IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ナノトロニクス イメージング リミテッド ライアビリティ カンパニーの特許一覧

特許7308460顕微鏡の自動焦点システム、装置及び方法
<>
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図1A
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図1B
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図2A
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図2B
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図3A
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図3B
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図4
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図5
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図6
  • 特許-顕微鏡の自動焦点システム、装置及び方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-06
(45)【発行日】2023-07-14
(54)【発明の名称】顕微鏡の自動焦点システム、装置及び方法
(51)【国際特許分類】
   G02B 7/28 20210101AFI20230707BHJP
   G02B 7/04 20210101ALI20230707BHJP
   G02B 7/36 20210101ALI20230707BHJP
   G02B 21/00 20060101ALI20230707BHJP
   G02B 21/36 20060101ALI20230707BHJP
   G03B 13/36 20210101ALI20230707BHJP
   H04N 23/67 20230101ALI20230707BHJP
【FI】
G02B7/28 J
G02B7/04 C
G02B7/36
G02B21/00
G02B21/36
G03B13/36
H04N23/67
【請求項の数】 12
(21)【出願番号】P 2020556868
(86)(22)【出願日】2019-04-25
(65)【公表番号】
(43)【公表日】2021-08-19
(86)【国際出願番号】 US2019029076
(87)【国際公開番号】W WO2019212848
(87)【国際公開日】2019-11-07
【審査請求日】2020-11-17
(31)【優先権主張番号】15/967,802
(32)【優先日】2018-05-01
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/207,727
(32)【優先日】2018-12-03
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】511289471
【氏名又は名称】ナノトロニクス イメージング インコーポレイテッド
【氏名又は名称原語表記】NANOTRONICS IMAGING,INC.
【住所又は居所原語表記】2251 FRONT STREET,SUITE 110,P.O.BOX 306,CUYAHOGA FALLS,OHIO 44223,U.S.A.
(74)【代理人】
【識別番号】230130074
【弁護士】
【氏名又は名称】藤河家 知美
(72)【発明者】
【氏名】プットマン,ジョン,ビー.
(72)【発明者】
【氏名】プットマン,マシュー,シー.
(72)【発明者】
【氏名】ピンスキー,ヴァディム
(72)【発明者】
【氏名】シャローコフ,デニス,ワイ.
【審査官】藏田 敦之
(56)【参考文献】
【文献】特開2009-145754(JP,A)
【文献】特開2004-212458(JP,A)
【文献】特開2003-131116(JP,A)
【文献】特開昭56-054418(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 7/36
G02B 21/00
G02B 21/36
G02B 7/28
G02B 7/04
G03B 13/36
H04N 23/67
(57)【特許請求の範囲】
【請求項1】
対物レンズと、
第1結像共役面上に試料を配置するステージと、
第1オフセット距離で第2結像共役面の第1の側に配置され、合焦するように構成された第1焦点カメラと、
第2オフセット距離で第2結像共役面の第2の側に配置され、合焦するように構成された第2焦点カメラと、
対物レンズ及びステージ間の距離を調節する手段とを備え、
第1オフセット距離及び第2オフセット距離が、対物レンズ及びステージ間の同じ距離において、第1焦点カメラ及び第2焦点カメラ各々が撮像した試料の画像の鮮鋭度測定値が、第2結像共役面において等しくなるように定められることを特徴とし、
さらに、一次照明源と、
第3結像共役面上に配置された撮像装置と、
第1焦点カメラ及び第2焦点カメラに連結され、第1焦点カメラを用いた試料の鮮鋭度測定値が第2焦点カメラを用いた試料の鮮鋭度測定値と等しいときに試料に合焦していると判定するように構成されるハードウェアプロセッサと、
を備えた顕微鏡の自動焦点システムであって、
前記ハードウェアプロセッサはさらに、
第1焦点カメラを使用して測定された試料の第5鮮鋭度測定値(SA3)が、第2焦点カメラを使用して測定された試料の第6鮮鋭度測定値(SB3)に等しくなるように、対物レンズ及びステージ間の距離を第3位置(Z3)に調節し、
しかる後、対物レンズ及びステージ間の距離を第4位置(Z4)に調節し、第1焦点カメラを使用して試料の第7鮮鋭度値(SA4)を、第2焦点カメラを使用して試料の第8鮮鋭度値(SB4)を測定し、
(SA4-SA3)/(Z4-Z3)に等しい第3傾きを計算し、
(SB4-SB3)/(Z4-Z3)に等しい第4傾きを計算し、
前記第3傾きと前記第4傾きとの正負が逆であるか否かを判定し、
前記第3傾きと前記第4傾きとの正負が逆である場合に、対物レンズ及びステージ間の距離の調節を終了し、
前記第3傾きと前記第4傾きとの正負が逆でない場合には、第1焦点カメラを使用して測定された試料の鮮鋭度測定値が、第2焦点カメラを使用して測定された試料の鮮鋭度測定値と等しく、かつ、前記第3傾きと前記第4傾きとの正負が逆となるまで、対物レンズ及びステージ間の距離を引き続き調節するよう構成される顕微鏡の自動焦点システム。
【請求項2】
さらに、二次照明源を備え、
一次照明源が撮像装置が受光する第1波長域の光を放射するように構成されることを特徴とし、
また、二次照明源が第1波長域とは異なる第2波長域の光を放射するように構成されており、二次照明源が第1焦点カメラ及び第2焦点カメラが受像する第4結像共役面上の焦点パターンを介して光を投影することを特徴とする、
請求項1に記載の自動焦点システム。
【請求項3】
さらに、二次照明源と撮像装置との間の光路内に配置され、二次照明源からの光が撮像装置に到達するのを防止する第1フィルタと、
一次照明源と第1焦点カメラ及び第2焦点カメラとの間の光路内に配置され、一次照明源からの光が第1焦点カメラ及び第2焦点カメラに到達するのを防止する第2フィルタ、
とを備えた請求項2に記載の自動焦点システム。
【請求項4】
前記撮像装置が、第1焦点カメラ及び第2焦点カメラにより試料に合焦していると判定されたときに、試料の画像を撮像するように構成されることを特徴とする、請求項1に記載の自動焦点システム。
【請求項5】
前記ハードウェアプロセッサが、さらに、ステージ及び対物レンズの少なくともいずれかを移動させて、粗焦点及び微焦点を合わせるように構成されることを特徴とする、請求項1に記載の自動焦点システム。
【請求項6】
前記ハードウェアプロセッサが、さらに、対物レンズに対するステージの位置、ステージの絶対位置及び対物レンズの絶対位置のうち少なくとも1つを保存するように構成されることを特徴とする、請求項1に記載の自動焦点システム。
【請求項7】
少なくとも対物レンズと、第1結像共役面上に試料を配置するためのステージと、第1オフセット距離で第2結像共役面の第1の側に配置され、合焦するように構成される第1焦点カメラと、第2オフセット距離で第2結像共役面の第2の側に配置され、合焦するように構成される第2焦点カメラと、対物レンズ及びステージ間の距離を調節する手段とを備え、第1オフセット距離及び第2オフセット距離が、対物レンズ及びステージ間の同じ距離において、第1焦点カメラ及び第2焦点カメラ 各々が撮像した試料の画像の鮮鋭度測定値が、第2結像共役面において等しくなるように定められることを特徴とし、さらに、一次照明源と、第3結像共役面上に配置された撮像装置と、を備えた顕微鏡の自動焦点方法であって、
第1焦点カメラを使用して測定された試料の第5鮮鋭度測定値(SA3)が、第2焦点カメラを使用して測定された試料の第6鮮鋭度測定値(SB3)に等しくなるように、対物レンズ及びステージ間の距離を第3位置(Z3)に調節するステップと、
しかる後、対物レンズ及びステージ間の距離を第4位置(Z4)に調節し、第1焦点カメラを使用して試料の第7鮮鋭度値(SA4)を、第2焦点カメラを使用して試料の第8鮮鋭度値(SB4)を測定ステップと、
(SA4-SA3)/(Z4-Z3)に等しい第3傾きを計算するステップと、
(SB4-SB3)/(Z4-Z3)に等しい第4傾きを計算するステップと、
前記第3傾きと前記第4傾きとの正負が逆であるか否かを判定するステップと、
前記第3傾きと前記第4傾きとの正負が逆である場合に、対物レンズ及びステージ間の距離の調節を終了し、
前記第3傾きと前記第4傾きとの正負が逆でない場合には、第1焦点カメラを使用して測定された試料の鮮鋭度測定値が、第2焦点カメラを使用して測定された試料の鮮鋭度測定値と等しく、かつ、前記第3傾きと前記第4傾きとの正負が逆となるまで、対物レンズ及びステージ間の距離を引き続き調節するステップとを
