IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レイア、インコーポレイテッドの特許一覧

特許7308267指向性光源及び平面ディフューザを使用する静的マルチビューディスプレイ並びに方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-05
(45)【発行日】2023-07-13
(54)【発明の名称】指向性光源及び平面ディフューザを使用する静的マルチビューディスプレイ並びに方法
(51)【国際特許分類】
   G02B 30/56 20200101AFI20230706BHJP
   G02B 5/18 20060101ALI20230706BHJP
   G02B 5/02 20060101ALI20230706BHJP
【FI】
G02B30/56
G02B5/18
G02B5/02 B
【請求項の数】 20
(21)【出願番号】P 2021532351
(86)(22)【出願日】2018-12-08
(65)【公表番号】
(43)【公表日】2022-01-28
(86)【国際出願番号】 US2018064633
(87)【国際公開番号】W WO2020117275
(87)【国際公開日】2020-06-11
【審査請求日】2021-06-18
【前置審査】
(73)【特許権者】
【識別番号】514274546
【氏名又は名称】レイア、インコーポレイテッド
【氏名又は名称原語表記】LEIA INC.
(74)【代理人】
【識別番号】100092783
【弁理士】
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100093676
【弁理士】
【氏名又は名称】小林 純子
(74)【代理人】
【識別番号】100120134
【弁理士】
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100126354
【弁理士】
【氏名又は名称】藤田 尚
(72)【発明者】
【氏名】ファタル,デイヴィッド エー.
【審査官】井亀 諭
(56)【参考文献】
【文献】国際公開第2018/128657(WO,A1)
【文献】特開2009-231017(JP,A)
【文献】米国特許出願公開第2014/0362601(US,A1)
【文献】特開2003-162912(JP,A)
【文献】特開2010-101912(JP,A)
【文献】国際公開第2009/054124(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 30/56
G02F 1/13357
(57)【特許請求の範囲】
【請求項1】
光ビームを導波するように構成されたライトガイドと、
垂直方向に平行化される指向性光を供給するように構成された指向性光源と、
前記指向性光源と前記ライトガイドとの間に位置する平面ディフューザであって、前記平面ディフューザが、前記指向性光から複数の導波光ビームを前記ライトガイド内に供給するように構成されており、前記指向性光を水平方向に散乱または拡散させて、前記指向性光のコリメーション係数を水平方向に沿って変化させ、それにより前記複数の導波光ビームの(複数の)導波光ビームの半径方向が、前記垂直方向に直交する水平方向において互いに異なるように構成されている、平面ディフューザと、
前記ライトガイドの全体に分布する複数の回折格子であって、前記複数の回折格子が、前記複数の導波光ビームからの光を、静的マルチビュー画像を表示する指向性光ビームとして外部に散乱させるように構成されている、複数の回折格子と、を備える、
静的マルチビューディスプレイ。
【請求項2】
前記指向性光源がレーザを含み、前記指向性光が、前記垂直方向及び水平方向の両方に平行化されている、請求項1に記載の静的マルチビューディスプレイ。
【請求項3】
前記指向性光源が前記垂直方向に傾斜角を有し、前記傾斜角が、前記垂直方向に非ゼロの伝播角度を有する前記指向性光をもたらすように構成されている、請求項1に記載の静的マルチビューディスプレイ。
【請求項4】
前記平面ディフューザが、前記指向性光を傾斜させることにより、前記垂直方向に非ゼロの伝播角度を有する前記複数の導波光ビームの(複数の)導波光ビームを、前記ライトガイド内に供給するようにさらに構成されている、請求項1に記載の静的マルチビューディスプレイ。
【請求項5】
前記ライトガイドが、前記垂直方向に非ゼロの伝播角度を成す前記複数の導波光ビームの(複数の)導波光ビームを前記ライトガイド内に供給するように構成された形状の入力面を含む、請求項1に記載の静的マルチビューディスプレイ。
【請求項6】
前記複数の回折格子の各回折格子が、前記静的マルチビュー画像のビューピクセルが有する強度及び視線方向に対応する強度及び主要角度方向を有する指向性光ビームを、前記複数の導波光ビームの(1つの)導波光ビームの一部から外部に散乱させるように構成されている、請求項1に記載の静的マルチビューディスプレイ。
【請求項7】
前記複数の回折格子の(1つの)回折格子の格子特性が、前記指向性光ビームの前記強度及び前記主要角度方向を決定するように構成されており、前記格子特性が、前記ライトガイドの表面上における前記回折格子の位置と、前記ライトガイドの側部にある前記指向性光源の入力位置との両方の関数である、請求項6に記載の静的マルチビューディスプレイ。
【請求項8】
前記格子特性が、前記回折格子の格子ピッチ及び前記回折格子の格子方位の一方若しくは両方を含み、前記格子特性が、前記回折格子によって供給される前記指向性光ビームの前記主要角度方向を決定するように構成されている、請求項7に記載の静的マルチビューディスプレイ。
【請求項9】
前記格子特性が、前記回折格子によって供給される前記指向性光ビームの前記強度を決定するように構成された格子深さを含む、請求項7に記載の静的マルチビューディスプレイ。
【請求項10】
平板ライトガイドと、
垂直方向に平行化される指向性光を供給するように構成された指向性光源と、
前記指向性光から複数の導波光ビームを供給するように構成された平面ディフューザであって、前記指向性光を水平方向に散乱または拡散させて、前記指向性光コリメーション係数を水平方向に沿って変化させ、かつ垂直方向に平行化される前記指向性光のコリメーション係数を実質的に維持するかまたは少なくともこれに及ぶ影響を最小限にし、それにより前記複数の導波光ビームの(複数の)導波光ビームが、前記垂直方向に非ゼロの伝播角度を有し、かつ前記垂直方向に直交している水平方向において、それぞれ互いの半径方向が異なっている、平面ディフューザと、
静的マルチビュー画像を供給するように構成されたマルチビューピクセルのアレイであって、1つの前記マルチビューピクセルが、前記複数の導波光ビームからの光を、前記静的マルチビュー画像のさまざまなビューのビューピクセルを表示する指向性光ビームとして回折的に外部に散乱させるように構成された、複数の回折格子を含む、マルチビューピクセルのアレイと、を備える、
静的マルチビューディスプレイ。
【請求項11】
前記複数の回折格子の(1つの)回折格子がもたらす指向性光ビームの主要角度方向が、前記格子特性の関数であり、前記格子特性が、前記回折格子と前記指向性光源との相対位置の関数である、請求項10に記載の静的マルチビューディスプレイ。
【請求項12】
前記格子特性が、前記回折格子の格子ピッチ又は格子方位の一方若しくは両方を含み、前記回折格子によってもたらされ、該当するビューピクセルの強度に対応している前記指向性光ビームの強度が、前記回折格子の回折結合効率によって決まっている、請求項11に記載の静的マルチビューディスプレイ。
【請求項13】
前記指向性光源がレーザを含み、前記レーザが出力されることにより、前記指向性光が前記垂直方向及び水平方向の両方に平行化される、請求項10に記載の静的マルチビューディスプレイ。
【請求項14】
前記指向性光源が前記垂直方向に傾斜角を成しており、前記傾斜角が、前記垂直方向に前記非ゼロの伝播角度を有する前記指向性光をもたらすように構成されている、請求項10に記載の静的マルチビューディスプレイ。
【請求項15】
前記平面ディフューザが、前記指向性光を傾斜させることにより、前記垂直方向に前記非ゼロの伝播角度を有する前記複数の導波光ビームにおける前記導波光ビームそれぞれを、前記平板ライトガイド内に供給するようにさらに構成されている、請求項10に記載の静的マルチビューディスプレイ。
【請求項16】
前記平板ライトガイドが入力端部において、前記垂直方向に前記非ゼロの伝播角度を有する前記複数の導波光ビームにおける前記導波光ビームそれぞれを前記平板ライトガイド内に供給するように構成された形状の入力面を含む、請求項10に記載の静的マルチビューディスプレイ。
【請求項17】
指向性光源を使用して指向性光を供給するステップであって、前記指向性光が垂直方向に平行化される、ステップと、
平面ディフューザを使用して前記指向性光を水平方向に沿って散乱または拡散させることにより、前記ライトガイド内に複数の導波光ビームを供給するステップであって、前記指向性光のコリメーション係数を水平方向に沿って変化させ、それにより前記複数の導波光ビームの(複数の)導波光ビームの半径方向が、前記垂直方向に直交する水平方向において互いに異なっている、ステップと、
前記ライトガイドの全体に分布する複数の回折格子を使用して、前記複数の導波光ビームからの光を指向性光ビームとして外部に散乱させるステップであって、前記指向性光ビームが静的マルチビュー画像のビューピクセルを表示している、ステップと、を含む、
静的マルチビューディスプレイの動作方法。
【請求項18】
前記指向性光ビームの(1つの)指向性光ビームの強度及び主要角度方向が、回折格子の格子特性によって制御されており、前記格子特性が、前記ライトガイドへの入力時の、前記指向性光源に対する前記回折格子の位置に基づいており、前記主要角度方向を制御している前記格子特性が、前記回折格子の格子ピッチ又は格子方位の一方若しくは両方を含む、請求項17に記載の静的マルチビューディスプレイの動作方法。
【請求項19】
非ゼロの伝播角度で前記ライトガイド内に前記複数の導波光ビームを供給するステップであって、前記非ゼロの伝播角度が前記垂直方向における角度である、ステップをさらに含む、請求項17に記載の静的マルチビューディスプレイの動作方法。
【請求項20】
前記非ゼロの伝播角度が、前記指向性光源を前記垂直方向に傾斜させること、前記平面ディフューザを使用して前記指向性光を傾斜させること、及び前記複数の導波光ビームを受光する前記ライトガイドの入力面の形状を使用して、前記平面ディフューザの出力時に、前記複数の導波光ビームにおける前記導波光ビームそれぞれを傾斜させることのうちの1つ又はそれ以上によってもたらされる、請求項19に記載の静的マルチビューディスプレイの動作方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
適用なし
【0002】
連邦政府による資金提供を受けた研究開発の記載
適用なし
【背景技術】
【0003】
ディスプレイ、より特定的には「電子」ディスプレイは、多種多様な装置及び製品のユーザに情報を伝達するための、略至る所にある媒体である。例えば、携帯電話(例えば、スマートフォン)、時計、タブレットコンピュータ、モバイルコンピュータ(例えば、ラップトップコンピュータ)、パーソナルコンピュータ及びコンピュータモニタ、自動車用ディスプレイコンソール、カメラ用ディスプレイ、並びに他のさまざまなモバイル及び実質的に非モバイルの表示アプリケーションや表示装置を含むが、これらに限定されないさまざまな装置及びアプリケーションで、電子ディスプレイを使用している可能性がある。電子ディスプレイでは一般に、ピクセル強度の差分パターンを使用して、通信中の画像又は類似の情報を提示若しくは表示している。パッシブ電子ディスプレイの場合と同じように、ディスプレイに入射する光を反射することにより、このピクセル強度の差分パターンがもたらされ得る。又は、この電子ディスプレイが光を供給又は出射して、ピクセル強度の差分パターンをもたらすことができる。光を出射する電子ディスプレイは、多くの場合アクティブディスプレイと呼ばれている。
