合され、前記モーターと共に回転するように構成されたウェーブ・ジェネレータ、
フレクスプライン、および
サーキュラ・スプライン
を含むハーモニック・ドライブであって、前記ウェーブ・ジェネレータが回転する時、前記フレクスプラインは、前記サーキュラ・スプラインが前記ウェーブ・ジェネレータと異なる速度で回転する間、回転方向に固定される、ハーモニック・ドライブと、
前記サーキュラ・スプラインの前記モーターに対する遠位側表面および前記ロボットの前記脚の両方に摩擦によって結合された第1のパッドと、
前記サーキュラ・スプラインの前記モーターに対する近位側表面に摩擦によって結合された第2のパッドと、
前記第1および第2のパッドに軸方向予荷重を印加するように構成されたコンプライアンスのある部材であって、前記軸方向予荷重は、トルク限界を定義する、コンプライアンスのある部材と
を含み、前記ロボットの前記脚に対するトルク荷重が前記トルク限界を超えるまで、前記サーキュラ・スプラインが前記第1または第2のパッドに摩擦によって結合され、前記ロボットの前記脚に対するトルク荷重が前記トルク限界を超える時に、前記サーキュラ・スプラインが前記第1または第2のパッドのうちの少なくとも1つに対して相対的に滑る、アセンブリ。
【請求項12】
前記ロボットは、4つの脚を有する四足ロボットであり、前記脚は、前記四足ロボットの前記4つの脚のうち1つの脚である、請求項11に記載のアセンブリ。
【請求項13】
前記第2のパッドは、押さえ板に結合され、前記押さえ板は、前記ロボットの前記脚に結合される、請求項11に記載のアセンブリ。
【請求項14】
前記ロボットの前記脚に結合された拘束リングをさらに含み、前記拘束リングは、開いた環状空間を画定し、前記サーキュラ・スプラインおよび前記サーキュラ・スプラインに摩擦によって結合された前記第1および第2のパッドは、前記開いた環状空間内に取り付けられ、前記押さえ板は、前記拘束リングに前記押さえ板を結合するボルトの放射状配列によって前記ロボットの前記脚に結合される、請求項13に記載のアセンブリ。
【請求項15】
前記拘束リングの外側周縁部表面と前記モーターのハウジングの内側表面との間に取り付けられたクロス・ローラー・ベアリングをさらに含む、請求項14に記載のアセンブリ。
【請求項16】
前記拘束リングと前記サーキュラ・スプラインとの間に取り付けられた拘束ブッシングをさらに含み、前記拘束ブッシングは、前記拘束リングの内側周縁部表面とインターフェースする外側周縁部表面と、前記サーキュラ・スプラインの外側周縁部表面とインターフェースする内側周縁部表面とを含む、請求項14に記載のアセンブリ。
【請求項17】
前記第1のパッドは、第1の開いた環状空間を画定し、前記第2のパッドは、第2の開いた環状空間を画定し、前記アセンブリは、
前記第1のパッドによって画定された前記第1の開いた環状空間内に取り付けられた第1のOリングと、
前記第2のパッドによって画定された前記第2の開いた環状空間内に取り付けられた第2のOリングと
をさらに含む、請求項11に記載のアセンブリ。
【請求項18】
前記フレクスプラインは、薄肉シリンダを含み、前記薄肉シリンダは、前記薄肉シリンダの外側表面の一部上に円周方向に形成された外歯を有し、前記アセンブリは、トルク・センサをさらに含み、前記トルク・センサは、前記モーターのハウジングに取り付けられ、前記薄肉シリンダの一部に結合される、請求項11に記載のアセンブリ。
【請求項19】
前記コンプライアンスのある部材は、皿ばねである、請求項11に記載のアセンブリ。
【発明の詳細な説明】
【背景技術】
【0001】
[0001] 例のロボットは、ロボットの脚および腕を形成する複数の部材を有することができる。これらの部材の動きは、油圧シリンダおよびモーターなどのアクチュエータによって制御され得る。これらのアクチュエータの設計は、ロボットがコマンドおよび外部擾乱にどれほど高速に応答できるのかなど、ロボットの性能特性を決定する。ロボットの性能に影響する設計要因は、いくつかある要因の中でも特に、アクチュエータの回転慣性およびこれに結合された伝動装置のギア比を含むことができる。
【発明の概要】
【0002】
[0002] 本開示は、脚付きロボット用の一体化された過負荷保護を有する伝動装置に関する実施態様を説明する。第1の例の実施態様では、本開示は、ロボットを説明する。このロボットは、(i)ロボットの部材の動きを制御するように構成された、関節に配置されたモーターと、(ii)モーターに結合され、モーターと共に回転するように構成された入力部材、中間部材、および出力部材を含む伝動装置であって、入力部材は、中間部材と係合し、中間部材によって画定された開いた環状空間内で回転するように構成され、中間部材は、出力部材と係合し、中間部材は、入力部材が回転する時に、出力部材がそれと共に異なる速度で回転するように固定される、伝動装置と、(iii)伝動装置の出力部材の側面表面に摩擦によって結合され、ロボットの部材に結合されたパッドと、(iv)パッドに軸方向予荷重を印加するように構成されたばねであって、軸方向予荷重は、ロボットの部材に対するトルク荷重によって超えられる時に、伝動装置の出力部材がパッドに対して相対的に滑るトルク限界を定義する、ばねとを含む。
【0003】
[0003] 第2の例の実施態様では、本開示は、アセンブリを説明する。このアセンブリは、(i)ロボットの部材の動きを制御するように構成された、関節に配置されたモーターと、(ii)モーターに結合され、モーターと共に回転するように構成されたウェーブ・ジェネレータ、フレクスプライン、およびサーキュラ・スプラインを含むハーモニック・ドライブであって、フレクスプラインは、ウェーブ・ジェネレータが回転する時に、サーキュラ・スプラインがそれと共に異なる速度で回転するように固定される、ハーモニック・ドライブと、(iii)サーキュラ・スプラインの遠位側表面に摩擦によって結合され、ロボットの部材に結合された第1のパッドと、(iv)サーキュラ・スプラインの近位側表面に摩擦によって、結合された第2のパッドと、(v)第1および第2のパッドに軸方向予荷重を印加するように構成されたコンプライアンスのある部材であって、軸方向予荷重は、ロボットの部材に対するトルク荷重によって超えられる時に、サーキュラ・スプラインが第1または第2のパッドのうちの少なくとも1つに対して相対的に滑るトルク限界を定義する、コンプライアンスのある部材とを含む。
【0004】
[0004] 前述の要約は、例示的であるのみであって、いかなる形でも限定的であることは意図されていない。上で説明された例示的な態様、実施態様、および特徴に加えて、さらなる態様、実施態様、および特徴が、図面および以下の詳細な説明を参照することによって明白になる。
【図面の簡単な説明】
【0005】
図1】[0005]例の実施態様によるロボット・システムの構成を示す図である。
図2】[0006]例の実施態様による四足ロボットを示す図である。
図3】[0007]別の例の実施態様による二足ロボットを示す図である。
図4A】[0008]例の実施態様によるねじアクチュエータを有するロボット脚の断面を示す図である。
図4B】[0009]例の実施態様による上脚部材の断面を示す図である。
図5A】[0010]例の実施態様によるキャリアの外側表面上に配置された少なくとも1つの縦溝を有するキャリアを示す図である。
図5B】[0011]例の実施態様による回転防止要素を示す図である。
図5C】[0012]例の実施態様による、上脚部材およびこれに結合された回転防止要素の透視図を示す図である。
図6A】[0013]例の実施態様による、ローラーを結合されたキャリアを示す図である。
図6B】[0014]例の実施態様による、その中にキャリアおよびレールを受けるように構成された上脚部材を示す図である。
図6C】[0015]例の実施態様による、上脚部材およびその中に配置された構成要素の上面断面を示す図である。
図7】[0016]例の実施態様による、圧縮力を受けるねじ軸を有する構成を示す図である。
図8】[0017]例の実施態様による、張力を受けるねじ軸を有する構成を示す図である。
図9】[0018]例の実施態様による、股関節に対して相対的にオフセットされた上脚部材を示す図である。
図10】[0019]例の実施態様による、上脚部材からオフセットされたモーターを示す図である。
図11】[0020]例の実施態様による、ロボット脚を示す図である。
図12A】[0021]例の実施態様による、ハーモニック・ドライブの動作を示す図を示す図である。
図12B】[0022]例の実施態様による、図12Aのハーモニック・ドライブの組立分解図を示す図である。
図13A】[0023]例の実施態様による、一体化された過負荷保護システムを有する例のドライブ・システムを示す図である。
図13B】[0024]例の実施態様による、図13Aのドライブ・システムの拡大図を示す図である。
図13C】[0025]例の実施態様による、図13Aのドライブ・システムの組立分解図を示す図である。
図14】[0026]例の実施態様による、ロボット部材のドライブ・システムの代替構成を示す図である。
図15A】[0027]例の実施態様による、一体化されたモーター・コントローラー・アセンブリを示す図である。
図15B】[0028]例の実施態様による、コントローラへのトルク・センサおよび出力エンコーダの接続を示す図である。
図15C】[0029]例の実施態様による、図15Aに示されたアセンブリの温度管理を示す図である。
図15D】[0030]例の実施態様による、電力段プリント回路基板の底面図を示す図である。
図15E】[0031]例の実施態様による、モーターの固定子から発する12本のワイヤを示す図である。
図15F】[0032]例の実施態様による、固定子とインターフェースするように構成された位相板を示す図である。
図15G】[0033]例の実施態様による、図15Aに示されたアセンブリの組立分解図を示す図である。
【発明を実施するための形態】
【0006】
[0034] 以下の詳細な説明は、添付図面を参照して、開示されるシステムの様々な特徴および動作を説明する。本明細書で説明される例示的な実施態様は、限定的であることを意図されたものではない。開示されるシステムのある種の態様が、様々な異なる構成で配置され、組み合わされ得、そのすべてが本明細書で企図されている。
【0007】
[0035] さらに、文脈がそうではないことを暗示しない限り、図目のそれぞれに示された特徴は、お互いと組み合わせて使用され得る。したがって、図示された特徴のすべてが実施態様ごとに必要とは限らないことを理解して、図面は、全般的に1つまたは複数の全体的な実施態様の構成要素態様と見なされなければならない。
【0008】
[0036] さらに、本明細書または特許請求の範囲での要素、ブロック、またはステップのすべての列挙は、明瞭さのためのものである。したがって、そのような列挙を、これらの要素、ブロック、またはステップが特定の配置に一致することまたは特定の順序で実行されることを要求しまたは暗示すると解釈してはならない。
【0009】
[0037] 用語「実質的に」は、列挙された特性、パラメータ、または値が正確に達成される必要があるのではなく、たとえば公差、測定誤差、測定精度限界、および当業者に既知の他の要因を含む逸脱または変動が、その特性がもたらすことを意図された効果を除外しない量で発生し得ることを意味する。
【0010】
I.例のロボット・システム
[0038] 図1は、本明細書で説明される実施態様に関連して使用され得るロボット・システムの例の構成を示す。ロボット・システム100は、自律的に、半自律的に、および/またはユーザ(1つまたは複数)によって供給される指示を使用して動作するように構成され得る。ロボット・システム100は、二足ロボット、四足ロボット、またはなんらかの他の配置など、様々な形で実施され得る。さらに、ロボット・システム100は、他の指定の中で、ロボット、ロボット・デバイス、またはモバイル・ロボットと呼ばれる場合もあり、外骨格デバイスまたは人間補助デバイスの一部とされ得る。
【0011】
[0039] 図1に示されているように、ロボット・システム100は、プロセッサ(1つまたは複数)102、データ・ストレージ104、およびコントローラ(1つまたは複数)108を含むことができ、これらは、一緒に制御システム118の一部になることができる。ロボット・システム100は、センサ(1つまたは複数)112、動力源(1つまたは複数)114、機械構成要素110、および電気構成要素116をも含むことができる。それでも、ロボット・システム100は、例示のために示されており、より多数またはより少数の構成要素を含むことができる。ロボット・システム100の様々な構成要素は、有線接続または無線接続を含む任意の形で接続され得る。さらに、いくつかの例では、ロボット・システム100の構成要素は、単一の物理エンティティではなく複数の物理エンティティの間で分散され得る。ロボット・システム100の他の例の実例も存在することができる。
【0012】
[0040] プロセッサ(1つまたは複数)102は、1つまたは複数の汎用ハードウェア・プロセッサまたは特殊目的ハードウェア・プロセッサ(たとえば、デジタル信号プロセッサ、特定用途向け集積回路など)として動作することができる。プロセッサ(1つまたは複数)102は、両方がデータ・ストレージ104内に記憶されるコンピュータ可読プログラム命令106と操作データ107とを実行するように構成され得る。プロセッサ(1つまたは複数)102は、センサ(1つまたは複数)112、動力源(1つまたは複数)114、機械構成要素110、および/または電気構成要素116など、ロボット・システム100の他の構成要素と直接にまたは間接に相互作用することもできる。
【0013】
[0041] データ・ストレージ104は、1つまたは複数のタイプのハードウェア・メモリとすることができる。たとえば、データ・ストレージ104は、プロセッサ(1つまたは複数)102によって読み取られまたはアクセスされ得る1つまたは複数のコンピュータ可読記憶媒体を含み、またはその形をとることができる。1つまたは複数のコンピュータ可読記憶媒体は、全体的にまたは部分的にプロセッサ(1つまたは複数)102と一体化され得る、光、磁気、有機、または別のタイプのメモリまたはストレージなど、揮発性および/または不揮発性のストレージ構成要素を含むことができる。いくつかの実施態様では、データ・ストレージ104は、単一の物理デバイスとすることができる。他の実施態様では、データ・ストレージ104は、有線通信または無線通信を介してお互いと通信することのできる2つ以上の物理デバイスを使用して実施され得る。前に注記したように、データ・ストレージ104は、コンピュータ可読プログラム命令106およびデータ107を含むことができる。データ107は、他の可能性の中で、構成データ、センサ・データ、および/または診断データなど、任意のタイプのデータとすることができる。
