IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ハートフロー, インコーポレイテッドの特許一覧

特許7305593閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法
<>
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図1
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図2
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図3A
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図3B
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図4A
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図4B
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図5A
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図5B
  • 特許-閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-30
(45)【発行日】2023-07-10
(54)【発明の名称】閉塞した動脈のシミュレーション及び閉塞による治療の最適化のためのシステム及び方法
(51)【国際特許分類】
   A61B 34/10 20160101AFI20230703BHJP
【FI】
A61B34/10
【請求項の数】 17
【外国語出願】
(21)【出願番号】P 2020068340
(22)【出願日】2020-04-06
(62)【分割の表示】P 2017542791の分割
【原出願日】2015-10-28
(65)【公開番号】P2020110658
(43)【公開日】2020-07-27
【審査請求日】2020-04-06
【審判番号】
【審判請求日】2022-06-08
(31)【優先権主張番号】62/074,693
(32)【優先日】2014-11-04
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】14/598,050
(32)【優先日】2015-01-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513030879
【氏名又は名称】ハートフロー, インコーポレイテッド
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】セスラマン サンカラン
(72)【発明者】
【氏名】レオ ジェイ. グラディー
(72)【発明者】
【氏名】チャールズ エー. テイラー
(72)【発明者】
【氏名】クリストファー ケー. ザリンス
【合議体】
【審判長】内藤 真徳
【審判官】栗山 卓也
【審判官】井上 哲男
(56)【参考文献】
【文献】国際公開第2014/134289(WO,A1)
【文献】特表2013-534154(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B34/10
(57)【特許請求の範囲】
【請求項1】
閉塞性処置を計画するコンピュータで実施する方法であって、前記方法は、
プロセッサーが、患者の血管系の少なくとも一部の画像データを取得することと、
前記画像データにおいて可視的な前記患者の血管系のうちの少なくとも1つの血管の少なくとも1つの中心線および少なくとも1つの対応する内腔を再構築することによって、前記プロセッサーが、前記画像データに基づいて前記患者の血管系の前記一部の患者固有の解剖学的モデルを生成することと、
前記プロセッサーが、前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを決定することであって、前記最初の計算モデルは、治療前の境界条件を含む、ことと、
前記プロセッサーが、前記最初の計算モデルを使用して血流の計算を実施することによって治療前の血流特性値を決定することと、
前記患者の治療の前に、前記プロセッサーが、前記閉塞性処置のための複数の候補部位を取得することと、
前記患者の治療の前に、前記複数の候補部位の中のそれぞれの候補部位毎に、
前記プロセッサーが、治療後の境界条件を、
平面の下流で前記患者固有の解剖学的モデルから前記患者の血管系の一部を除去することによって、前記それぞれの候補部位における閉塞に対応する前記患者固有の解剖学的モデルのモデル化された血管系における境界を含むように前記患者固有の解剖学的モデルを修正することであって、前記平面は、前記それぞれの候補部位の場所にあり、かつ、前記少なくとも1つの中心線に垂直である、こと、および、
前記それぞれの候補部位における臓器の血流需要に基づいて前記治療後の境界条件をモデル化すること
によって、決定することと、
前記プロセッサーが、前記修正された患者固有の解剖学的モデルにおける前記治療後の境界条件に基づいて前記最初の計算モデルを更新することと、
前記プロセッサーが、前記更新された計算モデルを使用して血流の計算を実施することによってそれぞれの治療後の血流特性値を非侵襲的に決定することと、
前記プロセッサーが、前記治療前の血流特性値と前記それぞれの治療後の血流特性値との比較に基づいて前記それぞれの候補部位に対するそれぞれの評価を決定することと
を行うことと、
前記プロセッサーが、前記複数の候補部位の前記それぞれの評価の比較に基づいて、前記複数の候補部位の中から治療部位の選択に対する推奨を含む前記閉塞性処置のための計画を生成することと
を含む、コンピュータで実施する方法。
【請求項2】
前記血流の計算は、ナビエ・ストークス方程式または機械学習方法を使うことを含む、請求項1に記載のコンピュータで実施する方法。
【請求項3】
前記閉塞性処置は、切断、塞栓療法、または血管の切除を含む、請求項1に記載のコンピュータで実施する方法。
【請求項4】
前記プロセッサーが、各それぞれの候補部位における、前記患者の血管系を通る血流の停止または前記患者の血管系の一部の除去によって作り出される前記患者の血管系の境界を決定することをさらに含み、前記治療後の境界条件は、前記患者の血管系の前記決定された境界のうちの少なくとも1つの境界条件である、請求項1に記載のコンピュータで実施する方法。
【請求項5】
前記患者の血管系の前記境界は、前記患者の血管系の中心線に垂直な境界を含む、請求項4に記載のコンピュータで実施する方法。
【請求項6】
前記プロセッサーが、前記患者固有の解剖学的モデルの前記モデル化された血管系における前記境界のうちの少なくとも1つをモデル化することによって前記患者固有の解剖学的モデルを修正することと、
前記プロセッサーが、前記最初の計算モデルを更新することにより、前記更新された最初の計算モデルが前記修正された患者固有の解剖学的モデルを通る血流をシミュレートすることと
をさらに含む、請求項4に記載のコンピュータで実施する方法。
【請求項7】
前記それぞれの治療後の血流特性値は、臓器かん流または血圧を含む、請求項1に記載のコンピュータで実施する方法。
【請求項8】
閉塞性処置を計画するためのシステムであって、前記システムは、
閉塞による治療を計画するための命令を記憶する少なくとも1つのデータ記憶装置と、
前記命令を実行することにより動作を実施するように構成された少なくとも1つのプロセッサーと
を備え、
前記動作は、
患者の血管系の少なくとも一部の画像データを取得することと、
前記画像データにおいて可視的な前記患者の血管系のうちの少なくとも1つの血管の少なくとも1つの中心線および少なくとも1つの対応する内腔を再構築することによって、前記画像データに基づいて前記患者の血管系の前記一部の患者固有の解剖学的モデルを生成することと、
前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを決定することであって、前記最初の計算モデルは、治療前の境界条件を含む、ことと、
前記最初の計算モデルを使用して血流の計算を実施することによって治療前の血流特性値を決定することと、
前記患者の治療の前に、前記閉塞性処置のための複数の候補部位を取得することと、
前記患者の治療の前に、前記複数の候補部位の中のそれぞれの候補部位毎に、
治療後の境界条件を、