【発明の概要】
【0004】
本明細書に記載の原理による例及び実施形態のさまざまな特徴については、添付の図面と併せて以下の詳細な説明を参照することにより、より容易に理解することができ、またこれらの図面においては、同様の参照番号が同様の構造要素を示している。
【図面の簡単な説明】
【0005】
図1A】本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイの斜視図を示す。
【0006】
図1B】本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイの視線方向に対応している特定の主要角度方向を有する、光ビームの角度成分を表すグラフ表示を示す。
【0007】
図2】本明細書に記載の原理と一致する一実施形態による、一例における回折格子の断面図を示す。
【0008】
図3A】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの平面図を示す。
【0009】
図3B】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの一部を表す断面図を示す。
【0010】
図3C】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの一部を表す断面図を示す。
【0011】
図3D】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの斜視図を示す。
【0012】
図4】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの平面図を示す。
【0013】
図5A】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの一部を表す断面図を示す。
【0014】
図5B】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの一部を表す断面図を示す。
【0015】
図5C】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの一部を表す断面図を示す。
【0016】
図6A】本明細書に記載の原理と一致する一実施形態による、一例におけるスプリアス反射の軽減を含む、静的マルチビューディスプレイの平面図を示す。
【0017】
図6B】本明細書に記載の原理と一致する別の実施形態による、一例におけるスプリアス反射の軽減を含む、静的マルチビューディスプレイの平面図を示す。
【0018】
図7A】本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイの回折格子の平面図を示す。
【0019】
図7B】本明細書に記載の原理と一致する別の実施形態による、一例においてマルチビューピクセルとして編成された回折格子のセットの平面図を示す。
【0020】
図8】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイのブロック図を示す。
【0021】
図9】本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの動作方法を表すフローチャートを示す。
【発明を実施するための形態】
【0022】
特定の例及び実施形態は、上記の図に示した特徴に加えて、またその代わりとなる1つである他の特徴を有する。これら及び他の特徴については、上記の図を参照して以下で詳述する。
【0023】
本明細書に記載の原理による例及び実施形態は、静的又は準静的な三次元(3D)画像若しくはマルチビュー画像のディスプレイを提供する。とりわけ、記載している原理と一致する実施形態において、複数の指向性光ビームを使用して、静的又は準静的マルチビュー画像を表示している。一方で、複数の指向性光ビームのうちの(複数の)指向性光ビームの個々の強度及び方向は、表示しているマルチビュー画像のビューにおいてさまざまなビューピクセルに対応している。さまざまな実施形態によれば、指向性光ビームの個々の強度と、いくつかの実施形態ではそれらの個々の方向とがあらかじめ設定又は「固定」されている。そのため、表示されるマルチビュー画像が、静的又は準静的マルチビュー画像と呼ばれる場合がある。
【0024】
さまざまな実施形態によれば、静的又は準静的マルチビュー画像を表示するように構成された静的マルチビューディスプレイは、指向性光源(例えば、レーザなど)が供給する指向性光とはそれぞれの半径方向が異なっている、複数の導波光ビームをライトガイドに供給するように構成された平面ディフューザを備える。指向性光源が供給する指向性光を、少なくとも垂直方向に平行化させて(collimated)、垂直方向に対して傾斜角(tilt angle)で供給してもよい。さらに、複数の導波光ビームの(複数の)導波光ビームは、互いに異なる半径方向にライトガイド内へと導波されている。さらに、本静的マルチビューディスプレイは、個々の指向性光ビームの強度及び方向を有する指向性光ビームを供給するように、ライトガイドに光学的に接続された回折格子を備える。これらの回折格子は、ライトガイド内から導波される光を回折的に外部に結合させるか、又は回折的に外部に散乱させることにより、若しくはこれに応じて、指向性光ビームを出射又は供給するように構成されている。そのため、複数の回折格子の(1つの)回折格子は、回折格子に入射する導波光ビームの特定の半径方向を考慮するか、又はその半径方向の関数である格子特性を含む。とりわけ、この格子特性を、回折格子と、導波光ビームを供給するように構成された指向性光源との相対位置の関数とすることができる。さまざまな実施形態によれば、この格子特性は、回折格子によって供給される出射された指向性光ビームを、表示中の静的又は準静的マルチビュー画像のさまざまなビューにおいて関連ビューピクセルと確実に対応させるために、導波光ビームの半径方向を考慮するように構成されている。
【0025】
本明細書では、「マルチビューディスプレイ」を、さまざまな視線方向でマルチビュー画像のさまざまなビューを供給するように構成された、電子ディスプレイ又は電子ディスプレイシステムと定義している。「静的マルチビューディスプレイ」を、複数の異なるビューであっても、所定の又は固定の(即ち、静的)マルチビュー画像を表示するように構成されたマルチビューディスプレイと定義している。本明細書では、「準静的マルチビューディスプレイ」を、通常は時間の関数として、異なる固定マルチビュー画像間又は複数のマルチビュー画像の状態間で切り替えることができる静的マルチビューディスプレイと定義している。異なる固定マルチビュー画像又はマルチビュー画像の状態間で切り替えると、例えば初歩的な形態のアニメーションが得られる。また、本明細書で定義しているように、準静的マルチビューディスプレイは、静的マルチビューディスプレイの一種である。したがって、正しく理解するためにそのような区別をする必要がない限り、純粋な静的マルチビューディスプレイ又は画像と準静的マルチビューディスプレイ又は画像とを全く区別していない。
【0026】
図1Aは、本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイ10の斜視図を示す。図1Aに示すように、マルチビューディスプレイ10は、マルチビュー画像16内又はこれのビュー14(又はマルチビューディスプレイ10のビュー14)にビューピクセルを表示するように構成された画面12上に、回折格子を備える。画面12を、例えば自動車、電話(例えば、携帯電話、スマートフォンなど)、タブレットコンピュータ、ラップトップコンピュータ、デスクトップコンピュータのコンピュータモニタ、カメラ用ディスプレイ、又は実質的に他のあらゆる装置の電子ディスプレイのディスプレイ画面とすることができる。
【0027】
マルチビューディスプレイ10は、画面12に対してさまざまな視線方向18(即ち、さまざまな主要角度方向)で、マルチビュー画像16のさまざまなビュー14を供給している。これらの視線方向18を、画面12からさまざまな異なる主要角度方向に延在する矢印として示している。これらのさまざまなビュー14を、矢印の終端にある多角形状のボックスとして示している(即ち、視線方向18を図示している)。したがって、マルチビューディスプレイ10(例えば、図1Aに示すような)を、y軸を中心に回転させると、視認者はさまざまなビュー14を視認することになる。一方、(図のように)図1Aのマルチビューディスプレイ10をx軸を中心に回転させると、(図のように)視認者の目に光が届かない状態になるまで表示画像が変化することはない。
【0028】
なお、さまざまなビュー14が画面12の上方にあるように示しているが、マルチビュー画像16がマルチビューディスプレイ10に表示され、これを視認者が視認するとき、ビュー14は実際には画面12上又はその近傍に出現する。図1Aのように画面12の上方にマルチビュー画像16のビュー14を図示しているのは、説明を簡単にするためのみであり、また特定のビュー14に対応する視線方向18のそれぞれの方向からマルチビューディスプレイ10を視認していることを表す意図がある。また、図1Aでは、3つのビュー14及び3つの視線方向18のみを示しているが、これらはすべて例示であり、限定するものではない。
【0029】
視線方向、即ちマルチビューディスプレイの視線方向に対応している方向を有する光ビームは通常、本明細書の定義により、角度成分{θ、φ}が示す主要角度方向を有する。本明細書では、角度成分θを、光ビームの「仰角成分」又は「仰角」と呼んでいる。角度成分φを、光ビームの「方位角成分」又は「方位角」と呼んでいる。定義により、仰角θを垂直面内(例えば、マルチビューディスプレイ画面の平面に垂直な)の角度とする一方、方位角φを水平面内(例えば、マルチビューディスプレイ画面の平面に平行な)の角度としている。
【0030】
図1Bは、本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイの視線方向(例えば、図1Aの視線方向18)に対応している特定の主要角度方向を有する、光ビーム20の角度成分{θ、φ}を表すグラフ表示を示す。加えて、本明細書の定義により、光ビーム20を特定の地点から出射させるか、又は放射させている。即ち、定義上光ビーム20は、本マルチビューディスプレイ内の特定の原点と関連付けられた中心光線を有する。図1Bは、光ビーム(又は視線方向)の原点Oをさらに示している。
【0031】
また、本明細書では、「マルチビュー画像」や「マルチビューディスプレイ」という用語で使用している「マルチビュー」という用語を、さまざまな視野を表示するか、又は複数のビューのビュー間における角度視差を含む複数のビューと定義している。さらに、本明細書では「マルチビュー」という用語は、本明細書の定義により、3つ以上の異なるビュー(即ち、最低3つのビュー、ひいては概ね4つ以上のビュー)を明示的に含む。したがって、本明細書で使用している「マルチビューディスプレイ」を、シーン又は画像を表示するために異なるビューを2つのみ含む立体ディスプレイと明確に区別している。ただし、マルチビュー画像及びマルチビューディスプレイが3つ以上のビューを含んでいる場合があるが、本明細書の定義により、一度に表示するマルチビュー表示を2つのみ選択して(例えば、片眼ごとに1つのビュー)、立体画像のペアとしてマルチビュー画像を表示してもよい(例えば、マルチビューディスプレイで)。