【0014】
[0042] コントローラ108は、(おそらくいくつかる仕事の中でも特に)機械構成要素110、センサ(1つまたは複数)112、動力源(1つまたは複数)114、電気構成要素116、制御システム118、および/またはロボット・システム100のユーザの間でインターフェースするように構成された、1つまたは複数の電気回路、デジタル論理のユニット、コンピュータ・チップ、および/またはマイクロプロセッサを含むことができる。いくつかの実施態様では、コントローラ108は、ロボット・システム100の1つまたは複数のサブシステムと共に特定の動作を実行する、専用の組込みデバイスとすることができる。
【0015】
[0043] 制御システム118は、ロボット・システム100の動作条件を監視し、物理的に変更することができる。それを行う際に、制御システム118は、機械構成要素110および/または電気構成要素116の間など、ロボット・システム100の諸部分の間のリンクとして働くことができる。いくつかの場合に、制御システム118は、ロボット・システム100と別のコンピューティング・デバイスとの間のインターフェースとして働くことができる。さらに、制御システム118は、ロボット・システム100とユーザとの間のインターフェースとして働くことができる。実例、制御システム118は、ジョイスティック、ボタン、および/またはポートなどを含む、ロボット・システム100と通信する様々な構成要素を含むことができる。上で言及した例のインターフェースおよび通信は、有線接続もしくは無線接続またはその両方を介して実施され得る。制御システム118は、ロボット・システム100の他の動作を実行することもできる。
【0016】
[0044] 動作中に、制御システム118は、有線接続または無線接続を介してロボット・システム100の他のシステムと通信することができ、ロボットの1つまたは複数のユーザと通信するようにさらに構成され得る。1つの可能な実例として、制御システム118は、特定の方向で特定の速度での特定の歩行を実行する命令を示す入力(たとえば、ユーザからまたは別のロボットからの)を受信することができる。歩行は、動物、ロボット、または他の機械構造の肢の移動のパターンである。
【0017】
[0045] この入力に基づいて、制御システム118は、ロボット・システム100に、要求された歩行に従って移動させる動作を実行することができる。別の実例として、制御システムは、特定の地理的位置に移動する命令を示す入力を受信することができる。これに応答して、制御システム118は(おそらくは他の構成要素またはシステムの援助によって)、ロボット・システム100が地理的位置への途上でそれを介して移動しつつある環境に基づいて、方向、速度、および/または歩行を判定することができる。
【0018】
[0046] 制御システム118の動作は、プロセッサ(1つまたは複数)102によって実行され得る。代替案では、これらの動作は、コントローラ108またはプロセッサ(1つまたは複数)102とコントローラ108との組合せによって実行され得る。いくつかの実施態様では、制御システム118は、ロボット・システム100以外のデバイス上に部分的にまたは完全に存在することができ、したがって、ロボット・システム100を少なくとも部分的にリモートに制御することができる。
【0019】
[0047] 機械構成要素110は、ロボット・システム100が物理的動作を実行することを可能にすることのできるロボット・システム100のハードウェアを表す。少数の例として、ロボット・システム100は、脚(1つまたは複数)、腕(1つまたは複数)、および/または車輪(1つまたは複数)などの物理的部材を含むことができる。ロボット・システム100の物理的部材または他の部分は、物理的部材をお互いに関して移動するように配置されたアクチュエータをさらに含むことができる。ロボット・システム100は、制御システム118および/または他の構成要素を収容する1つまたは複数の構造化された本体をも含むことができ、他のタイプの機械構成要素をさらに含むことができる。所与のロボット内で使用される特定の機械構成要素110は、ロボットの設計に基づいて変化することができ、ロボットが実行するように構成され得る動作および/または仕事に基づく場合もある。
【0020】
[0048] いくつかの例では、機械構成要素110は、1つまたは複数の取り外し可能な構成要素を含むことができる。ロボット・システム100は、そのような取り外し可能な構成要素を追加し、かつ/または取り外すように構成され得、これは、ユーザおよび/または別のロボットからの援助を含むことができる。たとえば、ロボット・システム100は、取り外し可能な腕、手、足、および/または脚を伴って構成され得、その結果、これらの付加物は、必要または望みに応じて交換されまたは変更され得るようになる。いくつかの実施態様では、ロボット・システム100は、1つまたは複数の取り外し可能なかつ/または交換可能なバッテリ・ユニットまたはセンサを含むことができる。他のタイプの取り外し可能構成要素が、いくつかの実施態様内に含められ得る。
【0021】
[0049] ロボット・システム100は、ロボット・システム100の諸態様を感知するように配置されたセンサ(1つまたは複数)112を含むことができる。センサ(1つまたは複数)112は、いくつかある可能性の中でも特に、1つまたは複数の力センサ、トルク・センサ、速度センサ、加速度センサ、ポジション・センサ、近接センサ、動きセンサ、ロケーション・センサ、荷重センサ、温度センサ、タッチ・センサ、奥行きセンサ、超音波距離センサ、赤外線センサ、物体センサ、および/またはカメラを含むことができる。いくつかの例において、ロボット・システム100は、ロボットから物理的に分離されたセンサ(たとえば、他のロボット上に位置決めされたセンサまたはロボットが動作している環境内に配置されたセンサ)からセンサ・データを受信するように構成され得る。
【0022】
[0050] センサ(1つまたは複数)112は、その環境とのロボット・システム100の相互作用ならびにロボット・システム100の動作の監視を可能にするために、プロセッサ(1つまたは複数)102にセンサ・データを供給することができる(おそらくはデータ107によって)。センサ・データは、制御システム118による機械構成要素110および電気構成要素116のアクティブ化、移動、および非アクティブ化に関する様々な要因の評価の際に使用され得る。たとえば、センサ(1つまたは複数)112は、環境の認識およびナビゲーションを手助けすることのできる、環境の地形または近くの物体の位置に対応するデータを取り込むことができる。例の構成では、センサ(1つまたは複数)112は、レーダー(たとえば、長距離物体検出、距離判定、および/または速度判定用)、ライダ(たとえば、短距離物体検出、距離判定、および/または速度判定用)、ソナー(たとえば、水中物体検出、距離判定、および/または速度判定用)、VICON(登録商標)(たとえば、動き取込用)、1つまたは複数のカメラ(たとえば、3Dビジョン用の立体カメラ)、全地球測位システム(GPS)トランシーバ、および/またはロボット・システム100が動作している環境の情報を取り込むための他のセンサを含むことができる。センサ(1つまたは複数)112は、環境をリアル・タイムで監視し、障害物、地形の要素、気象条件、温度、および/または環境の他の態様を検出することができる。
【0023】
[0051] さらに、ロボット・システム100は、ロボット・システム100の様々な構成要素の状態を監視することのできるセンサ(1つまたは複数)112を含む、ロボット・システム100の状態を示す情報を受信するように構成されたセンサ(1つまたは複数)112を含むことができる。センサ(1つまたは複数)112は、ロボット・システム100のシステムのアクティビティを測定し、ロボット・システム100の様々な特徴の動作、伸長可能な脚、腕、またはロボット・システム100の他の機械的特徴および/もしくは電気的特徴のそのような動作に基づく情報を受信することができる。センサ(1つまたは複数)112によって供給されるデータは、制御システム118が、動作の誤差を判定すると同時に、ロボット・システム100の構成要素の全体的な動作を監視することを可能にすることができる。
【0024】
[0052] 一例として、ロボット・システム100は、ロボット・システム100の様々な構成要素への荷重を測定するのに力センサを使用することができる。いくつかの実施態様では、ロボット・システム100は、腕または脚の1つまたは複数の部材を移動するアクチュエータに対する荷重を測定するために、腕または脚上の1つまたは複数の力センサを含むことができる。別の例として、ロボット・システム100は、ロボット・システムのアクチュエータの位置を感知するのに1つまたは複数のポジション・センサを使用することができる。たとえば、そのようなポジション・センサは、腕または脚上のアクチュエータの伸長、収縮、または回転の状態を感知することができる。
【0025】
[0053] 別の例として、センサ(1つまたは複数)112は、1つまたは複数の速度センサおよび/または加速度センサを含むことができる。たとえば、センサ(1つまたは複数)112は、慣性計測装置(IMU)を含むことができる。IMUは、重力ベクタに関する、ワールド・フレーム内の速度および加速度を感知することができる。IMUによって感知された速度および加速度は、その後、ロボット・システム100内のIMUの位置およびロボット・システム100の運動学に基づいてロボット・システム100の速度および加速度に変換され得る。
【0026】
[0054] ロボット・システム100は、本明細書で明示的には議論されない他のタイプのセンサを含むことができる。それに加えてまたはその代わりに、ロボット・システムは、本明細書では列挙されない目的のために特定のセンサを使用することができる。
【0027】
[0055] ロボット・システム100は、ロボット・システム100の様々な構成要素に動力を供給するように構成された1つまたは複数の動力源114をも含むことができる。いくつかある可能な動力系統の中でも特に、ロボット・システム100は、油圧系統、電気系統、バッテリ、および/または他のタイプの動力系統を含むことができる。例の実例として、ロボット・システム100は、ロボット・システム100の構成要素に電荷を供給するように構成された1つまたは複数のバッテリを含むことができる。機械構成要素110および/または電気構成要素116の一部は、それぞれ、異なる動力源に接続することができ、同一の動力源によって動力を供給され得、または複数の動力源によって動力を供給され得る。
【0028】
[0056] 電力またはガソリン・エンジンなど、任意のタイプの動力源が、ロボット・システム100に動力を供給するのに使用され得る。それに加えてまたはその代わりに、ロボット・システム100は、流体動力を使用して機械構成要素110に動力を供給するように構成された油圧系統を含むことができる。動力源(1つまたは複数)114は、外部電源への有線接続、無線充電、燃焼、または他の例など、様々なタイプの充電を使用して充電することができる。
【0029】
[0057] 電気構成要素116は、電荷または電気信号の処理、伝達、および/または供給が可能な様々な機構を含むことができる。可能な例の中で、電気構成要素116は、ロボット・システム100の動作を可能にするために電気ワイヤ、回路網、ならびに/または無線通信送信器および受信器を含むことができる。電気構成要素116は、ロボット・システム100が様々な動作を実行することを可能にするために、機械構成要素110と相互に作用することができる。電気構成要素116は、たとえば動力源(1つまたは複数)114から様々な機械構成要素110に動力を供給するように構成され得る。さらに、ロボット・システム100は、電気モーターを含むことができる。電気構成要素116の他の例も、存在することができる。
【0030】
[0058] 図1には図示されていないが、ロボット・システム100は、ロボット・システムの付加物および構成要素に接続しまたはこれを収容することのできる本体を含むことができる。したがって、本体の構造は、例の中で変化する可能性があり、さらに、所与のロボットが実行するように設計された可能性がある特定の動作に依存する可能性がある。たとえば、重い荷重を保持するために開発されるロボットは、荷重の配置を可能にする幅広い本体を有する場合がある。同様に、高速に達するように設計されるロボットは、かなりの重量を有しない狭く小さい本体を有する場合がある。さらに、本体および/または他の構成要素は、金属またはプラスティックなど、様々なタイプの材料を使用して開発され得る。他の例の中で、ロボットは、異なる構造を有する本体または様々なタイプの材料から作られた本体を有する場合がある。
【0031】
[0059] 本体および/または他の構成要素は、センサ(1つまたは複数)112を含みまたは担持することができる。これらのセンサは、いくつかある例の中でも特に、本体上および/または付加物のうちの1つまたは複数の上など、ロボット・システム100上の様々な位置に位置決めされ得る。
【0032】
[0060] その本体上に、ロボット・システム100は、搬送されるべきタイプの積荷など、荷重を担持することができる。荷重は、ロボット・システム100が利用できる外部バッテリまたは他のタイプの動力源(たとえば、太陽電池パネル)を表すこともできる。荷重の担持は、ロボット・システム100がそのために構成され得る1つの例の使用を表すが、ロボット・システム100は、他の動作をも実行するように構成され得る。
【0033】
[0061] 上で注記したように、ロボット・システム100は、様々なタイプの脚、腕、車輪などを含むことができる。一般に、ロボット・システム100は、0個以上の脚を有して構成され得る。0個の脚を有するロボット・システムの実施態様は、車輪、接地面、または移動のなんらかの他の形を含むことができる。2つの脚を有するロボット・システムの実施態様は、二足と呼ばれる場合があり、4つの脚を有する実施態様は、四足と呼ばれる場合がある。6つまたは8つの脚を有する実施態様も可能である。例示のために、ロボット・システム100の二足実施態様および四足実施態様が、下で説明される。
