IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジョンソン、マッセイ、パブリック、リミテッド、カンパニーの特許一覧

<>
  • 特許-バイメタルモレキュラーシーブ触媒 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-28
(45)【発行日】2023-07-06
(54)【発明の名称】バイメタルモレキュラーシーブ触媒
(51)【国際特許分類】
   B01J 29/85 20060101AFI20230629BHJP
   B01D 53/86 20060101ALI20230629BHJP
   B01D 53/90 20060101ALI20230629BHJP
   B01J 29/80 20060101ALI20230629BHJP
   B01J 37/04 20060101ALI20230629BHJP
   B01J 37/08 20060101ALI20230629BHJP
   C01B 37/08 20060101ALN20230629BHJP
   C01B 39/48 20060101ALN20230629BHJP
【FI】
B01J29/85 A
B01D53/86 222
B01D53/90 ZAB
B01J29/80 Z
B01J37/04 102
B01J37/08
C01B37/08
C01B39/48
【請求項の数】 10
【外国語出願】
(21)【出願番号】P 2021096985
(22)【出願日】2021-06-10
(62)【分割の表示】P 2017542380の分割
【原出願日】2016-02-19
(65)【公開番号】P2021176632
(43)【公開日】2021-11-11
【審査請求日】2021-07-07
(31)【優先権主張番号】62/118,837
(32)【優先日】2015-02-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590004718
【氏名又は名称】ジョンソン、マッセイ、パブリック、リミテッド、カンパニー
【氏名又は名称原語表記】JOHNSON MATTHEY PUBLIC LIMITED COMPANY
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】チェン, ハイ-イン
(72)【発明者】
【氏名】リバス-カルドナ, アレハンドラ
(72)【発明者】
【氏名】フェデイコ, ジョセフ マイケル
【審査官】佐藤 慶明
(56)【参考文献】
【文献】特開2015-044720(JP,A)
【文献】特開2015-062874(JP,A)
【文献】中国特許出願公開第103394369(CN,A)
【文献】特表2013-522011(JP,A)
【文献】国際公開第2015/146482(WO,A1)
【文献】特表2016-531736(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 21/00 - 38/74
B01D 53/94 - 53/96
F01N 3/10 - 3/38
JSTPlus/JST7580/JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
小細孔モレキュラーシーブ、
モレキュラーシーブの総重量に基づき、銅及び/又は鉄から選択される0.5~5重量パーセントの遷移金属(TM)、並びに
モレキュラーシーブの総重量に基づき、0.5~5重量パーセントのニッケル
を含む、SCR触媒のための触媒組成物であって、
遷移金属及びニッケルが、10:1から1:2のTM:Ni比で存在し、
小細孔モレキュラーシーブが、10から50のシリカ対アルミナ比を有するゼオライトである、
SCR触媒のための触媒組成物。
【請求項2】
遷移金属及びニッケルの大部分が骨格外金属として存在する、請求項1に記載の触媒組成物。
【請求項3】
モレキュラーシーブが結晶で構成されており、遷移金属及びニッケルが、XPSにより測定される場合に、XRFにより測定される場合のそれらの重量百分率の10%以内である重量百分率で存在する、請求項1に記載の触媒組成物。
【請求項4】
モレキュラーシーブがCHA骨格を有する、請求項1に記載の触媒組成物。
【請求項5】
モレキュラーシーブがAEI骨格を有する、請求項1に記載の触媒組成物。
【請求項6】
モレキュラーシーブが、非アルミニウム骨格金属を本質的に含まない、請求項1に記載の触媒組成物。
【請求項7】
小細孔モレキュラーシーブを合成するための方法であって:
シリカ源と、アルミナ源と、任意選択的にリン酸塩源と、銅及び/又は鉄源と、ニッケル源と、少なくとも一の構造指向剤とを含む混和剤を加熱して、ニッケル並びに銅及び鉄のうちの少なくとも一を含有するゼオライト結晶を形成することと、
母液から小細孔モレキュラーシーブ結晶を分離させること
を含み、
小細孔モレキュラーシーブが、10から50のシリカ対アルミナ比を有するゼオライトである、方法。
【請求項8】
請求項1に記載の触媒組成物が塗布されている基材を含む、触媒物品。
【請求項9】
小細孔モレキュラーシーブ、
モレキュラーシーブの総重量に基づき、銅及び/又は鉄から選択される0.5~5重量パーセントの遷移金属(TM)、並びに
モレキュラーシーブの総重量に基づき、0.5~5重量パーセントのニッケル
を含むSCR触媒であって、
遷移金属及びニッケルが、10:1から1:2のTM:Ni比で存在し、触媒が、還元剤の存在下でNOをNに還元するのに有効であり、
小細孔モレキュラーシーブが、10から50のシリカ対アルミナ比を有するゼオライトである、SCR触媒。
【請求項10】
請求項8に記載の触媒物品及び還元剤源を含む、排気ガスを処理するためのシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属を含有するモレキュラーシーブを合成するための方法及び燃焼排ガスを処理するためのそのようなモレキュラーシーブの触媒としての使用に関する。
【背景技術】
【0002】
骨格外位置でCu2+カチオンを含む、ゼオライト及びシリコアルミノホスフェート(SAPOs)等の小細孔モレキュラーシーブは、リーンバーンエンジンによる汚染の軽減に関する重要な変換である、NH3を用いたNOの選択的触媒還元(SCR)に優れた活性を示す。CHA及びAEIトポロジータイプ(それぞれ、ゼオライトSSZ-13及びSSZ-39並びにSAPOs-34及び-18)を有する材料が、この反応について研究されてきた。Cu2+カチオンは、材料のカチオン交換により固体に導入することができ、それより、元のアルキルアンモニウム構造指向剤が焼成により除去されている。個々の調製工程を必要とすることとは別に、SAPOにおいて、これはまた、結晶化度の減少及びCu2+カチオンの不均一な分布をもたらしうる。
【0003】
しかしながら、銅は、炭化水素燃焼により生じる排気ガス、特にディーゼル排気ガス中にしばしば存在する少量の硫黄により、容易に毒され及び/又は失活する。したがって、硫黄に耐性のあるSCR触媒の必要性が残されたままである。本発明は、特にその需要を満たすものである。
【発明の概要】
【0004】
出願人は、鉄及び/又は銅のような他の金属と組み合わせてニッケルで促進されたバイメタルモレキュラーシーブ触媒は、硫黄被毒及び不活性化に対する触媒の耐性を思いがけなく改善し、同時に、低温で一貫して高レベルのNOの変換を達成することを発見した。特にリーン(即ち、酸素が豊富な)排気ガス中のニッケルの硫黄に対する強い親和性により、ニッケルは高硫黄環境で又は硫黄被毒を緩和する手段として有益に使用されうることを発見したことは驚くべきことであり、予期せぬことである。更に、ニッケル促進触媒は、一般的に劣ったNO転換性能を有する。したがって、本発明のニッケル含有小細孔レキュラーシーブ触媒の一貫したNO変換性能もまた、驚くべきことである。
