IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テキサス インスツルメンツ インコーポレイテッドの特許一覧

<>
  • 特許-高電圧ゲートドライバ電流源 図1
  • 特許-高電圧ゲートドライバ電流源 図2
  • 特許-高電圧ゲートドライバ電流源 図3
  • 特許-高電圧ゲートドライバ電流源 図4
  • 特許-高電圧ゲートドライバ電流源 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-11
(45)【発行日】2023-07-20
(54)【発明の名称】高電圧ゲートドライバ電流源
(51)【国際特許分類】
   H02M 1/08 20060101AFI20230712BHJP
   H03K 17/08 20060101ALI20230712BHJP
   H03K 17/687 20060101ALI20230712BHJP
【FI】
H02M1/08 A
H03K17/08 C
H03K17/687 A
【請求項の数】 18
(21)【出願番号】P 2020524778
(86)(22)【出願日】2018-11-02
(65)【公表番号】
(43)【公表日】2021-01-21
(86)【国際出願番号】 US2018058832
(87)【国際公開番号】W WO2019090012
(87)【国際公開日】2019-05-09
【審査請求日】2021-11-01
(31)【優先権主張番号】15/802,787
(32)【優先日】2017-11-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【弁護士】
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】スジャン クンダプール マノハール
(72)【発明者】
【氏名】マイケル ジェームズ ミルズ
(72)【発明者】
【氏名】ジャスティン パトリック ヴォクト
【審査官】佐藤 匡
(56)【参考文献】
【文献】米国特許出願公開第2017/0317583(US,A1)
【文献】特開2001-060303(JP,A)
【文献】特開2017-163722(JP,A)
【文献】米国特許出願公開第2017/0047731(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 1/08
H03K 17/08
H03K 17/687
G06F 1/26
(57)【特許請求の範囲】
【請求項1】
回路であって、
電力端子と、
バス端子と、
チャージポンプ電圧端子と、
ゲートと、前記電力端子に結合されるドレインと、前記バス端子に結合されるソースとを有する電力電界効果トランジスタ(FET)と、
電流ミラー回路であって、
第1のゲートと、第1のドレインと、前記チャージポンプ電圧端子に結合される第1のソースとを有する第1のトランジスタと、
前記第1のゲートに結合される第2のゲートと、前記第2のゲートに結合される第2のドレインと、前記チャージポンプ電圧端子に結合される第2のソースとを有する第2のトランジスタと、
を含む、前記電流ミラー回路と、
前記第2のドレインに結合されるバイアス電流源と、
第3のゲートと、前記電力FETのゲートに結合される第3のドレインと、前記第1のドレインに結合される第3のソースとを有するカスコードトランジスタと、
前記第1のドレインに結合される第4のゲートと、前記チャージポンプ電圧端子に結合される第4のドレインと、第4のソースとを有するフィードバックトランジスタと、
前記第4のソースと前記第3のゲートとの間に結合される第1のフィードバック抵抗器と、
前記第3のゲートと前記電力FETのドレインとの間に結合される第2のフィードバック抵抗器と、
基準電流源に結合されるように適合される非反転入力と、電力電流源に結合されるように適合される反転入力と、前記電力FETのゲートに結合される出力とを含む電流制限回路と、
を含む、回路。
【請求項2】
請求項1に記載の回路であって、
前記第1のトランジスタが第1のFETであり、前記カスコードトランジスタが第2のFETであり、前記第1及び第2のFETの各々が、5ボルト又はそれよりも小さいそれぞれのゲート・ソース電圧(VGS)信頼性限界と、30ボルト又はそれよりも小さいそれぞれのドレイン・ソース電圧(VDS)信頼性限界とを有する、回路。