【0032】
マルチビューディスプレイにおいて「マルチビューピクセル」を、本明細書では、マルチビューディスプレイにおける複数の同様のビューに個別にそれぞれピクセルを表示するビューピクセルのセット、又は複数のビューピクセルと定義している。同様に、マルチビューピクセルは、マルチビューディスプレイが表示するマルチビュー画像のさまざまなビューそれぞれにおいてピクセルに対応しているか、又は表示している個々のビューピクセルを有していてもよい。加えて、マルチビューピクセルのビューピクセルは、本明細書の定義により、ビューピクセルのそれぞれが、個々のビューにおいて対応する1つの所定の視線方向と関連付けられているということから、いわゆる「指向性ピクセル」である。さらに、さまざまな例及び実施形態によれば、マルチビューピクセルのビューピクセルが表示する個々のビューピクセルは、さまざまなビューそれぞれにおいて同等、又は少なくとも実質的に同様の位置若しくは座標を有していてもよい。例えば、第1のマルチビューピクセルは、マルチビュー画像のさまざまなビューそれぞれにおいて{x、y}に位置するビューピクセルに対応する個々のビューピクセルを有する一方、第2のマルチビューピクセルは、さまざまなビューそれぞれにおいて{x、y}に位置するビューピクセルに対応する個々のビューピクセルを有する、などとしていてもよい。
【0033】
いくつかの実施形態では、マルチビューピクセル内のビューピクセルの数は、本マルチビューディスプレイのビューの数に等しくてもよい。例えば、このマルチビューピクセルは、8つの異なるビューを有するマルチビューディスプレイと関連付けられた、8つのビューピクセルを供給してもよい。又は、このマルチビューピクセルは、64個の異なるビューを有するマルチビューディスプレイと関連付けられた、64個のビューピクセルを供給してもよい。別の例では、本マルチビューディスプレイは8×4のビューのアレイ(即ち、32ビュー)を供給してもよく、その際、このマルチビューピクセルは32 32個のビューピクセル(即ち、各ビューに1つ)を含んでいてもよい。さらに、いくつかの実施形態によれば、本マルチビューディスプレイのマルチビューピクセルの数は、本マルチビューディスプレイにおいて選択されたビューを構成するピクセルの数と実質的に等しくてもよい。
【0034】
本明細書では、「ライトガイド」を、内部全反射を使用して構造体内の光を導波している、1つの構造体と定義している。とりわけ、このライトガイドは、ライトガイドの動作波長において実質的に透過性であるコアを含んでいてもよい。さまざまな例では、この「ライトガイド」という用語は通常、内部全反射を使用して、ライトガイドの誘電体材料と、そのライトガイドを包囲している材料又は媒体との間の境界面において光を導波する、誘電体光導波路を指す。定義により、内部全反射の条件を、ライトガイドの屈折率が、ライトガイド材料の表面に隣接する周囲の媒体の屈折率よりも高いこととしている。いくつかの実施形態では、このライトガイドは上記の屈折率差に加えて、又はその代わりにコーティングを含み、これにより内部全反射をさらに促進していてもよい。このコーティングは、例えば反射コーティングであってもよい。このライトガイドはいくつかのライトガイド、例えば平板ガイド若しくはスラブガイド、又はストリップガイドのうちの一方若しくは両方を含むが、これらに限定されない任意のライトガイドであってもよい。
【0035】
また、本明細書では、「平板ライトガイド」のようにライトガイドに適用する場合の「平板」という用語を、区分的若しくは個別的に平坦な層又はシートと定義しており、これを「スラブ」ガイドと呼ぶ場合もある。とりわけ、この平板ライトガイドを、ライトガイドの上面及び底面(即ち、対向面)が境界を示す、実質的に直交している2つの方向に光を導波するように構成されたライトガイドと定義している。さらに、本明細書の定義により、これらの上面及び底面は両方とも互いから離隔されており、少なくとも個別的な意味で、これらを実質的に互いに対して平行とすることができる。即ち、平板ライトガイドの個別的に小さないかなる領域でも、これらの上面と底面とは実質的に平行であるか、又は同一平面上にある。
【0036】
いくつかの実施形態では、この平板ライトガイドは実質的に平坦(即ち、平面の範囲内にある)であってもよく、したがって、この平板ライトガイドは平面ライトガイドである。他の実施形態では、この平板ライトガイドは、1つ又は2つの直交する次元において湾曲していてもよい。例えば、この平板ライトガイドを一次元で湾曲させて、円筒形状の平板ライトガイドを形成してもよい。ただし、光を導波する平板ライトガイド内で確実に内部全反射が維持されるのに十分な大きさとなるように、あらゆる湾曲の曲率半径を設定している。
【0037】
本明細書では通常、「回折格子」を、回折格子に入射する光の回折をもたらすように配置された、複数の特徴部(即ち、回折特徴部)と定義している。いくつかの例では、これら複数の特徴部を、特徴部のペア間に1つ又はそれ以上の格子間隔を有するような、周期的若しくは準周期的な形式で配置してもよい。例えば、この回折格子は、一次元(1D)アレイに配置された複数の特徴部(例えば、材料表面上にある複数の溝又はリッジ)を含んでいてもよい。他の例では、この回折格子を特徴部の二次元(2D)アレイとすることができる。この回折格子を、例えば材料表面上の隆起又は穴の2Dアレイとすることもできる。さまざまな実施形態及び例によれば、この回折格子を、隣り合う回折特徴部間にあり、回折格子が回折する光の約一波長分よりも短くなる格子間隔又は格子距離を有する、サブ波長格子とすることもできる。
【0038】
したがって、本明細書の定義により、「回折格子」を、回折格子に入射する光の回折をもたらす構造体としている。光がライトガイドから回折格子へと入射する場合、そこでもたらされる回折又は回折散乱は、回折により、回折格子がライトガイドから光を外部に結合又は散乱させ得るということから、結果としてこれを「回折結合」又は「回折散乱」と呼ぶことがある。この回折格子は、回折によって光の角度をさらに方向変更又は変化させている(即ち、回折角で)。とりわけ、回折の結果として、回折格子から出射する光の伝搬方向は通常、回折格子に入射する光(即ち、入射光)の伝搬方向とは異なるものとなる。回折によって光の伝搬方向が変化することを、本明細書では「回折的方向変更」と呼んでいる。したがって、この回折格子を、回折格子に入射する光を回折的に方向変更する回折特徴部を含む構造体であると理解することができ、光がライトガイドから入射する場合、この回折格子は、ライトガイドからの光を回折的に外部に散乱させることもできる。
【0039】
また、本明細書の定義により、これら回折格子の特徴部を「回折特徴部」と呼んでおり、これらを材料表面(即ち、2つの材料間の境界)にあり、その内部にあり、かつその上にある特徴部のうちの1つ又はそれ以上とすることができる。この表面を、例えばライトガイドの表面とすることができる。これらの回折特徴部は、光を回折するさまざまな構造体、例えば当該表面にあるか、その内部にあるか、又はその上にある溝、リッジ、穴若しくは突起のうちの1つ又はそれ以上を含むが、これらに限定されない構造体のいずれかを含んでいてもよい。例えば、回折格子は、材料表面における複数の実質的に平行な溝を含んでいてもよい。別の例では、回折格子は、材料表面から隆起している複数の平行なリッジを含んでいてもよい。これらの回折特徴部(例えば、溝、リッジ、穴、突起など)は、回折をもたらすさまざまな断面形状又はプロファイル、例えば正弦波プロファイル、長方形プロファイル(例えば、バイナリ回折格子)、三角形プロファイル又は鋸歯状プロファイル(例えば、ブレーズド格子)のうちの1つ又はそれ以上を含むが、これらに限定されない断面形状又はプロファイルのいずれかを有していてもよい。
【0040】
以下にさらに記載しているように、本明細書の回折格子は、特徴部間隔又はピッチ、方位又はサイズ(回折格子の幅又は長さなど)のうちの1つ又はそれ以上を含む格子特性を有していてもよい。さらに、この格子特性を、回折格子に対する光ビームの入射角、又は指向性光源から回折格子までの距離、若しくはその両方の関数となるように選出又は選択してもよい。とりわけ、いくつかの実施形態によれば、回折格子の格子特性を、指向性光源の相対位置及び回折格子の位置に依存するように選択してもよい。回折格子の格子特性を適切に変化させることにより、回折格子が回折する(例えば、ライトガイドから回折的に外部に散乱される)光ビーム(即ち、「指向性光ビーム」)の強度及び主要角度方向の両方が、マルチビュー画像のビューピクセルの強度及び視線方向に対応するようにしている。
【0041】
本明細書に記載のさまざまな例によれば、回折格子(例えば、以下に記載しているような、マルチビューピクセルの回折格子)を使用して、ライトガイド(例えば、平板ライトガイド)からの光を、光ビームとして回折的に外部に散乱又は結合させてもよい。とりわけ、局所的に周期的な回折格子の回折角θ、又はこれによってもたらされる回折角θを、式(1)で次のように得ることができる。
【数1】
ここで、λは光の波長であり、mは回折次数であり、nはライトガイドの屈折率であり、dは回折格子の特徴部間の距離又は間隔であり、θは回折格子に対する光の入射角である。説明を簡単にするために、式(1)では、回折格子がライトガイドの表面に隣接しており、このライトガイドの外側の材料が有する屈折率が1に等しい(即ち、n外側=1)と仮定している。通常、回折次数mは整数で得られる。回折格子が形成する光ビームの回折角θは、回折次数が正である式(1)(例えば、m>0)によって得ることができる。例えば、回折次数mが1に等しい(即ち、m=1)場合、一次回折がもたらされる。
【0042】
図2は、本明細書に記載の原理と一致する一実施形態による、一例における回折格子30の断面図を示す。例えば、回折格子30を、ライトガイド40の表面上に配置してもよい。加えて、図2は、入射角θで回折格子30に入射する光ビーム(又は光ビームの集合)50を示している。光ビーム50は、ライトガイド40内にある導波光ビームである。また、図2では、入射光ビーム50を回折させた結果として、回折格子30によって回折的に生成されて外部に散乱される、外部結合光ビーム又は外部散乱光ビーム(又は光ビームの集合)60を示している。この外部散乱光ビーム60は、式(1)によって得られる回折角θ(又は本明細書では「主要角度方向」)を有する。この外部散乱光ビーム60は、例えば回折格子30の回折次数「m」に対応していてもよい。
【0043】
さまざまな実施形態によれば、さまざまな光ビームの主要角度方向は、格子特性、例えば回折格子のサイズ(例えば、長さ、幅、面積など)、方位、又は特徴部間隔のうちの1つ又はそれ以上を含むが、これらに限定されない格子特性によって決まる。また、回折格子が生成する光ビームは、本明細書の定義により、図1Bに関連して上述したように、角度成分{θ、φ}によって得られる主要角度方向を有する。
【0044】
本明細書では、通常、「平行光」又は「平行光ビーム」、又は「平行にされた光」を、光ビームの光線が光ビーム内の少なくともある平面において、光ビーム内で実質的に互いに対して平行である光ビーム(例えば、ライトガイド内の導波光ビーム)と定義している。また、この平行光ビームから発散するか、又は散乱する光線を、本明細書の定義により平行光ビームの一部と見なしてはいない。
【0045】
本明細書では「コリメーション係数」を、光の平行化の程度と定義している。とりわけ、コリメーション係数は、本明細書の定義により、平行化される光ビーム内の光線の角度広がりを定義している。例えば、コリメーション係数σは、平行光のビーム内にある光線の大部分が、特定の角度広がり内にあること(例えば、平行光ビームの中心又は主要角度方向を中心に+/-σ度)を特定し得る。いくつかの例によれば、平行光ビームの光線は、角度に関してガウス分布を有していてもよく、また角度広がりは、平行光ビームのピーク強度の2分の1によって決定される角度であってもよい。