【0034】
[0062] 図2は、例の実施態様による四足ロボット200を示す。いくつかある可能な特徴の中でも特に、ロボット200は、本明細書で説明される動作の一部を実行するように構成され得る。ロボット200は、制御システムと、本体208に接続された脚204A、204B、204C、および204Dとを含む。各脚は、表面(たとえば、地面)と接触することのできるそれぞれの足206A、206B、206C、および206Dを含むことができる。さらに、ロボット200は、センサ(1つまたは複数)210を有して図示され、本体208上で荷重を担持できる場合がある。他の例の中で、ロボット200は、より多数またはより少数の構成要素を含むことができ、したがって、図2に示されていない構成要素を含むことができる。
【0035】
[0063] ロボット200は、図1に示されたロボット・システム100の物理表現とすることができ、あるいは、他の構成に基づくものとすることができる。したがって、ロボット200は、いくつかある可能な構成要素またはシステムの中でも特に、機械構成要素110、センサ(1つまたは複数)112、動力源(1つまたは複数)114、電気構成要素116、および/または制御システム118のうちの1つまたは複数を含むことができる。
【0036】
[0064] 脚204A~204Dの構成、位置、および/または構造は、例の実施態様で変化する可能性がある。脚204A~204Dは、ロボット200がその環境に対して相対的に移動することを可能にし、移動の異なる技法を可能にするために複数の自由度で動作するように構成され得る。具体的には、脚204A~204Dは、ロボット200が、異なる歩行内で示される力学に従って様々な速度で移動することを可能にすることができる。ロボット200は、環境内で移動するために1つまたは複数の歩行を使用することができ、これは、速度、地形、操縦の必要、および/またはエネルギ効率に基づいて歩行を選択することを含むことができる。
【0037】
[0065] さらに、異なるタイプのロボットは、設計の変動に起因して異なる歩行を使用する場合がある。一部の歩行が、特定の名前(たとえば、徒歩、早足、走行、跳躍、ギャロップなど)を有する場合があるが、歩行の間の区別が、オーバーラップする場合がある。歩行は、足取りパターンすなわち、置く 足206A~206D ための表面上の位置に基づいて分類され得る。同様に、歩行は、歩行力学に基づいても分類され得る。
【0038】
[0066] ロボット200の本体208は、脚204A~204Dに接続し、ロボット200の様々な構成要素を収容することができる。たとえば、本体208は、センサ(1つまたは複数)210を含みまたは担持することができる。これらのセンサは、カメラ、ライダ、または赤外線センサなど、センサ(1つまたは複数)112の文脈で議論したセンサのいずれかとすることができる。さらに、センサ(1つまたは複数)210の位置は、図2に示された位置に限定されない。したがって、センサ(1つまたは複数)210は、いくつかある例の中でも特に、本体208上および/または脚204A~204Dのうちの1つまたは複数の上など、ロボット200上の様々な位置に位置決めされ得る。
【0039】
[0067] 図3は、別の例の実施態様による二足ロボット300を示す。ロボット200と同様に、ロボット300は、図1に示されたロボット・システム100に対応することができ、本明細書で説明される実施態様の一部を実行するように構成され得る。したがって、ロボット200と同様に、ロボット300は、機械構成要素110、センサ(1つまたは複数)112、動力源(1つまたは複数)114、電気構成要素116、および/または制御システム118のうちの1つまたは複数を含むことができる。
【0040】
[0068] たとえば、ロボット300は、本体308に接続された脚304および306を含むことができる。各脚は、関節によって接続され、お互いに関して様々な自由度で動作するように構成された、1つまたは複数の部材からなるものとすることができる。各脚は、表面(たとえば、地面)と接触することのできるそれぞれの足310および312をも含むことができる。ロボット200と同様に、脚304および306は、ロボット300が、歩行内で示される力学に従って様々な速度で移動することを可能にすることができる。しかし、ロボット300は、少なくとも部分的に二足能力と四足能力との間の差に起因して、ロボット200の歩行とは異なる歩行を利用する可能性がある。
【0041】
[0069] ロボット300は、腕318および320をも含むことができる。これらの腕は、物体操作、荷重担持、および/またはロボット300のバランシングを容易にすることができる。脚304および306と同様に、各腕は、関節によって接続され、お互いに関して様々な自由度で動作するように構成された、1つまたは複数の部材からなるものとすることができる。各腕は、それぞれの手322および324をも含むことができる。ロボット300は、物体をつかみ、回し、引き、かつ/または押すのに手322および324(またはエンドエフェクタ)を使用することができる。手322および324は、指、グリッパ、溶接工具、切断工具、その他など、様々なタイプの付加物またはアタッチメントを含むことができる。
【0042】
[0070] ロボット300は、センサ(1つまたは複数)112に対応し、その制御システムにセンサ・データを供給するように構成されたセンサ(1つまたは複数)314をも含むことができる。いくつかの場合に、これらのセンサの位置は、ロボット300の擬人化された構造を暗示するために選択され得る。したがって、図3に示されているように、ロボット300は、その頭316内に視覚センサ(たとえば、カメラ、赤外線センサ、物体センサ、距離センサなど)を含むことができる。
【0043】
II.ロボットの例の電気機械アクチュエータ
[0071] 例では、油圧アクチュエータが、ロボットの部材を作動させるのに使用され得る。油圧系統は、ロボットの中央位置にあるポンプおよびアクチュエータを含み、パイプおよび/またはホースを介して、ロボットの部材に結合された油圧アクチュエータに加圧された作動液を供給するように構成され得る。この構成では、ポンプおよびアクチュエータの作動慣性は、ロボットが移動する時に地面に与えられる慣性から切り離される。慣性の切離しに起因して、油圧ロボット・システムは、位置および力の制御応答性に関する高い帯域幅を特徴とする。しかし、油圧系統は、潜在的な作動液漏れ、配管の複雑さ、およびより小さいロボットに対する既存の油圧動力装置の不適当などの不利益を有する。
【0044】
[0072] 電気機械アクチュエータの作動に関係する漏れまたは複雑な配管がないので、電気機械アクチュエータは、油圧アクチュエータの不利益の少なくとも一部を軽減する。さらに、電気機械システムは、油圧系統より効率的である場合がある。しかし、電気機械アクチュエータは、油圧系統と比較して不利益を有する可能性がある。たとえば、油圧アクチュエータによって駆動されるロボット部材の回転慣性は、所与の強さのアクチュエータの直径との線形関係を有することができるが、電気機械アクチュエータによって駆動されるロボット部材の回転慣性は、アクチュエータの回転するアセンブリの直径の二乗に比例する可能性があり、所与の強さの伝動装置のギア比によって影響される。さらに、油圧アクチュエータの反射慣性は、ロボットの部材(たとえば、脚)の慣性と比較して無視できる場合があるが、電気機械の反射慣性は、伝動装置のギア比の二乗を乗算されたモーターおよび伝動装置の慣性に依存する可能性がある。したがって、大型ロボットに関して、電気機械アクチュエータは、ロボットの応答性特性および性能特性を制限する大きい慣性を有する可能性がある。
【0045】
[0073] サイズのより小さいロボットに関して、電気機械アクチュエータは、本開示で説明されるように、対応する油圧アクチュエータと比較して高い性能特性を達成するように設計され得る。本明細書で開示されるのは、高性能ロボットに適する十分に高い加速度を提供できる高いピーク・トルクの達成を可能にするためにロボット部材の回転慣性を減らすシステム、アクチュエータ、構成、および装置である。
【0046】
a.ロボットの関節用の例のねじアクチュエータ
[0074] 例では、ロボットの膝関節は、たとえば高速で移動する(たとえば、走るかジョギングする)ためにロボットを作動させることから生じる、高い加速度を経験する場合がある。高い加速度は、ロボットがその脚に擾乱を受け、ロボットがバランスを維持するために高い加速度で脚、特に膝関節を動かすことによって応答する時にも生じる可能性がある。いくつかの例では、電気モーターが、ロボットの膝間接に結合され得、モーターの回転運動が、膝関節で下脚部材に結合された上脚部材に対して相対的にロボットの下脚部材を回転させるようになっている。この構成では、モーターの回転慣性は、ロボットの応答性を制限する可能性があり、したがって、下脚部材の力制御方策の有効性を低下させる可能性がある。
【0047】
[0075] さらに、伝動装置がモーターに結合され、その伝動装置が、減速およびトルク増幅を可能にする特定のギア比を有する場合に、膝関節での回転慣性は、ギア比の二乗に比例する。したがって、より大きいトルクを可能にする、より高いギア比は、より大きい回転慣性につながり、したがってロボットの応答性を低下させる可能性がある。
【0048】
[0076] 膝関節での回転慣性の低減は、ロボットの応答性を改善することができる。一例では、ねじアクチュエータが、軽く、細長く、したがって他のアクチュエータ構成と比較して小さい慣性を有するので、ねじアクチュエータが、ロボットの膝関節を駆動するのに使用され得る。さらに、ねじアクチュエータの使用は、膝での低減された遠位質量(distal mass)を可能にし、これは、より高い加速能力を可能にする。
【0049】
[0077] 図4Aは、例の実施態様による、ねじアクチュエータ400を有するロボット脚の断面を示す。電気モーター402が、ロボットの股関節403またはその付近に配置される。他の例では、電気モーター402は、ロボットの上脚部分に配置され得る。電気モーター402が、上脚部分または股関節403のどちらに配置されようとも、モーター402の質量は、膝関節404から離れてシフトされる。したがって、これらの構成は、ロボットの膝関節404での遠位質量を減らすことができ、したがって、股関節403での回転慣性が減らされる。
【0050】
[0078] ねじアクチュエータ400は、摩擦をほとんど伴わずに回転運動を直線運動に変換する機械式線形アクチュエータである。一例では、ねじアクチュエータ400は、遊星ローラーねじタイプとすることができ、ねじ軸406およびナット408を含むことができる。ねじ軸406は、その周縁部に多条V型ねじ山を有することができる。V型ねじ山は、ねじ軸406の周囲に半径方向に配列され、ナット408によって封入される複数のローラーのための螺旋形のレースウェイをもたらす。ローラーは、図内の視覚的な混乱を低減するために、図4Aには図示されていない。
【0051】
[0079] ナット408は、ねじ軸406のV型ねじ山とインターフェースするためにその内側周縁部表面にねじ山を切られる。ねじ軸406のねじ山のピッチは、ナット408の内側ねじ山のピッチと同一とすることができる。ローラーは、ねじ軸406およびナット408と接触して回り、ねじ軸406とナット408との間の低摩擦伝動装置要素として働く。ローラーは、ねじ軸406およびナット408とのローラーの接触での摩擦を制限する凸型フランクを有する一条ねじ山を有することができる。ローラーは、回る時にねじ軸406を周回することができ(太陽歯車に対する遊星歯車の形で)、したがって、遊星ローラーまたは衛星ローラーと呼ばれ得る。
【0052】
[0080] モーター402は、ねじ軸406に結合され、したがって、モーター402が回転する時に、ねじ軸406は、これと共に回転する。ねじ軸406の回転は、ナット408の軸方向移動または縦移動をもたらす。
【0053】
[0081] モーター402およびねじアクチュエータ400は、ロボットの上脚部材410の本体(たとえば、機械加工されたアルミニウム本体)内に収容される。上脚部材410は、膝関節404で下脚部材412に結合される。
【0054】
[0082] ナット408は、キャリア414の近位端413内に収容され、ナット408がねじ軸406に沿って移動する時にキャリア414も上脚部材410内で直線的に移動するように、肩416でキャリア414とインターフェースする。本明細書では、用語「近位端」は、キャリア414の、モーター402により近い端を指す。
【0055】
[0083] ナット408は、肩416とキャリア414内でナット408を軸方向に拘束するナット417とによって、キャリア414の近位端413内で軸方向に制約される。さらに、ナット408は、キャリア414に対する相対的なナット408の回転を阻むために、キャリア414に回転方向に制約され得る。たとえば、ナット408は、キー-キー溝構成を介してキャリア414に結合され得る。
【0056】
[0084] リンケージ機構が、膝関節404の回りでの上脚部材410に対する相対的な下脚部材412の回転運動へのキャリア414の直線運動の変換を容易にするためにキャリア414に結合される。一例として、リンケージ機構は、キャリア414の遠位端420に結合される第1のリンク418(たとえば、連結棒)を含むことができる。本明細書では、用語「遠位端」は、キャリア414の、モーター402から最も遠い端を指す。別の例では、第1のリンク418は、モーター402により近い他の位置でキャリア414にトラニオンマウントされ得る。
【0057】
[0085] 第1のリンク418は、関節424で第2のリンク422に結合され得、第2のリンクは、膝ピボット426で膝関節404に結合され得る。下脚部材412も、膝ピボット426で膝関節404に結合される。この構成では、キャリア414の直線運動は、第1のリンク418に移動させ、これによって、第2のリンク422および下脚部材412に、膝ピボット426の回りで回転させる。他のリンケージ構成が使用され得る。たとえば、4節リンク機構が、異なる伝動装置曲線形状を達成するのに使用され得る。
【0058】