【0005】
出願人はまた、ニッケル及び銅の両方を小細孔モレキュラーシーブ内に取り込む新規の合成ルートも発見した。典型的には、二の遷移金属のモレキュラーシーブへの合成後の交換は、多くの複雑な事態をもたらす。両方の金属の共含浸が、イオン交換又は初期湿潤のいずれかによって使用される場合、金属溶解度は、しばしばモレキュラーシーブ結晶を通して二の金属の均一性の欠如をもたらす。連続的な交換について、交換のための金属間の競争は、しばしば、一の金属ブロックアクセスをもたらし、他の金属から部位を交換しうる。発明者は、形成中にモレキュラーシーブを不安定化することなく、モレキュラーシーブの合成中の両方の金属の取り込みが達成されうることを発見した。
【0006】
したがって、提供されるものは、小細孔モレキュラーシーブ、モレキュラーシーブの総重量に基づき、銅及び/又は鉄から選択される約0.5~5重量パーセントの遷移金属(T)、並びにモレキュラーシーブの総重量に基づき、約0.5~5重量パーセントのニッケルを含む触媒組成物であって、遷移金属及びニッケルが、約10:1から約1:2のT:Ni比で存在する、触媒組成物である。また提供されるものは、そのようなNi/T/モレキュラーシーブを含有するSCR触媒であって、触媒は、還元剤の存在下でNOをNに還元するのに有効である。また提供されるものは、そのようなSCR触媒を塗膜又は押し出されたハニカム基材を含む触媒物品である。また提供されるものは、そのような触媒物品及び上流アンモニア又はアンモニア前駆体注入器、HC注入器、又はNO吸収触媒を含む排気ガス処理システムである。
【0007】
また提供されるものは、(1)シリカ源、アルミナ源、銅及び/又は鉄源、ニッケル源と、ニッケル並びに銅及び鉄のうちの少なくとも一を含有するモレキュラーシーブ結晶を形成するための、少なくとも一の構造指向剤とを含む混和剤を加熱する工程と、(2)母液からモレキュラーシーブ結晶を分離させる工程を含むバイメタルゼオライトを合成するための方法である。
【図面の簡単な説明】
【0008】
図1】従来の触媒に対する本発明の触媒のNOx変換性能を示す比較データのグラフである。
【発明を実施するための形態】
【0009】
本発明は、少なくとも部分的には、環境大気質を改善するための方法、特に、発電所、ガスタービン、リーンバーン内燃機関等によって生成される排ガスの排出を処理するための触媒及び方法を対象とする。排ガスの排出は、低頻度の再生を必要とする触媒を使用してNO濃度を低減することによって、少なくとも部分的に改善される。
【0010】
好ましくは、触媒組成物は、ニッケルと骨格外金属としてモレキュラーシーブ上に及び/又はその中に分散される少なくとも一の他の金属、例えば銅又は鉄との両方を有する小細孔モレキュラーシーブを含む。適切なモレキュラーシーブの例は、アルミノシリケート(ゼオライト)、シリコアルミノホスフェート(SAPO)、アルミノホスフェート(AlPO)等を含む。好ましいモレキュラーシーブの例は、小細孔骨格を有する(即ち、8つの四面体単位の最大骨格環サイズを有する)ゼオライト及びAPOを含む。小細孔モレキュラーシーブの例は、以下から成る群より選択される骨格型コードを有するものを含む:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG及びZON。特に好ましい骨格は、AEI、AFT、AFX、CHA、DDR、RHO、MER、LTA、UFI、RTH、SAV、PAU、LEV、ERI、及びKFIを含み、SAV、CHA及びAEIが特に好ましい。好ましい実施態様において、一又は複数の小細孔モレキュラーシーブは、SAPO-34、AlPO-34、SAPO-47、ZYT-6、CAL-1、SAPO-40、SSZ-62若しくはSSZ-13より選択されるCHA骨格型コード、SAPO-STA-7より選択されるSAV骨格、及び/又はAlPO-18、SAPO-18、SIZ-8若しくはSSZ-39より選択されるAEI骨格型コードを含んでもよい。有用な混合相モレキュラーシーブは、AEI/CHA混合相組成物、例えば不規則AEI/CHA骨格又はAEI/CHA連晶を含む。混合相モレキュラーシーブにおける各骨格型の比は、特に限定されない。例えば、AEI/CHAの比は、約5/95から約95/5、好ましくは約60/40から40/60の範囲であってもよい。例示的な実施態様において、AEI/CHAの比は、約5/95から約40/60の範囲であってもよい。特定の骨格型コードを有するモレキュラーシーブは、その骨格型コードにより定義される全ての同位体骨格材料を含むことを認識されたい。
【0011】
本明細書で使用する語「ゼオライト」は、アルミナ及びシリカ(即ち、SiO及びAlOの4面体単位の繰り返し)で構成された骨格を有し、好ましくは少なくとも10のモルシリカ/アルミナ比(SAR)を有する合成アルミノケイ酸塩モレキュラーシーブを意味する。したがって、本発明で使用する語「ゼオライト」はシリカ-アルミノリン酸塩(SAPO)を含有しないため、骨格中に相当量のリンを有しない。すなわち、ゼオライト骨格は規則的な繰り返し単位としてリンを有しない、及び/又は、特に、幅広い温度範囲にわたりNOxを選択的に還元する材料の能力に関する、材料の基本的な物理的及び/又は化学的特性に影響を与えるであろう量のリンを有しない。ある実施態様で、骨格リンの量が、ゼオライトの総重量に対して0.1重量パーセント未満であり、好ましくは0.01未満もしくは0.001重量パーセント未満である。
【0012】
本明細書で使用されるゼオライトは、アルミニウム以外の骨格金属を含まない、又は実質的に含まない。よって、「ゼオライト」は、ゼオライトの骨格内へ置換される1種類以上の非アルミニウム金属を含有する骨格を有する「金属置換ゼオライト」(「同形の置換ゼオライト」とも称される)とは異なる。
【0013】
好ましいゼオライトは、約50未満及び/又は少なくとも10、好ましくは約10から約30、例えば、約10から約25、約15から約20、約20から約30、又は約5から約10までの範囲内に含まれるシリカ対アルミナのモル比(SAR)を有する。ゼオライトのシリカ/アルミナ比は、従来式の解析によって判定され得る。この比は、ゼオライト結晶の硬い原子骨格における比のできるだけ近くを表し、かつ流路内の結合剤又は陽イオン又は他の形態のシリコン又はアルミニウムを排除するとみられる。結合剤材料、特にアルミナ結合剤と組み合わされた後に、ゼオライトのシリカ対アルミナの比を直接的に測定することは困難であり得るため、これらのシリカ対アルミナの比は、ゼオライト自身のSARによって表現され、すなわち、それはゼオライトが他の触媒成分と組み合される前である。
【0014】
本発明のバイメタル小細孔モレキュラーシーブ触媒は、ニッケル及び少なくとも一の追加の金属を含有し、ニッケルと少なくとも一の追加の金属(例えばCu又はFe)の両方は、骨格外金属として存在する。本明細書で使用されるように、「余剰骨格金属」は、モレキュラーシーブ内及び/又はモレキュラーシーブ表面の少なくとも一部分上(好ましくはモレキュラーシーブ上の酸性部位)に存在するものであり、アルミニウムを含まず、かつモレキュラーシーブの骨格を構成する原子を含まない。ニッケル及び少なくとも一の追加の金属は、硫黄による失活に同時に且つ相乗的に対抗し、また、排気ガス、例えばディーゼルエンジンによる排気ガスの処理(例えばNo還元、NH酸化、及びNO吸蔵のプロセス)を促進する。
【0015】