【0046】
略本明細書では、「光源」を、光供給源(例えば、光を発生させて出射するように構成された発光体)と定義している。例えば、この光源は、駆動するか又はオンにすると光を出射する、発光ダイオード(light emitting diode:LED)などの発光体を含んでいてもよい。とりわけ、本明細書では、この光源は実質的に任意の光供給源であるか、又は実質的に任意の発光体、例えば発光ダイオード(LED)、レーザ、有機発光ダイオード(organic light emitting diode:OLED)、ポリマー発光ダイオード、プラズマ式発光体、蛍光灯、白熱灯、又は実質的に任意の他の光供給源のうちの1つ又はそれ以上を含むが、これらに限定されない実質的に任意の発光体を含んでいてもよい。この光源が生成する光はある色を有していてもよく(即ち、特定の波長の光を含んでいてもよい)、又はある範囲内の波長(例えば、白色光)であってもよい。いくつかの実施形態では、この光源は複数の発光体又はレーザアレイを含んでいてもよい。例えば、この光源は、色、即ち波長を有する光を発光体の少なくとも1つが発生させる形態の、発光体のセット又はグループを含んでいてもよく、その色、即ち波長は、このセット又はグループにおける少なくとも1つの他の発光体が発生させる光の色若しくは波長とは異なっている。これらの異なる色は、例えば原色(例えば、赤色、緑色、青色)を含んでいてもよい。
【0047】
また、本明細書で使用する場合、冠詞「a(1つの)」は、当特許分野においてその通常の意味、即ち「1つ又はそれ以上」という意味を有することが意図される。例えば「回折格子」とは、1つ又はそれ以上の回折格子を意味し、したがって、「その回折格子」とは、本明細書では「1つ又はそれ以上の回折格子」を意味する。また、「上面(top)」、「底面(bottom)」、「上部の(upper)」、「下部の(lower)」、「上に(up)」、「下に(down)」、「前(front)」、「後(back)」、「第1の(first)」、「第2の(second)」、「左(left)」又は「右(right)」へのいずれの言及も、本明細書の限定を意図するものではない。本明細書では、「約(about)」という用語は、値に適用される場合、通常その値を生成するために使用される機器の許容範囲内にあることを意味するか、あるいは別段の明示的な指定がない限り、プラスマイナス10%、又はプラスマイナス5%、若しくはプラスマイナス1%を意味してもよい。また、本明細書で使用する「実質的に/略(substantially)」という用語は、過半数、あるいはほとんどすべて、又はすべて、若しくは約51%~約100%の範囲内の量を意味する。さらに、本明細書における例は例示を意図するものにすぎず、解説の目的で示したもので、限定するものではない。
【0048】
本明細書に記載の原理によるいくつかの実施形態によれば、マルチビュー画像、より特定的には、静的マルチビュー画像(即ち、静的マルチビューディスプレイ)を供給するように構成された、マルチビューディスプレイが提供される。図3Aは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の平面図を示す。図3B及び図3Cは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の一部を表す断面図を示す。とりわけ、図3Bは、図3Aの静的マルチビューディスプレイ100の一部を通る断面であって、z-y平面における断面を示すことができ、また、図3Cは、図3Aの静的マルチビューディスプレイ100の一部を通る断面であって、x-z平面における断面を示す。図3Dは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の斜視図を示す。
【0049】
いくつかの実施形態によれば、単に静的マルチビュー画像を供給するように、図示している静的マルチビューディスプレイ100が構成されている一方、他の実施形態では、複数のマルチビュー画像を供給するように、この静的マルチビューディスプレイ100が構成されていてもよく、その結果、この静的マルチビューディスプレイ100は、準静的マルチビューディスプレイ100として機能している(又は、準静的マルチビューディスプレイ100である)。例えば、静的マルチビューディスプレイ100は、以下に記載しているように、異なる固定マルチビュー画像間、又は同等に複数のマルチビュー画像の状態間で切り替え可能であってもよい。
【0050】
図3A図3Dに示す静的マルチビューディスプレイ100は、複数の指向性光ビーム102を供給するように構成されており、これら複数の指向性光ビームの各指向性光ビーム102は、ある強度及び主要角度方向を有する。また、複数の指向性光ビーム102は、静的マルチビューディスプレイ100が供給又は表示するように構成されているマルチビュー画像のビューのセットにおいて、さまざまなビューピクセルを表示している。いくつかの実施形態では、これらのビューピクセルをマルチビューピクセルに編成して、マルチビュー画像のさまざまな異なるビューを表示してもよい。
【0051】
図に示すように、静的マルチビューディスプレイ100はライトガイド110を備える。このライトガイドを、例えば平板ライトガイド(図示のような)とすることができる。このライトガイド110は、ライトガイド110の長さに沿って、光を導波光112として、又はより特定的には、導波光ビーム112として導波するように構成されている。例えば、ライトガイド110は、光導波路として構成された誘電体材料を含んでいてもよい。この誘電体材料は、誘電体光導波路を包囲している媒体の第2の屈折率よりも高い、第1の屈折率を有していてもよい。例えば、この屈折率差は、ライトガイド110の1つ又はそれ以上の導波モードに従って、導波光ビーム112の内部全反射を促進するように構成されている。
【0052】
いくつかの実施形態では、このライトガイド110を、光学的に透過性の誘電体材料の、延展された実質的に平面状のシートを含む、スラブ光導波路又は平板光導波路とすることができる。この誘電体材料から構成される実質的に平面状のシートは、内部全反射を使用して、光を導波光ビーム112として導波するように構成されている。さまざま例によれば、このライトガイド110の光学的に透過性の材料は、さまざまな誘電体材料、例えば、さまざまなタイプのガラス(例えば、石英ガラス、アルミノケイ酸アルカリガラス、ホウケイ酸ガラスなど)、及び光学的に略透過性のプラスチック若しくはポリマー(例えば、ポリ(メチルメタクリレート)又は「アクリルガラス」、ポリカーボネートなど)のうちの1つ又はそれ以上を含むが、これらに限定されないさまざまな誘電体材料のいずれかを含むか、又はそのいずれかで作られていてもよい。いくつかの例では、このライトガイド110は、ライトガイド110の表面の少なくとも一部(例えば、上面又は底面の一方若しくは両方)に、クラッド層(図示せず)をさらに含んでいてもよい。いくつかの例によれば、このクラッド層を使用して、内部全反射をさらに促進することができる。
【0053】
さまざまな実施形態によれば、このライトガイド110は、ライトガイド110の第1の表面110’(例えば、「前」面)と第2の表面110’’(例えば、「後」面又は「底」面)との間において、非ゼロの伝播角度θで内部全反射に従って導波光ビーム112を導波するように構成されている。とりわけ、この導波光ビーム112は非ゼロの伝播角度θで、ライトガイド110の第1の表面110’と第2の表面110’’との間で反射するか、又は「跳ね返る」ことによって伝搬している。
【0054】
本明細書で定義しているように、「非ゼロの伝播角度」とは、ライトガイド110の表面(例えば、第1の表面110’又は第2の表面110’’)に対する角度のことである。また、さまざま実施形態によれば、非ゼロの伝播角度θはゼロよりも大きく、かつライトガイド110内の内部全反射の臨界角よりも小さい。例えば、導波光ビーム112における非ゼロの伝播角度θは、約10度~約50度、又はいくつかの例では、約20度~約40度、若しくは約25度~約35度であってもよい。例えば、この非ゼロの伝播角度θを約30度とすることができる。他の例では、非ゼロの伝播角度θを約20度、又は約25度、若しくは約35度とすることができる。さらに、非ゼロの伝播角度θをライトガイド110内の内部全反射の臨界角よりも小さくなるように選択する限り、特定の実装に対して特定の非ゼロの伝播角度θを選択してもよい(例えば、任意に)。
【0055】
さらに本明細書では、その間に導波光ビーム112が導波されるライトガイド110の第1及び第2の表面110’、110’’を、例えば1つ又はそれ以上のガイド面をライトガイド110の縁部などの他の表面(即ち、非ガイド面)と区別するために、ライトガイド110の「ガイド面」と呼ぶ場合がある。図3A図3Cに示すように、一例として示すのであって、限定するものではないが、これらのガイド面は水平方向又は水平面(即ち、図に示すように、x-y平面)に向けられている。このように、これらの導波光ビーム112は、太字矢印で示す水平方向において、一般的伝搬方向103を有する。
【0056】
図3A図3B、及び図3Dに示すように、静的マルチビューディスプレイ100は、指向性光源120をさらに備える。この指向性光源120は、ライトガイド110に指向性光を供給するように構成されている。さらに、さまざまな実施形態によれば、この指向性光源120は、垂直方向に平行化される指向性光を供給するように構成されている。即ち、指向性光源120が供給する指向性光は、導波光ビーム112の伝搬方向及びライトガイド110のガイド面の両方に直交する垂直方向に平行化されている。図3A図3Cでは、この垂直方向を、z方向にある水平方向に直交するz方向にあるものとして示している。
【0057】
さまざまな実施形態によれば、指向性光源120を、ライトガイド110の縁部又は側部114に沿って配置していてもよい。さらに、指向性光源120を、例えば図に示すように、側部114に沿って入力位置116に配置していてもよい。いくつかの実施形態では、指向性光源120の入力位置116は、側部114の中心又は中央の近傍若しくは付近にある。とりわけ、図3A及び図3Dにおいて、この指向性光源120の入力位置116は、ライトガイド110の側部114(即ち、「入力側」)の略中心(例えば、その中央)にある。代替として(図示せず)、この入力位置116を、ライトガイド110の側部114の中央から離隔させてもよい。例えば、ライトガイド110の形状を長方形(例えば、図示のような)とすることができ、また、指向性光源120の入力位置116を、長方形のライトガイド110の角部(例えば、入力側114の角部)に設定してもよい。
【0058】
さまざまな実施形態では、この指向性光源120は、指向性光、例えば発光ダイオード(LED)及びレーザ(例えば、レーザダイオード)を含むが、これらに限定されない指向性光を供給するように構成された、実質的に任意の光供給源(例えば、発光体)を含んでいてもよい。いくつかの実施形態では、指向性光源120は、特定の色が示す狭帯域スペクトルを有する、実質的に単色の光を発生させるように構成された、発光体を含んでいてもよい。とりわけ、この単色の指向性光が有する色を、特定の色空間又は色モデル(例えば、RGB色モデル)の原色とすることができる。他の例では、指向性光源120を、実質的に広帯域又は多色の指向性光を供給するように構成された、実質的に広帯域又は多色の指向性光源とすることができる。例えば、指向性光源120は、指向性光として白色光を供給してもよい。いくつかの実施形態では、指向性光源120は、さまざまな色を有するレーザのアレイ又はLEDのアレイなど、さまざまな色の光を供給するように構成された、複数の異なる発光体を含んでいてもよい。いくつかの実施形態によれば、これらの異なる発光体は、さまざまな色の光のそれぞれに対応する導波光において、それぞれ異なる、色固有の非ゼロの伝播角度を有する指向性光を供給するように構成されていてもよい。