[0086] モーター402の回転方向は、上脚部材410に対する相対的な下脚部材412の回転方向を決定する。たとえば、モーター402が、所与の方向(たとえば、時計回り)に回転する場合に、ナット408およびキャリア414は、延び、第1のリンク418を押すことができる。その結果、第2のリンク422は、膝ピボット426の回りで、図4Aを見る人の視点から時計回りの方向に回転する。その結果、下脚部材412も、図4Aを見る人の視点から時計回りの方向に回転し、したがって、たとえば、表面430に足428を押し付けることができる。
【0059】
[0087] 逆に、モーター402が反対方向(たとえば、反時計回り)に回転する場合には、ナット408およびキャリア414は、収縮し、第1のリンク418を引っ張ることができる。その結果、第2のリンク422は、膝ピボット426の回りで、図4Aを見る人の展望から反時計回りの方向に回転する。したがって、時計回りと反時計回りとの間でのモーター402の回転の交番が、ロボットを数歩進ませる(たとえば、特定のペースで歩かせまたは走らせる)。
【0060】
[0088] 一例では、モーター402は、エンコーダ431を含むことができる。エンコーダ431は、モーター402の回転子の回転位置を示す信号を生成するように構成される。エンコーダ431は、回転子の回転位置を示す情報をロボットのコントローラに供給することができる。コントローラは、上脚部材410内のナット408を正確に位置決めするためにモーター402の回転位置に対する閉ループ・フィードバック制御を実施することができる。
【0061】
[0089] モーター402を股関節403のより近くに配置し、ねじアクチュエータ400を使用することによって、膝関節404の遠位質量が減らされる。さらに、減速機として回転ギアボックスではなくねじアクチュエータ400を使用することは、ねじアクチュエータ400が回転ギアボックスと比較して減らされた回転慣性を有するので、有効回転慣性を減らすことができる。
【0062】
[0090] 図4Bは、例の実施態様による上脚部材410の断面を示す。図4Bに示されているように、上脚部材410は、ベアリング・キャリア432を収容することができる。ベアリング・キャリア432は、上脚部材410の内側表面から内向きに突き出す円錐座434に沿って着座され得る。
【0063】
[0091] ベアリング・キャリア432は、ねじ軸406が自由に回転することを可能にするように構成されたベアリング435を収容する。ベアリング435の外レースの外径は、ベアリング・キャリア432の内側周縁部表面とインターフェースする。ベアリング435の外レースは、ベアリング・キャリア432の内側周縁部表面上の段付き表面から形成された肩436に接して保持される。
【0064】
[0092] さらに、ねじ軸406は、ねじ軸406の外側周縁部表面上の段付き表面から形成された肩438を含む。肩438は、ベアリング435の内レースとインターフェースする。この形で、ベアリング435は、肩438と肩436との間で軸方向に拘束される。
【0065】
[0093] 図4Bに示されているように、第1のリンク418は、ピン440を介してキャリア414の遠位端420に結合される。第1のリンク418は、ねじ軸406の縦軸442に対して相対的に角度θを形成する。したがって、ねじ軸406が回転し、ナット408およびキャリア414に、第1のリンク418を押させる時に、第1のリンク418は、キャリア414に反力を与えることができ、この反力は、ナット408およびねじ軸406に伝達される。この反力は、縦軸442に沿って作用する縦軸力成分444と、縦軸442および上脚部材410の内側表面に垂直に作用する半径方向または軸はずれ力成分446とに分解され得る。
【0066】
[0094] 軸はずれ力成分446およびそれが生じる摩擦の影響を減らすために、スライダ・ベアリング448が、遠位端420にあるキャリア414の外側周縁部表面と上脚部材410の内側周縁部表面との間に取り付けられる。スライダ・ベアリング448は、摩擦を減らし、上脚部材410内のキャリア414の軸方向運動を容易にするように構成され得る。具体的には、スライダ・ベアリング448は、上脚部材410へのナット408に対する軸はずれ力成分446に反作用し、第1のリンク418とキャリア414との間の相互作用から生じる軸442に沿った力を拘束するように構成され得る。一例では、スライダ・ベアリング448は、Teflon(登録商標)から作られ得る。
【0067】
[0095] 一例では、別のスライダ・ベアリング450が、近位端413のキャリア414の外側周縁部表面と上脚部材410の内側周縁部表面との間に取り付けられ得る。この例では、スライダ・ベアリング448および450は、キャリア414が、軸はずれ力成分446に反作用し、摩擦を減らすと同時に、軸力成分444を受けることを可能にするガイド・ブッシュとして動作することができる。
【0068】
[0096] 上で言及したように、キャリア414に作用する軸力成分444は、ナット408およびねじ軸406に伝達される。ねじ軸406は、肩438でベアリング435とインターフェースし、したがって、ベアリング432は、軸力成分444を受ける。その後、軸力成分444は、ベアリング435から肩436を介してベアリング・キャリア432に伝達される。
【0069】
[0097] 軸ロード・セル440が、ベアリング・キャリア432の外側周縁部表面上に配置され得る。したがって、軸ロード・セル440も、軸力成分444を受け、この軸力成分444は、ロボット脚の動作中にキャリア414およびねじ軸406に与えられる。軸ロード・セル440は、ねじ軸406に与えられた軸力成分444に比例する電気信号を生成することができる。この電気信号は、ロボットのコントローラまたはロボットの脚部材に供給され得る。
【0070】
[0098] 一例では、コントローラは、ロボットの状態、ロボットの環境、および指令された加速度に基づいて様々な制御戦略を実施するのに、エンコーダ431および軸ロード・セル440を使用することができる。たとえば、第1の制御方策では、コントローラは、上で言及したようにモーター402の回転位置に対する閉ループ位置制御を実施することができる。第2の制御方策では、コントローラは、表面430に対して足428が働かせる力に関する閉ループ力制御を実施することができる。この制御方策は、ロボット脚に関する高い加速能力を可能にすることができる。第3の制御方策では、コントローラは、閉ループ位置および力制御を実施することができ、力制御ループは、ロボット脚の動きを減衰させるのに使用され得る。これらの制御方策は、例示のための例であり、他の制御方策が実施され得る。
【0071】
[0099] 例では、キャリア414および、ナット408などのこれに結合された構成要素は、回転防止機構または回転防止構成を介して、縦軸442の回りでの回転を阻まれ得る。図5A図5Cは、例の実施態様によるキャリア414の回転防止構成を示す。具体的には、図5Aは、例の実施態様による、キャリア414の外側表面上に配置された少なくとも1つの縦溝500を有するキャリア414を示す。図5Aに示されているように、縦溝500は、キャリア414の近位端413と遠位端420との間に配置される。例では、縦溝500は、キャリア414の外側表面上で縦に機械加工された溝穴の形をとることができる。
【0072】
[0100] 図5Bは、例の実施態様による回転防止要素502を示す。回転防止要素502は、曲がった板504と、曲がった板504の凹面から突き出す突起506とを含む。回転防止要素502は、突起506が上脚部材410内で半径方向に内向きに突き出し、縦溝500と係合するように、上脚部材410の外側表面に結合されるように構成される。
【0073】
[0101] 一例として、曲がった板504は、穴508などの穴を有することができる。上脚部材410の外側表面は、対応する穴を有することができる。留め具が、曲がった板504内の穴および上脚部材410内の対応する穴を介して曲がった板504を上脚部材410に結合するのに使用され得る。さらに、上脚部材410は、突起506に対応し、それを介して突起506を受けるように構成された中央穴を有することができる。
【0074】
[0102] 図5Cは、例の実施態様による、上脚部材410およびこれに結合された回転防止要素502の透視図を示す。上脚部材410の外側表面またはその一部は、曲がった板504の凹面の曲率と一致するように曲げられ得る。この形で、曲がった板504の凹面は、上脚部材410に結合された時に、上脚部材410の外側表面のプロファイルまたは輪郭に一致することができる。
【0075】
[0103] 突起506は、上脚部材410の外側表面を介して突き出し、キャリア414の縦溝500と係合する。この構成を用いると、キャリア414が上脚部材410内で軸方向に動く時に、突起506は、キャリア414が縦軸442の回りで回転するのを阻む。例では、突起506は、キャリア410が上脚部材410内で動く時の縦溝500との摩擦を減らす材料(たとえば、Teflon)から作られ得る。
【0076】
[0104] 他の回転防止機構が実施され得る。図6A図6Cは、例の実施態様による別の回転防止機構を示す。具体的には、図6Aは、例の実施態様による、ローラー(1つまたは複数)602を結合されたキャリア600を示す。図6Aは、キャリア600の一方の側面上の1つのローラー602を示す。別のローラーが、キャリア600の他方の側面でキャリア600に結合され得る。例では、ローラー602に似たより多数のローラーが、キャリア600に結合され得る。ローラー602は、レール604内で転がるように構成され、キャリア600の他方の側面上のローラー602に対応するローラーは、レール604に平行なレール606内で転がるように構成される。両方のローラーが、集合的にローラー(1つまたは複数)602と呼ばれる。
【0077】
[0105] レール604および606は、ローラー(1つまたは複数)602をその中に拘束するように構成される。この形で、レール604および606は、レール604および606とローラー(1つまたは複数)602とがローラー要素ベアリング構成を形成するように、ローラー(1つまたは複数)602のトラックとして動作することができる。この構成は、キャリア600がロボット脚内で移動する時の摩擦を減らす。さらに、一例では、たとえばTeflon(登録商標)から作られたスライダ・ベアリング607が、摩擦をさらに減らすために、ロボット脚の内側表面とインターフェースするためにキャリア600の外側表面の回りに配置され得る。
【0078】
[0106] 両方のレール604および606は、下で図6Bに関して説明されるようにレール604および606をロボット脚に固定して取り付けるために留め具を受けるように構成され得る、その中に形成された穴608A、608B、608C、608D、および608Eなどの穴を有する。レール604および606が、ロボット脚に固定して取り付けられると同時に、ローラー(1つまたは複数)602の動きをその中に拘束するので、キャリア600は、その縦軸609の回りの回転を阻まれる。
【0079】
[0107] 図6Bは、例の実施態様による、その中にキャリア600とレール604および606とを受けるように構成された上脚部材610を示す。上脚部材610は、上脚部材410に類似するが、その外側表面上に穴のパターン612をさらに有することができる。穴のパターン612は、レール604および606内に配置された穴に対応する。たとえば、穴のパターン612の穴614A、614B、614C、および614Dは、それぞれレール604の穴608A、608B、608C、608Dに対応することができる。次に、留め具が、レール604および606を上脚部材610内に固定して取り付けるのに使用され得る。
【0080】
[0108] 図6Cは、例の実施態様による、上脚部材610およびその中に配置された構成要素の上面断面を示す。図6Cに示されているように、ローラー・キャリッジ616が、キャリア600の遠位端に結合され、縦軸609に垂直に配置される。ローラー(1つまたは複数)602は、ローラー・キャリッジ616に結合され、レール604および606内で転がりながらその中に拘束されるように構成される。具体的には、少なくとも1つのローラー602が、ローラー・キャリッジ616の第1の端およびレール604内のローラーに結合され、別のローラー602が、ローラー・キャリッジ616の第1の端と反対の第2の端に結合され、レール606内で転がるように構成される。図6Aおよび図6Cは、上脚部材610とは別々の構成要素としてレール604および606を図示するが、いくつかの例では、レール604および606は、その代わりに、上脚部材610の内側表面と一体化されまたはこれに組み込まれ得る。
【0081】
[0109] 軸ロード・セル618が、上で説明した軸ロード・セル440と比較して、モーター402のより近くに配置される。軸ロード・セル618は、異なるタイプのものとすることもできる。たとえば、軸ロード・セル440は、円柱型ロード・セルとして図示されているが、軸ロード・セル618は、曲がり梁型ロード・セルである。ロード・セルの他の型および位置も使用され得る。
【0082】
[0110] ロボットが移動し、図4Aに示された下脚部材412が、上脚部材410または610に対して相対的に回転する時に、ねじ軸406は、交番する圧縮力および引張力を受ける。たとえば、ねじ軸406が、ナット406を収縮させ、したがってキャリア414および第1のリンク418を引っ張る方向(たとえば、反時計回り)に回転している場合に、ねじ軸406は、張力を受けている。ところが、ねじ軸406が、ナット406を延ばし、キャリア414および第1のリンク418を押す反対方向(たとえば、時計回り)に回転している場合には、ねじ軸406は、圧縮力を受けている。
【0083】
[0111] さらに、ロボットが移動するために、地面(たとえば、表面430)と接触している可能性がある下脚部材412は、地面を押す。ロボットが定位置に立っている時であっても、下脚部材412は、ロボットの起立とバランスとを維持するために、押す力を地面に働かせる。ロボットが移動していようと立っていようと、地面に対する押す力は、膝ピボット426に対する相対的な第1のリンク418の幾何構成に基づく、ねじ軸406内の引張力または圧縮力のいずれかを引き起こすことができる。
【0084】