【請求項3】
請求項2に記載の回路であって、
前記第1のフィードバック抵抗器の値と前記第2のフィードバック抵抗器の値との合計に対する前記第2のフィードバック抵抗器の値の比が5/9よりも大きい、回路。
【請求項4】
請求項3に記載の回路であって、
前記チャージポンプ電圧端子に結合され、前記チャージポンプ電圧端子に第1の電圧電位を提供するように構成される4段チャージポンプであって、前記第1の電圧電位が前記電力FETのドレインにおける第2の電圧電位よりも少なくとも10ボルト高い、前記4段チャージポンプを更に含む、回路。
【請求項5】
電力供給システムであって、
電力入力と電力出力との間に配置される電力FET
電流源駆動回路であって
前記電力入力と前記電力出力との間で電力の供給をレギュレートするために前記電力FETのゲートにプルアップ電流を提供するためのカスコード電流源であって、上側段と下側段との間にカスコードノードを有する、前記カスコード電流源と、
前記カスコードノードにおける電圧をサンプリングして前記電圧を前記下側段のゲートまで適応的に変化させ、前記下側段をソースフォロワとして自動的に構成して、前記電力入力と前記電力出力との間の電流の制限を必要とする過電流状態の間前記下側段を飽和にするためのカスコード保護回路であって、ソースフォロワ回路要素とフィードバック分圧器回路要素とを含む、前記カスコード保護回路と、
を含む、前記電流源駆動回路と、
を含む、電力供給システム。
【請求項6】
請求項5に記載の電力供給システムであって、
前記電力FETが、前記カスコード電流源前記カスコード保護回路とは異なるIC上のFETである、電力供給システム。
【請求項7】
請求項5に記載の電力供給システムであって、
前記カスコード電流源と前記カスコード保護回路が、約30ボルトより大きいドレイン・ソース電圧に定格されるトランジスタを含まない、電力供給システム。
【請求項8】
請求項5に記載の電力供給システムであって、
前記電力出力に対する電流を閾値と比較し、前記比較に基づいて前記電力FETの前記ゲートの前記電圧を低く下げることによって前記過電流状態に応答するための電流制限回路を更に含む、電力供給システム。
【請求項9】
請求項5に記載の電力供給システムであって、
前記上側段のドレインノードが、前記カスコードノードにおいて前記下側段のソースノードに接続され、
前記カスコード保護回路がフィードバックトランジスタを含み、前記フィードバックトランジスタのゲートノードが前記カスコードノードに接続されている、電力供給システム。
【請求項10】
請求項に記載の電力供給システムであって、
前記カスコード保護回路が、上側ノードと、ディバイダノードと、下側ノードとを有する分圧器として配置されるフィードバック抵抗を含み、
前記分圧器の前記上側ノードが、前記フィードバックトランジスタのソースノードに接続され、
前記分圧器の前記ディバイダノードが、前記下側段のゲートノードに接続され、
前記分圧器の前記下側ノードが、前記電力FETのドレインノードに接続される、電力供給システム。
【請求項11】
請求項10に記載の電力供給システムであって、
前記電力FET第2の電力FETが、共通ドレインノードにおいてバック・ツー・バックに接続され、
前記電流源駆動回路が、
第2の電力FETのゲートに電流を提供するための第2のカスコード電流源であって、第2の上側段と第2の下側段との間に第2のカスコードノードを有する、前記第2のカスコード電流源と、
前記第2のカスコードノードにおける電圧をサンプリングして、前記電圧を前記第2の下側段のゲートに適応的に変化させ、前記第2の下側段をソースフォロワとして自動的に構成して、別の過電流状態の間、前記第2の下側段を飽和にするための第2のカスコード保護回路と、
更に含む、電力供給システム。
【請求項12】
電力を供給する方法であって、
出力を有する電力経路を介して出力信号をレギュレートするため電力FETのゲートにカスコード電流源で電流を供給すること
前記電力経路を介する電流が所定の電流制限閾値を超えることを検出し、その検出に基づいて、
前記電力FETのゲートをプルダウンし、
前記電力FETの前記ゲートがプルダウンされたことを検出し、
前記カスコード電流源の下側段をバイアスして飽和で動作させ、それによって、前記電力FETの前記ゲートに対する前記カスコード電流源の出力インピーダンスを増加させ、前記カスコード電流源の電流精度を増加させること