【0059】
さまざまな実施形態では、指向性光源120が供給する指向性光は、上述したように、垂直方向に沿って、又は垂直方向に少なくとも平行化される(即ち、この指向性光は平行光ビームであってもよい)。いくつかの実施形態では、この指向性光は、さらに水平方向に平行化されてもよい。例えば、指向性光源120がレーザを含む場合、この指向性光源120が供給する指向性光は、垂直方向及び水平方向のどちらにも平行化され得る。さらに、指向性光源120からの指向性光をライトガイド110内に結合することによって発生する導波光ビーム112は、例えば垂直方向に沿って、少なくとも部分的に平行化されてもよい(即ち、導波光ビーム112は平行光ビームであってもよい)。即ち、この導波光ビーム112は、例えばライトガイド110のガイド面(例えば、第1又は第2の表面110’、110’’)に垂直な平面内に、比較的狭い角度広がりを有する平行化された導波光ビーム112を含み得る。
【0060】
さまざまな実施形態によれば、図3A図3Dに示す静的マルチビューディスプレイ100は、平面ディフューザ130をさらに備える。この平面ディフューザは、指向性光から複数の導波光ビーム112をライトガイド110内に供給するように構成されている。また、複数の導波光ビームの(複数の)導波光ビーム112は、垂直方向に直交する水平方向において互いの半径方向が異なっている。即ち、図3A及び図3Dに示すように、平面ディフューザ130は、指向性光源120から指向性光を受光し、次いで、この受光した指向性光を水平方向に発散又は拡散させて、半径方向がそれぞれ異なる導波光ビーム112を供給するように構成されている。したがって、平面ディフューザ130は、指向性光を水平方向に沿って散乱又は拡散させて、この指向性光のコリメーション係数を水平方向に沿って変化させ得る。このため、指向性光源120とライトガイド110との間に位置する平面ディフューザ130は、半径方向がそれぞれ異なる複数の導波光ビーム112として、ライトガイド110内に指向性光を供給するように構成されている。さらに、さまざまな実施形態によれば、この平面ディフューザ130は、垂直方向に平行化される指向性光のコリメーション係数を実質的に維持するか、又は少なくともこれに及ぶ影響を最小限にするように構成されている。いくつかの実施形態では、この平面ディフューザ130は、垂直方向に沿って複数の導波光ビームをさらに平行化させるように構成されていてもよい。例えば、ホログラフィックディフューザ、プリズム、又はレンチキュラーシートを含むが、これらに限定されないさまざまなディフューザのいずれかを、平面ディフューザ130として使用してもよい。
【0061】
図3A及び図3Dに示すように、指向性光源120が出射する指向性光は平面ディフューザ130に入射し、この平面ディフューザ130は、垂直方向(即ち、z軸に沿う)に直交する水平方向(即ち、x軸に沿う)に沿って当該指向性光が発散するように、当該指向性光を拡散又は散乱させている。複数の導波光ビームの(複数の)導波光ビーム112は、入力位置116から離隔して、伝搬方向103においてライトガイド110の長さを横断又は縦断して、放射状に伝搬する。また、複数の導波光ビームの個々の導波光ビーム112の半径方向118は、入力位置116から離隔して放射状に伝搬することから、互いに異なったものとなる。いくつかの実施形態によれば、指向性光源120を平面ディフューザ130と組み合わせて使用することで、入力位置116における「点」光源に近似させることができる。
【0062】
図3Bに示すように、いくつかの実施形態では、指向性光源120が供給する指向性光は、垂直方向に傾斜している。代替的に又は付加的に、平面ディフューザ130は、指向性光を垂直方向に傾斜させることができる。さまざまな実施形態によれば、このように傾斜させることで、垂直方向に非ゼロの伝播角度を有する導波光ビーム112をもたらすことができる。したがって、指向性光源120と平面ディフューザ130とは、個別に、又は組み合わせで、非ゼロの伝播角度θの導波光ビーム112をもたらすように構成されていてもよい。さらに、さまざまな色の発光体を使用する場合、指向性光源120が、あるいはこの指向性光源120が平面ディフューザ130と連携して、それぞれ異なる、色固有の非ゼロの伝播角度を有する指向性光を供給するように構成されていてもよい。
【0063】
なお、いくつかの実施形態では、垂直方向に少なくとも部分的に平行化された指向性光ビームを使用すると、静的マルチビューディスプレイ100が供給するマルチビュー画像に影響が生じる可能性がある。例えば、導波光ビーム112がライトガイド110内で垂直方向に緊密に平行化されている場合、出射される指向性光ビーム102は少なくとも1つ、場合によっては2つの直交方向において、比較的狭いか、又は非常に小さい角度広がりを有し得る。
【0064】
静的マルチビューディスプレイ100は、図3A図3C、及び図3Dに示すように、ライトガイド110の全体に分布する複数の回折格子140をさらに備える。これら複数の回折格子140は、複数の導波光ビームからの光を、複数の指向性光ビームにおける指向性光ビーム102それぞれとして外部に散乱させるように構成されている。上述したように、さまざまな実施形態によれば、複数の回折格子140が外部に散乱させる指向性光ビーム102は、さまざまな実施形態によれば、静的マルチビュー画像を表すことができる。とりわけ、複数の回折格子140が出射する指向性光ビーム102は、情報、例えば3Dコンテンツを有する情報を表示する静的マルチビュー画像を作成するように構成されていてもよい。さらに、これらの回折格子140は、以下でさらに述べているように、ライトガイド110が指向性光源120によって、かつ平面ディフューザ130を使用して側部114から照明されると、指向性光ビーム102を回折的に外部に散乱させることができる。
【0065】
とりわけ、複数の回折格子の(1つの)回折格子140は、複数の導波光ビームの(1つの)導波光ビーム112の一部から、複数の指向性光ビームの(1つの)指向性光ビーム102を供給するように構成されている。さらに、この回折格子140は、マルチビュー画像のビューピクセルが有する強度及び視線方向に対応する強度及び主要角度方向の両方を有する、指向性光ビーム102を供給するように構成されている。さまざまな実施形態では、複数の回折格子の(複数の)回折格子140は通常、いくつかの実施形態によれば、互いに交差せず、重なり合わず、また接触し合わない。即ち、さまざまな実施形態によれば、複数の回折格子の(複数の)回折格子140は、通常別個であり、回折格子140の他の格子から離隔されている。
【0066】
図3Cに示すように、指向性光ビーム102は少なくとも部分的に、ライトガイド110内において、導波光ビーム112の平均又は一般的伝搬方向103とは異なる方向であり、いくつかの実施形態ではこの伝搬方向103に直交している方向に伝搬してもよい。いくつかの実施形態によれば、例えば図3Cに示すように、回折格子140からの指向性光ビーム102は、実質的にx-z平面の範囲内にあり得る。ただし、指向性光源120の入力位置(例えば、入力位置116)を変更すると、通常、指向性光ビーム102の主要角度方向が変化することになる。
【0067】
さまざまな実施形態によれば、複数の回折格子の各回折格子140は、関連する格子特性を有する。回折格子それぞれが有する関連する格子特性は、指向性光源120から回折格子に入射する導波光ビーム112の半径方向118に依存するか、これによって定義されるか、又はその関数である。また、いくつかの実施形態では、この関連する格子特性は、回折格子140と指向性光源120の入力位置116との間の距離によってさらに決まるか、又は定義されている。例えば、この関連する特性を、回折格子140と入力位置116との間の距離Dと、回折格子140に入射する導波光ビーム112の半径方向118との関数とすることができる。換言すれば、複数の回折格子140の(1つの)回折格子140が有する関連する格子特性は、指向性光源の入力位置116と、この入力位置116に対するライトガイド110の表面上における回折格子140の特定の位置とに依存している。
【0068】
図3Aは、異なる空間座標(x、y)及び(x、y)を有する2つの異なる回折格子140a並びに140bを示し、これらの回折格子は、回折格子140に入射する複数の導波光ビーム112が有する、半径方向118aと半径方向118bとの差を補償するか、又はこれに対応する個々の格子特性をさらに有する。同様に、これら2つの異なる回折格子140a及び140bの個々の格子特性は、異なる空間座標(x、y)及び(x、y)によって決まる光源入力位置116からそれぞれの回折格子140a、140bまでの距離の差に対応している。
【0069】
図3Dは、静的マルチビューディスプレイ100が供給し得る複数の指向性光ビーム102の例を示す。とりわけ、図に示すように、複数の回折格子のうちの(複数の)回折格子140の個々のセットが、互いに異なる主要角度方向を有する指向性光ビーム102を出射している状態を示している。さまざまな実施形態によれば、個々の主要角度方向は、静的マルチビューディスプレイ100の個々の視線方向に対応していてもよい。例えば、回折格子140の第1のセットは、入射導波光ビーム112(破線で図示)の一部を回折的に外部に散乱させて、静的マルチビューディスプレイ100の第1の視線方向(又は第1のビュー)に対応する第1の主要角度方向を有する、指向性光ビーム102’の第1のセットを供給してもよい。同様に、静的マルチビューディスプレイ100における第2の視線方向(又は第2のビュー)及び第3の視線方向(又は第3のビュー)それぞれに対応する主要角度方向を有する、指向性光ビーム102’’の第2のセット並びに指向性光ビーム102’’’の第3のセットを、図に示すように、回折格子140の第2のセット及び第3のセットなどのそれぞれが、入射導波光ビーム112の他の部分を回折的に外部に散乱させることによって供給してもよい。図3Dには、静的マルチビューディスプレイ100が供給し得るマルチビュー画像16の第1のビュー14’、第2のビュー14’’、及び第3のビュー14’’’も示している。図示している第1、第2、及び第3のビュー14’、14’’、14’’’は、オブジェクトのさまざまな斜視図を表し、また、集合的には表示しているマルチビュー画像16である(例えば、図1Aに示すマルチビュー画像16に相当する)。
【0070】
通常、回折格子140の格子特性は、回折格子の回折特徴部間隔若しくはピッチ、格子方位又は格子サイズ(若しくは範囲)のうちの1つ又はそれ以上を含んでいてもよい。また、いくつかの実施形態では、回折格子の結合効率(回折格子面積、溝の深さ、又はリッジの高さなど)を、入力位置116から回折格子までの距離の関数とすることができる。例えば、この回折格子の結合効率は、部分的に距離の関数として増加することにより、放射状広がり及び他の損失係数に関連している導波光ビーム112の強度の全体的な低下を補正又は補償するように構成されていてもよい。したがって、いくつかの実施形態によれば、回折格子140によってもたらされ、該当するビューピクセルの強度に対応している指向性光ビーム102の強度は、回折格子140の回折結合効率によって部分的に決まる可能性がある。
【0071】