を含む顕微鏡の自動焦点方法。
【請求項8】
前記顕微鏡が二次照明源も有し、一次照明源が撮像装置が受光する第1波長域の光を放射するように構成され、二次照明源が第1波長域とは異なる第2波長域の光を放射するように構成され、かつ、第1焦点カメラ及び第2焦点カメラが受光する、第4結像共役面上に位置する焦点パターンを通して光を投射することを特徴とする、請求項7に記載の自動焦点方法。
【請求項9】
前記顕微鏡が、二次照明源と撮像装置との間の光路内に配置され、二次照明源からの光が撮像装置に到達するのを防ぐ第1フィルタ、及び一次照明源、第1焦点カメラと第2焦点カメラとの間の光路内に配置され、一次照明源からの光が第1焦点カメラと第2焦点カメラに到達するのを防ぐ第2フィルタをも有することを特徴とする、請求項8に記載の自動焦点方法。
【請求項10】
第1焦点カメラ及び第2焦点カメラが試料に合焦していると判定したときに、試料の画像を撮像するように、撮像装置が構成されることを特徴とする、請求項7に記載の自動焦点方法。
【請求項11】
ステージ及び対物レンズの少なくともいずれかを移動させて、粗焦点及び微焦点を合わせるステップを更に含む、請求項7に記載の自動焦点方法。
【請求項12】
対物レンズに対するステージの位置、ステージの絶対位置及び対物レンズの絶対位置のうちの少なくとも1つを保存する、請求項7に記載の自動焦点方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、画像を使用した顕微鏡の自動焦点機構に関する。
【背景技術】
【0002】
顕微鏡で観察される殆どの試料は、その表面の高さがわずかに異なる。これらの相違は人の目では感知できないことが殆どだが、顕微鏡が撮像した試料の一部の画像の焦点がずれてしまうことがある。
【0003】
顕微鏡が、使用可能な合焦画像を生成することのできる範囲は、被写界深度として知られている。顕微鏡は有用な画像を生成するために、試料の一部をその被写界深度内に保たなければならない。しかしながら、試料の観察対象をある部分から別の部分に移すときに、試料の高さのわずかな差により、移動先の部分が被写界深度を外れることがある。
【0004】
とりわけ、画像コントラスト、解像度、エントロピー及び/又は空間周波数コンテンツのような異なる鮮鋭度測定値を用いて、顕微鏡が撮像した画像の焦点の質を測定することができる。一般に、試料に合焦しているとき、撮像画像の鮮鋭度(例えば、大きなコントラスト、高強度値及びシャープなエッジ)は最高となる。試料に合焦しているときの判定に使用することのできる様々な鮮鋭度測定値は通常、顕微鏡対物レンズと試料との間の様々な距離(すなわち、相対Z位置)において一連の画像を撮像し、合焦画像が現れるまで、撮像画像の鮮鋭度を測定することが必要となる。相対Z位置において試料の鮮鋭度値を測定しても、通常、試料に合焦させるために必要な調節の方向(すなわち、距離の増減)が分からないため、調節の方向が分かっている場合よりも一般に画像に合焦させるために、より多くの画像及び調節が必要となる。これにより、各試料の顕微鏡の総走査時間が増加するため、高スループット走査に使用する際には支障が生じ得る。
【0005】
また、鮮鋭度測定値は、合焦位置付近の相対Z位置あたりでは比較的一定の値を示すため、単に鮮鋭度曲線のピーク値を探すだけでは、合焦位置を正確に確定できないことがある。
【0006】
したがって、顕微鏡自動焦点の新たな機構が望まれる。
【発明の概要】
【0007】
いくつかの実施形態に従い、顕微鏡の自動焦点システム、装置及び方法が提供される。いくつかの実施形態において提供される顕微鏡の自動焦点システムは、対物レンズと、第1結像共役面上に試料を配置するステージと、第1オフセット距離で第2結像共役面の第1の側に配置され、合焦するように構成された第1焦点カメラと、第2オフセット距離で第2結像共役面の第2の側に配置され、合焦するように構成された第2焦点カメラとを備え、第1オフセット距離及び第2オフセット距離が、対物レンズ及びステージ間と同じ距離で、第1焦点カメラ及び第2焦点カメラの各々が撮像した試料の画像の鮮鋭度測定値が、第2結像共役面において等しくなるように設定されることを特徴とし、また、一次照明源と、第3結像共役面上にある撮像装置と、第1焦点カメラを使用した試料の鮮鋭度値が第2焦点カメラを使用した試料の鮮鋭度値と等しいときに、試料に合焦したと判定するよう設定された第1焦点カメラ及び第2焦点カメラと連結するハードウェアプロセッサを備える。
【0008】
いくつかの実施形態では、顕微鏡を自動合焦させるための方法であって、少なくとも対物レンズと、第1結像共役面上に試料を配置するステージと、第1オフセット距離で第2結像共役面の第1の側に配置され、合焦するように構成された第1焦点カメラと、第2オフセット距離で第2結像共役面の第2の側に配置され、合焦するように構成された第2焦点カメラと、一次照明源と、第3結像共役面上の撮像装置とを備え、対物レンズ及びステージ間と同じ距離で、第1焦点カメラ及び第2焦点カメラの各々が撮像した試料の画像の鮮鋭度測定値が第2結像共役面において等しくなるように、第1オフセット距離及び第2オフセット距離を設定するステップと、第1焦点カメラを使用した試料の鮮鋭度値が、第2焦点カメラを使用した試料の鮮鋭度値と等しいときに、試料に合焦したと判定するステップを含む方法である。
【図面の簡単な説明】
【0009】
図1A】開示対象事項のいくつかの実施形態による、2つの照明源を使用した自動焦点システムの一例を示す図である。
【0010】
図1B】開示対象事項のいくつかの実施形態による、1つの照明源を使用した自動焦点システムの一例を示す図である。
【0011】
図2A】開示対象事項のいくつかの実施形態による、2つの照明源を使用した照明ユニットの一例を示す図である。
【0012】
図2B】開示対象事項のいくつかの実施形態による、1つの照明源を使用した照明ユニットの一例を示す図である。
【0013】
図3A】開示対象事項のいくつかの実施形態による、2つの照明源を使用した自動焦点システムの焦点ユニットの一例を示す図である。
【0014】
図3B】開示対象事項のいくつかの実施形態による、1つの照明源を使用した自動焦点システムの焦点ユニットの一例を示す図である。
【0015】
図4】開示対象事項のいくつかの実施形態による、撮像装置の鮮鋭度曲線の一例を示す図である。
【0016】
図5】開示対象事項のいくつかの実施形態による、2つのオフセット焦点カメラの鮮鋭度曲線の一例を示す図である。
【0017】
図6】開示対象事項のいくつかの実施形態による、図1A及び図1Bに示すシステムのような自動焦点システムを用いて自動焦点を実行するためのプロセスのフローチャートの一例を示す図である。
【0018】
図7】開示対象事項のいくつかの実施形態による、図1A及び図1Bに示すシステムのような自動焦点システムを用いて、結像共役面を見つけ、2つのオフセット焦点カメラを較正するプロセスのフローチャートの一例を示す図である。
【実施の形態】
【0019】
開示対象事項のいくつかの実施形態により、顕微鏡による試料の自動焦点機構(システム、方法、デバイス、装置などを含むことがある)が提供される。
【0020】
図1A及び図1Bは、開示対象事項のいくつかの実施形態による自動焦点システム100の例を示す。高レベルでは、いくつかの実施形態によると、自動焦点システム100の基本構成要素には、光を供給するための照明ユニット200と、試料の合焦面を見つけるための焦点調節ユニット300と、照明器13と、撮像装置5と、対物レンズ25と、ステージ30と、ハードウェア、ソフトウェア及び/又はファームウェアからなる制御システム108とが含まれる。
【0021】
自動焦点システム100は、適切なタイプの顕微鏡の一部として実装することができる。例えば、いくつかの実施形態では、システム100を透過光又は反射光を使用する光学顕微鏡の一部として実装することができる。より具体的には、システム100を、オハイオ州カヤホガ・フォールズのNanotronics Imaging, Inc.から入手可能なnSpec(R)光学顕微鏡の一部として実装することができる。以下の説明は、反射光照明器13についてのものであるが、本明細書に記載する機構は、反射光照明器を使用しない顕微鏡の一部であってもよい。
【0022】
いくつかの実施形態では、システム100は、1つ以上の対物レンズ25を備えることができる。対物レンズは様々な倍率があり、及び/又は明視野/暗視野顕微鏡検査、微分干渉コントラスト(DIC)顕微鏡検査や、蛍光顕微鏡検査を含むその他適切な様式の顕微鏡検査で動作するよう構成することができる。いくつかの実施形態では、試料を検査するために使用される対物レンズ及び/又は顕微鏡技術は、ソフトウェア、ハードウェア及び/又はファームウェアにより制御することができる。
【0023】
いくつかの実施形態では、微動焦点アクチュエータ23は、ステージ30に向かい及びこれから離れてZ方向に対物レンズ25を駆動するために使用することができる。微動焦点アクチュエータ23は、対物レンズ25の高精度かつ微動焦点調節向けに設計することができる。微動焦点アクチュエータ23は、ステッパモータ、サーボモータ、リニアアクチュエータ、ピエゾモータ及び/又はその他任意の適切な機構であり得る。例えば、いくつかの実施形態では、ピエゾモータを使用して、対物レンズを0~50マイクロメートル(μm)、0~100μm、又は0~200μm及び/又はその他適切な距離範囲で駆動することができる。
【0024】
いくつかの実施形態では、XY並進ステージをステージ30に使用することができる。XY並進ステージは、ステッパモータ、サーボモータ、リニアモータ、ピエゾモータ及び/又はその他任意の適切な機構により駆動することができる。XY並進ステージは、いくつかの実施形態では、任意の適切なコントローラの制御下において、X軸及び/又はY軸方向に試料を移動させるように構成することができる。
【0025】