を含み、
前記電力FETの前記ゲートがプルダウンされたことを検出することが、前記カスコード電流源の前記下側段のソースとゲートとの間の信号をフィードバックすることによって、前記カスコード電流源の前記下側段のドレイン・ソース電圧の増大を感知することを含む、方法。
【請求項13】
請求項12に記載の方法であって、
前記カスコード電流源の前記下側段と上側段とが、35ボルトより小さい最小ドレイン・ソース降伏電圧(BVDSS)定格の30ボルトより小さいドレイン・ソース電圧(VDS)に定格されるドレイン拡張PMOS(DEPMOS)デバイスである、方法。
【請求項14】
請求項12に記載の方法であって、
前記電力FETの前記ゲートの電圧電位が、前記電力経路の前記出力の電圧電位よりも少なくとも10ボルト高い、方法。
【請求項15】
請求項12に記載の方法であって、
チャージポンプが、前記電力FETのドレインの電圧電位より高い電圧を前記カスコード電流源に供給し、
チャージポンプの最小出力が、前記電力経路の前記出力の電圧電位よりも少なくとも10.3ボルト大きい、方法。
【請求項16】
請求項15に記載の方法であって、
通常動作の間、前記電力FETの前記ゲートの電圧電位が34ボルト又はそれ以上であり、前記チャージポンプの前記電圧電位が34.3ボルト又はそれ以上である、方法。
【請求項17】
請求項15に記載の方法であって、
前記電力経路を介する電流が前記所定の電流制限閾値を超えることを検出することに基づいて、前記電力FETの前記ゲートが、0.5ボルト~1.5ボルトまでプルダウンされる、方法。
【請求項18】
請求項12に記載の方法であって、
フィードバックされた信号が、フィードバックトランジスタと、前記フィードバックトランジスタに接続される上側抵抗及び前記電力FETのドレインに接続される下側抵抗を含むフィードバック分圧器の前記上側抵抗とを介して供給され、
前記抵抗が、前記上側及び下側抵抗の和に対する前記下側抵抗のフィードバック比が5/9よりも大きくなるように選択される、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願は概して電子回路に関し、より詳細には高電圧ゲートドライバ電流源に関する。
【背景技術】
【0002】
USB Type-Cは、電源デバイス(例えば、ラップトップコンピュータ又はノートブックコンピュータなどのモバイルコンピュータ)と電力シンクデバイス(例えば、携帯電話)との間の可逆的なプラグ方位及びケーブル方向を可能にする、ユニバーサルシリアルバス規格である。この規格では、電源デバイスが、0.5アンペアから3.0アンペアまでの電流を動的に管理し得る。USB Power Delivery(PD)は、USB-C規格及びケーブルを用いるシングルワイヤプロトコルである。USB Type-Cポートは、接続されたデバイス(例えば、携帯電話)に電力を搬送する電源、又は接続されたデバイス(例えば、バッテリー)から電力を転送する電流シンクのいずれかとして機能し得る。PDネゴシエーションにより、デバイスは現在のバッテリー状態で最適な電力レベルを搬送することを請け負うことが可能になる。このプロトコルは、100ワットまでの電力(即ち、5アンペアで20ボルト)を搬送するようにUSBを拡張する。
【発明の概要】
【0003】
一例において、電力供給システムが、電力入力と電力出力との間の電力の供給をレギュレートするように電力FETのゲートを制御するために、電力FETコントローラ内に電流源駆動回路を含む。電流源駆動回路は、上側段と下側段との間にカスコードノードを有するカスコード電流源と、カスコードノードにおける電圧をサンプリングして、下側段のゲートへの電圧を適応的に変化させ、また、下側段をソースフォロワとして自動的に構成して、電力入力と電力出力との間の電流の制限を必要とする過電流状態の間、下側段を飽和にするカスコード保護回路とを含む。
【0004】
