IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱自動車工業株式会社の特許一覧

<>
  • 特許-電動車両の制御装置 図1
  • 特許-電動車両の制御装置 図2
  • 特許-電動車両の制御装置 図3
  • 特許-電動車両の制御装置 図4
  • 特許-電動車両の制御装置 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-03
(45)【発行日】2023-07-11
(54)【発明の名称】電動車両の制御装置
(51)【国際特許分類】
   B60L 15/20 20060101AFI20230704BHJP
   B60L 50/16 20190101ALI20230704BHJP
【FI】
B60L15/20 J
B60L50/16
【請求項の数】 3
(21)【出願番号】P 2022530479
(86)(22)【出願日】2021-05-31
(86)【国際出願番号】 JP2021020748
(87)【国際公開番号】W WO2021251201
(87)【国際公開日】2021-12-16
【審査請求日】2022-09-14
(31)【優先権主張番号】P 2020102134
(32)【優先日】2020-06-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006286
【氏名又は名称】三菱自動車工業株式会社
(74)【代理人】
【識別番号】100177460
【弁理士】
【氏名又は名称】山崎 智子
(72)【発明者】
【氏名】宮下 航輝
(72)【発明者】
【氏名】清水 亮
【審査官】黒嶋 慶子
(56)【参考文献】
【文献】特開2019-213446(JP,A)
【文献】特開2012-086743(JP,A)
【文献】特開2012-244751(JP,A)
【文献】特開2009-077585(JP,A)
【文献】特開平6-247188(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 15/20
B60L 50/16
(57)【特許請求の範囲】
【請求項1】
走行用の駆動源である電動モータと、
アクセル開度を検出するアクセル開度検出部と、
選択されたシフトポジションを検出するシフトポジション検出部と、
前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、
前記電動モータに対する出力トルクを指令する出力トルク指令部と、を備え、
前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、
前記出力低減制御は、前記アクセル開度が第1所定値以上となるアクセルON状態で解除され、
解除後は、前記アクセル開度に基づく前記ドライバ要求トルクに対応するように、前記出力トルクの増加率を前記出力低減制御が無い場合のトルク上昇度合いと同じ傾きに設定される電動車両の制御装置。
【請求項3】
ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、
前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている請求項1に記載の電動車両の制御装置。
【請求項4】
ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、
前記出力低減制御は、前記ブレーキ操作部の操作量が第2所定値以上である制動状態よりも、前記ブレーキ操作部の操作量が前記第2所定値未満である制動緩解状態において前記出力緩和トルクを設定する継続時間が短くなるよう設定されている請求項1に記載の電動車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電動モータを駆動源とする電動車両の制御装置に関する。
【背景技術】
【0002】
電動モータを駆動源とする電動車両では、ドライバのシフト操作によってシフトポジションが前進レンジ(ドライブレンジ(Dレンジ)等)に選択されると、電動モータの駆動軸が正方向に回転し、後退レンジ(リバースレンジ(Rレンジ))に選択されると、電動モータの駆動軸は逆方向に回転する。電動モータの駆動軸の回転は、減速機やデファレンシャル等を介して駆動輪に伝達される。このとき、駆動軸が正方向に回転すると車両は前進し、逆方向に回転すると車両は後退する。