[0112] 図7は、例の実施態様による、圧縮力を受けるねじ軸406を有する構成を示す図である。図7に示された構成は、図4Aの構成に類似する。この構成では、第1のリンク418は、関節424で下脚部材412に結合され、関節424は、膝ピボット426と足428との間に配置される。その結果、下脚部材412が表面430を押す時に、圧縮力が、第1のリンク418の長さに沿って矢印700の方向に印加される。この圧縮力は、キャリア414におよびナット408を介してねじ軸406伝えられる。したがって、この構成では、ねじ軸406は、圧縮力を受けている。
【0085】
[0113] 図8は、例の実施態様による、張力を受けるねじ軸406を有する構成を示す。この構成では、第1のリンク418は、膝ピボット802が関節800と足428との間に配置されるように、関節800で下脚部材412に結合される。その結果、下脚部材412が表面430を押す時には、引張力が、第1のリンク418の長さに沿って矢印804の方向に印加される。この引張力は、キャリア414に ナット408を介してねじ軸406に伝えられる。したがって、この構成では、ねじ軸406は、張力を受けている。
【0086】
[0114] 図7または図8の構成のいずれもが、使用され得る。しかし、いくつかの例では、ロボットは、ねじ軸406の座屈を引き起こすのに十分に大きくなる可能性がある力をねじ軸406内に引き起こす可能性がある環境条件を受ける場合がある。これらの例では、図8の構成が、ねじ軸406の座屈を阻むために使用され得る。ロボットの脚のピーク伸長力は、通常はピーク収縮力より大きく、図8の構成は、大伸長力イベント中にねじ軸406を張力を受ける状態にする。
【0087】
[0115] ロボット脚の他の構成が、実施され得る。図9は、例の実施態様による、股関節403に対して相対的にオフセットされた上脚部材410を示す。図示されているように、上脚部材410およびその中の構成要素を含むアセンブリは、股関節403に対して相対的にオフセットされている。この構成は、股関節403の位置に基づいて上脚部材410の長さを制限することによって課せられるパッケージング拘束を軽減することができる。言い換えると、上脚部材410の長さは、たとえば図4Aの構成に対して相対的に、図9の構成において増やされ得る。その代わりに、他の例では、股関節403に対して相対的に上脚部材410をオフセットすることは、膝ピボット426から股関節403までの全長の短縮を容易にすることができる。
【0088】
[0116] さらに、上で議論した構成では、モーター402は、ねじ軸406と直列に配置される。いくつかの例では、これらの構成は、上脚部材410または610を相対的に長くすることができる。他の構成が、上脚部材410または610を短縮するのに使用され得る。
【0089】
[0117] 図10は、例の実施態様による、上脚部材410からオフセットされたモーター402を示す。図示されているように、モーター402を上脚部材410から取り外し、上脚部材410に対して相対的にオフセットすることによって、上脚部材410が短縮され得る。この構成では、ベルト・ドライブが、モーター402とねじ軸406との間の減速プレステージとして配置され得る。この減速プレステージは、ねじアクチュエータ400の減速比を下げることを可能にする。ねじアクチュエータ400の減速比の低下は、回転慣性を減らし、下で説明するように、より高い性能特性につなげることができる。
【0090】
[0118] 一般に、ローラーねじは、所与の体積内でボールねじより多数のベアリング点またはより広いベアリング面積をもたらすことができ、したがって、接触応力を下げることができる。また、ローラーねじは、所与の荷重容量に関してよりコンパクトであると同時に、低速から中速でボールねじに類似する効率(たとえば、75%~90%)を実現し、高速で相対的に高い効率を維持することができる。ローラーねじは、さらに、ボールねじと比較して、よりよい位置決め精度、定格荷重、剛性、速度、加速度、および寿命を達成することができる。しかし、ボールねじは、ローラーねじより安価になる可能性があり、したがって、いくつかの応用例に関して、ボールねじの使用が望ましい場合がある。
【0091】
b.過負荷保護用の一体化されたクラッチを有する例の伝動装置
[0119] 回転慣性は、ロボットの位置および力の制御応答性に影響する。ロボットの関節での有効回転慣性は、関節に結合されたモーターの回転慣性およびモーターに結合された伝動装置の回転慣性に依存する可能性がある。伝動装置は、減速およびトルク増幅を可能にする特定のギア比を有することができ、関節での有効回転慣性は、ギア比の二乗に比例する。したがって、より大きいトルクを可能にする、より高いギア比は、より大きい回転慣性につながり、したがって、ロボットの応答性を低下させる可能性がある。
【0092】
[0120] 通常、大きいモーターおよび低いギア比は、小さいモーターおよび高いギア比と比較して、より大きい質量を犠牲にして、より低い出力慣性をもたらすことができる。したがって、より大きいトルクを達成するための大きいモーターの使用は、大きい回転慣性につながる可能性があり、これがロボットの応答性を低下させる。小さいモーターが使用される場合であっても、高いギア減速比を有する伝動装置は、やはり大きい有効回転慣性につながる可能性がある。
【0093】
[0121] ロボットの関節用のモーターを選択する際に、1つの手法は、関節が受けると期待される最大トルクを判定することを必要とし、その最大トルクを達成できるモーターを選択することができる。しかし、この手法は、大きい有効回転慣性につながる可能性がある。たとえば、ロボットの脚が予期されずに地面を打つ時または脚が物体による突然の衝撃を受ける時などの衝撃状況では、衝撃は、衝撃に応答し、ロボットのバランスを維持するために、モーターに高速で回転させる場合がある。具体的には、衝撃は、モーターおよび伝動装置の入力側に素早く加速させる。結果の慣性トルクは、ギア比によって増幅され、関節での大きいトルクを引き起こし、このトルクが、伝動装置および/または脚構造に損傷を与える可能性がある。この状況での反射慣性は、モーターおよび伝動装置の回転慣性の和に伝動装置の減速比の二乗を乗じたものに基づいて決定され得る。そのような衝撃状況で発生する最大トルクを達成できるモーターの選択は、対応する大きい回転慣性を有する大きいモーターにつながる可能性がある。
【0094】
[0122] 別の手法は、インピーダンス整合を必要とする可能性がある。具体的には、関節にあるモーターおよび伝動装置は、関節によって制御されるロボット部材の慣性と等しい反射慣性または出力慣性を有するように選択される。この手法は、関節の加速能力を高めることができる。
【0095】
[0123] 別の例では、モーターが、それに結合された伝動装置なしで、部材を直接に駆動するのに使用され得る。この形で、反射慣性が減らされ得る。しかし、伝動装置がないと、トルク増幅がなく、最大トルクは、モーターが達成できるトルクによって制限される。下げられたギア比を有する伝動装置が使用される場合であっても、モーターは、伝動装置での下げられたトルク増幅を補償するために、より大きいサイズを有し、したがって、過剰な重量およびサイズにつながる可能性がある。
【0096】
[0124] 本明細書で提示される改善された手法は、モーター内または伝動装置内で過負荷保護システムを一体化することを必要とする可能性がある。過負荷保護システムは、衝撃状況で遭遇する大トルクから伝動装置を分離することができる。この形で、適当なトルクおよび加速度を達成できる、サイズを縮小された伝動装置が選択され得る。より小さい伝動装置は、より小さい慣性を有し、したがって、全体的な慣性が減らされるので、より小さいモーターが所望の加速度を達成することを可能にすることができる。
【0097】
[0125] 本明細書で開示されるのは、ロボットの応答性を改善するためにモーターおよび伝動装置のサイズを減らし、したがって質量および慣性を減らすことを可能にするために、ハーモニック・ドライブ伝動装置にクラッチを一体化することを含むシステムおよび装置である。下で説明される一体化されたクラッチ・システムは、たとえば、ロボットの股関節または他の関節で使用され得る。
【0098】
[0126] 図11は、例の実施態様による、ロボット脚を示す。上で言及したように、ねじアクチュエータ400などのねじアクチュエータが、膝関節404を駆動するために、回転ギアボックスの代わりに使用され得る。ねじアクチュエータ400は、膝関節404での遠位質量の低下を可能にすることができる。遠位質量は、脚の慣性に影響し、尻のより近くに質量を配置することは、股関節で要求される慣性トルクを減らす。ねじアクチュエータ400は、ねじアクチュエータ400が回転ギアボックスと比較して減らされた回転慣性を有するので、有効回転慣性を減らすこともできる。
【0099】
[0127] さらに、本明細書で説明される過負荷保護システムを有するモーターおよび伝動装置は、股関節403での回転慣性を下げるために股関節403に結合され得る。たとえば、モーターおよび伝動装置は、股関節403のx軸1100およびy軸1102の一方または両方に沿って設置され得る。
【0100】
[0128] 図12Aは、例の実施態様による、ハーモニック・ドライブ1200の動作を示す図を示し、図12Bは、ハーモニック・ドライブ1200の組立分解図を示す。ハーモニック・ドライブ1200は、本明細書では、減速機およびトルク増幅器として動作する例の伝動装置システムとして使用される。ハーモニック・ドライブは、0バックラッシュ特性、広範囲の減速比、他の伝動装置システムと比較した重量および空間の節約、高い位置精度、および再現性の特徴がある。しかし、サイクロイド伝動装置(cycloidal transmission)などの他の伝動装置システムが使用され得る。なお、本出願において「ハーモニック・ドライブ」とは、減速歯車装置の一例である「波動歯車装置」を指し、例えば、ハーモニック・ドライブLLC社製のハーモニック・ドライブ(登録商標)等が含まれる。
【0101】
[0129] 図12Aに示されているように、ハーモニック・ドライブ1200は、3つの主要構成要素すなわち、ウェーブ・ジェネレータ1202と呼ばれる場合がある入力部材と、フレクスプライン1204と呼ばれる場合がある中間部材と、サーキュラ・スプライン1206と呼ばれる場合がある出力部材とを含む。図12Bに示されているように、ウェーブ・ジェネレータ1202は、長円形ハブ1210にはめられた薄肉ボール・ベアリング1208を含むことができる。長円形ハブ1210は、その長軸と短軸との間の寸法差が小さいので、図12Bでは長円に見えない可能性がある。ウェーブ・ジェネレータ1202は、トルク・コンバータとして動作し、モーターからの入力軸に接続され、したがって、ハーモニック・ドライブ1200への入力として動作する。
【0102】
[0130] フレクスプライン1204は、たとえば、カップの開放端の外側周縁部表面上に外歯1212を有する合金鋼から作られた薄い円筒形のカップである。フレクスプライン1204は、半径方向にはコンプライアンスがありまたは柔軟であるが、ねじれ方向には堅い。ウェーブ・ジェネレータ1202がフレクスプライン1204に挿入される時に、ウェーブ・ジェネレータ1202は、その開放端でフレクスプライン1204の外歯1212とインターフェースする。したがって、フレクスプライン1204の開放端は、ウェーブ・ジェネレータ1202の長円形形状を帯びる。
【0103】
[0131] サーキュラ・スプライン1206は、内歯1214を有する剛体のリングである。ハーモニック・ドライブ1200が組み立てられる時に、サーキュラ・スプライン1206の内歯1214は、長円形形状のウェーブ・ジェネレータ1202の長軸1216にまたがってフレクスプライン1204の外歯1212と係合する。サーキュラ・スプライン1206は、フレクスプライン1204より多数の歯を有することができる。たとえば、サーキュラ・スプライン1206は、フレクスプライン1204より2つ多い歯を有することができる。
【0104】
[0132] 例では、フレクスプライン1204は、出力として使用され、したがって、出力フランジに接続され得るが、サーキュラ・スプライン1206は、固定して取り付けられる。他の例では、サーキュラ・スプライン1206が、出力として使用され、したがって、出力フランジに接続され得るが、フレクスプライン1204は、固定して取り付けられる。下で提供される例の説明では、サーキュラ・スプライン1206は、回転することを許され、出力に接続され得るが、フレクスプライン1204は、固定して取り付けられる。しかし、他の構成が使用され得る。
【0105】
[0133] ウェーブ・ジェネレータ1202の長円形ハブ1210が回転される時に、フレクスプライン1204は、長円形ハブ1210の形状に変形し、ボール・ベアリング1208の外側周縁部表面上で滑らない。その結果、フレクスプライン1202の外歯1212は、ウェーブ・ジェネレータ1202の長軸1216にまたがる2つの対向する領域でサーキュラ・スプライン1206の内歯1214と係合する。ウェーブ・ジェネレータ1202の180度回転ごとに、サーキュラ・スプライン1206の内歯1214は、フレクスプライン1204の外歯1212に関して1歯だけ進められる。したがって、ウェーブ・ジェネレータ1202の各完全な回転は、サーキュラ・スプライン1206がフレクスプライン1204に対して相対的にその元の位置から2歯だけ移動することをもたらすことができる。
【0106】
[0134] ハーモニック・ドライブ1200などのハーモニック・ドライブを用いると、広範囲のギア減速比が、小さい体積内で可能である(たとえば、30:1から320:1までの比)。上で言及したように、低い比を有することは、ロボットの高い性能能力を容易にするために、伝動装置すなわちハーモニック・ドライブ1200の反射慣性または出力慣性を下げることができる。強い衝撃状況でハーモニック・ドライブ1200を保護するために、過負荷保護システムが、下で説明するようにその中に一体化される。
【0107】
[0135] 図13Aは、例の実施態様による、一体化された過負荷防止システムを有する例のドライブ・システムを示し、図13Bは、図13Aのドライブ・システムの拡大図を示し、図13Cは、図13Aのドライブ・システムの組立分解図を示す。図13A図13Eは、一緒に説明される。図13A図13Cのドライブ・システムは、股関節403またはロボットの任意の他の関節の軸1100および1102のいずれかまたは両方に結合され得る。下の説明は、ロボット脚を駆動するための股関節403にあるモーターおよび伝動装置に言及する。しかし、本明細書で説明されるシステムは、ロボットの任意の他の部材(たとえば、腕)を駆動するために、任意の他の関節で使用され得る。