平面の下流で前記患者固有の解剖学的モデルから前記患者の血管系の一部を除去することによって、前記それぞれの候補部位における閉塞に対応する前記患者固有の解剖学的モデルのモデル化された血管系における境界を含むように前記患者固有の解剖学的モデルを修正することであって、前記平面は、前記それぞれの候補部位の場所にあり、かつ、前記少なくとも1つの中心線に垂直である、こと、および、
前記それぞれの候補部位における臓器の血流需要に基づいて前記治療後の境界条件をモデル化すること
によって、決定することと、
前記修正された患者固有の解剖学的モデルにおける前記治療後の境界条件に基づいて前記最初の計算モデルを更新することと、
前記更新された計算モデルを使用して血流の計算を実施することによってそれぞれの治療後の血流特性値を非侵襲的に決定することと、
前記治療前の血流特性値と前記それぞれの治療後の血流特性値との比較に基づいて前記それぞれの候補部位に対するそれぞれの評価を決定することと
を行うことと、
前記複数の候補部位の前記それぞれの評価の比較に基づいて、前記複数の候補部位の中から治療部位の選択に対する推奨を含む前記閉塞性処置のための計画を生成することと
を含む、システム。
【請求項9】
前記血流の計算は、ナビエ・ストークス方程式または機械学習方法を使うことを含む、請求項8に記載のシステム。
【請求項10】
前記閉塞性処置は、切断、塞栓療法、または血管の切除を含む、請求項8に記載のシステム。
【請求項11】
前記動作は、各それぞれの候補部位における、前記患者の血管系を通る血流の停止または前記患者の血管系の一部の除去によって作り出される前記患者の血管系の境界を決定することをさらに含み、前記治療後の境界条件は、前記患者の血管系の前記決定された境界のうちの少なくとも1つの境界条件である、請求項8に記載のシステム。
【請求項12】
前記患者の血管系の前記境界は、前記患者の血管系の中心線に垂直な境界を含む、請求項11に記載のシステム。
【請求項13】
前記動作は、
前記患者固有の解剖学的モデルの前記モデル化された血管系における前記境界のうちの少なくとも1つをモデル化することによって前記患者固有の解剖学的モデルを修正することと、
前記最初の計算モデルを更新することにより、前記更新された最初の計算モデルが前記修正された患者固有の解剖学的モデルを通る血流をシミュレートすることと
をさらに含む、請求項11に記載のシステム。
【請求項14】
前記それぞれの治療後の血流特性値は、臓器かん流または血圧を含む、請求項8に記載のシステム。
【請求項15】
閉塞性処置を計画するためのコンピュータで実行可能なプログラミング命令を含むコンピュータシステム上で使用するための非一時的コンピュータ可読媒体であって、前記命令は、
患者の血管系の少なくとも一部の画像データを取得することと、
前記画像データにおいて可視的な前記患者の血管系のうちの少なくとも1つの血管の少なくとも1つの中心線および少なくとも1つの対応する内腔を再構築することによって、前記画像データに基づいて前記患者の血管系の前記一部の患者固有の解剖学的モデルを生成することと、
前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを決定することであって、前記最初の計算モデルは、治療前の境界条件を含む、ことと、
前記最初の計算モデルを使用して血流の計算を実施することによって治療前の血流特性値を決定することと、
前記患者の治療の前に、前記閉塞性処置のための複数の候補部位を取得することと、
前記患者の治療の前に、前記複数の候補部位の中のそれぞれの候補部位毎に、
治療後の境界条件を、
平面の下流で前記患者固有の解剖学的モデルから前記患者の血管系の一部を除去することによって、前記それぞれの候補部位における閉塞に対応する前記患者固有の解剖学的モデルのモデル化された血管系における境界を含むように前記患者固有の解剖学的モデルを修正することであって、前記平面は、前記それぞれの候補部位の場所にあり、かつ、前記少なくとも1つの中心線に垂直である、こと、および、
前記それぞれの候補部位における臓器の血流需要に基づいて前記治療後の境界条件をモデル化すること
によって、決定することと、
前記修正された患者固有の解剖学的モデルにおける前記治療後の境界条件に基づいて前記最初の計算モデルを更新することと、
前記更新された計算モデルを使用して血流の計算を実施することによってそれぞれの治療後の血流特性値を非侵襲的に決定することと、
前記治療前の血流特性値と前記それぞれの治療後の血流特性値との比較に基づいて前記それぞれの候補部位に対するそれぞれの評価を決定することと
を行うことと、
前記複数の候補部位の前記それぞれの評価の比較に基づいて、前記複数の候補部位の中から治療部位の選択に対する推奨を含む前記閉塞性処置のための計画を生成することと
を含む動作を実行する、非一時的コンピュータ可読媒体。
【請求項16】
前記血流の計算は、ナビエ・ストークス方程式または機械学習方法を使うことを含む、請求項15に記載の非一時的コンピュータ可読媒体。
【請求項17】
前記動作は、各それぞれの候補部位における、前記患者の血管系を通る血流の停止または前記患者の血管系の一部の除去によって作り出される前記患者の血管系の境界を決定することをさらに含み、前記治療後の境界条件は、前記患者の血管系の前記決定された境界のうちの少なくとも1つの境界条件である、請求項15に記載の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、2014年11月4日出願の米国仮特許出願第62/074、693号に対する優先権を主張する、2015年1月15日出願の米国非仮特許出願第14/598,050号の優先権を主張し、その全ての開示内容が参照により本明細書に援用される。
【0002】
本開示の種々の実施形態は、一般的に、患者の治療評価、治療計画、及び関連する方法に関する。更に具体的に言うと、本開示の特定の実施形態は、閉塞した動脈のシミュレート及び閉塞による治療の最適化のためのシステム及び方法に関する。
【背景技術】
【0003】
閉塞性疾患は、臓器及び/または筋肉(及び臓器及び/または筋肉の周囲の組織)に対する血液の供給を減少させる動脈の狭窄を伴うことがある。閉塞性疾患を患う患者は、血管の狭窄により血液循環が不足する箇所で痛み、麻痺または衰弱を感じることがある。長期にわたる血液循環の不足は、潰瘍、急性または慢性の虚血、壊疽等を引き起こすことがある。閉塞性疾患は、例えばアテローム性動脈硬化症または末梢血管疾患を含む様々な形で現れることがある。更には、閉塞性疾患は、しばしば、例えば心臓病のような他の病気と合併して現れることがある。
【0004】
閉塞による治療は、外傷、感染症、虚血及び/または壊疽を治療し、患者の生存率及び生活の質を改善するために行われることがある。治療は、外部的(例えば、外科的)方法または内部的(例えば、血管内的)方法を含みうる。特に、閉塞による治療は、血管を結紮、閉塞または除去して、血流を変更することがありうる。例えば、臓器及び/または腫瘍の切断または外科的除去は、切断または摘出の対象部位が特定すれば行いうる。選択された部位の下流の動脈は、血液循環から除去しうる。閉塞による治療の別の例には、塞栓療法があり、そこではがん細胞を宿している臓器の部位を塞栓することを伴う。更に別の例示的な閉塞による治療では、例えば計画的、選択的及び/または緊急の手術の間に、血管を外科的に結紮することを含みうる。
【0005】
このような閉塞による治療は、治療後に血流を再分配することがありうる。閉塞による治療はかん流を改善することがありうるが、その結果としての血流の再分配は、患者の治療を計画する際には考慮しないことがありうる。例えば、臓器及び/または腫瘍の下流の下流動脈の除去から生じる血流の再分配の効果は、これらの臓器及び/または腫瘍の切断または外科的除去の前には評価されないことがありうる。塞栓療法も、血流の再分配を引き起こすことがありうる。塞栓療法は、選択した塞栓部位の上流または下流の種々の臓器のかん流の変化を更に引き起こすことがありうる。しかし、塞栓療法が血流に及ぼしうる影響は、療養の前に評価されないことがありうる。血管結紮の結果としての血流の変化も、この結紮の前には分析されないことがありうる。
【0006】
閉塞による治療による再分配された血流は、この血流に関係のある血行動態パラメーターに影響する。しかし、閉塞による治療の患者固有の血行動態パラメーターに対する影響は、治療の前には分からないことがありうる。つまり、治療は、かん流を改善する治療の有効性を理解しないで行われている。したがって、閉塞による治療が血流に対して有する影響を考慮することによって、治療計画を改善することが強く望まれている。