【0003】
ところで、電動モータの駆動軸から駆動輪に至るまでの動力伝達経路には、多数のギヤが介在する。これらのギヤの歯同士の噛み合い部にはバックラッシュ、すなわち、部材の運動方向に意図的に設定された隙間等に起因するクリアランスが存在する。このため、シフトポジションが前進レンジから後退レンジに切り替えられた際に、あるいは、その切り替え後すぐに車両が発進した際には、まずは噛み合い部におけるクリアランスがなくなった後(「ガタ詰め」と呼称してもよい)に駆動力が伝達されることになる。噛み合い部におけるクリアランスがなくなる際には、互いに噛み合う部材同士が強く衝突し、音や振動が発生する場合がある。また、これらのバックラッシュは経年とともに部材が磨耗して増大する傾向があるので、歯打ち音や振動が時間の経過とともに大きくなっていく場合もある。
【0004】
そこで、日本国特開2013-183503号公報には、停車中や微車速状態で、シフトポジションが前進レンジと後退レンジとの間で切り替えられた後、車両が発進するまでの間に、クリープトルクよりも小さいガタ詰めトルクを出力させる制御装置の技術が開示されている。このガタ詰めトルクの出力により、車両の発進時における噛み合い部から生じる音や振動の発生を抑制できるとされている。
【0005】
上記の日本国特開2013-183503号公報の制御装置では、シフトポジションを切り替え後、車両が発進する際における音や振動の発生をある程度抑制できる。しかし、シフトポジションを切り替えた後に少しでも早く発進したい場合等には、その発進時期が遅れ、あるいは、発進後に満足な加速が得られない場合もある。
【発明の概要】
【0006】
本開示は、シフトポジションを前進レンジと後退レンジとの間で切り替えた後の音や振動の発生を抑制するとともに、その後の発進及び加速に適切に対応することが可能な電動車両の制御装置を提供する。
【0007】
本開示の一態様によれば、電動車両の制御装置は、走行用の駆動源である電動モータと、アクセル開度を検出するアクセル開度検出部と、選択されたシフトポジションを検出するシフトポジション検出部と、前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、前記電動モータに対する出力トルクを指令する出力トルク指令部と、を備え、前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、前記出力低減制御は、前記アクセル開度が第1所定値以上となるアクセルON状態で解除され、解除後は、前記アクセル開度に基づく前記ドライバ要求トルクに対応するように、前記出力トルクの増加率を前記出力低減制御が無い場合のトルク上昇度合いと同じ傾きに設定される。
【0009】
本開示の前記態様によれば、ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている構成を採用してもよい。
【0010】
本開示の前記態様によれば、ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、前記出力低減制御は、前記ブレーキ操作部の操作量が第2所定値以上である制動状態よりも、前記ブレーキ操作部の操作量が前記第2所定値未満である制動緩解状態において前記出力緩和トルクを設定する継続時間が短くなるよう設定されている構成を採用してもよい。
【図面の簡単な説明】
【0012】
図1図1は、本開示における一実施形態の第1制御例を示すタイムチャートである。
図2図2は、一実施形態の第2制御例を示すタイムチャートである。
図3図3は、一実施形態の第3制御例を示すタイムチャートである。
図4図4は、制御例を示すフローチャートである。
図5図5は、車両及び車両制御装置の模式図である。
【発明を実施するための形態】
【0013】
本開示における実施形態を、図1図5に基づいて説明する。本実施形態は、車両20が低速で走行している状態又は車両20の停止時等の低速域において、ドライバが、シフトポジションを前進レンジと後退レンジとの間で切り替えた際に、動力伝達経路での音や振動の発生を抑制しつつ、且つ、その後の発進及び加速にも適切に対応する電動車両の制御装置10である。
【0014】