別の例において、電力を供給する方法が、出力を有する電力経路を介して電力をレギュレートするために、カスコード電流源で電力FETのゲートに電流を供給することを含む。この方法は、電力経路を介する電流が所定の電流制限閾値を超えることを検出することによって継続する。この検出に基づいて、電力FETのゲートはプルダウンされ、即ち、電力経路を介する電流が所定の電流制限閾値を超えない場合に、動作の間ゲートが経験し得るものよりも低い電圧までプルダウンされる。この方法は、カスコード電流源の下側段にバイアスをかけて飽和で動作させることによって継続し、それによって、電力FETのゲートへのカスコード電流源の出力インピーダンスを増加させ、カスコード電流源の電流精度を増加させる。
【0005】
更に別の例において、回路が、高電圧電力経路と電圧バスノードとの間に、それらの間の電力送信をレギュレートするための電力FETを含む。電流源が、電流ミラーの一方の側にバイアス電流を供給する。カスコード電流源が、電流ミラーの反対側に、上側段及び下側段を含む。上側段のソースはチャージポンプ電圧ノードに接続され、下側段のドレインは電力FETゲートに接続される。フィードバックトランジスタが、カスコードの中間ノード(上側段と下側段の間)においてそのゲートを有し、チャージポンプノードにおいてそのドレインを有する。第1及び第2のフィードバック抵抗器が、上側ノード、ディバイダノード、及び下側ノードを有する分圧器として配置され、上側ノードは、フィードバックトランジスタのソースに接続され、ディバイダノードは、カスコード電流源の下側段のゲートに接続され、下側ノードは、電力FETのドレインに接続される。
【図面の簡単な説明】
【0006】
図1】一例の電力供給システムのシステム図である。
【0007】
図2】一例の電力供給回路の回路図である。
【0008】
図3】別の例の電力供給回路の回路図である。
【0009】
図4】電力供給において電力をレギュレートする例示の方法を示すフローチャートである。
【0010】
図5】電力供給において電力をレギュレートする例示の方法を示すフローチャートである。
【発明を実施するための形態】
【0011】
USB電力経路が、内部/外部バック・ツー・バック(back-to-back)電力FETと、各電力FETのゲートを制御する(即ち、ゲートドライバとして働く)ためのコントローラとで構成され得る。例示の実施例において、高電圧準拠電流ミラーが下側電圧デバイスを含む。例えば、この電流ミラーは、USB PD電界効果トランジスタ(FET)コントローラに有効であり、これは有利にもマスク数を低減し、従ってチップコストを低減する。
【0012】
カスコード保護回路要素は、電流制限回路要素に電力FETのゲートをプルダウンさせる電力経路を介して、過電流状態の間、高電圧準拠電流ミラーにおけるカスコード電流源を|VGS|違反から保護し得る。カスコード保護回路要素はさらに、カスコード電流源内のトランジスタデバイスを低電圧デバイス、即ち40ボルトVDSに定格されないデバイス、とすることを可能にし、高電圧デバイスをつくるときに余分な高電圧マスクが必要とされることにより生じる製造コストを節約する。
【0013】
カスコード保護回路要素は、例えば、カスコード電流源内のカスコードノードにおける電圧をサンプリングして、カスコード電流源内のカスコードの下側段のゲートにおける電圧を適応的に変化させるように配置される、ソースフォロワ回路要素及びフィードバック分圧器回路要素で構成され得る。ソースフォロワ回路要素は、例えば、単一のフィードバックトランジスタで構成され得、そのゲートはカスコード電流源のカスコードノードに接続される一方、分圧器回路要素は、フィードバックトランジスタのソースと関連する電力FETのドレインとの間の分圧器として配置される2つの抵抗を含み得る。分圧器のディバイダノードがカスコード電流源の下側段のゲートに接続されているとき、カスコード保護回路要素は、カスコードノードとディバイダノードとの間のフィードバックループを確立して、カスコードデバイスを保護し、電流制限動作の間それらの動作をカスコード電流源として強化し得る。この配置にすることで、超高電圧マスクの節約と製造コストの削減が可能になる。
【0014】
図1は、電力FET104を制御して、高電圧電力経路PPHV106から電圧バスVBUS108へ、又はその逆へ(双方向矢印106、108によって示される)の電力の供給をレギュレートするため、及びそのような経路106、108に沿った電流を制限するための、電力FETコントローラ102を含む電力供給システム100を図示するシステム図である。電圧バス108を有する電源106は、例えばUSB PDプロトコルに従って、USB接続を介して周辺機器デバイスに電力を供給するため、又はそれらから電力をソースするために用いられ得る。