【0007】
上記の一般的説明及び下記の詳細な説明は、単に例示的かつ説明的なものであり、本開示を制限するものではない。
【発明の概要】
【課題を解決するための手段】
【0008】
本開示のある態様によれば、システム及び方法は、閉塞した動脈のシミュレート及び閉塞による治療の最適化のために開示される。
【0009】
一つの方法は、患者の血管系の患者固有の解剖学的モデルを得ること、患者固有の解剖学的モデルに基づいて、その患者の血管系を通る血流の最初の計算モデルを得ること、閉塞による治療に基づいて、最初の計算モデルを部分的に修正して治療後の計算モデルを得ること、最初の計算モデルを使って治療前の血流特性を生成し、または治療後の計算モデルを使って治療後の血流を計算すること、及び治療前の血流特性または治療後の血流特性を表すものをアウトプットすることを含む。
【0010】
別の実施形態に従って、閉塞による治療を最適化するシステムは、閉塞による治療を最適化するための命令を保存するデータ記憶装置、及び、患者の血管系の、その患者固有の解剖学的モデルを得ること、患者固有の解剖学的モデルに基づいて、患者の血管系を通る血流の最初の計算モデルを得ること、閉塞による治療に基づいて、最初の計算モデルを部分的に修正して治療後の計算モデルを得ること、最初の計算モデルを使って治療前の血流特性を生成し、または治療後の計算モデルを使って治療後の血流を計算すること、及び治療前の血流特性または治療後の血流特性を表すものをアウトプットすること、のために構成されたプロセッサーを含む。
【0011】
別の実施形態に従って、閉塞による治療を最適化する方法を行うためのコンピューターで実行するプログラミング命令を含むコンピューターシステム上で使用するための、非一時的コンピューター可読媒体であって、前記方法は、患者の血管系の、その患者固有の解剖学的モデルを得ること、前記患者固有の解剖学的モデルに基づいて、患者の血管系を通る血流の最初の計算モデルを得ること、閉塞による治療に基づき、前記最初の計算モデルを部分的に修正して治療後の計算モデルを得ること、前記最初の計算モデルを使って治療前の血流特性を生成し、または前記治療後の計算モデルを使って治療後の血流を計算すること、及び前記治療前の血流特性または前記治療後の血流特性を表すものをアウトプットすることを含む、非一時的コンピューター可読媒体。
【0012】
開示された実施形態の追加目的及び利点は、部分的には後述の記述に記載され、部分的には記述から明白であり、または、開示された実施形態を実践することで得られる。開示された実施形態の目的及び利点は、添付の請求項で特に指摘された要素及び組合せにより実現され得られる。
【0013】
前述の一般的な説明及び後述の詳細な説明は、両方とも例示的で説明的なものに過ぎず、クレームされた開示された実施形態を制限するものではないことが理解される。
本発明は、例えば、以下を提供する。
(項目1)
閉塞による治療をシミュレートまたは最適化するコンピューターで実施する方法であって、
患者の血管系の、患者固有の解剖学的モデルを得ること、
前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを得ること、
閉塞による治療に基づき、前記最初の計算モデルを部分的に修正して治療後の計算モデルを得ること、
前記最初の計算モデルを使って治療前の血流特性を生成し、または前記治療後の計算モデルを使って治療後の血流を計算すること、及び
前記治療前の血流特性または前記治療後の血流特性を表すものをアウトプットすること、
を含む、前記方法。
(項目2)
前記閉塞による治療は、切断、塞栓療法、または血管切除を含む、項目1に記載のコンピューターで実施する方法。
(項目3)
前記閉塞による治療により閉塞または除去すべき前記患者の血管系の一つ以上の血管を特定すること、及び
前記閉塞または除去すべき一つ以上の血管に基づいて、前記治療後の計算モデルを得ること、を更に含む、項目1に記載のコンピューターで実施する方法。
(項目4)
前記血流特性は、臓器かん流または血圧を含む、項目1に記載のコンピューターで実施する方法。
(項目5)
前記閉塞による治療に基づく前記患者固有の解剖学的モデルの再構築を修正すること、を更に含む、項目1に記載のコンピューターで実施する方法。
(項目6)
前記閉塞による治療を最適化するコスト関数を定義すること、及び
前記治療前の血流特性及び前記治療後の血流特性を使って前記コスト関数を解くこと、を含む、項目1に記載のコンピューターで実施する方法。
(項目7)
前記閉塞による治療のために、一つ以上の外科手術の実行不可能な形状を得ること、及び
前記一つ以上の実行不可能な形状を使って、前記治療後の血流特性を生成すること、
を更に含む、項目1に記載のコンピューターで実施する方法。
(項目8)
前記閉塞による治療を特定すること、
第二の閉塞による治療を特定し、前記第二の閉塞による治療のために第二の治療後の血流特性を計算すること、及び
前記治療後の血流特性と前記第二の治療後の血流特性との比較に基づいて治療を推奨すること、
を更に含む、項目1に記載のコンピューターで実施する方法。
(項目9)
閉塞による治療をシミュレートまたは最適化するシステムであって、
閉塞による治療をシミュレートまたは最適化する命令を保存するデータ記憶装置、及び
患者の血管系の、患者固有の解剖学的モデルを得ること、
前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを得ること、
閉塞による治療に基づき、前記最初の計算モデルを部分的に修正して治療後の計算モデルを得ること、
前記最初の計算モデルを使って治療前の血流特性を生成し、または前記治療後の計算モデルを使って治療後の血流を計算すること、及び
前記治療前の血流特性または前記治療後の血流特性を表すものをアウトプットすること、
を含む方法を行うための前記命令を実行するように構成されたプロセッサー、
を含む、前記システム。
(項目10)
前記閉塞による治療は、切断、塞栓療法、または血管切除を含む、項目9に記載のシステム。
(項目11)
前記閉塞による治療により閉塞または除去すべき前記患者の血管系の一つ以上の血管を特定すること、及び
前記閉塞または除去すべき一つ以上の血管に基づいて、前記治療後の計算モデルを得ること、のために更に構成された、項目9に記載のシステム。
(項目12)
前記血流特性は、臓器かん流または血圧を含む、項目9に記載のシステム。
(項目13)
前記閉塞による治療に基づく前記患者固有の解剖学的モデルの再構築を修正すること、のために更に構成された、項目9に記載のシステム。
(項目14)
前記閉塞による治療を最適化するコスト関数を定義すること、及び
前記治療前の血流特性及び前記治療後の血流特性を使って前記コスト関数を解くこと、のために更に構成された、項目9に記載のシステム。
(項目15)
前記閉塞による治療のために、一つ以上の外科手術の実行不可能な形状を得ること、及び
前記一つ以上の実行不可能な形状を使って、前記治療後の血流特性を生成すること、
のために更に構成された、項目9に記載のシステム。
(項目16)
前記閉塞による治療を特定すること、
第二の閉塞による治療を特定し、前記第二の閉塞による治療のために第二の治療後の血流特性を計算すること、及び
前記治療後の血流特性と前記第二の治療後の血流特性との比較に基づいて治療を推奨すること、
のために更に構成された、項目9に記載のシステム。
(項目17)
閉塞による治療をシミュレートまたは最適化するために、コンピューターで実行可能なプログラミング命令を含むコンピューターシステム上で使用するための、非一時的コンピューター可読媒体であって、前記方法が、
患者の血管系の、患者固有の解剖学的モデルを得ること、
前記患者固有の解剖学的モデルに基づいて、前記患者の血管系を通る血流の最初の計算モデルを得ること、
閉塞による治療に基づき、前記最初の計算モデルを部分的に修正して治療後の計算モデルを得ること
前記最初の計算モデルを使って治療前の血流特性を生成し、または前記治療後の計算モデルを使って治療後の血流を計算すること、及び
前記治療前の血流特性または前記治療後の血流特性を表すものをアウトプットすること、を含む、前記非一時的コンピューター可読媒体。
(項目18)
前記閉塞による治療は、切断、塞栓療法、または血管切除を含む、項目17に記載の非一時的コンピューター可読媒体。
(項目19)
前記方法は、
前記閉塞による治療により閉塞または除去すべき前記患者の血管系の一つ以上の血管を特定すること、及び