ここで、低速域とは、車速、すなわち車両20の速度が所定速度以下の微車速の状態であり、ドライバがシフトレバー26を操作して、シフトポジションを前進レンジからニュートラルレンジを経て後退レンジへ、あるいは、後退レンジからニュートラルレンジを経て前進レンジへと切り替えるような極低速状態(前進及び後退を含む)、又は、車両20の停止状態を意味している。以下、ニュートラルレンジをNレンジと称する。また、前進レンジとは、駆動輪28,29に前進の駆動トルクが付与されるドライブレンジ(Dレンジ)やセカンドレンジ(2レンジ)等の前方への走行レンジを意味し、後退レンジとは、後進の駆動トルクが付与されるリバースレンジ(Rレンジ)を意味している。
【0015】
なお、一般的には、DレンジからNレンジを経てRレンジへのシフトチェンジ、あるいは、RレンジからNレンジを経てDレンジへのシフトチェンジは、車速が0km/hで車両20が完全に停止した状態で行うことが望ましいが、微車速の運転状態では、ドライバがこのようなシフトチェンジを行うことが許容されている場合が多い。低速域を既定する所定速度は、このようなシフトチェンジが許容される最大限の車速(例えば、2~3km/h程度)を意味している。
【0016】
図5は、本実施形態に係る制御装置10が搭載された車両(電動車両)20の模式図である。車両20は、電力により駆動力を発生する電動モータ22を備えた電動車両であり、本実施形態では、プラグインハイブリッド電気自動車としている。エンジン24が発電機を駆動して発電機能を発揮することで、走行用の駆動源である電動モータ22への電力の供給、ならびに、蓄電池23への蓄電が行われる。また、蓄電池23への蓄電は、この車両20と地上側の電源とを専用のケーブルで接続することによっても行われる。本実施形態では、電動モータ22はフロントモータ22aとリヤモータ22bとからなり、そのフロントモータ22aとリヤモータ22bが、それぞれデファレンシャル27を介して前輪及び後輪の両駆動輪28,29を別々に駆動しているが、一つの電動モータ22で全ての駆動輪28,29を駆動する車両20としてもよい。
【0017】
車両20の左右の前輪28,28、及び、左右の後輪29,29には、それぞれブレーキディスクとブレーキキャリパ等を備えたブレーキユニット31が装着されている。ブレーキ操作部30の操作量に基づいてブレーキユニット31は駆動輪28,29に制動力を発生させる。これらのブレーキユニット31とブレーキ操作部30、及び、それらを制御するブレーキ制御部7とで、車両20の制動装置を構成している。なお、通常はブレーキ操作部30として運転席にブレーキペダル(以下、ブレーキペダル30と称する)が装備され、そのブレーキペダル30の踏み込み量又は踏み込み強さが制動力の強弱を決定する基準となる操作量とされる。また、制動時には、駆動輪28,29から逆入力された回転によって電動モータ22が発電機として機能して電力が回生される。
【0018】
車両制御装置10は、車速を検出する速度検出部1と、アクセルポジションセンサからの情報によりアクセル開度を検出するアクセル開度検出部2と、シフトポジションセンサからの情報により選択されたシフトポジションを検出するシフトポジション検出部3と、アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部4と、電動モータに対する出力トルクを指令する出力トルク指令部5とを備えている。これらは、電子制御ユニット(Electronic Control Unit)21に備えられている。また、車両20は、電動モータ22からの出力トルクを検出するトルクセンサや、ブレーキペダルの踏込量等を検出するセンサ等、運転の制御に必要な各種の情報を検出するセンサ類を備えている。これらのセンサ類からの情報は、電子制御ユニット21の制御全般を司る制御部6に発信される。また、電子制御ユニット21はブレーキ制御部7も備えている。
【0019】
速度検出部1は、駆動輪28,29等に設けた車速センサからの情報により、車両20の走行速度を検出する。アクセル開度検出部2は、アクセル開度、すなわちドライバによるアクセルペダル25の踏み込み量を、0%~100%の間の数値で検出することができる。ここで、0%はアクセルペダル25を全く踏み込んでいない状態、100%はアクセルペダル25を最大に踏み込んだ状態である。このアクセル開度に基づいて、ドライバ要求トルク算出部4は、車両20に対する加速要求の有無と、その加速要求の大きさ(アクセル要求トルク)をそれぞれ検出することができる。
【0020】