【0108】
[0136] モーター1300は、ロボットの股関節403にあるハウジング1302内に取り付けられる。ハウジング1302は、フランジ1306および留め具1308Aおよび1308Bなどの留め具を介してロボットに結合される。
【0109】
[0137] モーター1300の回転子は、回転子と共に回転するように構成されたシャフト1310に結合される。ウェーブ・ジェネレータ1202に類似するものとすることができるウェーブ・ジェネレータ1312が、シャフト1310に結合され、これと共に回転するように構成される。ウェーブ・ジェネレータ1312は、フレクスプライン1204に類似するものとすることができるフレクスプライン1314の歯付き部分とインターフェースする。フレクスプライン1314は、留め具1315Aおよび1315Bなどの留め具を介してロード・セルまたはトルク・センサ1316に固定して取り付けられ、トルク・センサ1316は、ハウジング1302に固定して取り付けられる。フレクスプライン1314の歯付き部分の外歯は、サーキュラ・スプライン1206に類似するものとすることができるサーキュラ・スプライン1318の内歯と係合する。フレクスプライン1314およびサーキュラ・スプライン1318の歯は、図の視覚的混乱を減らすために、図13A図13Cには図示されていない。
【0110】
[0138] この構成を用いると、ウェーブ・ジェネレータ1312がシャフト1310を回転する時に、サーキュラ・スプライン1318は、フレクスプライン1314が固定されているので、縦軸1319の回りで回転する。サーキュラ・スプライン1318の近位側表面は、第1のクラッチ・パッド1320とインターフェースし、サーキュラ・スプライン1318の遠位側表面は、第2のクラッチ・パッド1322とインターフェースする。本明細書では、近位側は、モーター1300により近い側を指し、遠位側は、モーター1300からより遠い側を指す。
【0111】
[0139] クラッチ・パッド1320および1322は、サーキュラ・スプライン1318のそれぞれの表面とインターフェースする表面に取り付けられた摩擦材料を有する。したがって、クラッチ・パッド1320および1322が、サーキュラ・スプライン1318のそれぞれの表面に対してまたはこれに向かって偏って十分に予荷重を与えられる限り、クラッチ・パッド1320および1322は、サーキュラ・スプライン1318と共に回転する。
【0112】
[0140] クラッチ・パッド1320は、押さえ板1324にもインターフェースし、結合される。同様に、クラッチ・パッド1322は、出力湾曲部1326にもインターフェースし、結合される。一例では、クラッチ・パッド1320は、任意の種類の接着剤を介して押さえ板1324に接着され得、クラッチ・パッド1322は、任意の種類の接着剤を介して出力湾曲部1326に接着される得る。他の締結手段が、クラッチ・パッド1320を押さえ板1324におよびクラッチ・パッド1322を出力湾曲部1326に結合するのに使用され得る。一例では、押さえ板1324は、アルミニウムから作られ得る。しかし、他の材料も可能である。また、別の例では、クラッチ・パッド1320および1322は、サーキュラ・スプライン1318に接着され、押さえ板1324および出力湾曲部1326に対して相対的に滑ることを可能にされ得る。さらに別の例では、クラッチ・パッド1320および1322は、他のいかなる構成要素にも接着されないものとされ得、4つの表面(クラッチ・パッドごとに2つの表面)のいずれかに沿って滑ることを可能にされ得る。
【0113】
[0141] 皿ばね1328が、ロボット部材1330(たとえば、脚部材)と出力湾曲部1326との間に配置される。皿ばね1328は、クラッチ・パッド1322に軸方向予荷重を印加するために、出力湾曲部1326に軸歩行の偏らせる力を働かせる。クラッチ・パッド1322への軸方向予荷重は、軸方向予荷重がサーキュラ・スプライン1318を介してクラッチ・パッド1320に伝達され、クラッチ・パッド1320が押さえ板1324によって拘束されているので、クラッチ・パッド1320にも同様に予荷重を与える。
【0114】
[0142] 軸方向予荷重は、所定のトルク限界を超えるまで、クラッチ・パッド1320および1322をサーキュラ・スプライン1318に摩擦によって結合された状態に保つことができる。トルク限界を超える場合には、クラッチ・パッド1320および1322の静的摩擦限界を超えることができ、サーキュラ・スプライン1318は、クラッチ・パッド1320および1322に対して相対的に滑ることができる。したがって、トルク限界は、スリップ・トルクと呼ばれる場合がある。
【0115】
[0143] トルク限界は、皿ばね1328のばね定数に基づく。シム1332などのシムが、クラッチ・パッド1320および1322への軸方向予荷重を変更し、したがってトルク限界を変更するために、皿ばね1328とロボット部材1330との間に追加され得る。
【0116】
[0144] 出力湾曲部1326は、ねじれ方向には堅いが、軸方向には柔軟とすることができる。たとえば、出力湾曲部は、チタニウムなどの柔軟な材料から作られ得る。一例では、出力湾曲部1326は、皿ばね1328と比較して、より柔らかい材料から作られ得る。たとえば、出力湾曲部1326は、皿ばね1328のばね定数のより低い(たとえば、10%)ばね定数を有することができる。この例では、皿ばね1328は、出力湾曲部1326によってクラッチ・パッド1322に印加される力と比較して、支配的な軸方向予荷重力を提供する。しかし、他の構成が可能である。出力湾曲部1326は、クラッチ・パッド1322にロボット部材1330をねじれ方向で接続すると同時に、摩耗に対処するためにその軸方向の動きを可能にし、皿ばね1328がサーキュラ・スプライン1318に反してクラッチ・パッド1322に予荷重を与えることをも可能にするように構成される。
【0117】
[0145] 一例では、拘束リング1334が、押さえ板1324とロボット部材1330との間に配置され得る。拘束リング1334は、サーキュラ・スプライン1318とクラッチ・パッド1320および1322とがその中に配置され、拘束される、開いた環状空間を有する。一例では、拘束リング1334はアルミニウムから作られ得るが、他の材料も可能である。
【0118】
[0146] ボルト1335Aおよび1335Bなどの留め具またはボルトの放射状配列が、押さえ板1324、拘束リング1334、出力湾曲部1326、およびロボット部材1330を一緒に含むアセンブリを保持するように構成され得る。皿ばね1328によって印加される軸方向予荷重に起因して、クラッチ・パッド1320および1322ならびにサーキュラ・スプライン1318は、出力湾曲部1326と押さえ板1324との間で圧迫される。したがって、クラッチ・パッド1320および1322ならびにサーキュラ・スプライン1318も、ボルト1335Aおよび1335Bを含むボルトの放射状配列によって一緒に保持されるアセンブリの一部である。
【0119】
[0147] 上で言及したように、ウェーブ・ジェネレータ1312が回転する時に、サーキュラ・スプライン1318は、フレクスプライン1314が固定されているので回転する。サーキュラ・スプライン1318は、ウェーブ・ジェネレータ1312に対して相対的に下げられた回転速度で回転するが、ウェーブ・ジェネレータ1312によって印加されるトルクに対して相対的に増幅されたトルクを印加することができる。サーキュラ・スプライン1318が回転する時に、摩擦によってこれに結合されたクラッチ・パッド1320および1322も回転し、サーキュラ・スプライン1318からクラッチ・パッド1320および1322に伝達されたトルクは、2つの経路を介してロボット部材1330に伝達される。第1の経路は、サーキュラ・スプライン1318からクラッチ・パッド1322を介する出力湾曲部1326へのトルクの伝達を含み、出力湾曲部1326は、ボルトの配列を介してロボット部材1330に結合されている。第2の経路は、サーキュラ・スプライン1318からクラッチ・パッド1320を介する押さえ板1324へのトルクの伝達を含み、押さえ板1324は、ボルトの配列を介してロボット部材1330に結合されている。
【0120】
[0148] クロス・ローラー・ベアリング1336が、拘束リング1334とハウジング1302の内側表面との間で拘束リング1334の外側周縁部表面に取り付けられ得る。クロス・ローラー・ベアリング1336は、ハウジング1302に対する相対的なロボット部材1330の回転を容易にし、ロボット部材1330に印加される、半径方向荷重、スラスト荷重、およびモーメント反作用荷重を処理するように構成され得る。
【0121】
[0149] 上で説明したシステムは、モーター1302およびハーモニック・ドライブの過負荷保護を容易にすると同時に、ハーモニック・ドライブの減速比を下げ、したがってその回転慣性を減らすことを可能にする。一例として、モーター1302は、ロボット部材1330を特定の位置に移動することを試みて高速で回転している可能性がある。ロボット部材1330が移動する時に、ロボット部材1330は、予期されない物体または未検出の物体を打ち、またはこれに衝突する場合がある。その結果、過負荷保護システムがなければ、モーター1302は、短い時間期間(たとえば、1ミリ秒)内に強制的に停止される可能性がある。ハーモニック・ドライブのトルク容量の4倍に達する可能性があるトルクが、印加されて、これを停止させる可能性がある。ハーモニック・ドライブが、そのような大きいトルクに耐えるかこれを印加することができるように設計される場合に、ハーモニック・ドライブは、より大きくなり、より大きい回転慣性を示すはずである。
【0122】
[0150] 別の例として、ロボットは、物体に衝突する場合があり、たとえば、ロボットは、特定の高さから地面に落ちる場合があり、その衝撃は、大きいトルクをハーモニック・ドライブに印加させる可能性があり、これが損傷を引き起こす可能性がある。別の例では、ロボットは、非アクティブ状態である場合がある(たとえば、たとえばバッテリを介するロボットへの電力がシャット・ダウンされ、ケーブルが破壊され、またはコントローラ誤動作が発生した)。物体が、そのような状態のロボットに衝突する場合に、ロボットのコントローラは、電力を有しない可能性があり、したがって、ロボットを保護するために、電気的に操作される安全性構成要素に信号を送らない可能性がある。これらすべての例において、ハーモニック・ドライブおよびモーター1302は、その構成要素への損傷を引き起こし得る大きいトルクを受ける可能性がある。
【0123】
[0151] 図13A図13Cで説明した過負荷保護システムを用いると、ロボット部材1330に対する負荷トルクが皿ばね1332の軸方向予荷重によって指定されるトルク限界を超える場合に、サーキュラ・スプライン1318は、クラッチ・パッド1320および1322に対して相対的に滑る。この形で、ハーモニック・ドライブ(すなわち、サーキュラ・スプライン1318)は、ロボット部材1330からある時間期間の間切り離され、したがって、大きい負荷トルクから保護される。さらに、サーキュラ・スプライン1318が、クラッチ・パッド1320および1322に対して相対的に滑る時に、ロボット部材1330の運動エネルギは、サーキュラ・スプライン1318とクラッチ・パッド1320および1322との間の摩擦に起因して消散される。負荷トルクがトルク限界未満になった後に、ハーモニック・ドライブは、ロボット部材1330と再係合する。
【0124】
[0152] 過負荷保護システムの利点は、クラッチ・パッド1320および1320が、ハーモニック・ドライブ内に一体化され、その構成要素(すなわち、サーキュラ・スプライン1318)とインターフェースすることである。この一体化は、ハーモニック・ドライブと直列にクラッチ・システムを追加すること(より多くの縦空間を必要とするはずである)とは対照的に、コンパクトな設計を可能にする。
【0125】
[0153] 別の利点は、出力湾曲部1326が、ロボット部材1330が0バックラッシュを伴ってその運動方向を逆転することを可能にするように構成されることである。ロボット部材1330などのほとんどのロボット部材は、2つの方向で動作する。たとえば、ロボット部材1330がロボットの脚である場合に、モーター1302は、ある方向に脚をスイングするために、対応する方向に回り、その後、脚を停止し、反対方向に脚をスイングするために逆方向に回ることができる。脚によって印加される力の制御に加えて、脚の位置、速度、および加速度の正確な制御は、運動方向を逆転する時の0バックラッシュを含む複数の要因に依存する可能性がある。
【0126】
[0154] バックラッシュがある場合に、2つのクラッチ・パッド1320および1322のうちの一方のクラッチ・パッドは、方向を逆転する際にサーキュラ・スプライン1318に係合され得、他方のクラッチ・パッドは、係合されないものとすることができる。したがって、係合されたクラッチ・パッドは、サーキュラ・スプライン1318に対して相対的に滑り始めることができ、その後、ある時間期間の後に、他方のクラッチ・パッドが、荷重をかけられ始め、その後、両方のクラッチ・パッド1320および1322が、サーキュラ・スプライン1318に対して相対的に滑るはずである。
【0127】
[0155] 出力湾曲部1326および皿ばね1328の柔軟性のゆえに、これらは、お互いに対する相対的なドライブ・システムの構成要素の軸方向移動に対処することができる。たとえば、これらは、構成要素に弾性限界まで圧力を加えることなく、クラッチ・パッド1320および1322の摩耗、ハーモニック・ドライブに対する相対的なロボット部材1330の軸方向移動などに対処することができる。したがって、出力湾曲部1326および皿ばね1328は、様々な構成要素の製造公差を補償することができる。
【0128】
[0156] それと同時に、出力湾曲部1326は、クラッチ・パッド1322を押し、クラッチ・パッド1320および1322をサーキュラ・スプライン1318に接触したままにし、したがってバックラッシュを除去する。したがって、モーター1302およびサーキュラ・スプライン1318が停止し、その後、その回転方向が逆転される場合であっても、出力湾曲部1326は、ロボット部材1330の滑らかな移動を保証することができる。