図4は、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の平面図を示す。図4には、ライトガイド110の側部114にある指向性光源120の入力位置116からの距離Dである、角度間隔内の照明体積142を示している。なお、複数の導波光ビーム112による伝搬の半径方向がy軸から離隔してx軸に向かって角度変化するにつれて、照明体積の角度サイズは拡大していく。例えば、図に示すように、照明体積142bは照明体積142aよりも広い。
【0072】
再度図3Cを参照すると、図に示すように、ライトガイド110の光ビーム出射面であるライトガイド110の第1の表面110’に、複数の回折格子140を配置してもよいし、隣接して配置してもよい。例えば、回折格子140を、第1の表面110’を介して、導波光部分を指向性光ビーム102として回折的に外部に散乱させるように構成された、透過モード回折格子とすることができる。又は、ライトガイド110の光ビーム出射面(即ち、第1の表面110’)とは反対側の第2の表面110’’に、複数の回折格子140を配置してもよいし、隣接して配置してもよい。とりわけ、回折格子140を反射モード回折格子とすることができる。これらの回折格子140は、反射モード回折格子として導波光部分を回折し、かつ回折された導波光部分を第1の表面110’に向かって反射させることで、この導波光部分を回折的に外部に散乱する指向性光ビーム102として、第1の表面110’から退出させるように構成されている。他の実施形態(図示せず)では、これらの回折格子140を、例えば透過モード回折格子又は反射モード回折格子の一方若しくは両方として、ライトガイド110の表面間に配置していてもよい。
【0073】
本明細書に記載のいくつかの実施形態では、指向性光ビーム102の主要角度方向は、指向性光ビーム102がライトガイド110のライトガイド表面を退出することから生じる屈折効果を含んでいてもよい。例えば、一例として示すのであって、限定するものではないが、回折格子140を第2の表面110’’に配置するか、又は隣接して配置する場合、指向性光ビーム102が第1の表面110’を横切るときの屈折率に変化が生じるため、指向性光ビーム102は屈折(即ち、屈曲)し得る。
【0074】
さまざまな実施形態によれば、いくつかの異なる技術のうちの1つ又はそれ以上により、非ゼロの伝播角度θの導波光ビーム112がライトガイド110内にもたらされ得る。図5Aは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の一部を表す断面図を示す。図5Bは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の一部を表す断面図を示す。図5Cは、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ100の一部を表す断面図を示す。
【0075】
図5A図5Cに一例として示すのであって、限定するものではないが、さまざまな実施形態における非ゼロの伝播角度θを、傾斜指向性光源120、指向性光を垂直方向に傾斜させるように構成された平面ディフューザ130、又はライトガイド110の側部114の入力面若しくは入射ファセットの形状/勾配によってもたらされる傾斜のうちの、1つ又はそれ以上による結果とすることができる。即ち、指向性光源が出射する指向性光が垂直方向に傾斜して、非ゼロの伝播角度θの導波光ビーム112をライトガイド内にもたらすように、この指向性光源120を傾斜させてもよい。図5Aは、一例として示すのであって、限定するものではないが、傾斜指向性光源120を示す。他の実施形態では、指向性光源120からの指向性傾斜光を、例えば、指向性光源120内の傾斜リフレクタ又は傾斜レンズを含むが、これらに限定されない別の機構によって供給してもよい。図5Bは、指向性光を傾斜させることにより、垂直方向に非ゼロの伝播角度θを成す、複数の導波光ビームの(複数の)導波光ビーム112を、ライトガイド110内に供給するように構成された、平面ディフューザ130を示す。図5Bは、図示を目的として、平面ディフューザ130の中央で傾斜が発生している状態を示しているが、指向性光の傾斜は、例えば平面ディフューザ130の厚さにわたって途切れなく発生し得るものである。図5Cは、垂直方向に非ゼロの伝播角度θを成す複数の導波光ビームの(複数の)導波光ビーム112を、ライトガイド110内に供給するように構成された形状の入力面114’を含む、ライトガイド110を示す。とりわけ、図5Cでは入力面114’を、実質的に平坦な傾斜面又は傾斜ファセットとして示している。他の実施形態(図示せず)では、この入力面114’は、湾曲しているか、又は成形された傾斜面若しくは斜面(例えば、傾斜放物面)を有していてもよい。図5A図5Cには示していないが、いくつかの実施形態では、別の屈折構造、反射構造、又は回折構造(レンズ又は回折格子など)を使用して、指向性光の傾斜をもたらすことができ、その結果、垂直方向に非ゼロの伝播角度θの導波光ビーム112が得られるようになる。
【0076】
いくつかの実施形態では、これらの指向性光ビームを、垂直方向に対して2つ以上の方向に傾斜させてもよく、したがって、複数の導波ビームは、2つ以上の非ゼロの伝播角度θを成していてもよい。例えば、上述したいずれかを二方向構成にしたものを使用してもよい。この二方向構成を使用して、垂直方向において、等しいが対向している2つの方向に傾斜をもたらすことができる。したがって、等しい大きさの非ゼロの伝播角度θを成しているが、反対の符号を有する導波光ビーム112を、ライトガイド110内に供給することができる。
【0077】
いくつかの実施形態では、静的マルチビューディスプレイ100内で生じる導波光112のスプリアス反射のさまざまな発生源を、とりわけこれらのスプリアス反射の発生源が意図しない指向性光ビームの出射をもたらし、ひいては静的マルチビューディスプレイ100による意図しない画像の生成をもたらし得る場合、軽減し、場合によっては略排除できるようにすることができる。さまざまなスプリアス反射の潜在的発生源の例としては、導波光112の二次反射を発生させ得るライトガイド110の側壁が挙げられるが、これに限定されない。静的マルチビューディスプレイ100内でさまざまなスプリアス反射の発生源から反射が生じると、例えばこのスプリアス反射を吸収したり、これの方向変更を制御したりすることを含むが、これらに限定されないいくつかの方法のいずれかによって、この反射を軽減することができる。
【0078】
図6Aは、本明細書に記載の原理と一致する一実施形態による、一例におけるスプリアス反射の軽減を含む、静的マルチビューディスプレイ100の平面図を示す。図6Bは、本明細書に記載の原理と一致する別の実施形態による、一例におけるスプリアス反射の軽減を含む、静的マルチビューディスプレイ100の平面図を示す。とりわけ、図6A及び図6Bは、ライトガイド110と、指向性光源120と、複数の回折格子140と、を備える静的マルチビューディスプレイ100を示す。さらに複数の導波光ビーム112を示しており、ここで、複数の導波光ビームのうちの少なくとも1つの導波光ビーム112がライトガイド110の側壁114a、114bに入射している。これらの側壁114a、114bによって生じ得る導波光ビーム112の潜在的なスプリアス反射を、反射導波光ビーム112’を表す破線の矢印によって示している。
【0079】
図6Aでは、静的マルチビューディスプレイ100は、ライトガイド110の側壁114a、114bに吸収層119をさらに備える。この吸収層119は、導波光ビーム112からの入射光を吸収するように構成されている。この吸収層は、例えば側壁114a、114bに塗布される黒色塗料を含むが、これに限定されない実質的に任意の光吸収体を含んでいてもよい。一例として示すのであって、限定するものではないが、図6Aに示すように、吸収層119を側壁114bに施している一方、側壁114aには吸収層119を施していない。この吸収層119は、入射導波光ビーム112を遮断して吸収し、側壁114bからのスプリアス反射の潜在的な発生を効果的に防止又は軽減している。その一方、一例として示すのであって、限定するものではないが、側壁114aに入射する導波光ビーム112は反射し、その結果として、反射導波光ビーム112’が発生している。
【0080】
図6Bは、反射角の制御を用いた、スプリアス反射の軽減を示す。とりわけ、図6Bに示す静的マルチビューディスプレイ100のライトガイド110は、傾斜側壁114a、114bを含む。これらの傾斜側壁は、反射導波光ビーム112’を回折格子140から実質的に離隔させるべく、これを優先的に導くように構成された傾斜角を成している。したがって、この反射導波光ビーム112’は、意図しない指向性光ビームとしてライトガイド110から回折的に外部に散乱することもない。側壁114a、114bの傾斜角は、図に示すようにx-y平面内にあってもよい。他の例(図示せず)では、これらの側壁114a、114bの傾斜角は、反射導波光ビーム112’をライトガイド110の上面又は底面の外に導くように、別の平面、例えばx-z平面内にあってもよい。なお、図6Bは、側壁114a、114bが、これらの側壁の一部のみに沿った傾斜を含む状態を示しているが、これを一例として示すのであって、限定するものではない。
【0081】
いくつかの実施形態(図示せず)によれば、静的マルチビューディスプレイ100は、互いから横方向にオフセットさせた複数の指向性光源120を備えていてもよい。これら複数の指向性光源のうちの(複数の)指向性光源120を横方向にオフセットさせることにより、個々の回折格子140で、又は個々の回折格子140の間で、さまざまな導波光ビーム112の半径方向に差が生じ得る。いくつかの実施形態によれば、この差により、今度は表示されるマルチビュー画像のアニメーション表示が容易になり得る。したがって、いくつかの実施形態では、静的マルチビューディスプレイ100を、準静的マルチビューディスプレイ100とすることができる。
【0082】
例えば、横方向にオフセットさせた個々の指向性光源120間で切り替えることにより、静的マルチビューディスプレイ100は、時系列アニメーションなどのマルチビュー画像による「アニメーション」をもたらすことができる。即ち、さまざまな連続時間間隔又は連続期間中にこれらの指向性光源を連続的に照明することにより、静的マルチビューディスプレイ100が、異なる時間中にマルチビュー画像の見かけ上の位置を変位させるように構成されていてもよい。いくつかの実施形態によれば、このようなアニメーションによって見かけ上の位置を変位させることにより、静的マルチビューディスプレイ100を準静的マルチビューディスプレイ100として動作させ、その結果、複数のマルチビュー画像の状態を表示する例を示すことができる。
【0083】
さまざまな実施形態によれば、図3A図3Dに関して上述したように、回折を用いて(例えば、回折散乱又は回折結合によって)、静的マルチビューディスプレイ100の指向性光ビーム102を出射させている。いくつかの実施形態では、複数の回折格子140をマルチビューピクセルとして編成していてもよく、これらのマルチビューピクセルはそれぞれ、複数の回折格子からの1つ又はそれ以上の回折格子140を含む、回折格子140のセットを含む。また、上述したように、1つ又はそれ以上の回折格子140は、ライトガイド110上の半径方向位置の関数であるとともに、1つ又はそれ以上の回折格子140が出射する指向性光ビーム102の強度及び方向の関数である回折特性を有する。
【0084】