シフトポジション検出部3は、シフトレバー26の位置を検出するシフトポジションセンサからの情報により、自動変速機のシフトポジションを検出する。また、シフトポジションが切り替えられた時には、その切り替えの情報が電子制御ユニット21に発信される。このため、例えば、シフトポジションがDレンジからNレンジへ、NレンジからRレンジへ、あるいは、RレンジからNレンジへ、NレンジからDレンジへ切り替えられた場合には、その切替えがあったという情報が電子制御ユニット21の制御部6に発信される。シフトポジションの切り替えがあったという情報は、例えば、その切替え時に発信される切り替えを意味する信号であってもよいし、微小な一定の時間毎(例えば0.01秒毎)にシフトポジションがいずれの位置にあるかを信号で判定するとともに、前回の判定時と今回の判定時とでシフトポジションの信号が同じであれば切り替えが無く、シフトポジションの信号が異なっていれば切り替えがあったと判定するようにしてもよい。シフトポジションの情報には、現在のシフトポジションがどの位置にあるかという情報と、上記のようなシフトポジションが切り替えられたという情報も含んでいる。
【0021】
ここで、予め設定された所定の検出時間内に、DレンジからNレンジを経てRレンジへ、あるいは、RレンジからNレンジを経てDレンジへ切り替えがあったと判別された場合には、シフトポジション検出部3は、シフトポジションの前後切り替えがあったと判別する。前後切り替えの有無を判別する所定の検出時間とは、例えば、前述のシフトポジションの信号の発信間隔である微小な一定の時間、あるいは、その微小な一定の時間の整数倍の時間とすることができる。
【0022】
出力トルク指令部5は、電動モータ22に対する出力トルクを指令する機能を有している。出力トルク指令部5による出力トルクの算出と指令の流れを図4に示す。図中の符号p1、p2は、それぞれアクセル開度(アクセルポジションセンサ電圧)に基づいて算出されるアクセル要求トルク、クリープトルクの情報である。アクセル要求トルクやクリープトルクは、アクセル開度の情報やトルクセンサからの情報、その他運転状態を表す各種の情報に基づいて、ドライバ要求トルク算出部4が算出を行う。また、ドライバ要求トルク算出部4は、アクセル要求トルク、クリープトルク等の情報に基づいて、ドライバ要求トルクの算出を行う(行程s1参照)。
【0023】
続いて、シフトポジションの前後切り替えの有無が判別される。その前後切り替えの有無に基づいて、出力低減制御を行うか否かが決定される(行程s2参照)。シフトポジションの前後切り替えが無い通常の運転状態の場合、出力低減制御は行われない。また、シフトポジションの前後切り替えがあった場合は出力低減制御へ移行する。
【0024】
出力トルク指令部5による電動モータ22への出力トルクの指令は、その時点での出力トルクに対して、出力トルクの増加率を指令することにより行われる(行程s3,s4参照)。通常の制御では、原則として、現在の出力トルクをドライバ要求トルクに合致させるために、現在の出力トルクをどの程度の割合で増減させればよいかという指標、すなわち要求トルク増加率によって指令される。また、出力低減制御では、ドライバ要求トルクよりも相対的に低い出力緩和トルクが採用され、原則として、現在の出力トルクを出力緩和トルクに合致させるために、現在の出力トルクをどの程度の割合で増減させればよいかという指標、すなわち緩和時トルク増加率によって指令される。出力低減制御を行うことにより、シフトポジションを前進レンジと後退レンジとの間で切り替え後に発生する音や振動を抑制することができる。
【0025】
また、出力低減制御は、出力緩和トルクが設定される継続時間中に、アクセル開度が第1所定値以上となるアクセルON状態になれば、その制御の途中でも解除される。アクセル開度がアクセルON状態であるかどうかは、アクセル開度がアクセルON閾値である第1所定値以上となっているかどうかで判別される。ここで、第1所定値は、例えば、アクセル開度0%にペダルの遊びを付加した5%とすることができる。アクセルON状態で、出力低減制御が解除されるので、その後、ドライバが要求する発進及び加速に適切に対応することができる。
【0026】
図4の行程s5では、算出された出力トルク及びその出力トルクの増加率の情報に基づいて、フロント、リヤの各電動モータ22a,22bに対する要求モータトルクが算出される(符号p3に示す要求モータトルク(フロント)、符号p4に示す要求モータトルク(リヤ)参照)。
【0027】