【0129】
[0157] さらに、出力湾曲部1326は、トルク荷重を2つのクラッチ・パッド1320および1322の間で均等に共有させることができる。出力湾曲部1326によって印加される力は、サーキュラ・スプライン1318に対するクラッチ・パッド1322の間の接触を維持する。出力湾曲部1326によって印加される同一の力は、さらに、押さえ板1324に対してクラッチ・パッド1320を圧迫するのと一緒にサーキュラ・スプライン1318に対してクラッチ・パッド1322を圧迫する。この形で、クラッチ・パッド1320および1322は、サーキュラ・スプライン1318が回転する時に等しく荷重を与えられる。
【0130】
[0158] いくつかの例では、グリスまたは他の潤滑油が、ハーモニック・ドライブの構成要素または図12A図13Bに示されたドライブ・システム内のベアリングに塗布され得る。潤滑油は、ドライブ・システムの噛み合う構成要素の摩耗およびその間の摩擦を減らす。これらの例では、Oリング1338Aおよび1338Bが、グリスをクラッチ・パッド1320および1322から離れた状態に保つのに使用され得る。具体的には、Oリング1338Aは、クラッチ・パッド1320とサーキュラ・スプライン1318の近位面との間のクラッチ・インターフェースから離れた状態にグリスを保つことができる。また、Oリング1338Bは、クラッチ・パッド1322とサーキュラ・スプライン1318の遠位面との間のクラッチ・インターフェースから離れた状態にグリスを保つことができる。この形で、グリスは、皿ばね1328のばね定数によって少なくとも部分的に決定されるトルク限界(すなわち、スリップ・トルク)に影響しないものとすることができる。
【0131】
[0159] しかし、他の例の実施態様では、Oリング1338Aおよび1338Bが使用されない場合がある。皿ばね1328によって課される軸方向予荷重は、たとえば、グリスの存在に対処するために、異なるばね定数を有する皿ばねを選択することによって、調整され得る。皿ばねのばね定数の変更は、グリスの存在から生じる低下した摩擦係数で動作するようにクラッチ・パッド1320および1322の性能を調整することができる。
【0132】
[0160] 上で言及したように、ウェーブ・ジェネレータ1312がモーター1302のシャフト1310と共に回転する時に、サーキュラ・スプライン1318も、フレクスプライン1314が固定されていることに起因して回転する。サーキュラ・スプライン1318が回転する時に、クラッチ・パッド1320~1322、押さえ板1324、および拘束リング1334を含むアセンブリも回転する。ロボット部材1330も、ボルト(たとえばボルト1335A~1335B)の放射状配列を介して回転する。ロボット部材1330によって印加される負荷トルクがトルク限界を超えない限り、アセンブリおよびロボット部材1330は、サーキュラ・スプライン1318と共に回転する。負荷トルクがトルク限界を超える場合には、サーキュラ・スプライン1318は、クラッチ・パッド1320および1320に対して相対的に滑る。
【0133】
[0161] トルク過負荷状況では、ウェーブ・ジェネレータ1312の楕円形状は、サーキュラ・スプライン1318をも楕円形状に歪ませる場合がある。トルクがトルク限界未満になる時に、クラッチ・パッド1320および1322は、サーキュラ・スプライン1318と再係合し、したがって、その形状を楕円化されたままにすることができる。サーキュラ・スプライン1318のそのような歪んだ楕円形状は、ロボット部材1330でのトルク脈動をもたらす可能性がある。
【0134】
[0162] サーキュラ・スプライン1318を歪んだ楕円形状に保つことを阻むために、拘束ブッシング1340が、サーキュラ・スプライン1318の外側周縁部表面と拘束リング1334の内側周縁部表面との間に挿入され得る。サーキュラ・スプライン1318の外側周縁部表面と拘束リング1334の内側周縁部表面との間の隙間、したがって拘束ブッシング1340の厚さは、小さい。たとえば、干渉は、1インチの1/1000とすることができる。
【0135】
[0163] 例では、拘束ブッシング1340は、プラスティック材料、たとえばポリエステル・エーテル・ケトン(PEEK)材料または他の高分子材料から作られ得る。拘束ブッシング1340の可塑性は、これに相対的に低い剛性を与え、したがって、干渉内の軽い圧入を用いる拘束ブッシング1340の挿入を容易にする。この構成は、サーキュラ・スプライン1318および拘束リング1334の寸法および同心性における生産変動に対処する。
【0136】
[0164] ロボットの動作中に、拘束ブッシング1340、サーキュラ・スプライン1318、および拘束リング1334のそれぞれの温度が、上昇する場合がある。サーキュラ・スプライン1318および拘束リング1334は、異なる熱膨張係数を有する異なる材料から作られる可能性があるので、異なる速度で膨張し、収縮する可能性がある。しかし、拘束ブッシング1340のプラスティック材料は、より柔らかくなり、したがって、温度変化に起因するサーキュラ・スプライン1318および拘束リング1334の寸法変動に対処することができる。
【0137】
[0165] さらに、拘束ブッシング1340は、サーキュラ・スプライン1318および拘束リング1334が1つのアセンブリとして移動するように、これらを結合する。したがって、サーキュラ・スプライン1318の形状が、トルク荷重の下で変化する(たとえば、楕円化される)時に、サーキュラ・スプライン1318および拘束リング1334は、拘束ブッシング1340と共に一緒に歪まされ得る。この形で、トルク荷重がトルク限界未満になる時に、サーキュラ・スプライン1318、拘束ブッシング1340、および拘束リング1334は、歪まされない形状に一緒に跳ね返ることができる。また、サーキュラ・スプライン1318、拘束ブッシング1340、および拘束リング1334は、ギャップまたは隙間を有することとは対照的に、拘束ブッシング1340の存在のゆえに、より少なく変形する可能性がある。したがって、拘束ブッシング1340の存在は、トルク変動を防ぐことができる。
【0138】
[0166] サーキュラ・スプライン1318および拘束リング1334は、異なる材料から作られ得る。たとえば、サーキュラ・スプライン1318は、鋳鉄から作られ得、拘束リング1334は、チタニウムから作られ得る。サーキュラ・スプライン1318が拘束リング1334と接触することを可能にすることは、その間の束縛および磨滅を引き起こす可能性がある。拘束ブッシング1340は、そのような束縛および磨滅を阻むと同時に上で説明したトルク脈動を防ぐために、サーキュラ・スプライン1318と拘束リング1334との間のインターフェースとして動作する。
【0139】
[0167] 図12A図13Cに関して上で説明した構成要素および構成は、例の構成要素および構成であり、限定的であることは意図されていない。他の構成要素および構成が使用され得る。たとえば、2つのクラッチ・パッドの使用ではなく、1つのクラッチ・パッドを使用することができる。別の例では、クラッチ・パッドが、サーキュラ・スプライン1318の片側で使用され得、金属接触上の地金を含む任意のタイプの摩擦材料が、その反対側で使用され得る。
【0140】
[0168] 上で説明した構成では、過負荷から保護するクラッチ動作は、クラッチ・パッド1320および1322とサーキュラ・スプライン1318との間のインターフェースで行われる。別の例の実施態様では、クラッチ動作は、クラッチ・パッド1320と出力湾曲部1326との間およびクラッチ・パッド1322と押さえ板1324との間のインターフェースで行われ得る。この例では、クラッチ・パッド1320および1320は、サーキュラ・スプライン1318に一体化され得る。言い換えると、サーキュラ・スプラインの近位面および遠位面は、摩擦材料をその上に配置され得る。さらに、他の例では、他の構成要素が、サーキュラ・スプライン1318とクラッチ・パッド1320および1322との間に追加され得る。別の例の変形形態では、出力湾曲部1404および皿ばね1328は、1つの柔軟な構成要素に一体化され得る。また、皿ばねは、本明細書では例として使用され、他の実施態様では、任意の他のタイプのばねまたは柔軟でコンプライアンスのある要素が使用され得る。
【0141】
[0169] 図14は、例の実施態様による、ロボット部材1400のドライブ・システムの代替構成を示す。図14に示されているように、ボルト・リング1402が、押さえ板1324および拘束リング1334を置換する。言い換えると、押さえ板1324および拘束リング1334は、図14にボルト・リング1402として図示された単一の構成要素に一体化され得る。
【0142】
[0170] 出力湾曲部1404は、出力湾曲部1326と同様の動作を実行することができるが、ボルト1408などのボルトを含むボルト配列を介して中央領域1406でロボット部材1400に結合される。ボルト1335A~1335Bとは対照的に、図14のボルト1410などのボルトは、ロボット部材1400に出力湾曲部1402を結合することなく、ロボット部材1400にボルト・リング1402を結合する。
【0143】
[0171] これらの変形形態は、例示のみのための例であり、当業者は、他の配置および他の要素(たとえば、構成要素、インターフェース、順序、および構成要素のグループ化など)が、その代わりに使用され得、いくつかの要素が、所望の結果に従って完全に省略され得ることを了解する。
【0144】
c.例のモーター-コントローラ一体化構成
[0172] 例のロボットは、ロボットの対応する部材の動きを制御するために複数の関節を含むことができる。一例として、四足ロボットは、ロボットの部材(たとえば、腕、脚など)を接続し、制御する17個の関節を有することができる。例では、これらの関節の多くが、ロボットの部材を動かすように構成されたそれぞれのモーターを有することができる。モーターのそれぞれは、複数の入力を受け取り(たとえば、センサから)、それに応じて、ロボットの関節および部材を制御するために制御信号をモーターに供給するコントローラによって制御される。
【0145】
[0173] 一例では、コントローラは、ロボットの中央位置に配置され得、ワイヤが、コントローラと様々なモーターおよびセンサとの間に接続され得る。この構成は、ロボットの信頼性を下げ、故障の確率を高める可能性がある複雑な配線および長いワイヤを含む場合がある。
【0146】
[0174] 他の例では、各関節が、それぞれのモーターおよびそのモーター用のコントローラを有することができる。モーターおよびそのコントローラを一体化し、同一位置に配置することは、ロボットの信頼性を改善することができる。そのような一体化は、配線構成の複雑さを下げることができる。
【0147】
[0175] 本明細書で開示されるのは、ロボットの複雑さを下げ、信頼性を高めるために一体化されたモーターおよびコントローラ・アセンブリを有するシステムおよび装置である。具体的には、モーターおよびそのコントローラは、センサおよび温度管理構成要素の共有を容易にするために、お互いに近接したコンパクトなパッケージに一体化され得る。本明細書で開示される構成を用いると、ワイヤの個数および長さが減らされ、したがって、潜在的な故障点を減らすことによってロボットの信頼性を強化する。したがって、これらの構成は、ロボットの故障の尤度および休止時間を減らし、ロボットの保守コストを下げることができる。
【0148】
[0176] 図15Aは、例の実施態様による、一体化されたモーター・コントローラー・アセンブリ1500を示す。図示されているように、アセンブリ1500は、ハウジング1504内に配置されたモーター1502を含む。ハウジング1504は、ハウジング1504の外側表面の回りに円形配列で円周方向に離隔されたヒートシンク・フィン1506を含む。
【0149】
[0177] アセンブリ1500は、1つまたは複数のプリント回路基板(PCB)を含むことができるコントローラ1508を含む。たとえば、コントローラ1508は、電力段PCB 1510および論理段PCB 1512を含むことができる。電力段PCB 1510は、たとえば、モーター1502の固定子の巻線に供給される電力の制御および変換のために構成されたソリッド・ステート・エレクトロニクスを含むことができるパワー・エレクトロニクスを含むことができる。たとえば、電力段PCB 1510は、複数の電界効果トランジスタ(FET)を含むことができる。
【0150】
[0178] 論理段PCB 1512は、たとえば、1つまたは複数のマイクロプロセッサと、モーター1502に関する様々な制御動作を実行するために1つまたは複数のマイクロプロセッサによって実行される命令を含むデータ・ストレージとを含むことができる。電力段PCB 1510および論理段PCB 1512は、お互いと通信している。図15Aに示された例の実施態様では、電力段PCB 1510および論理段PCB 1512は、それぞれの軸方向に間隔を置かれた平面上に並置されまたは配置される。しかし、他の例では、これらは、異なる構成で配置され得、いくつかの例では、電力段PCB 1510の構成要素および論理段PCB 1512の構成要素が、単一のPCB内に一体化され得る。
【0151】
[0179] モーター1502の回転子は、回転子の回転運動をハーモニック・ドライブ1516などの伝動装置に伝えるシャフト1514に結合される。一例では、シャフト1514は、中空とされ得、磁石1518が、その近位端に配置され得る。本明細書では、用語「近位端」は、シャフト1514の、コントローラ1508により近い端を指し、シャフト1514の「遠位端」は、ハーモニック・ドライブ1516に結合された端を指す。
【0152】
[0180] 図示されているように、シャフト1514は、磁石1518が論理段PCB 1512のより近くに、これに面して配置されるように、電力段PCB 1510を通って延びる。さらに、論理段PCB 1512は、その上に配置され、磁石1518に面する回転位置センサ1520(たとえば、磁気抵抗センサまたはホール効果センサ)を含むことができる。
【0153】