ニッケルと対になる好ましい金属は、遷移金属、例えば銅、鉄、亜鉛、タングステン、モリブデン、コバルト、チタン、ジルコニウム、マンガン、クロミウム、バナジウム、ニオブ、並びにスズ、ビスマス及びアンチモンを含む。ニッケルと組み合わせて使用されてもよい他の金属は、白金族金属、例えばルテニウム、ロジウム、パラジウム、インジウム、プラチナ;貴金属、例えば金及び銀;並びに/又はランタニド金属、例えばセリウムを含む。好ましい遷移金属は卑金属であり、好ましい卑金属としては、クロム、銅及び鉄から成る群より選択されるものを含む。NOの吸蔵及び排気ガス中のNOの選択的還元に好ましい金属は、Cu及びFeを含む。CO、炭化水素及び/又はアンモニアの酸化に特に有用な金属は、Pt及びPdである。特に好ましい組み合わせは、ニッケルと銅又はニッケルと鉄を含む。ニッケルと銅又はニッケルと鉄の組み合わせは、CHA又はAEI骨格を有するものを含め、モレキュラーシーブの骨格外金属として特に適している。
【0016】
特定の実施態様において、触媒組成物は、少なくとも一のアルカリ又はアルカリ土類金属を更に含み、ここで、アルカリ又はアルカリ土類金属は、モレキュラーシーブ材料の上に又は内に配置される。アルカリ又はアルカリ土類金属は、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、又はそれらの幾つかの組み合わせから選択されうる。本明細書で使用される表現「アルカリ又はアルカリ土類金属」は、アルカリ金属及びアルカリ土類金属が代替的に使用されることを意味しないが、代わりに1以上のアルカリ金属が単独で若しくは1以上のアルカリ土類金属と組み合せて使用されうること、及び1以上のアルカリ土類金属が単独で若しくは1以上のアルカリ金属と組み合せて使用されうることを意味する。ある特定の実施態様では、アルカリ金属が好適である。ある特定の実施態様では、アルカリ土類金属が好適である。好適なアルカリ又はアルカリ土類金属としては、カルシウム、カリウム、及びそれらの組み合わせが挙げられる。特定の実施態様では、触媒組成物は、マグネシウム及び/又はバリウムを本質的に含まない。特定の実施態様では、触媒は、カルシウム及びカリウムを除く任意のアルカリ又はアルカリ土類金属を本質的に含まない。特定の実施態様では、触媒は、カルシウムを除く任意のアルカリ又はアルカリ土類金属を本質的に含まない。本明細書で使用される用語「本質的に含まない」とは、金属に関して、材料が、感知される量の特定の金属を有しないことを意味する。すなわち、特定の金属は、特に、NOを選択的に還元又は貯蔵するための材料の能力に関して、材料の基本的な物理的及び/又は化学的特性に影響を与えるであろう量で存在しない。
【0017】
いくつかの適用について、触媒組成物は、白金族金属及び貴金属を含まないか、又は本質的に含まない。いくつかの適用について、触媒組成物は、アルカリ金属を含まないか、又は本質的に含まない。いくつかの適用について、触媒組成物は、アルカリ土類金属を含まないか、又は本質的に含まない。いくつかの適用について、触媒組成物は、アルミニウム、ニッケル、銅、及び鉄を除く遷移金属を含まないか、又は本質的に含まない。いくつかの適用について、触媒組成物は、白金族金属、貴金属、アルカリ及びアルカリ土類金属、ランタン族金属、並びにアルミニウム、ニッケル、及び銅を除く遷移金属を含まないか、又は本質的に含まない。
【0018】
特定の実施態様において、バイメタルモレキュラーシーブ中の骨格外として存在する非アルミニウム遷移金属の総量は、モレキュラーシーブの総重量に基づいて、約0.1から約15重量パーセント(重量%)、例えば、約2重量%から約10重量%、約4から約8重量%、約1から約5重量%、又は約5重量%から約7重量%の範囲である。銅、鉄、又はそれらの組み合わせを使用する実施態様に対して、モレキュラーシーブ材料中のこれらの遷移金属の濃度は、好ましくは、約1から約5重量パーセント、より好ましくは約2.5から約3.5重量パーセントまでの範囲内に含まれる。
【0019】
特定の実施態様において、総骨格外遷移金属(T)(即ち、ニッケルを含む)は、モレキュラーシーブ(ゼオライト等)内のアルミニウム、つまり骨格アルミニウムの量に相当する量で存在する。本明細書で使用されるように、遷移金属対アルミニウム(T対Al)の比は、対応するゼオライト中のモル骨格Alに対する助触媒金属の相対的なモル量に基づく。特定の実施態様では、触媒材料は、約0.1から約1.0、好ましくは、約0.2から約0.5までの範囲内に含まれる、T対Alの比を有する。約0.2から約0.5までの範囲内に含まれるT対Alの比は、Tが銅又は鉄である場合、より具体的には、Tが銅であり、かつゼオライトのSARが約15から約30までの範囲内に含まれる場合に特に有用である。
【0020】
特定の適用について、Ni対一又は複数の他の遷移金属(T)の比を約10:1から約1:2の範囲に維持することにより、耐硫黄性は劇的に改善される。特定の実施態様において、Ni対一又は複数の他の遷移金属(T)の比は、少なくとも1である。特定の他の実施態様において、Ni対一又は複数の他の遷移金属(T)の比は、約2:1から約1:2、約1.5:1から約1:1.5、約1.2:1から約1:1.2、又は約1.1:1から約1:1.1である。
【0021】
好ましくは、Ni及び他の金属、例えばCu又はFeの少なくとも大部分のモレキュラーシーブへの取り込みは、モレキュラーシーブの合成中に生じる。結晶化の間にモレキュラーシーブのチャネル及び/又は空洞内に取り込まれる非骨格遷移金属は、本明細書ではin-situ金属と称される。一般的に、本発明の金属含有モレキュラーシーブは、ワンポット合成混和剤から調製される。この混和は、他の成分、例えばシリカ源、アルミナ源、構造指向剤等に加えて、ニッケル源、追加遷移金属源を含む。
【0022】
ジエチレントリアミン(DETA)、N-(2-ヒドロキシエチル)エチレンジアミン(HEEDA)、トリエチレンテトラミン(TETA)、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン(232)、1,2-ビス(3-アミノプロピルアミノ)エタン(323)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)、及びテトラアミンを含むポリアミンが、SAPO-34とSAPO-18の合成のための、Cu2+及びNi2+を含むキレート剤として有用である。モレキュラーシーブ内に骨格外金属を取り込むのに有用な他の金属有機錯体は、金属ビピリジン、例えばCuビピリジン及びNiビピリジンを含む。
【0023】
加えて、金属塩が、非アルミニウム遷移金属源として使用されうる。有用な金属塩の例は、硫酸ニッケル、硫酸銅、酢酸ニッケル及び酢酸銅を含む。金属塩が反応混和剤に使用される場合、塩は好ましくは同様のカチオン、例えば酢酸ニッケル及び酢酸銅又は硫酸ニッケル及び硫酸銅を有する。
【0024】
適切なシリカ源は、限定はしないが、ヒュームドシリカ、ケイ酸塩、沈降シリカ、コロイド状シリカ、シリカゲル、脱アルミニウム化ゼオライトYなどの脱アルミニウム化ゼオライト、ならびにケイ素の水酸化物及びアルコキシドを含む。結果的に高い相対収率を生じるシリカ源が好ましい。
【0025】
典型的なアルミナ源も一般に知られており、アルミン酸塩、アルミナ、他のゼオライト、アルミニウムコロイド、ベーマイト、擬ベーマイト、水酸化アルミニウム、硫酸アルミニウム及び塩化アルミナなどのアルミニウム塩、アルミニウムの水酸化物及びアルコキシド、アルミナゲルが挙げられる。
【0026】