図7Aは、本明細書に記載の原理と一致する一実施形態による、一例におけるマルチビューディスプレイの回折格子140の平面図を示す。図7Bは、本明細書に記載の原理と一致する別の実施形態による、一例においてマルチビューピクセル150として編成された回折格子140のセットの平面図を示す。図7A及び図7Bに示すように、回折格子140はそれぞれ、回折特徴部間隔(「格子間隔」と呼ばれることもある)又は格子ピッチに従って互いから離隔している、複数の回折特徴部を含む。この回折特徴部間隔又は格子ピッチは、ライトガイド内から導波光部分を回折的に外部に結合又は散乱させるように構成されている。図7A図7Bでは、本マルチビューディスプレイ(例えば、図3A図3Dに示す静的マルチビューディスプレイ100)のライトガイド110の表面上に、回折格子140を配置している。
【0085】
さまざまな実施形態によれば、回折格子140内の回折特徴部の間隔又は格子ピッチを、サブ波長(即ち、導波光ビーム112の波長未満)とすることができる。なお、図7A及び図7Bでは、図示を簡単にするために、単一又は均一の格子間隔(即ち、一定の格子ピッチ)を回折格子140が有する状態を示している。さまざまな実施形態では、回折格子140は、以下に記載しているように、指向性光ビーム102を供給するように、複数の異なる格子間隔(例えば、2つ又はそれ以上の格子間隔)又は可変の回折特徴部間隔若しくは格子ピッチを含んでいてもよい。したがって、図7A及び図7Bには、単一の格子ピッチが回折格子140の唯一の実施形態であることを示唆する意図はない。
【0086】
いくつかの実施形態によれば、回折格子140の回折特徴部は、互いから離隔している溝又はリッジの一方若しくは両方を含んでいてもよい。これらの溝又はリッジはライトガイド110の材料を含んでいてもよく、例えば、これらの溝又はリッジをライトガイド110の表面に形成してもよい。別の例では、これらの溝又はリッジを、ライトガイド材料以外の材料、例えば、ライトガイド110の表面上にある別の材料の膜又は層から形成してもよい。
【0087】
図7Aで上述し、かつ図示したように、回折特徴部の構成は回折格子140の格子特性を含む。例えば、回折格子の格子深さは、回折格子140によって供給される指向性光ビーム102の強度を決定するように構成されていてもよい。代替的に又は付加的に、また図7A図7Bで上述し、かつ図示したように、この格子特性は、回折格子140の格子ピッチ又は格子方位(例えば、図7Aに示す格子方位γ)の一方若しくは両方を含む。回折格子140によって供給される指向性光ビーム102の主要角度方向は、導波光ビームの入射角とともに、これらの格子特性が決める。
【0088】
いくつかの実施形態(図示せず)では、指向性光ビームを供給するように構成された回折格子140は、可変回折格子又はチャープ回折格子を格子特性として含む。定義により、この「チャープ」回折格子は、回折特徴部において、チャープ回折格子の範囲又は長さにわたって変化する回折間隔(即ち、格子ピッチ)を呈するか、又は有する回折格子である。いくつかの実施形態では、このチャープ回折格子は、距離とともに回折特徴部間隔が線形に変化する、回折特徴部間隔がチャープした状態を有するか、又は呈する場合がある。したがって、このチャープ回折格子は、定義により「線形チャープ」回折格子となる。他の実施形態では、マルチビューピクセルのチャープ回折格子は、回折特徴部間隔が非線形にチャープした状態を呈する場合がある。さまざまな非線形チャープ、例えば指数チャープ、対数チャープ、又は別の、実質的に不均一又はランダムであるにもかかわらず、依然として単調に変化するチャープを含むが、これらに限定されないさまざまな非線形チャープを使用してもよい。非単調チャープ、例えば正弦波チャープ又は三角チャープ若しくは鋸歯状チャープなどの非単調チャープも使用することができるが、これらに限定されない。このようなタイプのチャープのいずれかを組み合わせたものを、同様に使用してもよい。
【0089】
他の実施形態では、指向性光ビーム102を供給するように構成された回折格子140は、複数の回折格子(例えば、サブ格子)であるか、又はこれらを含む。例えば、回折格子140のうちの複数の回折格子はそれぞれ、指向性光ビーム102の赤色部分を供給するように構成された、第1の回折格子を含んでいてもよい。さらに、回折格子140のうちの複数の回折格子はそれぞれ、指向性光ビーム102の緑色部分を供給するように構成された、第2の回折格子を含んでいてもよい。またさらに、回折格子140のうちの複数の回折格子はそれぞれ、指向性光ビーム102の青色部分を供給するように構成された、第3の回折格子を含んでいてもよい。いくつかの実施形態では、複数の回折格子のうちの個々の回折格子を、互いに重ね合わせていてもよい。他の実施形態では、これらの回折格子を、例えば1つのアレイとして互いに隣接して配置された、別個の回折格子とすることができる。
【0090】
静的マルチビューディスプレイ100は、より全般的には、それぞれが複数の回折格子140からの回折格子140のセットを含む、マルチビューピクセル150の1つ又はそれ以上のインスタンスを備えていてもよい。図7Bに示すように、マルチビューピクセル150を構成している当該セットのうちの回折格子140は、個々の格子特性を有していてもよい。マルチビューピクセルの回折格子140は、例えば個々の格子方位を有していてもよい。とりわけ、マルチビューピクセル150の回折格子140は、マルチビュー画像において対応するビューのセットによって決まるか、又は決定付けられる、個々の格子特性を有していてもよい。例えば、マルチビューピクセル150は、図7Bに示すような、静的マルチビューディスプレイ100の6つの異なるビューに順に対応している、6つの回折格子140のセットを含んでいてもよい。さらに、静的マルチビューディスプレイ100は、複数のマルチビューピクセル150を備えていてもよい。例えば、回折格子140のセットを含む複数のマルチビューピクセル150を設けていてもよく、これらのマルチビューピクセル150はそれぞれ、6つの異なるビューそれぞれにおける2048×1024ピクセルの個々のものに対応している。他の実施形態(図示せず)では、マルチビューピクセルは、例えば、静的マルチビューディスプレイ100の2つ、4つ、8つ、又はそれ以上の異なるビューに対応する2つ、4つ、8つ、又はそれ以上の回折格子140を含んでいてもよい。
【0091】
いくつかの実施形態では、静的マルチビューディスプレイ100は透過性であるか、又は実質的に透過性であってもよい。とりわけ、いくつかの実施形態では、ライトガイド110及びそれぞれから離隔している複数の回折格子140により、第1の表面110’及び第2の表面110’’の両方に直交している方向に、光がライトガイド110を通過することができる。したがって、複数の導波光ビームの(複数の)導波光ビーム112の一般的伝搬方向103に直交している方向に伝搬する光を、ライトガイド110、より全般的には静的マルチビューディスプレイ100に透過させることができる。さらに、回折格子140が実質的に透過性であることにより、少なくとも部分的にこうした透過を促進することができる。
【0092】
本明細書に記載の原理によるいくつかの実施形態によれば、静的マルチビューディスプレイが提供される。本静的マルチビューディスプレイは、本静的マルチビューディスプレイが供給する複数の指向性光ビームを出射するように構成されている。また、こうして出射された指向性光ビームを、本静的マルチビューディスプレイの1つ又はそれ以上のマルチビューピクセルに含まれる複数の回折格子の格子特性に基づいて、本静的マルチビューディスプレイの複数の視線領域に優先的に指向させてもよい。さらに、これらの回折格子は、指向性光ビームのさまざまな主要角度方向を形成してもよく、これらの主要角度方向は、本静的マルチビューディスプレイのマルチビュー画像のビューのセットにおいて、さまざまなビューの個々の視線方向に対応している。いくつかの例では、本静的マルチビューディスプレイは、3D画像又はマルチビュー画像を供給若しくは「表示」するように構成されている。さまざまな例によれば、指向性光ビームの個々の光ビームは、マルチビュー画像と関連付けられたさまざまな「ビュー」の個々のビューピクセルに対応していてもよい。これらのさまざまなビューは、例えば本静的マルチビューディスプレイが表示するマルチビュー画像において、情報の「メガネなし」(例えば、自動立体)表示を実現することができる。
【0093】
図8は、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイ200のブロック図を示す。さまざまな実施形態によれば、この静的マルチビューディスプレイ200は、さまざまな視線方向の個々のビューに従って、マルチビュー画像を表示するように構成されている。とりわけ、静的マルチビューディスプレイ200が出射する複数の指向性光ビーム202を使用して、マルチビュー画像を表示しており、これらの指向性光ビーム202は、さまざまなビューのピクセル(即ち、ビューピクセル)に対応していてもよい。この指向性光ビーム202を、図8の1つ又はそれ以上のマルチビューピクセル240から発する矢印として示している。図8には、静的マルチビューディスプレイ200が供給し得るマルチビュー画像16の第1のビュー14’、第2のビュー14’’、及び第3のビュー14’’’をさらに示している。
【0094】
なお、マルチビューピクセル240のうちの1つと関連付けられた指向性光ビーム202は、静的又は準静的(即ち、能動的に変調されていない)のいずれかである。一方で、マルチビューピクセル240は、照明されているときに指向性光ビーム202を供給し、あるいは照明されていないときは指向性光ビーム202を供給しないといういずれかの状態になる。また、さまざまな実施形態によれば、このように供給される指向性光ビーム202の強度は、それら指向性光ビーム202の方向とともに、静的マルチビューディスプレイ200が表示しているマルチビュー画像16のピクセルを定義している。さらに、さまざまな実施形態によれば、マルチビュー画像16内で表示されるビュー14’、14’’、14’’’は、静的又は準静的である。
【0095】
図8に示すように、静的マルチビューディスプレイ200は、平板ライトガイド210を備える。この平板ライトガイド210は、光を導波光ビーム204として導波するように構成されている。いくつかの実施形態では、この平板ライトガイド210を、静的マルチビューディスプレイ100に関連して上述したライトガイド110と実質的に同様とすることができる。例えば、平板ライトガイド210は、導波光ビーム204を内部全反射に従って導波するように構成された、光学的に透過性の材料からなる板を含んでいてもよい。さらに、平板ライトガイド210は、水平方向又は水平面に向けられた、対向し、かつ離隔している一対のガイド面を有する。
【0096】
図8に示す静的マルチビューディスプレイ200は、指向性光源220をさらに備える。この指向性光源220は、平板ライトガイド210のガイド面に直交する垂直方向に平行化される指向性光206を供給するように構成されている。いくつかの実施形態によれば、指向性光源220を、上述した静的マルチビューディスプレイ100の指向性光源120のうちの1つと実質的に同様とすることができる。例えば、指向性光源220はレーザを含んでいてもよい。指向性光源220がレーザを含む場合、例えばレーザが出力されることにより、指向性光206は垂直方向及び水平方向の両方に平行化されてもよい。他の実施形態では、指向性光源220は、光を垂直方向に平行化して指向性光206を供給するように構成されたコリメータとともに、例えば発光ダイオード(LED)などであるが、これに限定されない別の発光体を含んでいてもよい。
【0097】
図に示すように、静的マルチビューディスプレイ200は、平面ディフューザ230をさらに備える。この平面ディフューザ230は、指向性光206から複数の導波光ビーム204を供給するように構成されている。さまざまな実施形態によれば、複数の導波光ビームの(複数の)導波光ビーム204は、垂直方向に非ゼロの伝播角度を有し、かつ垂直方向に直交している水平方向において、それぞれ互いの半径方向が異なっている。