いくつかの実施形態では、アクチュエータ35を備える焦点機構32を使用して、対物レンズ25に向かい及びこれから離れてZ方向にステージ30を調節することができる。アクチュエータ35は、例えば、0~5mm、0~10mm、0~30mm及び/又はその他適切な距離範囲の粗動焦点調節を行うために使用することができる。アクチュエータ35を使用してステージ30を上下に移動させ、厚さの異なる試料をステージ上に置くこともできる。また、いくつかの実施形態では、アクチュエータ35を用いて、例えば、0~50μm、0~100μm、0~200μm及び/又はその他任意の適切な距離範囲の微動焦点を提供することもできる。いくつかの実施形態では、焦点機構32は位置決め装置33も備えることができる。位置決め装置は、任意の適切な時点におけるステージ30の位置を定めるよう構成され得る。いくつかの実施形態では、任意の適切な位置(例えば、試料に合焦しているときのステージの位置)を任意の適切な方法で記憶し、その後、自動焦点システム100のリセット及び/又は動力サイクル時であっても、ステージをその位置に戻すためにこれを使用することができる。いくつかの実施形態では、位置決め装置は、対物レンズに対するステージ30の絶対位置を追跡するための、リニアエンコーダ、ロータリーエンコーダ又はその他適当な機構とすることができる。
【0026】
いくつかの実施形態では、自動焦点システム100は、適切に焦点合わせ・位置合わせが行われると、顕微鏡の光路に沿って生ずる一連の共役焦点面、例えば、(図1A及び図1Bに示される)結像共役集合を使用することができる。結像共役集合内の各平面はその集合内の他の平面と共役であるが、これは、これらの平面に同時に合焦しており、顕微鏡を通して試料を観察すると、互いに重なりあった状態で見えるからである。自動焦点システム100において使用される一連の結像共役面は、焦点ユニット結像共役面80(「焦点共役面80」)、撮像装置結像共役面6(「結像共役面6」)、照明ユニット結像共役面54(「照明共役面54」)、視野絞り(F絞り)結像共役面21(「視野絞り共役面21」)及び試料結像共役面8(「試料共役面8」)を含むことができる。第1オフセット焦点カメラ70、第2オフセット焦点カメラ72及び/又は撮像カメラ5(撮像装置5がカメラである場合)の、結像共役面上への配置、又は結像共役面に対するオフセット配置に関する本明細書上の記載は全て、カメラ5、70及び/又は72内のセンサを、結像共役面上に又は結像共役面に対してオフセットして配置することをいう。いくつかの実施形態では、照明共役面54及び/又は視野絞り共役面21を省略することができる。
【0027】
いくつかの実施形態では、撮像装置5は、自動焦点システム100の結像共役面6上に配置された撮像素子を含むカメラとすることができる。例えば、制御システム108が試料に合焦していると判定すると、撮像装置5を試料の画像の撮像に使用することができる。撮像素子は、例えば、CCD、CMOS撮像素子及び/又は光を1つ以上の電気信号に変換するその他適切な電子装置とすることができる。このような電気信号は、試料の画像及び/又は映像の作製に使用することができる。撮像装置を、試料の観察に使用される接眼レンズ又は接眼鏡と交換できるのが好ましい。
【0028】
いくつかの実施形態では、制御装置110及び制御装置のインターフェース107を備える制御システム108が、自動焦点システム100の構成要素(例えば、アクチュエータ35及び23、一次照明源65、二次照明源40、オフセット焦点カメラ70及び72、ステージ30、焦点パターン55、撮像装置5、対物レンズ25など)の任意の設定、並びに自動焦点システムの構成要素により、当該要素間において実行される伝達、動作(例えば、撮像、照明源のオン及びオフ、ステージ30及び対物レンズ25の移動、試料に関連する様々な値の記憶)、計算(例えば、鮮鋭度の計算)を制御することができる。制御システム108は、例えば、コンピュータ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FGPA)、デジタル信号プロセッサ(DSP)(これらのいずれもハードウェアプロセッサと呼ばれることがある)、エンコーダ、エンコーダを読み取る電気回路、メモリデバイス(1つ以上のEPROM、1つ以上のEEPROM、ダイナミックランダムアクセスメモリ(「DRAM」)、スタティックランダムアクセスメモリ(「SRAM」)及び/若しくはフラッシュメモリを含む)並びに/又はその他適切なハードウェア要素といった、適切なハードウェア(好ましくは、ソフトウェアを実行することができる)を備えることができる。いくつかの実施形態では、自動焦点システム100内の個々の構成要素は、個々の構成要素を制御し、自動焦点システム100内の他の構成要素と通信する、独自のソフトウェア、ファームウェア及び/又はハードウェアを含むことができる。
【0029】
いくつかの実施形態では、制御システム(例えば、制御装置110及び制御装置のインターフェース107)と自動焦点システム100の構成要素との間の通信120には、アナログ技術(例えば、リレーロジック)、デジタル技術(例えば、RS232、イーサネット又はワイヤレス)、ネットワーク技術(例えば、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、インターネット)、Bluetooth(登録商標)技術、ニアフィールド通信技術、セキュアRF技術及び/又はその他適切な通信技術など、任意の適切な通信技術を使用することができる。
【0030】
いくつかの実施形態では、オペレータ入力を、適切な入力デバイス105(例えば、キーボード、マウス、又はジョイスティック)を使用して制御システムに伝達することができる。
【0031】
図2Aは、開示対象事項のいくつかの実施形態に基づく、自動焦点システムの照明ユニットの一実施形態の一般的構成を示す。照明ユニット200は2つの照明源、例えば、一次照明源65及び二次照明源40を備えることができる。照明源は、互いに異なる波長の範囲の光線を提供することができる。他の実施形態においては、照明ユニット200は、例えば図2Bに示すように一次照明源65のみを備えることができる。
【0032】
いくつかの実施形態では、例えば、一次照明源65は、451~750ナノメートル(nm)の範囲の波長を有する光線を提供し、一方、二次照明源40は一次光源に使用される波長の範囲よりも高い又は低い波長を有する光線を提供する。例えば、一次照明源65の波長範囲は550~750nmの範囲とすることができ、二次照明源の波長範囲は、400~450nmの範囲とすることができる。範囲の値が既知であり、公知のフィルタリング技法を用いて他の波長と分離することができるならば、任意の波長範囲の光を一次照明源65に使用することができる。同様に、光が一次照明源65と同じ波長範囲にない限り、任意の波長範囲の光を二次照明源40に使用することができる。
【0033】
いくつかの実施形態では、図1Aに示すとおり、一次照明源65は、その光が照明器13に向かって水平方向に透過するように配置される。一次照明源65は、一次光線を集束させる焦点レンズ49(例えば、両凸レンズ)を備えることができる。二次照明源40は、結像共役面54上に位置する焦点パターン55の下方の適当な距離に配置することができる。
【0034】
いくつかの実施形態では、焦点パターン55は、材料から切り出されたパターンを有する不透明材料から形成することができる。材料の切出部は、光の試料共役面8の透過を可能にし、一方、不透明材料部は、光の透過を阻止する。他の実施形態においては、焦点パターン55を、透明ガラスや透明プラスチックなどの透明材料から形成することができ、上記材料は、透明ガラスや透明プラスチックを通過する光により試料共役面上に画像を投影させる不透明なパターンをその表面に有する。別の実施形態では、焦点パターン55を、デジタル制御することができる(例えば、特殊な光変調器)。
【0035】
焦点パターン55の直径(例えば、5mm)は、焦点パターン55の投影がオフセット焦点カメラ70及び72の視野(FOV)よりも小さくなるように調節することができる。焦点パターン55は、適切な幾何学的形状、例えば、円形、長方形、三角形又は六角形とすることができ、FOVの任意の領域に投影することができる。焦点パターン55はまた、一連の個別の開口部を備えることができ、その結果、光が個別の開口部を透過すると、直線及び空間が視野を横切って投影される。いくつかの実施形態では、焦点パターン55は、試料用にカスタマイズすることができる。好ましくは、一次照明源65及び二次照明源40の場所を入れ替えることができる。
【0036】
いくつかの実施形態では、自動焦点システム100は、オフセット焦点カメラ70及び72により捕捉することのできる試料上に焦点パターン画像を連続投影するため、二次照明源40からの光が焦点パターン55を通じて連続的に透過するように構成することができる。焦点パターン画像の連続投影により、特に透明な試料の場合、又は視覚的に認識可能な特徴のない試料の場合に、試料の鮮鋭な合焦を容易に行うことができる。焦点パターン55は鮮鋭な合焦を行うため、F 絞りの代わりに、又はF 絞りに加えて使用することができる。例えば、自動焦点システム100は、焦点パターン55に加え、照明器13内に配置することのできるF絞り14を備えることもできる。また、F絞り14は、自動焦点システム100の結像共役面上に配置することができる。いくつかの実施形態では、F絞り14は、照明源65及び40により放射され、対物レンズ25に入射する光の直径を制御する。より具体的には、いくつかの実施形態では、視野絞りのサイズを縮小することにより、通過する光の直径が縮小される。これにより、オフセット焦点カメラ70及び72が受像した試料の画像の周囲に暗い輪郭が形成され、試料の焦点合わせに使用することができる(例えば、試料及び対物レンズをより近づける、又は遠ざけることにより)。測定された鮮鋭度が最も高い所で試料に合焦していると考えられ、F絞りをより開放して、撮像装置5による試料の撮像を可能にすることができる。しかし、F絞りを絞り、元のサイズに戻すには時間がかかるため(例えば、2~5秒)、走査プロセスやスループットに時間がかかることがある。
【0037】