前記閉塞または除去すべき一つ以上の血管に基づいて、前記治療後の計算モデルを得ること、を更に含む、項目17に記載の非一時的コンピューター可読媒体。
(項目20)
前記血流特性は、臓器かん流または血圧を含む、項目17に記載の非一時的コンピューター可読媒体。
【0014】
本明細書に組み込まれ、本明細書の一部を構成する添付図は、種々の例示的な実施形態を説明し、説明とともに、開示された実施形態の原則を説明する役割を果たす。
【図面の簡単な説明】
【0015】
図1】本開示の例示的な実施形態による、閉塞した動脈のシミュレーション及び/または閉塞による治療の最適化のための例示的なシステム及びネットワークのブロック図を示す。
図2】本開示の例示的な実施形態による、閉塞した動脈のシミュレーション及び/または閉塞による治療の最適化のための例示的な方法のブロック図を示す。
図3A】本開示の例示的な実施形態による、閉塞した動脈のシミュレーションのための例示的な方法のブロック図を示す。
図3B】本開示の例示的な実施形態による、閉塞による治療の最適化のための例示的な方法のブロック図を示す。
図4A】本開示の例示的な実施形態による、切断の血行動態の影響をモデル化するための例示的な方法のブロック図を示す。
図4B】本開示の例示的な実施形態による、この切断が行われる場所の最適化のための例示的な方法を示す。
図5A】本開示の例示的な実施形態による、肝臓の塞栓療法のシミュレーションのための例示的な方法のブロック図を示す。
図5B】本開示の例示的な実施形態による、塞栓療法の最適化のための例示的な方法のブロック図を示す。
図6】本開示の例示的な実施形態による、血管の切除のシミュレーションのための例示的な方法のブロック図を示す。
【発明を実施するための形態】
【0016】
ここから、本開示の例示的な実施形態を詳細に参照し、その実施例は添付図で示す。可能な限り、同一または類似部分を参照する際には、図を通して、同一の参照番号を使用する。
【0017】
本開示は、治療の結果引き起こされる血流の変化を説明することによる、閉塞による治療の最適化のためのシステム及び方法を含む。治療の有効性は、治療が治療後の血流をどのように変化させるかを理解することにより、その治療を行う前に正確に測定しうる。更には、本開示は、治療がどのように特定の患者及び患者の状態における血流を変化させるかを理解するためのシステム及び方法を提供しうる。したがって、本開示は、患者の状態に(最適に)適する治療法を選択するために、治療による血流を決定し、決定して得られた血流を使って、閉塞による治療の計画プロセスを改善するシステム及び方法を含む。
【0018】
一つの実施形態においては、血流シミュレーション(複数可)は、閉塞による治療の血流に対する影響を予測するために使われうる。例えば、計算方法は、治療のためのパラメーターを最適化するだけでなく、血流シミュレーションをモデル化するために使うことができる。本開示に含まれるシステム及び方法は、進行性の閉塞性疾患の影響をモデル化するためにも使われうる(例えば、腎臓の動脈に70%の狭窄がある場合、開示されたシステムは、その動脈の閉塞が引き起こしうる結果をモデル化するために使われうる)。
【0019】
一つの実施形態においては、閉塞による治療の血行動態的影響をシミュレートするこの計算方法は、治療前(例えば、切断前またはがん療法前)の動脈系をモデル化することを含みうる。例えば、このシミュレーションは、閾値ステップとして、(患者に行った造影から得たデータに基づいて)その患者の血管の計算モデルを築くことを含みうる。血流シミュレーションは、例えば、この計算モデルの離散化有限要素メッシュ及び臓器需要に基づく境界条件を使ってナビエ・ストークス方程式を解くことによって行いうる。一つの実施形態においては、この計算モデルは、機械学習方法(例えば、血行動態特性を評価する及び/または血行動態特性の評価を適応的に改善する機械学習方法)を含みうる。更には、一つの実施形態においては、臓器需要は、別に入手できる場合を除き、患者の質量により増減された人口平均値に基づいて計算しうる。別の方法として、血行動態及び対象となる関連する数量は、次数低減モデルを使って求めることができる(このことは、例えば、2011年1月25日出願の米国特許第8,315,812号に記載されており、その開示の全体は参照することにより全体として本開示に組み込まれる)。この次数低減モデルは、血液の運動エネルギーを考慮するためにベルヌーイの方程式とともに、血流の1次元非線形または線型方程式を解くこと、または非線形狭窄圧力損失モデルを用いて修正したポアズイユの法則を使って流れ及び圧力を計算することを含みうる。
【0020】
別の、または追加として、治療前の患者固有のモデルの血行動態特性を求めるために、機械学習のアプローチを使うことができる。一つの実施形態においては、インプット(例えば、動脈系)を対象となる血行動態数量(例えば、2013年5月16日出願の米国非仮特許出願第13/895,893号に記載され、その開示の全体は参照することにより全体として本開示に組み込まれたもの)に位置付けるために、血行動態に対する効果が計算される計算モデルの特徴及びリグレッサー(例えば、3次元シミュレーションのデータベースを使って計算したリグレッサー)を使うことができる。
【0021】
一つの実施形態においては、一つ以上の候補となる閉塞による治療(例えば、切断または切除)を反映するために、新たな治療後のモデルを得ることがありうる。一つの実施形態においては、この治療後のモデルを得ることは、一つ以上の候補となる閉塞による治療を反映するモデルを築くことを含む。別の、または追加として、この治療後のモデルを得ることは、一つ以上の候補となる閉塞による治療を表す最初の解剖学的モデルを修正することを含みうる。上記した方法のいかなる部分も、新たな血行動態値を計算するために行いうる。閉塞による治療の血行動態的影響を理解することは、造影を行った患者のために仮定的な治療後の血圧及び血流速度を提供しうる。更には、対象となる臓器の組織かん流、ならびにその他のいかなる対象となる血行動態量(例えば、特定の部位の血圧)は、この治療後の血圧及び血流速度を使って計算しうる。例えば、治療前と計算された治療後の組織かん流レベルの違い、またはその他の対象となる量をアウトプットしうる。例えば、このアウトプットは、治療後のモデルの全体または対象となる領域における、計算した結果を(例えば、医師に対して)送信及び/または提示することを含みうる。このような提示は、グラフィック、絵及び/またはユーザーインタラクティブなインターフェースを含みうる。別のアウトプットは、計算した結果を電子記憶媒体に保存することを含みうる。
【0022】
更に、最適治療パラメーターを計算しうる。治療選択肢の実行不可能なパラメーターを、例えば、データベースまたは医師からインプットできる。実行不可能なパラメーターの例は、壊疽に近接した場所の下流の切断部位を含みうる。実行可能な領域は、例えば、外科手術の容易性のような手術室における制約に基づくことがある。好ましい治療パラメーターは、(例えば、初期設定のパラメーターのセットから、患者固有のモデルと種々のパラメーターの間の学習した関係から、などから)自動的に、またはユーザーのインプットから、指示することもできる。閉塞による治療を最適化するコスト関数は、特定の種類の治療に基づいて定義することもできる。いかなる最適化アルゴリズムも、最適な治療パラメーターを特定するために使用できる。これらのアルゴリズムは、最適治療パラメーターを停止基準が満たされるまでシミュレーションを繰り返し行って得られる導関数のないアルゴリズムを含みうる。別のものとして、最適パラメーターを計算するために、コスト関数の治療パラメーターに関する導関数を計算し、そして最速降下または共役勾配を含む方法を使う、勾配に基づくアルゴリズムを使うことができる。
【0023】
ここで図面を参照すると、例示的実施形態による、図1は、例示的なシステム100、及び閉塞した動脈をシミュレートし、閉塞による治療を最適化するネットワークのブロック図を描く。特に、図1は、複数の医師102及び第三者提供者104を描き、いずれの者も、一つ以上のコンピューター、サーバー及び/または手持ち式の携帯装置を通じてインタ―ネットのような電子ネットワーク101に接続しうる。医師102及び/または第三者提供者104は、一人またはそれ以上の患者の解剖学的構造の画像を作り出すか、その他の方法で得ることができる。医師102及び/または第三者提供者104は、年齢、病歴、血圧、血流粘度、患者の活動または運動レベル等の患者固有の情報のいかなる組合せも得ることができる。医師102及び/または第三者提供者104は、解剖学的構造の画像及び/または患者固有の情報を電子ネットワーク101を通じてサーバーシステム106へ送信することができる。サーバーシステム106は、医師102及び/または第三者提供者104から受けた画像及びデータを保存するための記憶装置を含みうる。サーバーシステム106は、記憶装置に保存した画像及びデータを処理するための処理装置も含みうる。