CHA骨格タイプ材料の合成へ向けるための適切な構造指向剤(SDA)は、アダマントアンモニウム化合物、例えばN,N,N-トリメチル-1-アダマントアンモニウム化合物、N,N,N-トリメチル-2-アダマントアンモニウム化合物、及びN,N,N-トリメチルシクロヘキシルアンモニウム化合物、N,N-ジメチル-3,3-ジメチルピペリジニウム化合物、N,N-メチルエチル-3,3-ジメチルピペリジニウム化合物、N,N-ジメチル-2-メチルピペリジニウム化合物、1,3,3,6,6-ペンタメチル-6-アゾニオ-ビシクロ(3.2.1)オクタン化合物、N,N-ジメチルシクロヘキシルアミンを含む。他のSDAは、N,N,N-ジメチルエチルシクロヘキシルアンモニウム(DMECHA)、N,N,N-メチルジエチルシクロヘキシルアンモニウム(MDECHA)、N,N,N-トリエチルシクロヘキシルアンモニウム(TECHA)、2,7-ジメチル-1-アゾニウム[5,4]デカン(DM27AD)、N-アルキル-3-キヌクリジノールカチオン、例えばN-メチル-3-キヌクリジノール、及びN,N,N-トリアルキル-エキソアミノノルボルナンカチオンを含む。代表的なアニオンとしては、例えば、フッ素、塩素、臭素、及びヨウ素などのハロゲン、水酸化物、酢酸、硫酸、テトラフルオロホウ酸、カルボン酸などが挙げられる。水酸化物が最も好ましいアニオンである。
【0027】
AEIのための適切な鋳型剤の例としては、N,N-ジエチル-2,6-ジメチルピペリジニウムカチオン;N,N-ジメチル-9-アゾニアビシクロ3.3.1ノナン;N,N-ジメチル-2,6-ジメチルピペリジニウムカチオン;N-エチル-N-メチル-2,6-ジメチルピペリジニウムカチオン;N,N-ジエチル-2-エチルピペリジニウムカチオン;N,N-ジメチル-2-(2-ヒドロキシエチル)ピペリジニウムカチオン;N,N-ジメチル-2-エチルピペリジニウムカチオン;N,N-ジメチル-3,5-ジメチルピペリジニウムカチオン;N-エチル-N-メチル-2-エチルピペリジニウムカチオン;2,6-ジメチル-1-アゾニウム 5.4デカンカチオン;N-エチル-N-プロピル-2,6-ジメチルピペリジニウムカチオン;2,2,4,6,6-ペンタメチル-2-アゾニアビシクロ3.2.1オクタンカチオン;及びN,N-ジエチル-2,5-ジメチル-2,5-ジヒドロピロリウムカチオンが挙げられ、N,N-ジメチル-3,5-ジメチルピペリジニウム又は1,1-ジエチル-2,6-ジメチルピペリジニウムが特に好ましい。カチオンと関連するアニオンは、モレキュラーシーブの形成に有害でない、いずれかのアニオンでありうる。代表的なアニオンとしては、例えば、フッ素、塩素、臭素、及びヨウ素などのハロゲン、水酸化物、酢酸、硫酸、テトラフルオロホウ酸、カルボン酸などが挙げられる。水酸化物が最も好ましいアニオンである。ある特定の実施態様では、反応混合物及びその後のモレキュラーシーブは、フッ素を含まない又は本質的に含まない。
【0028】
ワンポット合成は、当業者には容易に分かるように、様々な混合及び加熱レジメン下で、混和材成分の所定の相対量を混ぜ合わせることにより行われる。通常のモレキュラーシーブ合成技法に適した反応温度、混合する時間及び速度、ならびに他のプロセスパラメータは概して、本発明にとっても、好ましい。水熱結晶化は、通常は自生圧力下で、約100から200℃の温度で、数日間、例えば約1~20日間、好ましくは約1~3日間の期間行われる。
【0029】
結晶化の期間の終わりに、結果的に生じた固体は、真空濾過.などの標準的な機械的分離技術によって残りの反応液から分離される。回収された固体は次に、脱イオン水で濯がれ、高温(例えば、75~150℃)で数時間(例えば、約4~24時間)乾燥される。乾燥工程は真空下又は大気圧で行うことができる。
【0030】
乾燥したモレキュラーシーブ結晶は好ましくは焼成されるが、焼成せずに使用することもできる。
【0031】
前述の工程の順番、並びに上述の時間及び温度の値の各々は、単なる典型であり、変化しうることが認識されよう。
【0032】
前述のワンポット合成法は、出発合成混合物の組成に基づいて、結晶の遷移金属含量を調節可能にする。例えば、所望のCu又はNi含量は、材料への金属担持を増加又は低下させるために合成後の含浸又は交換をする必要なしに、合成混合物に所定の相対的な量のCu又はNi源を提供することによって導かれうる。ある特定の実施態様において、モレキュラーシーブは、銅鉄及びニッケルを含め、合成後の交換金属を含まない。
【0033】
骨格外遷移金属、例えばCu及びNiは、触媒的に活性であり、モレキュラーシーブ骨格内に均一に分散される。特定の実施態様において、金属のバルク蓄積がわずかである乃至存在しない場合及び/又はモレキュラーシーブ結晶の表面上の金属の蓄積がわずかである乃至存在しない場合、骨格外金属は均一に分散される。したがって、本発明の一態様において、提供されるものは、X線光電子分光法(XPS)により測定される場合のモレキュラーシーブ内の骨格外金属の重量百分率が、蛍光X線(XRF)又は誘導的結合プラズマ(ICP)技術により測定される場合のモレキュラーシーブ内の骨格外金属の重量百分率の15%内、好ましくは10%内である、二以上の骨格外金属を有するバイメタルモレキュラーシーブである。
【0034】
特定の実施態様において、均一に分散された遷移金属とは、モレキュラーシーブが、モレキュラーシーブ内のその遷移金属の総量に対して、ここでは遊離した遷移金属酸化物、又は可溶性の遷移金属酸化物とも称される遷移金属酸化物(例えば、CuO、FeO、Fe、Fe)の形態で、約5重量パーセント以下の遷移金属を含有することを意味する。好ましくは、モレキュラーシーブは、遊離の遷移金属酸化物と比較して過半数のin-situ遷移金属を含有する。ある特定の実施態様において、モレキュラーシーブは、約1未満、約0.5未満、約0.1未満、又は約0.01未満、例えば約1から約0.001、約0.5から約0.001、約0.1から約0.001、又は約0.01から約0.001の遊離の遷移金属酸化物(例えば、CuO)のin-situ遷移金属(例えばイオン性のCu)に対する重量比を含有する。
【0035】
モレキュラーシーブ触媒は合成後の金属交換をせずに使用することができる。しかしながら、ある特定の実施態様において、モレキュラーシーブは合成後金属交換されうる。よって、ある特定の実施態様において、in-situニッケル及び同又は鉄に加えて、モレキュラーシーブ合成後のモレキュラーシーブのチャネル及び/又は空洞内に交換された一種類以上の触媒金属を含有するモレキュラーシーブを含む触媒が提供される。モレキュラーシーブ合成後に交換されるかもしくは含浸され得る金属の例は、銅、ニッケル、亜鉛、鉄、タングステン、モリブデン、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ニオブ、並びにスズ、ビスマス、及びアンチモンを含む遷移金属と、ルテニウム、ロジウム、パラジウム、インジウム、白金などの白金族金属(PGM)を含む貴金属と、金及び銀などの貴金属と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、及びバリウムなどのアルカリ土類金属と、ランタン、セリウム、プラセオジム、ネオジム、ユウロピウム、テルビウム、エルビウム、イッテルビウム、及びイッテリウムなどの希土類金属とを含む。合成後の交換において好ましい遷移金属は卑金属であり、好ましい卑金属は、マンガン、鉄、コバルト、ニッケル、及びそれらの混合物からなる群から選択されるものを含む。合成後に取り込まれる金属は、イオン交換、含浸、同形の置換等、既知の技法によってモレキュラーシーブに添加することができる。合成後交換された金属の量は、モレキュラーシーブの総重量に基づいて、約0.1から約3重量パーセント、例えば約0.1から約1重量パーセントでありうる。
【0036】
前述のワンポット合成法は、相対的に低量の凝集を伴った、均一な寸法及び形状のモレキュラーシーブ結晶をもたらすことができる。加えて、本合成法は、約0.1から約10μm、例えば約0.5から約5μm、約0.1から約1μm、約1から約5μm、約3から約7μmなどの平均結晶サイズを有するモレキュラーシーブ結晶をもたらすことができる。特定の実施態様において、ジェットミル又はその他の粒子間(particle-on-particle)粉砕技術を用いて、大きな結晶が約1.0~約1.5ミクロンの平均サイズまで粉砕されて、触媒を含有するスラリーをフロースルーモノリスなどの基材へウォッシュコートすることが容易となる。