焦点パターン55は、必要に応じて適切なフィルタ(例えば、フィルタ11)を使用して、撮像装置5の上に投影されないようにしてあれば、自動焦点システム100の適切な結像共役面上(例えば、二次照明源40の上方(図1A及び図2Aに示すとおり)、又はF絞り14)に配置することができる。例えば、焦点パターン55が、F絞り14の代わりにF絞り14の結像共役面上に配置される場合、フィルタが必要となるであろう。いくつかの実施形態では、帯域フィルタを(F絞り14の代わりに)F絞りの結像共役面上に配置することができ、パターン切出形態の焦点パターンを帯域フィルタ内に形成することができる。より具体的には、一次照明源65と同じ波長範囲(例えば、450nmより大きい)の光を透過させ、焦点パターン55領域を除き、二次照明源40と同じ波長範囲(例えば、450nm以下)の光を遮断する帯域フィルタを選択することができる。換言すれば、二次照明源40と同じ波長範囲の光は、焦点パターン55領域を除いて遮断されることになり、これにより、二次照明40からの光がオフセット焦点カメラ70及び72まで透過することが可能となる。
【0038】
いくつかの実施形態では、単一の照明源を使用する場合、焦点パターン55はデジタル的に制御することができ(例えば、特殊な光変調器を使用して)、例えば、自動焦点システム100のF絞り結像共役面上に配置することができる。より具体的には、いくつかの実施形態では、デジタル的に制御される場合、焦点パターン55は一定間隔で無効化されるよう制御することができ、その結果、撮像装置5は、焦点パターン55(全視野で)から干渉を受けることなく試料の画像及び/又は映像を表す電気信号を形成することができる。いくつかの実施形態では、撮像装置5が、焦点パターン55が有効化されたときに試料の当該電気信号を形成しないように構成することができる。
【0039】
いくつかの実施形態では、任意の適切な照明源、例えば、二次照明源40用の400nm平行紫外線発光ダイオード(LED)及び一次照明源65用の5500 K平行白色LEDを照明ユニット200と共に使用することができることに留意されたい。いくつかの実施形態では、レーザ又は蛍光を、一次照明源65及び/又は二次照明源40に使用することができる。
【0040】
いくつかの実施形態では、焦点レンズ45(例えば、焦点距離60mmの生体凸レンズ)を、二次照明源40と焦点パターン55との間の適切な距離に配置することができる。さらに、別の焦点レンズ47を、焦点パターン55の反対側に適当な距離を置いて配置することができる。いくつかの実施形態では、焦点パターン55からのレンズ45及び47の距離は、結像共役平面内において焦点パターン55の光の集束及び位置決めを確実に行うために、顕微鏡の光学特性に基づくことができる。
【0041】
2つの照明源を使用するいくつかの実施形態では、光が照明器13に進む前に、一次照明源65及び二次照明源40双方の光路内にダイクロイック60が配置される。本明細書において使用されるダイクロイックは、既知の特定の波長の光を透過し、透過した光を別の既知の特定の波長の光と組み合わせるミラー、ビームスプリッタ、フィルタ又はビームコンバイナを指すことがある。前記の装置の組み合わせにより、所望の照明源及び波長を反射及び透過させることができることに留意されたい。いくつかの実施形態では、特定のカットオフ波長を有するダイクロイックが、二次照明源40により放射される光の波長を反射し、一次照明源65から放射される光の波長を通過させるために選択されている。例えば、二次照明源40が400~450nmの波長範囲の光を放射し、一次照明源65が550~750nmの波長範囲の光を放射する場合、450nmの遮断ダイクロイック(すなわち、450nm以下の波長の光を反射し、450nmを超える波長の光を通過させ、これによりビームの組合わせを可能とするダイクロイック)を使用して、二次照明源40からの光を反射し、一次照明源65からの光を通過させることができる。ダイクロイック60は45°の入射角用に設計することができ、これにより、二次照明源40から拒絶された光は90°の角度で反射され、一次照明源65からの光路に平行に進む。
【0042】
いくつかの実施形態では、一次照明源65を撮像装置5に使用する光源とすることができ、二次照明源40をオフセット焦点カメラ70及び72の焦点センサ71及び73(図1A及び図3Aに示すとおり)上の試料の撮像に使用する光源とすることができる。
【0043】
いくつかの実施形態において、任意の適切なダイクロイック、照明器、照明源、焦点レンズ、センサ及び焦点パターンは、照明ユニット200と共に使用することができることに留意されたい。いくつかの実施形態では、これらの構成要素の適切な配置を照明ユニット200と共に使用することができる。いくつかの実施形態では、照明ユニット200の構成要素は、可変の配置を可能とするために、オフセット焦点カメラ72の、図3(後述のとおり)の焦点ハウジング18への取付け方法と同様にガイドロッドを使用するなどして、任意の適切な方法で照明器13に取り付けることができる。
【0044】
図3A及び図3Bは、開示対象事項のいくつかの実施形態による、自動焦点システムの焦点ユニットの実施形態の一般的な構成の例を示す。焦点ユニット300は、第1オフセット焦点カメラ70及び第2オフセット焦点カメラ72の2つのカメラを備えることができる。これらのカメラは例えば、荷電結合素子(CCD)撮像素子、CMOS撮像素子、別の形態の撮像素子、ビデオセンサ及び/又は試料の画像及び/又は映像の電気信号を形成することのできるその他適切なセンサを備えることができる。いくつかの実施形態では、制御システム108はこのような電気信号を記憶し、分析することができる。
【0045】
焦点ユニット300は、照明器13と結像顕微鏡チューブレンズ10との間の領域に取り付けることができる。この領域は、無限空間と呼ばれることがある。いくつかの実施形態では、適切な部品を使用して選択された位置をシステムの光学特性に合わせて、焦点ユニット300を他の位置に取り付けることができる。
【0046】
第1オフセット焦点カメラ70は、焦点共役面80に対してオフセット距離f1に位置決めされたセンサ71を備えることができる。オフセット距離f1は、正の方向81又は負の方向79のいずれかとすることができる。第2オフセット焦点カメラ72は、オフセット距離f2で焦点共役面80に配置することのできるセンサ73を備えることができる。オフセット距離f2は、正の方向81又は負の方向79のいずれかとすることができる。
【0047】
図3A及び図3Bに示すとおり、第1オフセット焦点カメラ70及び第2オフセット焦点カメラ72は、焦点共役面80の別々の側に配置される。例えば、焦点共役面80が垂直であるいくつかの実施形態では、第1オフセット焦点カメラ70を焦点共役面80の左側に配置し、第2オフセット焦点カメラ72を共役面80の右側に配置することができ(図3A及び図3Bに示すとおり)、また、その逆も可能である。さらに、第2オフセット焦点カメラ72は、第1オフセット焦点カメラ70の上方又は下方に配置することができる。焦点共役面80が水平であるいくつかの実施形態(図示せず)では、オフセット焦点カメラ70を焦点共役面80の上方に配置し、オフセット焦点カメラ72を焦点共役面80の下方に配置することができ、また、その逆も可能である。さらに、第2オフセット焦点カメラ72は、オフセット焦点カメラ70の右側又は左側に配置することができる。図5図7に関連して考察されているとおり、オフセット焦点カメラ70及び72は、オフセット焦点カメラ70及び72が撮像した試料の画像及び/又は映像の鮮鋭度値が焦点共役面80において等しくなるように配置することができる。
【0048】
第1オフセット焦点カメラ70は、第1オフセット焦点カメラ70のオフセット距離を調節するために、ガイドロッド77又はその他適切な構造に沿って移動させることができる。第2オフセット焦点カメラ72は、そのオフセット距離を調節するために、ガイドロッド76又はその他適切な構造に沿って移動させることができる。
【0049】
焦点ユニット300はまた、2つの焦点レンズ24及び22を備えることができる。焦点レンズ22は、第1オフセット焦点カメラ70と同じ水平方向の光路に配置することができ、焦点レンズ24は、第2オフセット焦点カメラ72と同じ水平方向の光路に配置することができる。いくつかの実施形態では、焦点レンズ22及び24が顕微鏡チューブレンズ10と同じ焦点距離を達成し、センサ71及び73が、焦点共役面80に配置されたときに、各々合焦するようにする。顕微鏡チューブレンズ10は、撮像素子又は接眼レンズが自動焦点システム100の画像共役面6上に配置されたときに試料に合焦するように、試料の画像を画像共役面6上に合焦させるレンズ(図示せず)を備えることができる。
【0050】
いくつかの実施形態では、レンズ22及び24が両凸レンズ又はその他適切なタイプのレンズであり得ることに留意されたい。好ましくは、レンズの焦点距離は、顕微鏡の光学特性による。
【0051】
また、図3Aに示すとおり、2つの照明源(一対の長破線62及び破線63により表されるとおり)を含むいくつかの実施形態では、焦点ユニット300は、試料に反射した光の光路内で照明器13の上方に配置されたカットオフダイクロイック15を備えることもできる。ダイクロイック15は、ダイクロイックのカットオフの下方にある試料に反射した光が、第1オフセット焦点カメラ70に対して90°の角度で反射されるように配置することができる。二次照明源40(「集束ビーム」)により放射される光の波長を反射するために、特定のカットオフ波長を有するダイクロイックを使用することができる。例えば、集束ビームが400~450nmの範囲にある場合、集束ビームを第1オフセット焦点カメラ70に反射させるために、450nmカットオフフィルタを焦点ユニット300とともに使用することができる。いくつかの実施形態では、ダイクロイック15が二次照明源40を含む実施形態でのみ使用される。
【0052】
2つの照明源を含む実施形態では、一次照明源65(「撮像ビーム」)からくる任意の光をフィルタリングするために、カットオフフィルタ17をダイクロイック15とビームスプリッタ26の間に配置することができる。例えば、撮像ビームが450nm以上の範囲の波長を有する場合、450nmカットオフフィルタを使用して、撮像ビームを除去し、撮像ビームが光を焦点カメラ70及び72に透過させないようにすることができる。他の実施形態では、2つのカットオフフィルタを使用することができ、各フィルタは例えば、レンズ22及び24の前方又は後方に配置することができる。
【0053】