【0024】
図2は、閉塞した動脈をシミュレートし、閉塞による治療を最適化する方法の概略図を簡単に描く。図3Aは、閉塞した動脈をシミュレートするためのフローチャートを描き、図3Bは、図3Aの方法でシミュレートされた閉塞した動脈における閉塞による治療を最適化するためのフローチャートを描く。図4A~6は、図3A及び3Bの方法の特定の実施形態のためのフローチャートを描く。例えば、図4A、5A、及び6の各自は、それぞれの特定の治療法における閉塞した動脈をシミュレートするためのフローチャートを描く。図4B及び5Bは、それぞれの治療法を最適化するためのフローチャートを描く。いずれのフローチャートで描かれた各方法の部分は、フローチャートで描かれた他の例示的な方法のステップと組み合わせ、及び/または入れ替えることができる。
【0025】
特に、図2は、例示的な実施形態による、閉塞した動脈をシミュレートし、及び閉塞による治療を最適化する例示的な方法200のブロック図を示す。一つの実施形態においては、方法200は、例えば切断のために閉塞した動脈をシミュレートするためのステップ201~209を含みうる。方法200のステップ211及び213は、ステップ201~209で行ったシミュレーションを使って、任意に治療を最適化するために行われうる。
【0026】
一つの実施形態においては、ステップ201は、患者の末梢動脈を含むコンピューターー断層(CT)撮影を得ることを含みうる。ステップ201は、更に(例えば、切断のために)末梢動脈の候補部位を得ることを含みうる。一つの実施形態においては、ステップ203は、例えば中心線の再構築を行うことによって、患者の末梢動脈のモデルを再構築することを含みうる。ステップ205は、この再構築を使ってベースライン血流シミュレーションを行うことを含みうる。例えば、ステップ205のシミュレーションを行うことは、有限要素法を含む計算モデルを使うことを含みうる。このようなケースの一つでは、この有限要素法は、再構築した形状を離散化すること、抵抗境界条件を適用すること、及びナビエ・ストークス方程式を解くことを含みうる。ステップ205のシミュレーションは、治療前の血行動態特性の評価を提供しうる。
【0027】
ステップ207は、例えば、特定された候補切断部位の一つ以上で、中心線に対して垂直な平面に沿って(例えば、ステップ203の再構築モデルから)動脈を除去することによって、外科手術(例えば、切断)の後の形状をモデル化することを含みうる。一つの実施形態においては、ステップ209は、(例えば、切断部位の近くの微小血管の抵抗に基づく)修正された境界条件をモデル化することを含みうる。一つの実施形態においては、抵抗は、患者の質量によって局所的に増減された、正規化された血液需要に基づいて計算しうる。
【0028】
治療法を最適化するために、ステップ211及び213の一つまたは両方を任意に行うことができる。特に、ステップ211は、最適な閉塞による治療を決定するためのコスト関数を定義することを含みうる。例えば、コスト関数は、組織需要を超える組織供給を提供する最適化目標をもった、組織需要と組織供給の違いとして定義しうる。最適化の目標は、定義されるコスト関数によって決まる収束基準でありうる。ステップ213は、(例えば、ステップ201からの)それぞれの候補切断部位のコスト関数を評価または解き、そしてこの収束基準に対してそれぞれの結果を比較することを含みうる。一つの実施形態においては、ステップ213は、評価した候補切断部位の比較に基づいて治療法の推奨(例えば、切断部位)を生成することを含みうる。一つの実施形態においては、もしもこの収束基準が満たされないならば、ステップ213は、(例えば、ネルダーミードアルゴリズムを使って)新たな候補切断部位を特定することを含みうる。
【0029】
図3Aは、例示的な実施形態による、閉塞した動脈をシミュレートする例示的方法300のブロック図を示す。図3Aの方法は、電子ネットワーク101を通じて、医師102及び/または第三者提供者104から受け取った情報、画像及びデータに基づいて、サーバーシステム106によって行うことができる。
【0030】
一つの実施形態においては、ステップ301は、患者の標的血管系の少なくとも一部の患者固有のモデルを獲得することを含みうる。例えば、この患者固有のモデルは、研究対象の解剖学的構造または他の体のシステムを包含するデジタル表現物を含みうる。この表現物は、画像ベースの表現物、測定された変数、パラメーター値及び解剖学的構造または生理学的システムを表す特長のリストまたは表、または以上の組合せを含みうる。この表現物は、例えばCT、磁気共鳴画像(MRI)、超音波等のような画像スキャンから集められうる。一つの実施形態において、この表現物は、例えば、ハードドライブ、コンピューターのネットワークドライブ、ラップトップ、サーバー、またはUSB等の、デジタル記憶装置を使って保存しうる。いかなる治療固有のパラメーターは、患者固有のモデルに対するインプット(複数可)としても受け取られうる。例えば、治療固有のパラメーターは、がんの治療法に関連する放射線療法の投与量を含みうる。この投与量は、がんの治療法の効果をモデル化する際の正確性を確保または改善するのに役立ちうる。例えば、切断治療計画を伴う閉塞による治療のモデル化においては、切断の候補部位及び/または切断を受ける患者の年齢を含む治療固有のパラメーターの情報を受けることによって計画は向上しうる。ステップ301は、標的の血管系の患者固有のモデルから、計算モデルを受け取り、特定し、または作り出すことを更に含みうる。この計算モデルは、治療前の計算モデルとしての機能を果たしうる。
【0031】
一つの実施形態においては、ステップ301は、例えば、研究する患者の形状、システム特性、及び特定の状態を描写することによって、対象となるシステムを分離することも含みうる。対象となるシステムを分離することは、例えば、受け取った原画像(例えば、取得したデジタル表現物)から、このシステムを画像処理及び再構築する追加のステップを含みうる。
【0032】
一つの実施形態においては、ステップ303は、再構築した形状(例えば、対象となるシステムを含むステップ301からの再構築)に対する一つ以上の閉塞による治療の影響をモデル化することを含みうる。例えば、ステップ303は、治療のために閉塞しうる再構築したモデル(例えば、以前説明した301の患者固有のモデル)の血管を特定すること、及び治療後の再構築したモデルを作るために再構築したモデルを修正することを含みうる。例えば、血管の除去は、再構築したモデルにブール演算を使ってモデル化し、または行うことができる。再構築したモデルから仮定的に閉塞した部分を除去する際に、追加の出口表面を作りうる。ステップ303は、閉塞を反映する治療後の計算モデルを生成することを更に含みうる。閉塞した計算モデルの部分は、治療後の再構築したモデルを作るために除去した再構築した形状の部分に相当しうる。
【0033】
一つの実施形態においては、ステップ305は、計算モデル及び取得した再構築モデルを使って、血流再分配、境界条件再較正、及び閉塞による血行動態影響を分析することを含みうる。例えば、血流シミュレーションは、例えば、三次元ナビエ・ストークス方程式を解くこと、低減次数モデル、または機械学習法によって、ステップ301で作った治療前の計算モデルを使って行いうる。境界条件は、対象となるアプリケーション及びシステムに基づいて規定しうる。境界条件を定義する追加の態様は、図4A~6で更に説明される特定の実施形態に関して提供されうる。
【0034】
血流シミュレーションは、微小循環領域に対する血流需要の治療後の変化のモデル化を更に含みうる。この微小循環領域に対する血流需要の変化は、ステップ303で特定した、新たに作られた出口表面で起こりうる。一つの実施形態においては、ステップ305は、閉塞した部位における微小循環性の抵抗(または、臓器需要)を反映しうる方法で治療後の計算モデルの境界条件抵抗を変更することによって、血流需要の変化をモデル化することを含みうる。ステップ305は、治療によって引き起こされうる臓器かん流、血圧及び対象となるその他の血行動態量の変化を計算するために、対象となる治療後のシステムのシミュレーションを行うことを更に含みうる。境界条件は、もしも治療が主として出口の近くの末梢血管に影響を与えるのであれば、一定に保ちうる。