【0037】
結晶サイズは、結晶の面の一端の長さである。結晶サイズの直接測定は、SEM及びTEM等の顕微鏡観察方法を使用して行われうる。レーザー回折及び散乱など、平均粒径を決定するための他の技法も使用することができる。平均結晶サイズに加えて、触媒組成物は、結晶サイズの大部分が好ましくは約0.1μmを超え、好ましくは約0.5から約5μmの間、例えば、約0.5から約5μm、約0.7から約5μm、約1から約5μm、約1.5から約5.0μm、約1.5から約4.0μm、約2から約5μm、又は約1μmから約10μmである、結晶サイズを有する。
【0038】
本発明の触媒は、不均一触媒反応システム(即ち、反応ガスと接触した固体触媒)について特に塗布可能である。接触面積、機械的安定性、及び/又は流体の流れの特性を改良するために、触媒は、基材、好ましくは多孔質基材の上及び/又はその内部に配置されうる。ある特定の実施態様では、触媒を含有するウォッシュコートは、波形金属板、又はハニカムコーディエライトブリックなどの不活性基材に塗布される。あるいは、触媒は、充填剤、結合剤、及び強化剤などの他の化合物と共に混練され、その後にハニカムブリックを形成するためにダイを通して押し出し成形される、押し出し可能なペーストになる。従って、ある実施態様では、基材を被覆し且つ/又は基材に組み込まれる本明細書に記載のバイメタルモレキュラーシーブ触媒を含む触媒物品が提供される。
【0039】
本発明のある特定の態様は、触媒ウォッシュコートを提供する。本明細書に記載のバイメタルモレキュラーシーブ触媒を含むウォッシュコートは、好ましくは、溶液、懸濁液、又はスラリーである。適切なコーティングは、表面コーティング、基材の一部分を貫通するコーティング、基材に浸透するコーティング、又はこれらの幾つかの組み合わせを含む。
【0040】
ウォッシュコートは、また、アルミナ、シリカ、非ゼオライトのシリカアルミナ、チタニア、ジルコニア、シリカのうちの一種類以上を含んだ、充填剤、結合剤、安定剤、レオロジー調節剤、及び他の添加物などの非触媒成分を含みうる。特定の実施態様では、触媒成分は、グラファイト、セルロース、デンプン、ポリアクリル酸塩、及びポリエチレンなどの細孔形成剤を含みうる。これらの添加成分は必ずしも所望の反応を触媒しないが、例えば、動作温度範囲の拡大、触媒の接触表面積の増大、触媒の基材への接着性向上など、触媒材料の効率を向上させる。好ましい実施態様において、ウォッシュコートのローディングが>0.3g/in、例えば、>1.2g/in、>1.5g/in、>1.7g/in、又は>2.00g/inなどであり、好ましくは<3.5g/in、例えば<2.5g/inなどである。ある実施態様では、ウォッシュコートが、約0.8~1.0g/in、1.0~1.5g/in、又は1.5~2.5g/inのローディングで基材に塗布される。
【0041】
最も一般的な基材設計のうちの二つは、プレートとハニカムである。特に移動用途について、好ましい基材は、両端が開口し、かつ一般的に基材の入口面から出口面に延伸し、高い表面積対容積の比をもたらす、複数の隣接した平行なチャネルを備えた、いわゆるハニカム形状を有するフロースルーモノリスを含む。特定の用途では、ハニカムフロースルーモノリスは、好ましくは、例えば、約600から800セル/平方インチの高いセル密度、及び/又は約0.18から0.35mm、好ましくは、約0.20から0.25mmの内部壁の平均厚さを有する。ある特定の他の用途では、ハニカムフロースルーモノリスは、好ましくは、約150から600セル/平方インチ、より好ましくは、約200から400セル/平方インチの低いセル密度を有する。好ましくは、ハニカムモノリスは多孔質である。コーディエライト、炭化ケイ素、窒化ケイ素、セラミック、及び金属に加えて、基材に使用可能な他の材料は、窒化アルミニウム、窒化ケイ素、チタン酸アルミニウム、αアルミナ、ムライト、例えば、針状ムライト、ポルサイト、AlOsZFe、Al/NiもしくはBCZFeなどのサーメット、又はこれらのうちの2以上のセグメントの複合体を含む。好ましい材料としては、コーディエライト、炭化ケイ素、及びチタン酸アルミナが挙げられる。
【0042】
プレート型の触媒は、より低い圧力降下を有し、かつ、ハニカム型よりも閉塞及び汚染の影響を受けにくく、高効率の定置用途には有利であるが、プレート構成は、より大きく、より高価になりうる。ハニカムの構成は、典型的には、プレート型よりも小さく、移動用途には有利であるが、より高い圧力降下を有し、かつより容易に閉塞する。特定の実施態様では、プレート基材は、金属、好ましくは、波形金属で構成される。
【0043】
ある特定の実施態様では、本発明は、本明細書に記載の方法によって作製された触媒物品である。特定の実施態様では、触媒物品は、モレキュラーシーブ触媒組成物を、好ましくは、ウォッシュコートとして、排ガスを処理するための別の組成物の少なくとも一の追加的な層が基材に塗布される前又はその後のいずれかに、層として基材に塗布する工程を含む方法によって生産される。モレキュラーシーブ触媒層を含んだ、基材上の一以上の触媒層が、連続的な層に配置される。基材上の触媒層に対して本明細書で用いられる用語「連続的」とは、各層が、その隣接する層と接触し、かつ触媒層は全体として基材上に重なって配置されることを意味する。
【0044】
特定の実施態様において、バイメタルモレキュラーシーブ触媒が、第1の層として基材上に配置され、かつ酸化触媒、還元触媒、捕集成分、又はNO貯蔵成分等の、別の組成物が第2の層として基材上に配置される。他の実施態様において、バイメタルモレキュラーシーブ触媒が、第2の層として基材上に配置され、かつ酸化触媒、還元触媒、捕集成分、又はNO貯蔵成分等の、別の組成物が第1の層として基材上に配置される。本明細書で使用する語「第1の層」及び「第2の層」は、排ガスが触媒物品を貫通、通過、及び/又は越えて流れる通常の方向に対する、触媒物品中の触媒層の相対的な位置を示すために用いられている。通常の排ガス流の条件下では、排ガスは、第2の層と接触する以前に第1の層と接触する。ある特定の実施態様において、第2の層は最下層として不活性基材に塗布され、第1の層は、連続した一連の副層として第2の層の上に塗布される最上層である。そのような実施態様では、排ガスは、第2の層と接触する前に、第1の層を貫通し(かつそれ故、接触し)、次に、第1の層を通って戻り、触媒成分を抜け出る。他の実施態様では、第1の層は、基材の上流部分上に配置された第1の区域であり、第2の層は、第1の区域の下流に、第2の区域として基材上に配置される。
【0045】
別の実施態様では、触媒物品は、バイメタルモレキュラーシーブ触媒組成物を、好ましくはウォッシュコートとして、第1の区域として基材に塗布し、かつ次に、排気ガスを処理するための少なくとも1つの付加的な組成物を第2の区域として基材に塗布する工程を含むプロセスによって生産され、ここで、第1の区域の少なくとも一部分は、第2の区域の下流である。代替的に、バイメタルモレキュラーシーブ触媒組成物が、追加の組成物を含有する第1のゾーンの下流にある第2のゾーンにおいて基材に塗布されてもよい。追加的な組成物の例としては、酸化触媒、還元触媒、捕集成分(例えば、硫黄、水等)、又はNO貯蔵成分が挙げられる。
【0046】