図3Bに示すとおり(直線62が示すとおり)、単一の照明源のみを含む実施形態では、ビームスプリッタ16を、試料に反射した光の光路内の照明器13の上方に配置することができる。ビームスプリッタ16は、例えば、一次照明源65からの光の50%をオフセット焦点カメラ70及び72に、一次照明源65からの光の50%を撮像装置5に送るように設計された50/50ビームスプリッタとすることができる。
【0054】
いくつかの実施形態では、図3A及び図3Bに示すとおり、焦点ユニット300は、ダイクロイック15/ビームスプリッタ16と第1オフセット焦点カメラ70との間に配置することのできるビームスプリッタ26を備えることができる。ビームスプリッタ26は、例えば、集束光線の50%を第1オフセット焦点カメラ70に、集束光線の50%を第2オフセット焦点カメラ72に送るように設計された50/50ビームスプリッタとすることができる。ミラー28は、ビームスプリッタ26の真上に少し離れて配置することができ、ビームスプリッタ26からの光線を第2オフセット焦点カメラ72に向けるように設計することができる。
【0055】
いくつかの実施形態では、任意の適切なダイクロイック、焦点カメラ、焦点レンズ、ミラー、撮像素子、ビームスプリッタ及びカットオフフィルタを焦点ユニット300とともに使用することができることに留意されたい。好ましくは、これらの構成要素の任意の適切な配置を、焦点ユニット300と共に使用することができる。焦点ユニット300の構成要素は、ガイドロッド又は構成要素を接続するためのその他適切な構造に取り付けることができる。
【0056】
図1A及び図1Bは、開示対象事項のいくつかの実施形態による、単一又は一対の破線62及び63により表される自動焦点システム100の例示的な光路を示す。図1Aに示すように、自動焦点システム100は、二次照明源40(破線63が表す「集束ビーム(FB)」)から放射された光が試料S上に投射され、次いで、オフセット焦点カメラ70及び72に反射されるように構成することができる。自動焦点システム100は、一次照明源65(長破線62が表す「撮像ビーム(IB)」)から放射された光が試料S上に投射され、次いで、撮像装置5に反射されるように構成することもできる。
【0057】
より具体的には、2つの照明源を使用する実施形態では、集束ビーム62は、照明源40から焦点パターン55を通ってダイクロイック60まで移動することができる。ダイクロイック60は、集束ビーム62を照明器13に向けて反射させることができる。撮像ビームは、一次照明源65からダイクロイック60を通過して集束ビームと結合することができる。
【0058】
結合ビーム(2つの照明源を使用する場合)は、その後、照明器13を通ってプリズム20まで移動することができる。プリズム20は照明源からの光をノーズピース及び対物レンズ25を通して90°下向きに試料Sに反射させることができる。試料Sは、結合ビーム又は単一ビームを対物レンズ25を通して上向きに反射させることができ、次いで、このビームは、プリズム20を通ってダイクロイック15の方向に透過する。ダイクロイック15(2つの照明源を使用する場合)は、例えば、二次照明源40からの光の波長をオフセット焦点カメラ70及び72に向けて反射させ、一次照明源65からの光の波長をカメラ5の方に通過させて透過ビームを分離し、撮像ビーム62及び集束ビーム63に戻すことができる。
【0059】
2つの照明源を含む実施形態(図1A図2A及び図3Aに示すとおり)では、ダイクロイック15により反射される集束ビーム63は、カットオフフィルタ17を通過して、カットオフ波長より上の任意の光を除去することができる。次いで、集束ビーム63は、ビームスプリッタ26に移動することができる。ビームスプリッタ26は、例えば、焦点ハウジング18内の焦点レンズ22を通して光を向けて、集束ビーム63の50%を第1オフセット焦点カメラ70に送ることができる。そこから集束ビーム63は、第1オフセット焦点カメラ70内の光センサ71に移動することができる。集束ビーム63の残りの50%は、ビームスプリッタ26により上方のミラー28の方向に向けることができる。ミラー28は、集束ハウジング19内にある焦点レンズ24の方に集束ビーム63を反射することができる。そこから、集束ビーム63は、第2オフセット焦点カメラ72内のセンサ73に向けることができる。
【0060】
2つの照明源を含むいくつかの実施形態(図1A図2A及び図3Aに示すとおり)では、ダイクロイック15を通過する撮像ビーム62は、光学フィルタ11(例えば、撮像ビームからの波長のみを透過するフィルタ)を通過して顕微鏡チューブレンズ10を透過し、撮像装置5に到達することができる。
【0061】
単一の照明源を含む実施形態では、図1Bに示すとおり、自動焦点システム100は、一次照明源65から放射された光が試料S上に投射され、次いで、オフセット焦点カメラ70及び72並びに撮像装置5に反射されるように構成することができる。より具体的には、ビームスプリッタ16は、試料Sに反射した光の光路内の照明器13の上方に配置することができる。ビームスプリッタは、例えば、試料Sに反射した光の50%をオフセット焦点カメラ70及び72に、また、50%を撮像装置5に向けることができる。
【0062】
いくつかの実施形態では、撮像装置5を使用して、Z軸に沿って異なる相対Z位置方向に対物レンズ及びステージを互いに近づけるか又は更に離すことにより(図1A及び図1Bに示すとおり)、試料に合焦させることができる。いくつかの実施形態では、Z位置が広範囲(例えば、500μmから2500μm、又はその他適切な範囲)の粗動焦点調節を使用して及び/又はZ位置がより狭い範囲(例えば、1400μmから1600μm、又はその他適切な範囲)の微動焦点調節を使用して、焦点を調節することができる。粗動焦点調節は、いくつかの実施形態において、アクチュエータ35により行うことができる。微動焦点調節は、いくつかの実施形態において、微動焦点アクチュエータ23により行うことができる。
【0063】
いくつかの実施形態では、撮像素子に衝突する光により形成される画像の相対鮮鋭度値を、試料の焦点の質の指標として使用することができる。いくつかの実施形態では、相対鮮鋭度値が高いほど、画像の合焦度が高い。いくつかの実施形態では、図4に示すとおり、異なる相対Z位置にわたる相対鮮鋭度値のプロットは、合焦時に明らかなピークを示し(ピークは1回のときもあり、複数回のときもある)、焦点面の両側で減少し得る。相対鮮鋭度値は、顕微鏡が撮像した画像の焦点の質を測定するため、測定値の中でもとりわけ、画像コントラスト、解像度、エントロピー、分散及び/又は空間周波数成分などの任意の適切なメトリクスにより定めることができる。相対鮮鋭度値を計算するために自動焦点システム100が使用し得る方程式の一例は、強度ゆらぎを説明する、平均μにより正規化された画像分散Vの測度値である:
【数1】

ここで、平均μは全てのピクセルのグレースケールピクセル値の平均であり、s(i,j)は座標(i,j)におけるグレースケールピクセル値であり、N及びMは、それぞれ、i及びj方向のピクセルの数を示す。自動焦点システム100が使用し得る焦点の質の値の計算方法のその他の例は、Sivash Yazdanfar et al., "Simple and Robust Image-Based Autofocusing for Digital Microscopy," Optics Express Vol.16, No.12, 8670 (2008)に記載されており、その全体は参照することにより本明細書の一部をなす。上記の開示方法は単なる例であり、これを限定することを意図するものではない。
【0064】
図4は、対物レンズ25に対するZ方向(「相対Z位置」)におけるステージ30の頂部の相対位置を表すX軸と、相対鮮鋭度値を表すY軸からなるグラフを示す。相対Z位置は、ステージ30を対物レンズ25に近づく方向に又は離れる方向に調節し及び/又は対物レンズ25をステージ30に近づく方向に又は離れる方向に調節して変更することができる。図4の鮮鋭度曲線は、各相対Z位置において、撮像装置5が撮像し/観測した画像の相対鮮鋭度値を示す。図4に示すとおり、鮮鋭度曲線は所定の相対Z位置(例えば、Z位置130)(合焦位置ということがある)において最大測定鮮鋭度(例えば、図4における相対鮮鋭度値70)を有し、合焦位置(例えば、Z位置130)の各側で対称的に減少することがある。合焦位置における図4の曲線の傾きはゼロであっても、ほぼゼロでもよい場合もある。当然のことながら、本明細書において使用される「合焦」という用語は、対物レンズとステージとの相対位置の決定は、鮮鋭度測定を鮮鋭度曲線の頂部又はその付近の点において行うことをいい、完全な又は最適な合焦に限定されることを意図するものではない。合焦は、オペレータ及び/又は他の適切な方法により数学的に定義することができる。図4に示すデータは、連続測定(例えば、鮮鋭度曲線)又は相対Z位置を変化させて収集することのできる離散点を通じて蓄積することができる。
【0065】
Z粗動の範囲は、図4及び図5の直線137(例えば、500μm)及び142(例えば、2500μm)により表される。Z微動の範囲は上記の図において、直線136(例えば、1400μm)及び141(例えば、1600μm)により表される。Z移動の範囲とは、対物レンズ25とステージ30との間の異なるZ位置を得るための実際的な移動範囲をいうことに留意されたい。Z移動の範囲は、鮮鋭度の計算により試料に合焦することができる場合のZ移動の範囲を指すこともある。矢印135は、ステージ30及び対物レンズ25が更に離れるように移動するときに、Z位置130の最大点まで増大する鮮鋭度スコアを示し(上記のとおり、画像が合焦していると認められることをいう)、矢印140は、ステージ30及び対物レンズ25が更に離れるように移動し続けるときに、Z位置130において最大点から減少した鮮鋭度スコアを示す。
【0066】
図4及び図5に示す相対鮮鋭度値及びZ位置は単なる例であり、他の値の組み合わせが任意の用途において測定され得ることは明らかである。
【0067】
上記のとおり、いくつかの例において、焦点位置における図4の曲線の傾きはゼロであっても、ほぼゼロでもよい。これにより、単一の最良の焦点位置を見つけることが困難となり得る。
【0068】
以下に詳述するとおり、カメラ70及び71は、焦点位置における図4の曲線の傾きがゼロであるか、ほぼゼロであっても、試料の焦点位置を見つけるために使用することができる。
【0069】