【0035】
一つの実施形態においては、ステップ307は、治療前及び治療後のシミュレーションの結果をアウトプットすることを含みうる。例えば、ステップ307は、例えば、一つ以上の治療法のためのグラフィック及び/または絵で表した比較またはシミュレーションを含む視覚的表示物を作ることを含みうる。この視覚的表示物またはアウトプットは、例えば、電子ネットワーク101を通じて送信される医療専門家に対する報告に含まれうる。ステップ307は、電子保存媒体に保存するためにシミュレーションの結果をアウトプットすることも含みうる。
【0036】
図3Bは、例示的な実施形態による、閉塞による治療を最適化する例示的な方法320のブロック図を示す。図3Bの方法は、電子ネットワーク101を通じて、医師102及び/または第三者提供者104から受け取った情報、画像、及びデータに基づいて、サーバーシステム106によって行いうる。方法320は、治療パラメーターを最適化することによって治療計画を最適化することを含む。
【0037】
一つの実施形態においては、ステップ321は、患者の候補治療選択肢を特定することを含みうる。候補治療選択肢は、商用の閉塞による治療用技術及び方法、及び/または特定の患者に用いうる閉塞による治療を含みうる。一つの実施形態においては、ステップ323は、研究の対象となる一つ以上の血行動態量を特定することを含みうる。例えば、対象となる一つの血行動態量は、治療部位の下流におけるかん流を研究することを含みうる。
【0038】
ステップ325は、特定された候補治療選択肢の一つ以上のために、対象となる一つ以上の血行動態量を計算することを含みうる。一つの実施形態においては、最適な閉塞による治療は、血液循環が閉塞したものと特定された血管の部位の最低限の血流を提供しつつ、同時に他の部位の健康なかん流を確保することを含みうる。
【0039】
一つの実施形態においては、ステップ327は、閉塞による治療を最適化するためのコスト関数を定義することを含みうる。例えば、コスト関数は、(i)閉塞ゾーンの血流、(ii)新たに作った出口血管における組織かん流、及び(iii)治療部位の上流の他の臓器における組織かん流を組み合わせうる。コスト関数は、それぞれの値または組み合わせた値について、これらの値と標的値の違いとして定義されうる。一つの実施形態においては、ステップ327は、更に一つ以上の標的値を定義することを含みうる。例えば、患者の体重に基づくと、閉塞ゾーンにおける血流の標的値はゼロであり得、組織かん流の標的値は健康な臓器の組織かん流需要でありうる(例えば、もしも血液の供給が需要を超えるとゼロの上限が付された値)。
【0040】
一つの実施形態においては、ステップ329は、コスト関数を解くことを含みうる。つまり、ステップ329は、治療計画を最適化するためにコスト関数を最小化することを含みうる。ステップ329は、最適化方法を使うことを含みうる。例えば、最適化方法は一般的に、(i)導関数のない方法、(ii)勾配に基づく方法、または(iii)大域的最適化方法に分類しうる。例示的な導関数のない方法は、異なる候補治療法について(方法300から)ステップ305の評価を繰り返すことを含みうる。かかる方法は、(例えば、パターン探索、ネルダーミード法等を使って)最適条件を見出すのに使いうる。例示的な勾配に基づく方法は、最速降下法、共役勾配法、ブロイデン・フレッチャー・ゴールドファーブ・シャノン法(BFGS)、補助方程式を解く方法、またはナビエ・ストークス方程式のためにパラメーター感受方程式を線形化及び導くことを含みうる。いくつかのケースでは、BFGSは、(例えば、有限差分)方法を使って計算したパラメーターに対する血圧及び速度の勾配に基づきうる。例示的な大域的最適化方法は、進化的探索または遺伝的アルゴリズムを含みうる。
【0041】
一つの実施形態においては、ステップ331は、最適化方法の計算に基づいて、推奨される治療法の選択肢をアウトプットすることを含みうる。いくつかの実施形態においては、ステップ331は、一つ以上の、推奨される治療法の選択肢の表現及び/または一つ以上の治療法の選択肢を比較する表現を生成することを含みうる。例えば、この表現は、一つ以上の治療法の選択肢の血行動態の影響を表示または比較することを含む、グラフィックまたは絵で表したインタラクティブユーザーインターフェースを含みうる。
【0042】
図4Aは、例示的な実施形態による、(例えば、足または腕の)切断の血行動態の影響をモデル化する例示的な方法400のブロック図を示す。図4Bは、例示的な実施形態による、切断が行われる部位を最適化する例示的な方法420のブロック図を示す。図4A及び4Bの方法は、電子ネットワーク101を通じて、医師102及び/または第三者提供者104から受け取る情報、画像、及びデータに基づいて、サーバーシステム106によって行いうる。
【0043】
切断は、手足の外科的除去を含みうる。この種類の外科手術は、特に高齢の患者の間で、重要で高い頻度で行われうる。末梢動脈疾患は、切断の一つの理由になりうる。例えば、血管内腔狭窄は、下肢の血行不良を引き起こすことがあり、壊死組織、場合により感染症を引き起こしうる。外科手術の目標は、再感染及び壊疽のリスクを最小化するように、手足を十分に長く切断することを含みうる。しかし、切断ゾーンを長くすればするほど機能的損失は大きくなりうる。切断ゾーンを長くすると、より大きい可動性の損失につながり、より長い術後介護が必要になる。したがって、最適な切断は、壊疽のリスクを最小化すると同時に、術後の健康な組織のかん流を確保ために、患者の四肢のちょうど十分な長さでありうる。現在の外科手術の実務は、(患者固有でありうる)治癒反応の考慮をしないで、医師の経験及び承認された臨床実務を使って、切断ゾーンを特定しうる。
【0044】
以下の部位は、ある種の足の切断部位の候補でありうる。(a)大腿(膝の上)(b)膝(c)下腿(膝の下)(d)くるぶし、及び(e)足根中足。研究によると、切断部位の二つの強力な判断材料は、(例えば、十分な皮膚の毛細血管血流レベルを確保するために)血流速度及び血圧であると云われている。例えば、下腿切断は、70mm Hgを超える膝窩収縮期圧力を有する患者で治癒しうる。提案された切断部位の圧力と上腕動脈の圧力を比較すると、0.35を超える比率であれば糖尿病にかかっていない人を治癒するのに十分であり得、他方、0.45の比率であれば糖尿病にかかっている人にとって十分である。成功する切断の判断材料は、提案された切断部位で動脈の血圧を測定するために超音波ドプラー法を使うことを含みうる。成功した手足の切断の最も低いレベルを決定するための血流シミュレーションの非侵襲性技術は、臨床的判断に対する貴重な助けとなりうる。
【0045】
図4Aの方法400は、最初の切断部位で手足の切断の血行動態的影響をモデル化し、そしてこの最初の切断部位での影響を、別の切断部位での切断に相当する血行動態的影響と比較するために使いうる。いくつかの切断部位は、患者が手足を可能な限り維持することができるようにしつつ、有効な治療を提供するために比較しうる。そうすることで、方法400は、更に切断の最適な部位を提供しうる。
【0046】
一つの実施形態においては、ステップ401は、患者の解剖学的構造の標的血管系の患者固有モデルを取得することを含みうる。例えば、ステップ401は、例えば、切断部位の候補を含む、患者の手足の動脈系全体を包含するデジタル表現物を取得することを含みうる。ステップ401は、更にインプットデータ、例えば、画像ベースの表現物(複数可)、測定された変数(例えば、血圧及び患者の体重/身長)等を受け取ることを含みうる。
【0047】
一つの実施形態においては、ステップ403は、例えば、データベースまたは医師から、インプットとして切断部位の候補を受け取ることを含みうる。画像データは、CT、MRI、超音波等の形式で受け取ることができる。このインプットは、例えば、ハードドライブ、コンピューターのネットワークドライブ、ラップトップ、サーバー、USB等のデジタル記憶装置を使って保存しうる。
【0048】
一つの実施形態においては、ステップ403は、切断部位を最適化するインプット変数を受け取ることも含みうる。これらの変数は、コスト関数のパラメーター、例えば、望ましい組織かん流値、望ましい血圧及び異なるコスト関数の重み付けを含みうる。この変数は、更に外科手術の実行不可能な部位(例えば、壊疽部位に最も近接した部位の下流)及び/またはそれぞれの実行不可能な部位の周辺の領域を含みうる。つまり、外科手術の実行不可能な部位を受け取ることは、切断が実行可能な部位に計算を集中することによって、最適化の計算を速く行うことに役立ちうる。