排気システムに必要とされる空間の量を低減するために、ある特定の実施態様における個別の排気要素は、複数の機能を果たすように設計される。例えば、SCR触媒をフロースルー基材ではなくウォールフローフィルタ基材に塗布することにより、排ガス中のNO濃度を触媒化により低減し且つ排ガスからスートを機械的に除去するという2つの機能を1つの基材が有することが可能となり、これにより排気処理システムの全体としてのサイズが低減する。したがって、特定の実施態様において、基材は、ハニカムウォールフロー型フィルタ又はパーシャルフィルタである。ウォールフロー型フィルタは、複数の隣接する平行な流路を含むという点において、フロースルーハニカム基材に類似する。しかしながら、フロースルーハニカム基材の流路は、両端部が開かれているが、ウォールフロー基材の流路は、一方の端部が蓋で覆われている。交互するパターンでは、隣接する流路の反対側の端部が蓋で覆われる。チャネルの塞栓された交互の端部は、基材の入口面に入るガスが、チャネル内を直進して出て行くことを妨げる。代わりに、排ガスは、基材の前面に入り、チャネルのおよそ半分まで移動し、そこでチャネルの残り半分に入って基材の裏面から出る前に、チャネルの壁を通過するように強いられる。
【0047】
基材の壁は、ガス透過性であるが、ガスが壁を通過する際に、ガスからスートなどの粒子状物質の大部分を捕捉する、細孔率及び細孔径を有している。好ましいウォールフロー型基材は、高効率フィルタである。本発明で使用されるウォールフロー型フィルタは、好ましくは、少なくとも70%、少なくとも約75%、少なくとも約80%、又は少なくとも約90%の効率を有する。ある特定の実施態様では、効率は、約75から約99%、約75から約90%、約80から約90%、又は約85から約95%になる。ここで、効率は、スート及び他の同様の寸法の粒子、及び従来のディーゼル排ガス中に典型的に見出される粒子濃度に関するものである。例えば、ディーゼル排気中の微粒子のサイズは、0.05ミクロンから2.5ミクロンの範囲でありうる。よって、効率はこの範囲、又は、例えば、0.1から0.25ミクロン、0.25から1.25ミクロン、もしくは1.25から2.5ミクロンなどのサブレンジに基づきうる。
【0048】
空隙率は多孔質基材中の空隙のパーセンテージの尺度であり、排気システムにおける背圧と関係がある:一般的に、空隙率が低いほど、背圧が高くなる。好ましくは、多孔質の基材は、約30から約80%、例えば、約40から約75%、約40から約65%、又は約50から約60%の空隙率を有する。
【0049】
基材の全空隙容積のパーセンテージとして測定される細孔の相互接続性は、多孔質の基材を通る、すなわち、入口面から出口面まで連続的な経路を形成するために、細孔、隙間、及び/又はチャネルが連結される度合いである。細孔の相互接続性とは対照的に、閉じた空隙容量及び細孔の容積の合計は、基材の表面のうちのただ1つに対する導管を有する。好ましくは、多孔質基材は、少なくとも約30%、より好ましくは少なくとも約40%の細孔の相互接続容積を有する。
【0050】
多孔質基材の平均孔径もまた、濾過にとって重要である。平均孔径は、水銀ポロシメトリーを含む、受け入れ可能な任意の手段によって決定されうる。多孔質基材の平均孔径は、基材自体によって、基材の表面上のスートケーキ層の促進によって、又は両方の組合せによって、妥当な効率を提供する一方で、低背圧を促進するのに十分に大きい値であるべきである。好ましい多孔性基材は、約10から約40μm、例えば約20から約30μm、約10から約25μm、約10から約20μm、約20から約25μm、約10から約15μm、及び、約15から約20μmの、平均孔径を有する。
【0051】
一般に、バイメタルモレキュラーシーブ触媒を含有する押出成形された固形体の生産は、バイメタルモレキュラーシーブ触媒、結合剤、任意選択的な粘性を高める有機化合物を混ぜ合わせて一様なペーストにすることを含み、このペーストは、その後、結合剤/マトリクス成分又はそれらの前駆体並びに、任意選択的に安定化セリア及び無機繊維のうちの1種類以上に添加される。このブレンドは、混合装置又は混練装置又は押出成形機中で圧縮される。混合物は、湿潤性を促して均一なバッチを生成するために、加工助剤として結合剤、細孔形成剤、可塑剤、界面活性剤、潤滑剤、分散剤などの有機添加剤を含む。次に、得られた可塑性材料は、特に、押出ダイを備えた押出プレス又は押出成形機を使用して成形され、得られた成形物は乾燥し、かつ焼成される。有機添加物は、押出成形された固形物の焼成の間に「燃え尽きる」。バイメタルモレキュラーシーブ触媒はまた、表面上に存在する、又は押出成形された固形体内に完全に若しくは部分的に貫通する、1つ以上の副層として、押出成形された固形体にウォッシュコーティングされるか、又は、その他の方法で塗布される。
【0052】
本発明によるバイメタルモレキュラーシーブ触媒を含有する押出成形された固形体は、一般に、その第1端から第2端まで延びる、均一に寸法化された平行なチャネルを有するハニカム形状の一体構造を含む。チャネルを画定するチャネル壁は多孔質である。典型的には、外部の「皮膜」が、押出成形された固形体の複数のチャネルを取り囲む。押出成形された固形体は、円形、四角形、又は楕円型など、任意の所望の断面から形成されうる。複数のチャネル内の個別のチャネルは、四角形、三角形、六角形、円形等でありうる。第1の上流端部におけるチャネルは、例えば、適切なセラミックセメントを用いて閉塞されて差し支えなく、第1の上流端部において閉塞されていないチャネルもまた、第2の下流端部において閉塞されて、ウォールフロー型フィルタを形成しうる。典型的には、第1の上流端部における閉塞されたチャネルの配置はチェッカーボードに似ており、下流のチャネル端部も閉塞されかつ開放された同様の配置を有している。
【0053】
結合剤/マトリクス成分は、好ましくは、コーディエライト、窒化物、炭化物、ホウ化物、金属間化合物、リチウムアルミノシリケート、スピネル、任意選択的にドープされたアルミナ、シリカ源、チタニア、ジルコニア、チタニア-ジルコニア、ジルコン、及びこれらのうち任意の2種以上の混合物からなる群より選択される。ペーストは、任意選択的に、炭素繊維、ガラス繊維、金属繊維、ホウ素繊維、アルミナ繊維、シリカ繊維、シリカ‐アルミナ繊維、炭化ケイ素繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、及びセラミック繊維からなる群から選択される、強化無機繊維を含有しうる。
【0054】
アルミナ結合剤/マトリックス成分は、好ましくはガンマアルミナであるが、任意の他の遷移アルミナ、即ち、アルファアルミナ、ベータアルミナ、カイアルミナ、イータアルミナ、ローアルミナ、カッパアルミナ、シータアルミナ、デルタアルミナ、ランタンベータアルミナ、及びこれらのうち任意の2種以上の遷移アルミナの混合物であり得る。アルミナは、アルミナの熱安定性を増加させるために、少なくとも1種類の非アルミニウム元素でドープされることが好ましい。適切なアルミナドーパントは、ケイ素、ジルコニウム、バリウム、ランタニド系元素、及びそれらの二種以上の混合物を含む。適切なランタニドドーパントは、La、Ce、Nd、Pr、Gd、及びそれらの2種以上の混合物を含む。
【0055】
シリカ源は、シリカゾル、クオーツ、溶融シリカ又は非晶質シリカ、ケイ酸ナトリウム、非晶質アルミノケイ酸塩、アルコキシシラン、例えばメチルフェニルシリコン樹脂などのシリコン樹脂結合剤、粘土、タルク、又はそれらのうち任意の二種類以上の混合物を含みうる。このリストで、前記シリカは、長石、ムライト、シリカ-アルミナ、シリカ-マグネシア、シリカ-ジルコニア、シリカ-トリア、シリカ-ベリリア、シリカ-チタニア、ターナリー-シリカ-アルミナ-ジルコニア、ターナリー-シリカ-アルミナ-マグネシア、ターナリー-シリカ-マグネシア-ジルコニア、ターナリー-シリカ-アルミナ-トリア、及びこれらのうち任意の2種以上の混合物などのSiOでありうる。
【0056】