図5は、オフセット焦点カメラ70及び72それぞれにより撮像された試料の画像の鮮鋭度曲線A及びBを示す。図4と同様に、グラフのX軸は相対Z位置を、Y軸は相対鮮鋭度値を表し、また、直線130は焦点共役面80を表すとともに、撮像装置5を用いて測定された試料の最大鮮鋭度値を見つけることが可能なZ位置を示す。鮮鋭度曲線Aは、各相対Z位置において、第1オフセット焦点カメラ70が撮像した画像の相対鮮鋭度値を示す。鮮鋭度曲線Bは、各相対Z位置において、第2オフセット焦点カメラ72が撮像した画像の相対鮮鋭度値を示す。図5は、曲線Aの負の傾き及び曲線Bの正の傾きが、焦点共役面80において、138で交差することを示す。138においては、オフセット焦点カメラ70及び72各々が撮像した、同じZ位置(すなわち、1500μm)にある試料の画像の鮮鋭度値は等しい。いくつかの実施形態では、図5に示すデータが連続測定(例えば、鮮鋭度曲線)を通じて、又は相対Z位置を変化させて収集することのできる離散点を通じて蓄積することができる。いくつかの実施形態では、図5の曲線は知られていない。
【0070】
図5に示すカメラ70及び72の曲線A及びBの特性を用いて、各カメラ70及び72の2つの相対Z位置における相対鮮鋭度値をサンプリングして、その結果得られる鮮鋭度値及び相対Z位置を用いて、試料への合焦に必要なステージ及び対物レンズの相対移動の方向(即ち、相対Z位置を増加するか減少するか)を判定するよう、システム100を構成することができる。さらに、いくつかの実施形態では、結果として得られる鮮鋭度値及び相対Z位置を用いて、試料への合焦に必要なステージ及び対物レンズの相対移動量(すなわち、相対Z位置の変化量)を判定するよう、システム100を構成することもできる。
【0071】
より具体的には、例えば、いくつかの実施形態では、曲線Aに沿った2つの相対Z位置間の直線の傾き、及び曲線Bに沿った同じ2つの相対Z位置間の直線の傾きを定めることにより、現在の相対Z位置が、曲線Aの頂点の左側、曲線Aの頂点と焦点との間、焦点と曲線Bの頂点との間、又は曲線Bの頂点の右側のいずれにあるかを判定することができ、この情報を得ると、必要な移動の方向が分かる。すなわち、現在の相対Z位置が曲線Aの頂点の左側にある場合、又は曲線Aの頂点と焦点との間にある場合には、相対位置を増加する必要がある。現在の相対Z位置が焦点と曲線Bの頂点との間、又は曲線Bの頂点の右側にある場合、相対位置を減少する必要がある。
【0072】
図6は、図1図5を更に参照して、開示対象事項のいくつかの実施形態による、自動焦点システム100において試料に合焦するための実例プロセス600を示す。
【0073】
610においては、試料がステージ30上に置かれている。ステージ30及び/又は対物レンズ25は、ステージ30の上面がZ位置137及び142により規定される動作範囲内の位置Z1に位置決めされるまで移動させることができる。
【0074】
620においては、オフセット焦点カメラ70及び72を各々用いて、相対Z位置Z1における試料の鮮鋭度値を測定することができる。焦点カメラ70が撮像した試料Sの画像の鮮鋭度値SA1は、位置Z1と共に記録することができる。焦点カメラ72が撮像した試料Sの画像の鮮鋭度値SB1は、位置Z1と共に記録することができる。
【0075】
630においては、試料Sが、Z位置137及び142内の異なる相対Z位置Z2にくるまで、ステージ30及び/又は対物レンズ25を移動させることができる。いくつかの実施形態では、Z1とZ2との間の距離が対物レンズ25の焦点深度(DOF)の距離の2倍、又は2未満の別の倍数(例えば、DOFの1.5倍、1倍又は0.5倍)となるように、位置Z2を選択することができる。開示されている位置Z2の選択方法は単なる一例であり、これを限定することを意図するものではない。
【0076】
次に、640においては、620と同様に、オフセット焦点カメラ70及び72を各々用いて、相対Z位置Z2における試料の鮮鋭度値を測定することができる。焦点カメラ70が撮像した試料Sの画像の鮮鋭度値SA2は、位置Z2と共に記録することができる。焦点カメラ72が撮像した試料Sの画像の鮮鋭度値SB2は、位置Z2と共に記録することができる。
【0077】
650においては、(Z1,SA1)と(Z2,SA2)との間に形成される直線の傾きMA1を計算して記録することができる。例えば、MA1 は(SA2-SA1)/(Z2-Z1) と等しいことがある。同様に、(Z1,SB1)と(Z2,SB2)との間に形成される直線の傾きMB1を計算して記録することができる。例えば、MB1は、(SB2-SB1)/(Z2-Z1)と等しいことがある。
【0078】
660においては、相対Z位置を調節して、試料Sに合焦することができる。いくつかの実施形態では、相対Z位置を調節して、任意の適切な方法で試料Sに合焦することができる。例えば、いくつかの実施形態では、相対Z位置を調節し、Z調節(以下の表に、MA1、MB1、SA2及びSB2の各値の様々な組合わせを列記)を実施して、試料Sに合焦することができる。
【表1】

焦点カメラ70及び72が撮像した画像について、同じ相対Z位置(図5の138が示すとおり)において、鮮鋭度値が等しい(又は相互に適切な許容範囲内にある)場合に、交点が生じ得る。
【0079】
開示した表は、オフセット焦点カメラ70及び72を使用して試料に合焦する方法の単なる一例であり、これを限定することを意図するものではない。オフセット焦点カメラ70及び72を使用して試料に合焦する他の方法を使用することができる。
【0080】
上記表の記載事項を実行するにあたり、オフセット焦点カメラ70及び72が撮像した試料の画像の鮮鋭度値が等しくなる(又は相互に任意の適当な許容範囲内となる)まで、相対Z位置を調節(すなわち、増加又は減少)する場合、システム100は、任意の適切な動作を実行することができる。例えば、いくつかの実施形態では、システム100は、所定方向に所定量だけ相対Z位置を調節し、620を繰り返し、オフセット焦点カメラ70及び72が撮像した試料の画像の鮮鋭度値が等しくなるか(又は相互に任意の適当な許容範囲内となるか)を判定し、値が等しくない場合(又は許容範囲内にない場合)は、オフセット焦点カメラ70及び72が撮像した試料の画像の鮮鋭度値が等しくなり(又は相互に任意の適当な許容範囲内となり)(例えば、図5の交点138が示すとおり)、かつ、交点における傾きMA2及びMB2の方向(以下に説明する)が互いに逆向きとなるまで、630、640及び650を繰り返すことができる。
【0081】
650において、適切な所定移動量を使用することができ、所定量を適切な方法で定めることができる。例えば、いくつかの実施形態では、所定量は常に固定量とすることができる。この固定量はシステム100の構成に基づいて定められ、ユーザが指定することができる。別の例として、いくつかの実施形態では、所定量は640において定められた傾きにより変化し得る。より具体的には、相対Z位置が図5の曲線Aの頂点の左側又は図5の曲線Bの頂点の右側にあることを傾きが示しているときは、所定量は増加することがあり、相対Z位置が図5の曲線Aの頂点と図5の曲線Bの頂点の間にあることを傾きが示しているときは、所定量は減少し得る。さらに別の例として、所定量は640において定められた傾きに基づき、620において定められたSA1及びSB1の値の関数とすることができる。より具体的には、相対Z位置が図5の曲線Aの頂点の左側又は図5の曲線Bの頂点の右側にあることを傾きが示す場合、所定量はSA1とSB1との間の差に反比例することがあり(すなわち、SA1とSB1との間の差が小さい場合、所定量は大きくなり、SA1とSB1との間の差が大きい場合、所定量は小さくなる)、また、相対Z位置が図5の曲線Aの頂点と図5の曲線Bの頂点との間にあることを傾きが示す場合、所定量はSA1とSB1との間の差に比例することがある(すなわち、SA1とSB1との間の差が小さい場合、所定量は小さくなり、SA1とSB1との間の差が大きい場合、所定量は大きくなる)(この例では、所定量が最小値未満に低下することを防ぐことができるため、交点138を素早く見つけることができる)。
【0082】
上記表に示すとおり、相対Z位置を調節して試料Sに合焦する場合、プロセス600は、傾きMA2及びMB2の方向が互いに逆向きになるか否かを判定することができる。交点における傾きMA2及びMB2の方向を決定するため、ステージ30及び/又は対物レンズ25を、まず試料SがZ位置137及び142内の異なる位置Z3にくるまで、交点から移動させることができる。いくつかの実施形態では、交点から位置Z3までの距離が対物レンズ25の焦点深度(DOF)の2倍、又は2未満の別の倍数(例えば、DOFの1.5倍、1倍又は0.5倍)となるように、位置Z3を選択することができる。位置Z3を選択するための開示方法は単なる一例であり、これを限定することを意図するものではない。
【0083】
次に、オフセット焦点カメラ70及び72が撮像した試料の画像について、鮮鋭度値SA3及びSB3並びに位置Z3を記録することができる。
【0084】
そして、交点と(Z3,SA3)との間に形成される直線の傾きMA2と、交点と(Z3,SB3)との間に形成される直線の傾きMB2とを算出することができる。
【0085】
傾きMA2及びMB2の方向が互いに逆向きの場合、交点は結像共役面にある。さもなければ、ステージ及び/又は対物レンズは、上記表の指示に従い引き続き調節することができる。
【0086】
いくつかの実施形態では、自動焦点システム100、特定の試料、試料クラス及び/又はその他適切な分類グループについて、交点における鮮鋭度値を記録された鮮鋭度設定値と比較することができる。交点における鮮鋭度値が、記録された鮮鋭度値と等しいか、その許容可能な分散内にある場合、交点は、これが結像共役面にあるときに生ずる。さもなければ、ステージ及び/又は対物レンズは、上記表の指示に従い引き続き調節することができる。
【0087】
いくつかの実施形態では、試料に合焦しているときの相対Z位置が決定されると、ステージ30、対物レンズ25、ステージ30上の試料の頂部及び/又はステージ30の頂部と対物レンズ25との間の距離の絶対位置を、位置設定点として制御システム108により記憶することができる。位置設定点は、特定の試料、特定の試料クラス及び/又は試料のその他適切な分類グループに関連付けることができる。