【0098】
いくつかの実施形態では、平面ディフューザ230を、上述した静的マルチビューディスプレイ100の平面ディフューザ130と実質的に同様とすることができる。とりわけ、平面ディフューザ230は、指向性光源220から受光した指向性光206を略水平方向に散乱又は拡散させることにより、水平方向において半径方向が互いに異なる導波光ビーム204を供給するように構成されていてもよい。とりわけ、平面ディフューザ230によって供給される平板ライトガイド210内の導波光ビーム204が、それらが扇状又は放射状に伝搬するにつれて放射することにより、半径方向がそれぞれ異なる複数の導波光ビーム204がもたらされるようにすることができる。平面ディフューザ230は、入力端部で平板ライトガイド210に光学的に結合又は接続されていてもよい。図8では、指向性光206(例えば、指向性光源220から発する矢印によって示す)は、平面ディフューザ230によって水平方向に沿って発散され、次いで平板ライトガイド210によって、複数の導波光ビーム204として導波される。
【0099】
図8に示す静的マルチビューディスプレイ200は、マルチビューピクセル240のアレイをさらに備える。このアレイ中のマルチビューピクセル240は、マルチビュー画像を供給するように、より特定的には、静的マルチビューディスプレイ200の複数の異なるビューを供給するように構成されている。さまざまな実施形態によれば、アレイ中のマルチビューピクセル240は、複数の指向性光ビームにおける指向性光ビーム202それぞれとして、複数の導波光ビームから光を回折的に外部に散乱させるように構成された、複数の回折格子242を含む。これら複数の指向性光ビーム202は、静的マルチビューディスプレイ200のビューのセットにおいて、さまざまなビューの個々の視線方向に対応している主要角度方向を有していてもよい。さらに、さまざまな実施形態によれば、複数の回折格子の(1つの)回折格子242がもたらす指向性光ビーム202の主要角度方向は、格子特性の関数であり、この格子特性は、回折格子と指向性光源との相対位置の関数である。即ち、回折格子242の格子特性を、回折格子242に入射する導波光ビーム204の半径方向、又は導波光ビーム204を供給する指向性光源220及び平面ディフューザ230までの距離とともに、平板ライトガイド210上の回折格子242の位置に基づいて変化させてもよいし、又は選択してもよい。
【0100】
いくつかの実施形態では、回折格子242及びマルチビューピクセル240を、上述の静的マルチビューディスプレイ100の回折格子140及びマルチビューピクセル150と、それぞれ実質的に同様とすることができる。とりわけ、このマルチビューピクセル240を平板ライトガイド210に光学的に接続し、回折散乱又は回折結合を用いて、導波光ビーム204の一部を外部に散乱又は結合させている。
【0101】
いくつかの実施形態では、回折格子242の格子特性は、平板ライトガイドの表面にわたって変化する。とりわけ、この格子特性は、回折格子の格子ピッチ及び格子方位の一方若しくは両方を含んでいてもよい。さらに、回折格子242によってもたらされ、該当するビューピクセルの強度に対応している指向性光ビーム202の強度は、回折格子242の回折結合効率によって決まる可能性がある。このようにして、マルチビューピクセル240内の個々の回折格子242からの指向性光ビーム202を、静的マルチビューディスプレイ200によって供給されるマルチビュー画像のビューのピクセルに対応させていてもよい。
【0102】
さまざまな実施形態では、導波光ビーム204は、指向性光源220、平面ディフューザ230、又は平板ライトガイド210の入力面のうちの1つ又はそれ以上によって、非ゼロの伝播角度で平板ライトガイド210内に供給される。とりわけ、いくつかの実施形態では、この指向性光源220は垂直方向に傾斜角を成している。この傾斜角は、例えば、垂直方向に非ゼロの伝播角度を有する指向性光205をもたらすように構成されていてもよい。他の実施形態では、平面ディフューザ230は、指向性光206を傾斜させることにより、垂直方向に非ゼロの伝播角度を有する複数の導波光ビームの(複数の)導波光ビーム204を、平板ライトガイド210内に供給するように構成されている。さらに他の実施形態では、平板ライトガイド210は入力端部において、垂直方向に非ゼロの伝播角度を有する複数の導波光ビームの(複数の)導波光ビーム204を平板ライトガイド210内に供給するように構成された形状の入力面を含む。
【0103】
本明細書に記載の原理による他の実施形態によれば、静的マルチビューディスプレイの動作方法が提供される。図9は、本明細書に記載の原理と一致する一実施形態による、一例における静的マルチビューディスプレイの動作方法300を表すフローチャートを示す。さまざまな実施形態によれば、静的マルチビューディスプレイの動作方法300を用いて、静的マルチビュー画像の表示又は準静的マルチビュー画像の表示の一方若しくは両方を実現することができる。
【0104】
図9に示すように、静的マルチビューディスプレイの動作方法300は、指向性光源を使用して、複数の導波光ビームとして導波される指向性光を供給するステップ310を含む。とりわけ、さまざまな実施形態によれば、指向性光が供給され、この指向性光は垂直方向に平行化される。いくつかの実施形態では、指向性光源を、上述した静的マルチビューディスプレイ100の指向性光源120と実質的に同様とすることができる。例えば、この指向性光源はレーザを含んでいてもよい。また、いくつかの実施形態では、この指向性光源を、共通原点を表す点光源に近似させていてもよい。
【0105】
図9に示す静的マルチビューディスプレイの動作方法300は、平面ディフューザを使用して指向性光を拡散させることにより、ライトガイド内に複数の導波光ビームを供給するステップ320をさらに含む。指向性光を拡散させるステップ320によって供給される複数の導波光ビームの(複数の)導波光ビームの半径方向は、ライトガイド内で垂直方向に直交する水平方向において互いに異なっている。いくつかの実施形態では、この平面ディフューザを、上述した静的マルチビューディスプレイ100の平面ディフューザ130と実質的に同様とすることができる。
【0106】
さまざまな実施形態によれば、静的マルチビューディスプレイの動作方法300は、ライトガイドの全体に分布する複数の回折格子を使用して、複数の導波光ビームからの光を指向性光ビームとして外部に散乱させるステップ330であって、この指向性光ビームが静的マルチビュー画像のビューピクセルを表示している、ステップ330をさらに含む。さまざまな実施形態によれば、複数の回折格子の(1つの)回折格子は、複数の導波光ビームからの光を、複数の指向性光ビームの(1つの)指向性光ビームとして回折的に外部に結合又は散乱させている。また、このように結合又は散乱している指向性光ビームは、マルチビュー画像において対応するビューピクセルの強度及び主要角度方向の両方を有する。とりわけ、光を外部に散乱させるステップ330によって生成される複数の指向性光ビームは、マルチビュー画像のビューのセットにおいて、さまざまなビューピクセルに対応している主要角度方向を有していてもよい。さらに、複数の指向性光ビームのうちの(複数の)指向性光ビームの強度を、マルチビュー画像のさまざまなビューピクセルの強度に対応させていてもよい。
【0107】
いくつかの実施形態では、これらの回折格子はそれぞれ、マルチビュー画像の1つのビューにおいて、特定のビューピクセルに対応している単一の強度を有する単一の指向性光ビームを、単一の主要角度方向において発生させている。いくつかの実施形態では、この回折格子は複数の回折格子(例えば、サブ格子)を含む。さらにいくつかの実施形態では、回折格子のセットを、静的マルチビューディスプレイのマルチビューピクセルとして配置していてもよい。
【0108】
さまざまな実施形態では、ステップ330で散乱させた指向性光ビームの強度及び主要角度方向は、回折格子の格子特性によって制御されており、この格子特性は、共通原点に対する回折格子の位置(即ち、これの関数である)に基づいている。とりわけ、これら複数の回折格子の格子特性を、回折格子に対する入射導波光ビームの半径方向、又は回折格子から、導波光ビームを供給している指向性光源までの距離、若しくはその両方に基づいて変化させてもよいし、又はこれらをその関数としてもよい。
【0109】
いくつかの実施形態によれば、これら複数の回折格子を、上述の静的マルチビューディスプレイ100における複数の回折格子140と実質的に同様とすることができる。また、いくつかの実施形態では、ステップ330で散乱させた複数の指向性光ビームを、やはり上述した複数の指向性光ビーム102と実質的に同様とすることができる。例えば、主要角度方向を制御している格子特性は、回折格子の格子ピッチ又は格子方位の一方若しくは両方を含んでいてもよい。さらに、回折格子によってもたらされ、該当するビューピクセルの強度に対応している指向性光ビームの強度は、回折格子の回折結合効率によって決まる可能性がある。即ち、この強度を制御している格子特性は、いくつかの例では、回折格子の格子深さ、又は格子サイズなどを含んでいてもよい。
【0110】
いくつかの実施形態(図示せず)によれば、静的マルチビューディスプレイの動作方法300は、非ゼロの伝播角度でライトガイド内に複数の導波光ビームを供給するステップであって、この非ゼロの伝播角度は垂直方向における角度である、ステップをさらに含む。いくつかの実施形態によれば、導波される際に光が縦断するライトガイドと、その内部に導波される導波光ビームとを、静的マルチビューディスプレイ100に関連して上述した、ライトガイド110及び導波光ビーム112と、それぞれ実質的に同様とすることができる。
【0111】
いくつかの実施形態では、非ゼロの伝播角度は、指向性光源を垂直方向に傾斜させること、平面ディフューザを使用して指向性光を傾斜させること、又はライトガイドの入力面の形状を使用して、ライトガイドへの入力時に、複数の導波光ビームの(複数の)導波光ビームを傾斜させることのうちの1つ又はそれ以上によって成される。
【0112】
いくつかの実施形態(図示せず)では、静的マルチビューディスプレイの動作方法は、第1の時間中に複数の第1の導波光ビームを導波し、第2の時間中に複数の第2の導波光ビームを導波することにより、マルチビュー画像をアニメーション表示するステップをさらに含む。複数の第1の導波光ビームにおける共通原点は、複数の第2の導波光ビームにおける共通原点とは異なっていてもよい。例えばここでの指向性光源は、一例として、上述のようにアニメーション表示するように構成された、横方向にオフセットさせた複数の指向性光源を含んでいてもよい。いくつかの実施形態によれば、こうしたアニメーション表示は、第1及び第2の時間中に、マルチビュー画像の見かけ上の位置を変位させることを含んでいてもよい。
【0113】
よって、平面ディフューザ及び指向性光源がもたらす、半径方向が互いに異なる導波光ビームから、静的又は準静的マルチビュー画像を表示する複数の指向性光ビームを供給するように構成された回折格子を有する、静的マルチビューディスプレイ及び静的マルチビューディスプレイの動作方法に関する例並びに実施形態について、ここまで説明した。上述した例は、本明細書に記載の原理を示す多くの特定の例のうちのいくつかを、単に例示するものにすぎないことを理解すべきである。当業者であれば、以下の特許請求の範囲によって規定されている範囲から逸脱することなく、他の数多くの構成を容易に考案できることは明らかである。
図1A
図1B
図2
図3A
図3B
図3C
図3D
図4
図5A
図5B
図5C
図6A
図6B
図7A
図7B
図8
図9