【0049】
一つの実施形態においては、ステップ405は、患者固有のモデル(例えば、ステップ401のデータ)において可視的なそれぞれの末梢動脈の中心線及び内腔を再構築することを含みうる。例えば、ステップ405は、自動的または手動の分割アルゴリズムの一つまたは両方を使うことを含みうる。
【0050】
一つの実施形態においては、ステップ407は、(ステップ401で受け取った)候補部位で切断をモデル化することを含みうる。一つの実施形態においては、(例えば、ステップ405で)特定された候補部位における切断は、動脈が切断の部位で中心線に垂直な平面の下流で除去されたシミュレーションモデルを生成することによってモデル化しうる。モデル化された切断部位は、シミュレーションモデルの新たな境界として扱いうる。
【0051】
一つの実施形態においては、ステップ409は、例えば、血流再分配、境界条件再較正及び/または切断の血行動態的影響を分析することを含みうる。微小循環領域への血流需要は、手足の重さだけでなく、切断部位によって決まる。例えば、血流需要は、患者の手足の重さによって増減する名目的需要に適用する増減法則に基づいて増減しうる。一つの実施形態においては、血流再分配または需要を分析することは、切断の前及び後の患者の計算モデル(例えば、有限要素モデル)を構築することを含みうる。そして、このモデルの異なる領域でのカスタム境界条件は、切断の前及び後の血流変数を計算するのに使いうる。計算モデルにおける新たな出口表面が切断後に形成されうるので、ステップ409は、更に切断部位での微小循環性の需要に基づいて新たな境界条件を定義することを含みうる。
【0052】
一つの実施形態においては、ステップ411は、外科手術の前及び後の切断部位での血行動態(例えば、かん流レベル及び血圧)の違いを保存及び/または報告することを含みうる。いくつかのケースにおいては、医師または医療提供者は、ステップ411から分析またはアウトプットを直接受け取れうる。
【0053】
図4Bは、例えば、最適な部位を計算することによって、シミュレーションを更に活用するための例示的な方法420のブロック図を示す。一つの実施形態においては、ステップ421は、患者の実行可能な、及び/または実行不可能な切断部位、または特定の治療の選択肢を特定することを含みうる。例えば、ステップ421は、切断部位に関するデータを受け取るという点でステップ403と同様であると言える。一つの実施形態においては、ステップ403からのインプットは、ステップ421のための切断の実行可能な選択肢も提供しうる。(例えば、手術室の制約のために)実行可能でないいかなる切断部位も、ステップ403または421においてはインプットとしても受け取りうる。
【0054】
一つの実施形態においては、ステップ423は、切断部位を最適化するためのコスト関数を定義すること、例えば、(i)望ましい血圧と計算された血圧の正規化符号付き差、及び(ii)望ましい組織かん流レベルと計算された組織かん流レベルの正規化平均絶対差、の加重和を含みうる。一つの実施形態においては、この二つの項の重み付けは、ユーザー(例えば、医師)によってインプットされるか、及び/またはデータベースから計算または取得される。前述したように、コスト関数のそれぞれの項は、正規化しうる。このコスト関数は、切断部位を最適化するための一般的なコスト関数、または(例えば、ステップ401の)患者固有モデルに関連する患者に固有のコスト関数でありうる。
【0055】
一つの実施形態においては、ステップ425は、アルゴリズム停止基準を決定することを含みうる。アルゴリズム停止基準を決定することは、望ましい血行動態値を決定することを含みうる。この決定は、(例えば、切断部位での人口平均化された健康値に基づいて)望ましい血行動態値を計算すること、または、例えば、医師または医療専門家によってインプットされた望ましい血行動態値を受け取ることを含みうる。
【0056】
一つの実施形態においては、ステップ427は、(例えば、ステップ425におけるインプットから)切断部位の最初のランダムな集合を選択することによって最適化アルゴリズムを実行すること、及びコスト関数(例えば、ステップ423で定義したコスト関数)を評価することを含みうる。一つの実施形態においては、ステップ427は、評価した点に基づいて新たな候補切断部位を特定し、存在する点を頂点として用いて単体を構築するために、ネルダーミードアルゴリズムを使うことを含みうる。実行不可能な外科手術の形状に近接する切断部位は、非常に高いコスト関数値(例えば、無限大)をとりうる。一つの実施形態においては、ステップ427は、最適化アルゴリズム停止基準が満たされるまで行われうる。
【0057】
一つの実施形態においては、ステップ429は、最適化アルゴリズム停止基準が満たされる時に得られる切断部位を特定すること、及び最適な部位としてこの切断部位を指定することを含みうる。ステップ429は、最適な部位を、例えば、一人以上のユーザーがアクセスできる電子記憶媒体に保存及び/またはアウトプットすることを更に含みうる。
【0058】
図5Aは、例示的な実施形態による、(例えば、肝臓がんを伴うシナリオにおいて)肝臓に対する塞栓療法をシミュレートする例示的な方法500のブロック図を示す。図5Bは、例示的な実施形態による、塞栓療法を最適化する例示的な方法520のブロック図を示す。図5A及び5Bの方法は、電子ネットワーク101を通じて、医師102及び/または第三者提供者104から受け取った情報、画像、及びデータに基づいて、サーバーシステム106によって行いうる。
【0059】
肝臓のがん細胞は、肝動脈によって養われうるが、一方、正常な細胞は門脈によって養われうる。患者の肝動脈の塞栓は、下流の動脈のかん流だけでなく、患者の肝臓のかん流に影響を与えうる。放射線療法の範囲は、シミュレーションを通じて計算しうる。成功する塞栓の目標は、血液循環からがん細胞を分離し、一方で、同時に十分な組織かん流を確保することでありえる。以下の実施形態は、胆管がん、胆嚢がんのような他の種類のがんの塞栓、あるいは脳の動脈瘤を治療するための脳塞栓のためにも使いうる。
【0060】
一つの実施形態においては、ステップ501は、患者の標的血管系の患者固有のモデルを取得することを含みうる。例えば、ステップ501は、例えば、患者の肝動脈、肝動脈が枝分かれする患者の大動脈の部分及び/または対象となる他の下流の血管を包含するデジタル表現物を取得することを含みうる。ステップ501は、更に、例えば、臓器の質量の変化に起因する血流需要の変化を考慮するために、患者の臓器の体積及び/または質量を含むインプットを受け取ることを含みうる。シミュレーションに含まれうる肝臓及び種々の臓器は、組織減少/破壊及び/または再生を経ることがありえる。例えば、肝臓がんの治療は、肝臓の一部を除去し、肝臓の質量の減少をもたらすことを伴いうる。心臓発作も、しばしば心臓の筋肉細胞を損傷し、心臓の質量及び血流需要の減少を引き起こす。動脈は、関連する臓器の質量を前提として、それが運ぶ血液の量を反映するために時間とともに再構築しうる。患者の臓器の体積及び/または質量をインプットすることは、計算が増減のための損失、つまり減少した臓器質量を養う輸入(上流)動脈(複数可)を通る血流に対する減少した必要性を考慮することを可能にしうる。その上、臓器は、再生し、そして漸進的に質量が増加しうる。例えば、臓器は、治療または回復に反応して再生しうる。このようなケースにおける輸入動脈の減少は、一時的でありうる。患者の臓器の体積及び/または質量のインプットは、臓器の体積及び/または質量の変動に関連しうる血流需要の変化を提供しうる。
【0061】
一つの実施形態においては、ステップ503は、種々の治療プランが(商業的に、及び/またはその患者にとって)利用できるかどうかを決定することを含みうる。仮に利用できるとすれば、ステップ503は、更に、一つ以上の治療プラン(例えば、動脈塞栓、化学塞栓療法、及び放射線塞栓療法)をインプットとして受け取ることを含みうる。療法の範囲(例えば、放射線塞栓療法を使うのであれば放射線の投与量)も、インプットとして受け取りうる。
【0062】
一つの実施形態においては、ステップ505は、一定範囲の治療パラメーター、例えば、塞栓療法を最適化するためのパラメーターを決定することを含みうる。一つの実施形態においては、ステップ505は、塞栓部位を特定することも含みうる。方法500は、更に、自動的及び手動の分割アルゴリズムの組合せを使って、肝動脈(複数可)(例えば、総肝動脈、左及び右の肝動脈)の中心線及び内腔、CTスキャンで可視的な大動脈の部分、可視的なその他の動脈(例えば、腸間膜)を再構築するステップ507を含みうる。