【0088】
鮮鋭度曲線A及びB上の傾き及び特定の点により、試料に合焦するためにステージと対物レンズとの間の距離を小さく又は大きくすべきかがわかるため、試料に合焦するために撮像する試料の画像が少なくて済む。
【0089】
670において、いくつかの実施形態では、試料に合焦していると判定されると、合焦画像を撮像装置5により撮像することができる。
【0090】
いくつかの実施形態では、610~660に記載する方法を用いて試料に合焦していると判定されると、撮像装置5を使用して試料の焦点を微調節することができる。例えば、撮像装置5を使用して、推定最大鮮鋭度が達成されたか否か、又は推定最大鮮鋭度(すなわち、傾きが0か、ほぼ0の場合の鮮鋭度曲線上の点)を達成するために相対Z位置を調節する必要があるか否かを判定するため、ステージ及び対物レンズの少なくとも2つの相対Z位置について試料の鮮鋭度値を算出することができる。
【0091】
いくつかの実施形態では、制御システム108はまた、ステージ30上に置かれた試料について、試料、試料クラス及び/又はその他適切な分類グループに関連する位置設定点があるか否かを判定することができ、610において、その位置設定点に自動焦点システム100を配置することができる。おおよその目標相対Z位置を知ることで、試料に合焦するために必要な相対Z距離が減少し、オフセット焦点カメラを焦点共役面80により近い位置に配置することができる。上述したように、鮮鋭度曲線の傾きは、オフセット焦点カメラ70及び72が焦点共役面80に近づくにつれて急になる。傾きは急なほど、高さZの変化が小さいのに対し、解像度や鮮鋭度が上がる。傾きは急なほど、より微細な焦点調節及び制御が可能となる。
【0092】
プロセス600の特定の部分が実行される場合の分割は多様であり、当該分割又は別の分割は、本明細書における開示対象事項の範囲外である。いくつかの実施形態では、プロセス600のブロックを適切な時期に実行することができることに留意されたい。本明細書において説明するプロセス600の一部の少なくともいくつかは、当然のことながら、いくつかの実施形態において図6に示し、説明するものに限定されない任意の順序又は順番で実行することができる。また、本明細書において説明するプロセス600の一部は、いくつかの実施形態では、必要に応じてほぼ同時に又は並行して実行することができる。これに加え又はこれに代えて、いくつかの実施形態では、プロセス600の一部を省略することができる。
【0093】
プロセス600は、任意の適切なハードウェア及び/又はソフトウェアで実行することができる。例えば、いくつかの実施形態では、プロセス600は図1に示す制御システム108で実行することができる。
【0094】
いくつかの実施形態では、焦点共役面80の位置を、適切な方法で定めることができる。例えば、いくつかの実施形態では、自動焦点システム100の特性に基づき、焦点共役面80を数学的に定めることができる。
【0095】
別の例として、いくつかの実施形態では、較正プロセスを使用して、焦点共役面80を定めることができる。図7は、図1図6を更に参照し、開示対象事項のいくつかの実施形態により焦点共役面80を見つけ、オフセット焦点カメラ70及び72の各々についてオフセット距離f1及びf2を較正するための較正プロセス700の一例を示す。いくつかの実施形態では、自動焦点システム100の特性に基づいて、焦点共役面80を数学的に定めることができる。他の実施形態では、例えば、710~740に記載のとおり、オフセット焦点カメラ70及び72のうちのいずれかについて一連の鮮鋭度曲線を生成して、焦点共役面80を実験的に定めることができる。
【0096】
プロセス700の開始後に、710において、試料Sをステージ30上に置くことができ、撮像装置5を使用して、図4に関連して上述したとおり、試料に合焦しているときの相対Z位置を判断し、記録することができる。例えば、図4は、同図に示す曲線の頂点にある1500μmの相対Z位置(直線130により表す)に合焦している試料を示す。プロセス700は、直線137及び142が示すZ位置の範囲内の適切な数のZ位置を通過し、各位置で撮像装置5により画像を撮像し、相対鮮鋭度値を定める(上記のとおり)ことにより、この相対Z位置を見つけることができる。これらの鮮鋭度値の最高値は、合焦点に応じて定めることができる。
【0097】
720において、オフセット焦点カメラ70を水平方向に徐々に移動させ、鮮鋭度カーブ又は様々な相対Z位置に対する一連の鮮鋭度値を、オフセット焦点カメラの各水平位置において計算することができる。その鮮鋭度曲線の頂点又は最大鮮鋭度値が生ずるオフセット焦点カメラの位置は、図1に示す焦点共役面80が存在する位置として定めることができる。この位置は、カメラ70の合焦相対Z位置と定義し、記録することができる。いくつかの実施形態では、カメラ70の合焦相対Z位置における最大鮮鋭度値を、自動焦点システム100、特定の試料、試料クラス及び/又はその他適切な分類グループの鮮鋭度設定点として、制御システム108により記憶することができる。
【0098】
725において、カメラ72の合焦相対Z位置は、カメラ70の合焦相対Z位置と同一であり得る(例えば、焦点レンズ22及び24が同じ場合)。この場合、カメラ72は、カメラ70と同じ合焦相対Z位置(焦点共役面80にある)に簡単に移動させることができる。
【0099】
しかしながら、いくつかの実施形態では、カメラ72の合焦相対Z位置が、カメラ70の合焦相対Z位置と異なることがある。この場合は、オフセット焦点カメラ72を水平方向に徐々に移動させ、鮮鋭度カーブ又は様々な相対Z位置に対する一連の鮮鋭度値を、オフセット焦点カメラの各水平位置において計算することができる。その鮮鋭度曲線の頂点又は最大鮮鋭度値が生ずるオフセット焦点カメラの位置は、焦点共役面(図示せず)が存在する位置として定めることができる。この位置は、カメラ72の合焦相対Z位置と定義し、記録することができる。いくつかの実施形態では、カメラ72の合焦相対Z位置における最大鮮鋭度値は、カメラ72の鮮鋭度設定点として制御システム108により記憶することができる。
【0100】
720は、カメラ70の動作の実行について、725はカメラ72の動作の実行についての考察であるが、いくつかの実施形態では、70及び72において動作しているカメラを交換することができる。
【0101】
730において、オフセット焦点カメラ70は、その合焦相対Z位置の第1の側(例えば、正、負、左、右、上、下)のオフセット距離f1に配置することができる。いくつかの実施形態では、適切なオフセット距離値を使用することができる。例えば、いくつかの実施形態では、オフセット焦点カメラ70を、その合焦相対Z位置から30cm、15cm、10cm及び/又はその他適切なオフセット距離に当初配置することができる。
【0102】
735において、オフセット焦点カメラ72は、その合焦相対Z位置の反対側、つまり第2の側(例えば、それぞれ、負、正、右、左、下、上)のオフセット距離f2に配置することができる。すなわち、例えば、カメラ70が、その合焦相対Z位置の左側に配置される場合、カメラ72は、その合焦相対Z位置の右側に配置され、その逆も同様である。いくつかの実施形態では、任意の適切なオフセット距離値を使用することができる。例えば、いくつかの実施形態では、オフセット焦点カメラ70の合焦相対Z位置(例えば、その合焦相対Z位置から30cm、15cm、10cm及び/又はその他適切なオフセット距離)からの距離と同じである合焦相対Z位置からのオフセット距離に、オフセット焦点カメラ72を当初配置することができる。
【0103】
いくつかの実施形態では、f1及びf2の初期オフセット距離は互いに等しくなくともよい。初期オフセット距離は、自動焦点システム100の光学特性及び/又は合焦のための精度要件に基づくことができる。オフセット焦点カメラ70又は72が焦点共役面80に近く配置されるほど、焦点共役面80における鮮鋭度曲線の傾きは急になる。傾きが急な場合、高さZの変化は小さい(より高い解像度ともいう)ものの、鮮鋭度の変化は大きくなる。より微細な焦点調節及び制御が可能となるため、傾きは急なほど望ましい。
【0104】
より具体的には、Z移動の範囲(例えば、図6に示す直線137及び142との間の距離)が大きいほど、オフセット焦点カメラ70及び72は、Z移動の範囲が小さい場合よりも、焦点共役面80から遠く離れた位置に配置することができる。
【0105】
いくつかの実施形態では、オフセット距離f1及びf2は、試料が撮像装置5において最適に合焦するZ位置における鮮鋭度曲線の傾きに基づくこともある。例えば、試料の焦点を合わせるために必要なZ移動の範囲が小さい場合(例えば、1300μm~1700μm)、オフセット焦点カメラ70及び72は、焦点共役面80に近づけて配置することができる。これは、焦点共役面80からの距離が近い場合、離れている場合のオフセット距離と比べて傾きが急で、解像度が高くなるからである。いくつかの実施形態では、焦点共役面80から離れたオフセット距離f1及びf2を選択して、自動焦点システム100のZ移動の最大範囲をカバーすることができ、その結果、試料の厚さが異なっていても、オフセット焦点カメラ70及び72を絶えず再配置しなくて済む。
【0106】
740において、オフセット焦点カメラ70及び72のいずれかは固定位置に留まることができ、他方のオフセット焦点カメラは、オフセット焦点カメラ70及び72の各々について計算された鮮鋭度曲線(例えば、図5に示す鮮鋭度曲線A及びB)が、焦点共役面80において交わるまで再配置することができる。例えば、第2オフセット焦点カメラ72は固定位置に留まり、焦点共役面80からオフセットされ、第2オフセット焦点カメラ72を使用して試料Sの鮮鋭度曲線を計算してこれを記録することができる。特に、合焦Z位置130(例えば、1500μm)における試料S(例えば、28)の鮮鋭度値は、オフセット焦点カメラ72を使用して記録することができる。次いで、第1オフセット焦点カメラ70は、焦点共役面80に位置する合焦Z位置130(例えば、図5に示すとおり)で鮮鋭度曲線Aが鮮鋭度曲線Bと交差したと判定されるまで、焦点共役面80に近づく方向に又は離れる方向に徐々に水平移動することができる。傾きは、第1焦点カメラ70を使用時の合焦Z位置130における試料の鮮鋭度値が、合焦Z位置130における第2オフセット焦点カメラ72(例えば、28)の使用時と同じ値であるときに交差する。交点では、鮮鋭度曲線AとBの傾き(すなわち、交点を包含する任意の傾き)は互いに逆向きである。鮮鋭度曲線Aは、交点の位置で計算して記録することができる。いくつかの実施形態では、記録された鮮鋭度曲線A及びBを使用して、焦点共役面80に対する曲線A及びB上の異なる点(すなわち、交点以外の点)の間の関係を評価し、試料を分析し、又は共役面以外の平面に焦点を設定することができる。