好ましくは、バイメタルモレキュラーシーブ触媒は、押出成形された触媒体全体にわたって、好ましくは、押出成形された触媒体全体にわたって均等に分散される。
【0057】
上記押出成形された固体の何れかをウォールフロー型フィルタにする場合、ウォールフロー型フィルタの空隙率は30~80%、例えば、40~70%であり得る。空隙率と細孔容積と細孔半径は、例えば、水銀圧入法を用いて測定され得る。
【0058】
本明細書に記載のバイメタルモレキュラーシーブ触媒が、還元剤(好ましくはアンモニア)の窒素酸化物との反応を促進し、元素としての窒素(N)及び水(HO)を選択的に形成し得る。よって、一実施態様では、触媒は、還元剤(即ち、SCR触媒)を用いた窒素酸化物の還元に有利となるように調合されうる。そのような還元剤の例は、炭化水素(例えば、C3―炭化水素)、及びアンモニア及びアンモニアヒドラジンなどの窒素系還元剤、又は、尿素((NHCO)、カルボミン酸アンモニウム、カルバミン酸アンモニウム、炭酸水素アンモニウム、又はギ酸アンモニウムなどの任意の適切なアンモニア前駆体を含む。
【0059】
本明細書に記載のモレキュラーシーブ触媒はまた、アンモニアの酸化も促進する。よって、別の実施態様では、触媒は、特に、典型的にはSCR触媒の下流においてある濃度のアンモニアが遭遇する、酸素を用いたアンモニアの酸化に有利に働くように調合することができる(例えば、アンモニアスリップ触媒(ASC)等のアンモニア酸化(AMOX)触媒)。特定の実施態様において、バイメタルモレキュラーシーブ触媒は酸化作用のある下層の上の最上層として配置され、下層は、白金族金属(PGM)触媒又は非PGM触媒を含む。好ましくは、下層内の触媒成分は、高表面積の支持体上に配置され、アルミナを含むが、それに限定されるものではない。
【0060】
更に別の実施態様では、SCR及びAMOXの作用が連続して実施され、両方の工程が、本明細書に記載のバイメタルモレキュラーシーブ触媒を含む触媒を用い、SCR工程はAMOX工程の上流で起こる。例えば、触媒のSCR調合物は、フィルタの入口側に配置することができ、触媒のAMOX調合物はフィルタの出口側に配置することができる。
【0061】
したがって、ガス中のNO化合物の還元又はNHの酸化のための方法が提供され、本方法は、ガス中のNO化合物及び/又はNHのレベルを低減するのに十分な時間、NO化合物を触媒で還元するために、ガスを本明細書に記載の触媒組成物と接触させることを含む。ある実施態様において、選択式還元(SCR)触媒の下流に配置されたアンモニアスリップ触媒を有する触媒物品が提供される。そのような実施態様では、アンモニアスリップ触媒が、選択式還元触媒工程で消費されない任意の窒素系還元剤の少なくとも一部分を酸化する。例えば、ある実施態様で、アンモニアスリップ触媒がウォールフローフィルタの出口側に配置され、SCR触媒がフィルタの上流側に配置される。幾つかの他の実施態様では、アンモニアスリップ触媒がフロースルー基材下流端に配置され、SCR触媒がフロースルー基材の上流端に配置される。他の実施態様では、アンモニアスリップ触媒及びSCR触媒が、排気システム内の別個の塊上に配置される。これら別個の塊は、互いに流体連通している限り、且つSCR触媒塊がアンモニアスリップ触媒塊の上流にある限り、互いに隣接するか互いに接触しているか、或いは特定の距離をおいて離れていてよい。
【0062】
特定の実施態様において、SCR及び/又はAMOXプロセスは、少なくとも100℃の温度で実施される。別の実施形態において、本方法は約150℃から約750℃の温度で生じる。特定の実施態様において、温度範囲は約175から約550℃である。他の実施態様において、温度範囲は175から400℃である。更に別の実施態様において、温度範囲は450から900℃、好ましくは500から750℃、500から650℃、450から550℃、又は650から850℃である。450℃よりも高い温度を利用する実施態様は、例えば、炭化水素をフィルタの上流の排気システムに注入することにより、活発に再生される(任意に触媒化される)ディーゼルパティキュレートフィルタを含む排気システムを備える大型及び軽量ディーゼルエンジンからの排気ガスを処理するために特に有用であり、本発明の使用のためのモレキュラーシーブ触媒は、フィルタの下流に配置される。
【0063】
本発明の別の態様によれば、ガス中のNO化合物の還元及び/又はNHの酸化のための方法であって、ガスと本明細書に記載の触媒を、ガス中のNO化合物のレベルが低減するのに十分な時間接触させることを含む方法が提供される。本発明の方法は、以下の工程の一又は複数を含みうる:(a)触媒フィルタの入口と接触しているスートを蓄積及び/又は燃焼する工程、(b)好ましくはNOxと還元剤の処理を包含する触媒工程の介在なしに、触媒フィルタと接触するより前に窒素性還元剤を排ガス流内に導入する工程、(c)NO吸着触媒またはリーンNOトラップ上でNHを生成し、好ましくは下流のSCR反応においてNH3を還元剤として使用する、工程、(d)排ガス流をDOCと接触させて、可溶性有機成分(SOF)に基づく炭化水素及び/又は一酸化炭素をCOへと酸化し、及び/又はNOをNOへと酸化し、これは次に微粒子フィルタにおいて微粒子物質を酸化するために使用されてもよく、及び/又は排ガス中の微粒子物質(PM)を還元する工程、(e)還元剤の存在下、排ガスを1つ以上のフロースルー型SCR触媒装置と接触させて、排ガス中のNO濃度を低減させる工程、及び(f)排ガスを大気中に放出する前に、排ガスをアンモニアスリップ触媒と好ましくはSCR触媒の下流で接触させ、全てではないかもしれないがアンモニアを酸化する工程、又は排ガスがエンジンに入る/再入する前に、排気ガスを再循環ループに通す工程、を含みうる。
【0064】
別の実施態様では、窒素系還元剤、特にNHの全て又は少なくとも一部は、SCR工程での消費のために、例えばウォールフロー型フィルタ上に配置された本発明のSCR触媒などのSCR触媒の上流に配置された、NO吸蔵触媒(NAC)、リーンNOトラップ(LNT)、又はNO貯蔵/還元触媒(NSRC)によって供給されうる。本発明に有用なNAC成分としては、塩基性材料(例えば、アルカリ金属の酸化物、アルカリ土類金属の酸化物、及びこれらの組み合わせを含んだ、アルカリ金属、アルカリ土類金属、又は希土類金属など)及び貴金属(白金など)、及び任意選択的にロジウムなどの還元性触媒成分の触媒組み合わせが挙げられる。NACにおいて有用な塩基性材料の具体的な種類としては、酸化セシウム、酸化カリウム、酸化マグネシウム、酸化ナトリウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、及びこれらの組み合わせが挙げられる。貴金属は、好ましくは約10から約200g/ft、例えば20から60g/ftで存在する。あるいは、触媒の貴金属は、約40から約100グラム/ftでありうる平均濃度によって特徴付けられる。
【0065】
ある特定の条件下、周期的にリッチな再生イベントの間に、NHがNO吸蔵触媒上で生成されうる。NO吸蔵触媒の下流のSCR触媒は、システム全体のNO還元効率を向上しうる。複合システムでは、SCR触媒は、リッチ再生イベントの間に、NAC触媒から放出されたNHを吸蔵することが可能であり、通常のリーン作動状態の間に、吸蔵されたNHを利用して、NAC触媒をすり抜けたNOxの一部又は全てを選択的に還元する。
【0066】
本明細書に記載の排ガスを処理するための方法は、燃焼プロセス、例えば、内燃機関(移動式又は固定式)、ガスタービン、及び石炭若しくは石油の火力発電所に由来する排ガスに行われうる。本方法は、精錬のような工業プロセスに由来するガス、精錬所のヒーター及びボイラー、燃焼炉、化学処理工業、コークス炉、都市廃棄物のプラント及び焼却炉等に由来するガスを処理するためにも使用されうる。特定の実施態様では、本方法は、車両のリーンバーン内燃機関、例えば、ディーゼルエンジン、リーンバーンガソリンエンジン、又は液化石油ガス若しくは天然ガスにより駆動されるエンジンからの排ガスを処理するために使用される。