【0063】
一つの実施形態においては、ステップ509は、肝動脈(複数可)の塞栓をモデル化することを含みうる。療法の種類(例えば、動脈塞栓、化学塞栓療法または放射線塞栓療法)によるが、塞栓領域は、(例えば、患者についての以前の知識から)直接的に利用しうるか、または塞栓の長さ及び部位が放射線の投与量に基づいてモデル化されうる。一つの実施形態においては、塞栓領域の長さは、別に特定される場合を除き、放射線の投与量に比例してモデル化されうる。
【0064】
一つの実施形態においては、ステップ511及び513は、血流の再分配及び患者に対する塞栓療法の血行動態的影響を分析することを含みうる。例えば、ステップ511は、治療前のモデルを構築することを含みうる。例えば、ステップ511は、(例えば、ステップ507からの)再構築された患者固有のモデルの有限要素メッシュを構築することを含みうる。この治療の上流の他の臓器、例えば、胆嚢、膵臓等のかん流のレベルだけでなく、肝臓の組織かん流の治療前レベルも計算しうる。
【0065】
ステップ513は、治療後の患者固有のモデル、例えば、塞栓肝動脈の新たな有限要素メッシュを構築することを含みうる。ステップ513は、更に、(例えば、ステップ503からの)候補療法のための治療後の患者の肝臓における組織かん流を計算することを含みうる。一つの実施形態においては、ステップ515は、治療後の組織かん流測定値を、例えば、医師による検索のために電子記憶媒体に保存及び/またはアウトプットすることを含みうる。ステップ515のためのアウトプットは、更に、治療前及び治療後の他の臓器の組織かん流の違いを含みうる。
【0066】
図5Bは、塞栓療法を最適化するための例示的な方法520のブロック図を示す。一つの実施形態においては、ステップ521は、患者に対する塞栓療法を最適化するためのコスト関数を定義することを含みうる。例えば、ステップ521は、治療前及び治療後の組織かん流の違いに基づくコスト関数を定義することを含みうる。肝臓における健康な細胞に対する血液供給は、肝動脈以外の門脈及び動脈によって供給されうるので、正味の肝臓かん流の違いはコスト関数としての機能を果たす。他の臓器のかん流は、塞栓の結果として変化しうる。したがって、これらの臓器における望ましいかん流のレベルからの逸脱もコスト関数に加えうる。最適化におけるそれぞれの項は、(例えば、ステップ503におけるように)インプットがそうでない旨を示さない限り、等しい重みをもって扱いうる。
【0067】
一つの実施形態においては、ステップ523は、望ましい最適値及び/または停止基準として、治療前の臓器かん流を定義することを含みうる。一つの実施形態においては、ステップ525は、コスト関数を解くための最適化アルゴリズムを実行することを含みうる。例えば、ステップ525は、最適な治療法、例えば、コスト関数を最小化する治療法、を特定するためにネルダーミードアルゴリズムを用いることを含みうる。ステップ525は、パラメーター(例えば、投与量)の最初の集合をランダムに選択することを含みうる。次に、ネルダーミードアルゴリズムの各ステップで、存在する点を使って単体を構築し、そして反射、縮小、収縮または縮小の間で演算を選択して、新たなパラメーターを特定しうる。このステップを連続して行うことにより、停止基準が満たされた時に、最適な治療パラメーターを特定しうる。
【0068】
一つの実施形態においては、ステップ527は、最適な治療パラメーターを、例えば、電子記憶媒体に保存及び/またはアウトプットすることを含みうる。ステップ527は、更に、この最適な治療パラメーターを提示する表現を作ることを含みうる。
【0069】
図6は、例示的な実施形態による、(例えば、膵頭十二指腸切除術のために)血管の切除をシミュレートする例示的な方法600のブロック図を示す。図6の方法は、電子ネットワーク101を通じて、医師102及び/または第三者提供者104から受け取った情報、画像、及びデータに基づいて、サーバーシステム106によって行いうる。
【0070】
上腸間膜動脈または門脈の切除は、腫瘍を臓器に局限し、周囲の動脈または静脈から分離できない時に、閉塞による治療として行いうる。これに続いて、最初の動脈系の部分を再構築する。例示的な方法600は、神経性、縦隔、または生殖細胞腫瘍、または胸腺腫を含む異常組織を除去する外科的切除のためにも使われうる。一般的に、この実施形態は、腫瘍が局限し、そして、切除後のモデルが切除した形状を反映するために臓器需要を変更することを伴いうる場合に、臓器の一部を切ることも含みうる。
【0071】
一つの実施形態においては、ステップ601は、標的の血管系の患者固有モデルを取得することを含みうる。例えば、ステップ601は、患者の門脈または上腸間膜静脈、肝動脈が枝分かれする患者の大動脈の一部及び/または対象となる他の下流の血管を包含するデジタル表現物を取得することを含みうる。患者の臓器の体積及び/または質量は、シミュレーションに含まれうる膵臓及び種々の臓器の血流需要を計算するために損失を増減するインプットとしての機能も果たしうる。
【0072】
一つの実施形態においては、ステップ603は、例えば、接線切除または区域切除をシミュレートするための切除手術の一つ以上の形式を受け取ること、または指定することを含みうる。例えば、ユーザー(例えば、医師)は、研究するための一つ以上の切除手術の形式をインプットしうる。これらのインプットは、(例えば、特定の患者のための)候補治療法を含みうる。
【0073】
一つの実施形態においては、ステップ605は、受け取った門脈及び上腸間膜動脈のための中心線及び内腔、CTスキャンにより可視的な大動脈の部分、及び/または可視的な他の動脈(例えば、腸間膜)の再構築を含みうる。ステップ605は、自動的及び手動の分割アルゴリズムの一つまたは両者を使って行いうる。
【0074】
一つの実施形態においては、ステップ607は、切除をモデル化することを含みうる。例えば、ステップ607は、(例えば、ステップ603からの)受け取った、または指定された切除手術の切除後の計算モデルを作ることを含みうる。仮に、接線切除が好ましい場合、上腸間膜動脈または門脈の一部は、中心線に平行な壁の部分に沿って除去しうる。この内腔の直径は、切除の範囲に基づいて相応して減少しうる。仮に、区域切除が好ましいとすると、(例えば、ステップ605からの)再構築モデル中の動脈の一部が、除去されうる。ステップ607は、仮に切除後に行うとすると、追加の補修をモデル化することを更に含みうる。一つの実施形態においては、損傷を被り、または血管の一部が取り除かれた動脈の切除または外科的治療は、血流を妨げうる狭窄または狭くなることを引き起こしうる。一つの実施形態においては、補修は、外科手術によって欠落しまたは損傷を受けた動脈壁を置き換える材料の切片(例えば、パッチ)を縫うことを含みうる。補修に使われる材料は、自家静脈及び/または人工移植材料を含みうる。動脈の補修は、その直径(及びその断面積)を増加させうるので、そうでなければ血流を妨げる狭窄を矯正することができる。
【0075】
一つの実施形態においては、ステップ609は、血流の再分配及び切除の血行動態的影響を分析することを含みうる。例えば、ステップ609は、(ステップ605からの)再構築されたモデルの切除前の有限要素メッシュを構築することを含みうる。ステップ609は、膵臓に対する組織かん流のレベルを計算することを更に含みうる。治療の上流の他の臓器、例えば、胆嚢、膵臓等のかん流レベルも計算しうる。ステップ609は、切除された動脈の有限要素メッシュを構築することも含みうる。治療後の膵臓における組織かん流は、一つ以上の候補治療法について計算しうる。
【0076】
一つの実施形態においては、ステップ611は、ステップ609からの分析結果を、例えば、ユーザー/医師がアクセスできる電子記憶媒体に、保存及び/またはアウトプットすることを含みうる。ステップ611のためのアウトプットは、切除前対切除後の他の臓器の組織かん流の違いを更に含みうる。
【0077】
本開示は、種々の閉塞による治療をモデル化すること及び/またはそのモデル化に基づいて、患者のために閉塞による治療を選択することに適用しうる。治療後に結果として起こる血流をモデル化することは、異なる治療法の比較を可能にし、そのために特定の患者のために最適な治療法を選択しうる。
【0078】
本発明の他の実施形態は、本明細書の考慮及び本明細書に開示される本発明の実践から当業者に明らかになる。本明細書及び実施例が単なる例示とみなされ、本発明の真の範囲及び趣旨が以下の特許請求の範囲によって示されることが意図される。
図1
図2
図3A
図3B
図4A
図4B
図5A
図5B
図6