【0107】
いくつかの実施形態では、曲線A及びBの交点における相対鮮鋭度値は、鮮鋭度曲線の最上部又は最下部では生じないのが好ましい。むしろ、いくつかの実施形態では、交点が、鮮鋭度曲線の最小値と最大値である10~90%の間、5~95%の間、20~80%の間など、鮮鋭度曲線の最小値と最大値との間の任意の適切な範囲内で生じ得る。
【0108】
他の実施形態では、オフセット焦点カメラ70及び72は共に、鮮鋭度曲線Aが合焦Z位置130で曲線Bと交差するまで、焦点共役面80に近づく方向に及び/又は離れる方向に移動させることができる。鮮鋭度曲線A及びBは、例えば、図4に関連する記載のとおり計算することができる。オフセット距離f1及びf2を較正するための開示方法は単なる例であり、これを限定することを意図するものではない。
【0109】
いくつかの実施形態では、オフセット距離f1及びf2を見つけるために、焦点カメラA及びBについて鮮鋭度曲線の計算を行う必要はない。例えば、オフセット焦点カメラ70又は72のいずれかは、合焦Z位置130において焦点カメラA及びBが撮像した試料の画像について計算された鮮鋭度値が等しくなるまで移動させることができる。
【0110】
いくつかの実施形態では、オフセット距離f1及びf2を一度、自動焦点システム100について設定することができる。他の実施形態では、オフセット距離f1及びf2は、異なる対物レンズ、試料の異なる厚さ、異なる試料クラス又は適切な基準に適応するように再較正することができる。例えば、オフセット距離f1及びf2は、より小さな被写界深度(焦点)及びより小さなZ移動範囲に適応するため、より高い倍率の対物レンズについては減少させることができる。いくつかの実施形態では、オフセット距離f1及びf2は、オフセット距離設定点として制御システム108により保存することができる。オフセット距離設定点は、例えば、試料の厚さ及び/若しくは他の適切な特性、試料クラス及び/若しくはその他適切な試料のグループ分け、並びに/又は顕微鏡の光学特性(例えば、対物レンズの倍率)に関連付けることができる。オフセット距離設定点を使用して、オフセット焦点カメラ70及び72を自動的に配置することができる。
【0111】
いくつかの実施形態では、試料クラスは、同様の反射質の材料で作製された試料に基づき定めることができる。
【0112】
プロセス700の特定の部分が実行される場合の分割は多様であり、当該分割又は別の分割は、本明細書における開示対象事項の範囲外である。いくつかの実施形態では、プロセス700のブロックを任意の適切な時期に実行することができることに留意されたい。本明細書において説明するプロセス700の一部の少なくともいくつかは、当然のことながら、いくつかの実施形態において図7に示し、説明するものに限定されない任意の順序又は順番で実行され得る。また、本明細書において説明するプロセス700の一部は、いくつかの実施形態では、必要に応じてほぼ同時に又は並行して実行することができる。これに加え又はこれに代えて、いくつかの実施形態では、プロセス500の一部を省略することができる。
【0113】
プロセス700は、任意の適切なハードウェア及び/又はソフトウェアにおいて実行することができる。例えば、いくつかの実施形態では、プロセス700は制御システム108において実行することができる。
【0114】
いくつかの実施形態では、制御システム108は、自動焦点システム100の動作及び/又は構成に関するデータを収集することができる。例えば、データは、試料(又は試料の一部)に合焦しているときの自動焦点システム100の構成に関する内容、例えば、オフセット焦点カメラ70及び72の位置、ステージ30、対物レンズ25、ステージ30上の試料の上部及び/又はステージ30の上部と対物レンズ25との間の距離の絶対位置、鮮鋭度設定点、位置設定点、試料(又は試料の領域)に合焦している判定を行うために使用する鮮鋭度測定値を含むことがある。さらに、走査される試料の各領域について合焦に要した時間、試料(又は試料の領域)に合焦していると判定される前に撮像された画像の数、合焦するためにステージ30及び/又は対物レンズ25が移動しなければならなかった全距離、記録された鮮鋭度値などの自動合焦の動作に関するデータ。試料、試料クラス及び/又はその他適切な分類グループに関するデータも収集することができる。上記は単なる例であり、収集可能なデータの種類を限定することを意図するものではない。
【0115】
収集されたデータは、制御システム108及び/又は制御システム108に連結したリモートコンピューティングデバイスにより更に分析され、自動焦点設定及び/又は動作の非効率性を識別することができる。制御システム108及び/又はリモートコンピューティングデバイスは、検出された非効率性が自動焦点システム100の構成及び/又は動作の態様と相関するか否かを更に判定し、自動焦点システム100の構成及び/又は動作について適切な調節を行うことができる。
【0116】
いくつかの実施形態では、適切な人工知能アルゴリズムを使用して、非効率性を識別し、かつ/又は適切な調節を行うことができる。例えば、いくつかの実施形態では、人工知能アルゴリズムは、機械学習、隠れマルコフモデル、反復ニューラルネットワーク、畳み込みニューラルネットワーク、ベイズ記号法、一般敵対ネットワーク、サポートベクトルマシン及び/又はその他適切な人工知能のうち1つ以上を、単独で又は組み合わせて含むことがある。
【0117】
いくつかの実施形態では、本明細書において説明する試料への合焦技法を、試料の全体又はその一部への合焦に適用することができることに留意されたい。
【0118】
本明細書において説明する例を含む段落(並びに「など」、「例えば」、「含む」などの表現)は、請求対象事項を特定の例に限定するものと解釈されることはなく、むしろ、例は、考え得る多数の態様の一部の例示に過ぎないことを意図するものである。本明細書において使用される機構という用語は、ハードウェア、ソフトウェア、ファームウェア又はこれらの適切な組合せを含み得ることにも留意されたい。
【0119】
上記説明の一部は、情報操作のアルゴリズム及び記号表現に関する本開示の特徴を表すものである。これらのアルゴリズムの説明及び表現は、データ処理技術の当業者が自己の業務内容を他の当業者に最も効果的に伝達するために使用する手段である。これらの操作は、機能的又は論理的に説明されてはいるものの、コンピュータプログラムにより実行されるものと理解される。さらに、一般性を損なうことなく、これらの操作手順をモジュールとして又は機能名称で言及することも、時には便利であることが分かっている。
【0120】
上記説明から明らかなように、特に明記しない限り、記載内容全体を通して、「判定する」、「表示する」などの用語を使用した説明は、コンピュータシステムメモリ又はレジスタ、あるいは他のそういった情報記憶、伝達又は表示装置内の物理(電子)量として表されるデータを操作し変換する、コンピュータシステム又は類似の電子コンピューティングデバイスの動作及びプロセスを指すものと理解される。
【0121】
本開示の特定の態様は、アルゴリズムの形で本明細書に記載するプロセス段階及び命令を含む。本開示のプロセス段階及び命令は、ソフトウェア、ファームウェア又はハードウェアにおいて具現化されることがあり、ソフトウェアにおいて具現化されると、リアルタイム・ネットワーク・オペレーティング・システムにより使用される様々なプラットフォーム上にダウンロードされ、常駐し、そこから操作することができることに留意されたい。
【0122】
本開示は、また、本明細書の動作を実行するための装置に関する。この装置は、必要な目的のために特別に構築することができ、又はコンピュータによるアクセスが可能なコンピュータ可読媒体に格納されたコンピュータプログラムにより選択的に起動又は再構成される汎用コンピュータを備えてもよい。このようなコンピュータプログラムは、フロッピーディスク、光ディスク、CD-ROM、光磁気ディスクなどのディスク、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、EPROM、EEPROM、磁気又は光カード、特定用途向け集積回路(ASIC)、又は電子命令を記憶するのに適した任意のタイプの非一時的コンピュータ可読記憶媒体を含むが、これらに限定されないコンピュータ可読記憶媒体に記憶することができる。さらに、本明細書において言及されるコンピュータは、単一のプロセッサを含むことがあり、又はコンピュータの高い処理能力に対応する複数のプロセッサ設計を採用するアーキテクチャであってもよい。
【0123】
本明細書において提示されるアルゴリズム及び動作は、本来、特定のコンピュータその他装置に関連するものではない。本明細書の教示に従い、様々な汎用システムがプログラムと共に使用されてもよく、又は必要とされる方法段階を実行するためにより特殊化した装置を構築するのが適当であることが判明することもある。これら様々なシステムに必要な構造はその変形と共に、当業者には明らかであろう。さらに、本開示は、特定のプログラミング言語に関して説明されているものではない。様々なプログラミング言語を使用して、本明細書に記載する本開示の教示を実行することができ、特定の言語への言及は、本開示の実施可能性及び最良の形態を開示するために提供されていることを理解されたい。
【0124】
特に図示された実施形態を参照して、顕微鏡の自動焦点システム及び方法を詳述してきた。しかしながら、本明細書に既に記載したとおり、本開示の主旨及び範囲内において様々な修正及び変更を行うことができること、また、当該修正及び変更は、本開示に相当するもの及びその一部とみなされることは明らかであろう。本発明の範囲は、以下の請求項のみにより限定される。
図1A
図1B
図2A
図2B
図3A
図3B
図4
図5
図6
図7