図1は、本開示における一実施形態の第1制御例を示すタイムチャートである。図1のタイムチャートに基づいて、本開示の第1制御例を説明する。図1における記号(a)に示すa0地点でシフトポジションがRレンジからNレンジを経てDレンジに切り替えられた場合を想定する。このとき、図1における記号(b)に示すb0地点はブレーキペダル30のストローク(踏込み量)がプラスであり、車両20が停止する程度にやや強く制動力が付与されているブレーキON状態である。また、図1における記号(c)に示すc0地点はアクセル開度がゼロでアクセルOFF状態である。また、図1における記号(d)に示すように、車速はほぼゼロの低速域の運転状態である。a0地点でシフトポジションの前後切り替えが成された時、図1における記号(e)に符号e1で示すように、出力トルクはクリープトルクとなっている。なお、ブレーキON状態は、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)が、予め決められた第2所定値以上である制動状態と規定し、ブレーキOFF状態は、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)が第2所定値未満である制動緩解状態と規定することができる。第2所定値は、例えば、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)をゼロとしてもよいし、ブレーキが実際に効き始めるまでのペダル等の遊びを考慮したプラスの数値に設定してもよい。
【0028】
シフトポジションの前後切り替えによって、図1における記号(f)に符号f0で示すように、シフトポジションの状態(またはステータス)が-1(Rレンジに相当)から1(Dレンジに相当)へと立ち上がる。すなわち、トルクの正の符号は前進、負の符号は後進を表している。図1における記号(g)に示す実線g2は、出力低減制御を行った後の出力トルクに対応した要求モータトルクであり、鎖線g1は出力低減制御を行う前のドライバ要求トルクに対応した要求モータトルクである。図1における記号(g)はフロントモータの様子を例示しているが、リヤモータにおいても同様の制御をすることができる。電動モータ22に指令される要求モータトルクは、図1における記号(g)に示す鎖線g1から実線g2へと低減されている。ここで、出力低減制御を行うべき判定がなされた場合には、通常用いているドライブモード毎の出力トルクの増加率制限MAPから、出力低減制御用の抑制MAPに切り替えられて、それぞれの運転状態に応じた増加率の指令が出される。
【0029】
図1における記号(g)に実線g2で示す出力緩和トルクは、シフトポジションの前後切り替え時には概ねほぼ横ばい又は微増で推移し(緩和時トルク増加率はゼロ又はゼロに近い数値で推移し)、その後、出力緩和トルクは徐々に増加して(緩和時トルク増加率も徐々に増加し)、電動モータ22の駆動方向が前後反転するトルクゼロ付近で単位時間当たりの出力緩和トルクの増加量が減少又は増加量が一旦ゼロとなり、すなわち、前後よりも増加量が小さい横ばい状態になる(緩和時トルク増加率は減少する又は一旦ゼロになる)。このようなトルクゼロ付近での横ばい状態の区間を出力トルク調整区間と称し、このブレーキON状態の制御例では出力トルク調整区間が時間t1だけ設定されている。ここで、出力トルク調整区間は、出力緩和トルクの増加率が予め設定された所定増加率未満である単位時間当たりの出力の変化量が少ない範囲で規定することができる。出力緩和トルクが出力トルク調整区間を過ぎると、出力緩和トルクは徐々に増加して(緩和時トルク増加率も徐々に増加し)、鎖線g1で示す反転後のドライバ要求トルクに近づく手前で単位時間当たりの出力緩和トルクの増加量が減少して(緩和時トルク増加率は減少して)、最終的に出力緩和トルクがドライバ要求トルクに至り制御を終了する。図中の時間t2は、出力トルクの増加率の変曲点間の所要時間である。図1における記号(h)の鎖線h2は、出力低減制御を行わない場合に発生する車両20の振動の加速度を示し(図中のg0地点のトルクの増大が矢印Bのように鎖線h2の振動につながっている)、実線h1は、出力低減制御を行った場合の車両20の振動の加速度を示している。出力低減制御によって、車両20の振動の最大の振幅は、y0からy1に大幅に低減されている。
【0030】