[0181] 磁石1518は、シャフト1514およびそれに結合された磁石1518が回転する時に、センサ1520がシャフト1514の回転位置を示す情報をコントローラ1508に供給するように、直径方向に磁化され得る。この情報は、コントローラ1508によって、モーター1502の整流を制御するのに使用される。この構成を用いると、モーター1502の回転位置センサ1520は、モーター・コントローラ1508に一体化される。この構成は、モーターの回転位置センサがモーターのより近くに配置され、ワイヤがセンサをコントローラに接続し、したがってワイヤ破損および故障の尤度を高める他の構成と対照をなす。
【0154】
[0182] アセンブリ1500は、ロボット部材1524の回転位置を示す情報を論理段PCB 1512に供給するように構成された別の回転位置センサまたは出力エンコーダ1522をさらに含むことができる。たとえば、出力エンコーダ1522は、押さえ板1526に結合され得、押さえ板1526は、ロボット部材1524に結合され得る。押さえ板1526の回転位置を測定することによって、出力エンコーダ1522は、ロボット部材1524の回転位置の測定値を供給する。
【0155】
[0183] この形で、コントローラ1508は、モーター1502およびロボット部材1524の回転位置を示す情報を受け取る。したがって、コントローラ1508は、ハーモニック・ドライブ1516のサーキュラ・スプライン1528が、図13A図14に関して上で説明したように過負荷に起因して滑ったかどうかを判定することができる。アセンブリ1500は、ハーモニック・ドライブ1516に対するトルク荷重を測定するように構成されたトルク・ロード・セルまたはトルク・センサ1530をさらに含む。
【0156】
[0184] 図15Bは、例の実施態様による、コントローラ1508へのトルク・センサ1530および出力エンコーダ1522の接続を示す。トルク・センサ1530および出力エンコーダ1522からのワイヤは、トルク・センサ1530に固定された接続部1532にルーティングされ、そこで組み合わされ、トルク・センサ1530は、モーターの固定子のハウジングに固定される。次に、ワイヤは、柔軟なPCB 1534に接続され得、柔軟なPCB 1534は、トルク・センサ1530および出力エンコーダ1522からの信号に対して予備処理(たとえば、信号増幅、フィルタリングなど)を実行するように構成され得る。
【0157】
[0185] 次に、柔軟なPCB 1534からのワイヤは、ハウジング1504を介して1つまたは複数のコネクタ1536にルーティングされ得る。コネクタ1536は、シーリング・グロメット(sealing grommet)1538を介してコントローラ1508に(たとえば、電力段PCB 1510に)結合された対応するコネクタ1537(図15Dおよび図15Gに図示)と嵌合するように構成され得る。この構成を用いると、コントローラ1508に近い出力エンコーダ1522およびトルク・センサ1530を有することが、一体化およびワイヤの短縮を容易にし、したがって、ロボットの信頼性を改善する。
【0158】
[0186] 図15A図15Bに示された構成は、モーター1502とコントローラ1508との間での温度管理構成要素の共有をも可能にすることができる。図15Cは、例の実施態様による、アセンブリ1500の温度管理を示し、図15Dは、電力段PCB 1510の底面図を示す。
【0159】
[0187] FET 1540が、論理段PCB 1512とは反対に面する電力段PCB 1510の表面上に配置され得る。また、熱センサ1542が、電力段PCB 1510の、FET 1540をその上に配置された表面と同一の表面上に配置される。熱界面材料(thermal interfacial material)1544が、ハウジング1504の内側周縁部表面から半径方向に内向きに突き出すリブ1546から電力段PCB 1510およびその上に取り付けられた構成要素(たとえば、FET 1540および熱センサ1542)を分離する。他の例の実施態様では、任意の他の熱結合する表面または熱伝導構造が、リブ1546の代わりにまたはこれに加えて使用され得る。たとえば、別個のリブではなく、固体表面が使用され得る。他の例が可能である。
【0160】
[0188] 熱界面材料1544は、電力段PCB 1510に取り付けられた構成要素の高さ変動を補償することができる、柔軟でコンプライアンスのある材料とすることができる。熱界面材料1544は、熱伝導効率を高めるために関節でつながれた固体表面にまたがる熱接触伝導を高めることができる熱伝導材料を含む。電力段PCB 1510とリブ1546との間のギャップを、悪い熱導体である空気で充填されたままにするのではなく、熱界面材料1544は、強化された熱効率および熱伝導をもたらす。具体的には、電力段PCB 1510とリブ1546との間の熱伝導が、強化される。
【0161】
[0189] 熱界面材料1544は、シリコン・ベースの材料または非シリコン・ベースの材料を含むことができ、複数の形をとることができる。たとえば、熱界面材料1544は、たとえば酸化アルミニウム、酸化亜鉛、または窒化ホウ素を充填されたシリコン油から作られたペーストまたは放熱グリスを含むことができる。熱界面材料1544は、微粒化された銀または微粉化された銀を使用することもできる。例では、熱界面材料1544は、強化のためのガラス繊維を含むことができる。
【0162】
[0190] リブ1546は、モーター1502によって、具体的にはその固定子巻線によって生成された熱のヒート・パスを提供するようにも構成される。この構成を用いると、コントローラ1508およびモーター1502は、共通の温度管理および熱散逸配置を共有する。図15D内の矢印は、モーター1502とコントローラ1508との両方の例のヒート・パスを示す。モーター1502およびコントローラ1508から生成された熱は、リブ1546を介して、ハウジング1504上に配置されたフィン1506に伝導される。
【0163】
[0191] シュラウド1548がファン1550を囲み、ファン1550は、アクティブ化された時に、空気を引き出し、フィン1506に向かって空気を向ける。この形で、ファン1550は、フィン1506での熱散逸を強化し、モーター1502とコントローラ1508との両方を冷却することができる。
【0164】
[0192] 熱センサ1542は、電力段PCB 1510上で、上で言及したFET 1540を有する表面と同一の表面に配置され、したがって、FET 1540およびコントローラ1508の他の構成要素の温度を示す情報を供給する。熱センサ1542は、リブ1546と接触し、またはこれに近接することもできる。したがって、熱センサ1542は、リブ1546に隣接する、モーター1502の固定子の温度を示す情報をも供給する。この構成を用いると、モーター1502とコントローラ1508との両方が、共通の熱センサを共有する。熱センサ1542によってコントローラ1508に供給されるセンサ情報は、ファン1550をいつどの速度で動作させるべきかを制御するのに使用され得る。
【0165】
[0193] 熱センサ1542は、モーター1502およびハーモニック・ドライブ1516(図15Aに図示)の安全性監視にも使用され得る。たとえば、熱センサ1542は、固定子の温度がしきい温度を超えることを示すことができ、これは、モーター1502またはハーモニック・ドライブ1516が過負荷を受けていることを示すことができる。代替案では、高温は、ハーモニック・ドライブ1516の構成要素が正しく整列されていない可能性があることと、保守の期限が来ている可能性があることとを示すことができる。
【0166】
[0194] この形で、熱センサ1542は、コントローラ1508自体の様々な構成要素およびモーター1502の状態をコントローラ1508に示すことができる。その後、コントローラ1508は、関節の動作を継続すべきか、安全性のためにこれを停止すべきかを判定することができる。したがって、図15A図15Dに示されたモーター1502およびコントローラ1508の一体化は、これらの両方のための共通の熱センサを有することを可能にし、これによって、温度管理に関連する配線の長さおよび範囲を減らす。
【0167】
[0195] モーター1502およびコントローラ1508のそれぞれが、それ自体の熱センサを有する場合には、センサの個数を2倍にせよ、配線がロボットに追加されるはずである。17個の関節を有する四足ロボットに関して、配線の量および範囲は、大幅に増加し、したがって、全体としてのロボットの信頼性を下げる。一体化は、構成要素個数および配線複雑さの減少につながり、これがロボットの全体的な信頼性を有する 強化する可能性がある。
【0168】
[0196] 例では、図15Cに示されているように、スタンドオフ1551Aなどの論理段スタンドオフが、論理段PCB 1512と電力段PCB 1510との間の一貫した距離を実現するのに使用され得る。これらのスタンドオフは、両方のPCBの構成要素がお互いに接触しないことを保証することができる。
【0169】
[0197] さらに、スタンドオフ1551Bなどの電力段スタンドオフが、FET 1540とリブ1546との間の一貫したギャップまたは距離を実現するのに使用され得る。FET 1540は、「通電状態」である場合があり、したがって、他の構成要素に伝導された場合にその構成要素に損傷を与える可能性がある高電圧を有する場合がある。電力段スタンドオフは、FET 1540が任意の他の構成要素に接触するのを阻む。さらに、FET 1540とリブ1546との間の一貫した距離の実現は、その間に配置される熱界面材料1544の量および厚さの推定を容易にする。
【0170】
[0198] 例では、モーター1502は、電気的に120°離れて位置決めされた3つの巻線または相を有する3相モーターとすることができる。モーター1502の固定子は、12スロットの巻線を含むことができ、したがって、そこから出る12本のワイヤを有することができる。これらの12本のワイヤは、デルタ構成、スター構成、並列構成、または直列構成など、複数の構成に配置され得る。構成は、モーター1502の性能およびトルク出力に影響する可能性がある。
【0171】
[0199] 12本のワイヤが固定子から出るが、ワイヤをスター構成、並列構成、または直列構成に構成した後に、ワイヤの数は、コントローラ1508で受け取られる3本または6本に減らされる。固定子から出る12本のワイヤとコントローラ1508との間のインターフェースを容易にするために、位相板1552が、その間に配置され得る。位相板1552は、モーター1502の固定子とコントローラ1508との間の中間基板または移行基板として動作する。
【0172】
[0200] 図15Eは、例の実施態様による、モーター1502の固定子1554から発する12本のワイヤを示し、図15Fは、固定子1554とインターフェースするように構成された位相板1552を示す。固定子1554は、ワイヤ1555Aおよび1555Bなど、12本の個々の巻線ワイヤを示す。位相板1552は、固定子1554から12本のワイヤを受け取るように構成され、スター、デルタ、並列、または直列の所望の構成への最終的な接続を行う導電線をその中に含む。次に、位相板1552は、コントローラ1508へのすなわち電力段PCB 1510への、ピン1556Aおよび1556Bなど、3本または6本のピンを示す。この構成を用いると、位相板1552は、固定子1554から出るワイヤを、電力段PCB 1510のコネクタで受けられる頑健なピンに移行させる。この構成は、配線の複雑さを下げ、信頼性を高め、アセンブリ1500を修復する能力を強化する。
【0173】
[0201] 例では、位相板1552は、固定子1554に結合され(たとえば、任意のタイプの接着剤を介して接着され)得る。配線構成を変更する(たとえば、スターからデルタに)ために、位相板1552が、取り外され得、所望の配線構成を実現する異なる位相板が、固定子1554に対する変更なしで固定子1554に結合され得る。この形で、最小限の変更が、固定子1554に対して実行され、固定子1554に損傷を与える危険性が、減らされる。
【0174】
[0202] 同様に、無変更または最小限の変更が、コントローラ1508に対して実行される。交換位相板は、コントローラ1508への同一本数のピンを提供するはずである。この形で、高価である可能性があるコントローラ1508に損傷を与える危険性が、減らされる。
【0175】
[0203] 図15Gは、例の実施態様による、アセンブリ1500の組立分解図を示す。図15Gの組立分解図は、アセンブリ1500の様々な構成要素の関係および組立の順序をさらに示す。一例では、図15Gに示されているように、電気絶縁シート1558が、位相板1552とハウジング1504との間の電気絶縁を保証するために、その間に配置され得る。
【0176】
[0204] したがって、一体化 モーター1502およびコントローラ1508ならびに構成要素の共有は、アセンブリ1500のサイズおよび複雑さの低減を可能にする。さらに、ワイヤ損傷の尤度が下げられ、アセンブリ1500の信頼性が高められる。信頼性の向上は、ロボットがアセンブリ1500に類似する多数のアセンブリを含む可能性があることを考慮すると、全体としてのロボットに関して拡大される。
【0177】
III.結論
[0205] 本明細書で説明された配置は、例のみのためのものである。したがって、当業者は、他の配置および他の要素(たとえば、機械、インターフェース、動作、順序、および動作のグループ化など)が、その代わりに使用され得、一部の要素が、所望の結果に従って完全に省略され得ることを了解する。さらに、説明された要素の多数が、別個の構成要素または分散された構成要素としてまたは他の構成要素に関連して、任意の適切な組合せおよび位置で実施され得る機能的実体である。
【0178】
[0206] 様々な態様および実施態様が本明細書で開示されたが、他の態様および実施態様が、当業者に明白になろう。本明細書で開示された様々な態様および実施態様は、例示のためのものであって限定的であることは意図されておらず、真の範囲は、以下の特許請求の範囲が権利を与えられる同等物の全範囲と一緒に、そのような特許請求の範囲によって示される。また、本明細書で使用される用語法は、特定の実施態様を説明するためのみのものであって、限定的であることは意図されていない。
図1
図2
図3
図4A
図4B
図5A
図5B
図5C
図6A
図6B
図6C
図7
図8
図9
図10
図11
図12A
図12B
図13A
図13B
図13C
図14
図15A
図15B
図15C
図15D
図15E
図15F
図15G