【0067】
ある特定の態様では、本発明は、内燃機関(移動式又は固定式)、ガスタービン、石炭若しくは石油の火力発電所などに由来する燃焼プロセスよって発生した排ガスを処理するためのシステムである。そのようなシステムは、本明細書に記載のバイメタルモレキュラーシーブ触媒と、排ガス処理用の少なくとも一の追加の成分とを含む触媒物品を含み、当該触媒物品と少なくとも一の追加の成分とは、ひとまとまりの単位として機能するように設計されている。
【0068】
ある実施態様で、システムは、本明細書に記載のバイメタルモレキュラーシーブ触媒を含む触媒物品と、排ガス流を案内する導管と、触媒物品の上流に配置された窒素系還元剤源とを含む。本システムは、モレキュラーシーブ触媒が、例えば100℃超、150℃超、又は175℃超などにおいて、所望の効率又はそれ以上で、NOx還元に触媒作用を及ぼすことが可能であると決定された場合にのみ、流れている排ガス内に入れる窒素性還元剤を計量するための制御装置を含みうる。窒素系還元剤の計量は、SCR触媒に入る排ガス中に、1:1のNH/NO及び4:3のNH/NOで計算して60%から200%の理論上のアンモニアが存在するように調整することができる。
【0069】
別の実施態様では、本システムは、排ガス中の一酸化窒素を二酸化窒素に酸化するための酸化触媒(例えば、ディーゼル用酸化触媒(DOC))を含み、窒素性還元剤を排ガス内に供給する地点の上流に配置することができる。一実施形態では、酸化触媒は、例えば250℃から450℃の、酸化触媒入口における排気ガス温度で、体積で約4:1から約1:3というNOのNOに対する比率を有する、SCRモレキュラーシーブ触媒に入るガス流を作り出すよう、適合している。酸化触媒は、フロースルーモノリス基材上に被膜された、白金、パラジウム、又はロジウムのような少なくとも1つの白金族金属(又は、それらの幾つかの組み合わせ)を含んでもよい。1つの実施態様では、少なくとも1つの白金族金属は、白金、パラジウム、又は白金とパラジウム両方の組合せである。白金族金属は、アルミナ、アルミノシリケートゼオライトなどのゼオライト、シリカ、非ゼオライトシリカアルミナ、セリア、ジルコニア、チタニア、或いはセリアとジルコニアの両方を含有する混合酸化物や複合酸化物のような高表面積ウォッシュコート成分上で担持されてもよい。
【0070】
さらなる実施態様では、適切なフィルタ基材は、酸化触媒とSCR触媒との間に位置づけられる。フィルタ基材は、例えばウォールフロー型フィルタなど、上述したもののいずれかから選択することができる。例えば先に論じた種類の酸化触媒により、フィルタが触媒作用を受ける場合には、好ましくは、窒素性還元剤を計量する地点は、フィルタとモレキュラーシーブ触媒との間に位置づけられる。あるいは、フィルタが触媒作用を受けない場合には、窒素性還元剤を計量するための手段は、酸化触媒とフィルタとの間に位置づけられうる。
【0071】
本発明の触媒は、従来の触媒と比較して、硫黄被毒の影響を受けにくい。高レベルの硫黄に曝露されるときに良好な触媒活性を維持する触媒の能力は、硫黄汚染物を除去するための触媒の再生回数を少なくすることを可能にする。より少ない頻度での触媒再生は、より安定した触媒機能と改善された燃料経済性を可能にする。従来のゼオライト系触媒、例えば銅ゼオライトは、典型的に、硫黄汚染物が触媒1リットルあたり0.5gに達する前に、例えば、500℃を超える高められた温度での再生を必要とする。本発明のバイメタル触媒は、触媒上の硫黄濃度が触媒の0.5g/Lを超えるまで、再生を止めることができる。したがって、一態様において、本発明は、バイメタル触媒を硫黄を含有する排気ガス流と接触させること、及び、触媒上の硫黄濃度が、触媒の>0.5g硫黄/L、例えば触媒の>0.75g硫黄/L、触媒の>1.0g硫黄/L又は触媒の>1.5g硫黄/Lである場合にバイメタル触媒を再生することを含む、排気ガス処理触媒を再生するための方法に関係する。
【0072】
加えて、バイメタル触媒は、高硫黄(「低質」)燃料を燃焼することにより生成される排気ガスを処理するのに理想的に適している。クリーン燃料、例えばメタンは、典型的に0.5ppm未満の硫黄含有量を有する。低硫黄ガソリンは、典型的に約5ppmの硫黄含有量を有する。高硫黄燃料は、10ppm超の硫黄、例えば50ppm又は100ppmの硫黄含有量を有し得る。したがって、一態様において、本発明は、>10ppm硫黄、例えば>25ppm硫黄、>50ppm硫黄、>75ppm硫黄、又は>100ppm硫黄を含有する排気ガス流を含むバイメタル触媒を含有することを含む、排気ガスを処理するための方法に関係する。
【実施例
【0073】
机上の実施例1~8:
ジエチレントリアミン(DETA)、N-(2-ヒドロキシエチル)エチレンジアミン(HEEDA)、トリエチレンテトラミン(TETA)、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン(232)、1,2-ビス(3-アミノプロピルアミノ)エタン(323)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)を含む一連のポリアミンが、SAPO-34又はSAPO-18の合成のための、Cu2+及びNi2+を含むキレート剤として使用する。典型的な調製において、水中でAl(OH)3・H2O(Aldrich、technical grade)をH3PO4(BDH、85%)と混合させることにより調製されるアルミノホスフェートゲルにヒュームドシリカを添加し、次いで銅又はニッケル錯体を添加し、酢酸銅又は酢酸ニッケルを添加することによりポリアミンの水溶液を事前調製する。全含水量の一部をこの目的のために取っておく。最終的に、余剰の同一ポリアミンを(ポリアミン/M2+比が4/1となるように)滴下し、ゲルpHを7に調整した。Cu-SAPO-18を特定の条件を採用して調製する。Cu2+-N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン(232)をSDAとして使用し、水酸化テトラエチルアンモニウム(TEAOH)を滴下し、ゲルpHを7に調整する。全体的なゲル組成は、Al(OH)3:0.61 H3PO4:0.2 SiO2:40 H2O:0.05 Cu-232:0.27 TEAOHである。STA-7の種、SiO2含有量に対して1重量%を添加し、二の構造が共通して結晶面を有するため、純粋なSAPO-18の核形成を促進させる。詳細は表1に示す。
【0074】
テフロン加工されたステンレススチールオートクレーブに移し、190℃で6日間加熱する前に、最終的なゲルを均一になるまで室温で継続して撹拌する。得られた生成物を水中に懸濁させ、超音波で分解して微細粒非晶質固体から結晶を分離させて、これをデカントにより除去する。次いで、結晶材料を濾過により回収し、脱イオンしたH2Oで洗浄し、80℃の空気中で12時間乾燥させる。
表1
【0075】
実施例9:
Cu-CHA(4.5wt%Cu)及びCu,Ni-CHA(3.6wt%Cu、3.31wt%Ni)の粉末試料を、合成プロセス中、どちらも金属を伴って調製した。試料を30,000h-1の空間速度、アンモニア対NOx比1、並びに硫酸化前及び硫酸化後の二度のNOのみ条件でのNOx変換について評価した。Cu-CHA試料(図1、実線棒グラフ)は、最高の初期NOx変換を示すが、250℃で35分間、20ppmのSOに曝露した後、200℃で13%下落する。Cu,Ni(図1、斜交平行線棒グラフ)は、硫酸化及び脱硫酸化にわたる1%未満の変化を示す。この安定性は、低頻度の再生を有するシステムを可能にする。
図1