図2は、一実施形態の第2制御例を示すタイムチャートである。図2のタイムチャートに基づいて、本開示の第2制御例を説明する。第2制御例は、出力低減制御が開始された後、アクセル開度が第1所定値以上となるアクセルON状態になった場合を想定している。アクセルON状態になると、出力低減制御は解除される。出力低減制御が開始されるまでの制御は、図1と共通であるので説明を省略する。なお、図2中の符号には「’」を付しており、図2中の符号a0’,b0’,c0’,f0’,g0’、及び、矢印A’等は、図1中の符号a0,b0,c0,f0,g0、及び、矢印A等に対応する。
【0031】
アクセルON状態に移行して出力低減制御が解除された後、通常であれば、出力低減制御を行わない出力トルクに復帰することとなる。しかし、出力低減制御が終了して、急激に出力トルクを低減補正前の数値に戻すことは、出力トルクの不連続な変動をもたらし、乗り心地の悪化につながる。このため、アクセルON状態に移行した場合には、その後はアクセル開度に基づくドライバ要求トルクに対応して出力トルクの増加率が設定される。
【0032】
ここで、出力低減制御が解除後の加速時の出力トルクを、アクセル開度に基づいた通常の出力トルクの増加率(要求トルク増加率)に基づいて決定しているので、図2における記号(g)に符号g1’で示す出力低減制御が無い場合のトルクの上昇度合いと同じ傾きで、符号g3’で示すようにトルクが上昇していくことになる。このトルクの上昇制御は、その後はアクセル操作に基づいて継続し、加速の終了とともに制御を終了する。このアクセルON時の制御では、トルクゼロ付近の出力トルク調整区間の時間t1’は図1のブレーキON時の時間t1よりも短く、また、出力緩和トルクの増加率の変曲点間の所要時間t2’も図1のブレーキON時の時間t2よりも短く設定され早期の加速に対応している。また、出力トルク調整区間の時間t1’中の増加率の最大値は、図1の第一制御例よりも大きく(増加の傾きが大きく)なっている。
【0033】
図3は、一実施形態の第3制御例を示すタイムチャートである。図3のタイムチャートに基づいて、本開示の第3制御例を説明する。第3制御例は、出力低減制御が開始される際に、ブレーキOFF状態である場合を想定している。ブレーキOFF状態では、ブレーキペダル30が操作されておらず又は踏み込まれていても遊び程度の踏み込み量であり、実質的にブレーキが操作されていない。このため、ドライバがすぐにアクセル操作をすると予測される運転状態である。主要な部分は図1のブレーキON時の制御と共通であるので説明を省略し、ブレーキのON・OFFに関わる差異点を中心に以下説明する。なお、図3中の符号には「”」を付して、図1中の対応する箇所の符号と区別している。
【0034】
第3制御例において、出力トルク調整区間の時間t1”は図1のブレーキON時の時間t1よりも短く、また、出力緩和トルクの増加率の変曲点間の所要時間t2”も図1のブレーキON時の時間t2よりも短く設定され、続いて行われると予測される加速の要求に備えている。また、出力低減制御では、出力トルク調整区間だけでなく、出力緩和トルクを設定する継続時間についても、ブレーキのOFF状態での出力緩和トルクを設定する継続時間t0”は、ブレーキON状態の出力緩和トルクを設定する継続時間t0よりも短く設定されている。ここで、出力トルク調整区間の時間t1,t1”、出力緩和トルクの増加率の変曲点間の所要時間t2,t2”、出力緩和トルクを設定する継続時間t0,t0”のそれぞれについて、ブレーキON状態であるかブレーキのOFFであるかの2段階に分けて制御を説明したが、この例に限らず、例えば、ブレーキペダル30が踏み込み量(ブレーキ操作部の操作量)が小さいほど、徐々に段階的に、又は、無段階で連続的に短くなるように設定される制御を採用してもよい。
【0035】
上記の各制御例では、シフトポジションがRレンジからNレンジを経てDレンジに切り替えられた場合を想定して、その制御の内容を説明したが、シフトポジションがDレンジからNレンジを経てRレンジに切り替えられた場合においても、駆動方向を逆方向にした同様の制御が可能である。また、本実施形態では、車両20として、プラグインハイブリッド電気自動車を採用したが、本実施形態以外にも、電力により駆動力を発生する電動モータ22を備えた各種の電動車両において、本開示を適用できる。
【0036】
本出願は、2020年6月12日出願の日本特許出願特願2020-102134に基づくものであり、その内容はここに参照として取り込まれる。
【符号の説明】
【0037】
1 速度検出部
2 アクセル開度検出部
3 シフトポジション検出部
4 ドライバ要求トルク算出部
5 出力トルク指令部
10 車両制御装置
20 車両
21 電子制御ユニット
22 電動モータ
図1
図2
図3
図4
図5