【0015】
電力FETコントローラ102は、チャージポンプ電圧VCP112に従って機能する電流源駆動回路110と、電力FET104のゲートが取り付けられているゲートノード116への電流をレギュレートするためのバイアス電流114とを含む。電力FET104のための一定の最大ゲート・ソース電圧(VGS)を実現するように、ゲートクランプ回路118が配置され得る。ゲート116への電流をレギュレートするため、電流源ドライブ110が、プルアップ電流(Ipu)をゲート116に供給し得るカスコード電流源120を含み得る。カスコード電流源120は、例えば、より大きなカスコード電流ミラー配置の一部とし得る。
【0016】
カスコード電流源120内のデバイスを保護し、通常動作と電流制限モード動作との両方の間の電流源ドライブ110が適切に機能することを確実にするため、ソースフォロワ124及びフィードバック分圧器126を含み得るカスコード保護回路122が、カスコード電流源120内のカスコードノードにおける電圧をサンプリングし得、カスコード電流源120内のカスコードの下側段のゲートにおける電圧を適応的に変化させ得る。
【0017】
電流制限回路128が、電力経路電流を閾値と比較し、電力FET104を介し、それにより電力経路106、108を介する電流の制限を支援し得る。これにより、電流制限回路128は、比較に基づいてゲート116をプルダウンすることによって、例えば、カスコード電流源120によって供給されるプルアップ電流(Ipu)に対向するプルダウン電流を生成することによって、過電流状態に応答し得る。
【0018】
カスコード電流源120は、例えば、トランジスタデバイス、例えば、(ソースノードがチャージポンプ電圧ノード112に接続されている)上側段と、(ソースノードが上側段のドレインノードに接続されている)下側段とを有するカスコード構成で配される低電力FET(即ち、5ボルト未満のゲート・ソース電圧(VGS)信頼性限界、及び30ボルト未満のドレイン・ソース電圧(VDS)信頼性限界を有するFET))で構成され得る。ソースフォロワ124は、例えば、カスコード電流源120内の中間ノード(即ち、カスコードの上側段のドレインとカスコードの下側段のソースとを接続するノード)におけるゲートを備えて配置される、フィードバックトランジスタで構成され得る。フィードバック分圧器126は、例えば、上側ノード、ディバイダノード、及び下側ノードを有する分圧器として配置されるフィードバックトランジスタで構成され得、分圧器126の上側ノードは、フィードバックトランジスタのソースノードに接続され、分圧器126のディバイダノードは、カスコード内のトランジスタの1つのゲートノードに接続され、分圧器126の下側ノードは、電力FET104のドレインノードに、例えば、第2の電力FET(図1には図示せず)とドレイン・ツー・ドレインで配置される電力FET104を有し得る配置で共通ドレインノードに、接続される。
【0019】
図2は、例えば、USB PD応用例に用いられ得る電力経路回路電流源トポロジー200の回路図である。コンデンサ要素COUTは、例えば、ノードVBUSにおいてバスに接続される周辺機器デバイスによって提示される負荷を表し、バスはUSB電力バスとし得る。矢印202によって示されるように、電力経路回路200は、ソースモードで、即ち、システム側高電圧電力経路ノードPPHVから周辺機器側バス電圧ノードVBUSへの電流フローを提供するように動作し得る。バック・ツー・バック電力FET MNP0、MNP1はポート隔離を提供する。電力FET MNP0、MNP1のドレインは、共通ドレインノードCMDRNにおいて接続され、その電圧はPPHVとVBUSの最大である(208で示す)。
【0020】
電力FET MNP0、MNP1は各々、チャージポンプVCPからのカスコード電流源で構成される高電圧ゲート駆動回路によって駆動される。図示される回路200において、トランジスタMP2、MP3は共に、電力FET MNP0のためのゲート駆動回路を形成し、一方、トランジスタMP4、MP5は共に、電力FET MNP1のためのゲート駆動回路を形成する。各カスコード電流源は、それぞれの電力FETにプルアップ電流Ipuを供給する。ゲート・ソースクランプ回路204、206は各々、それぞれの電力FET MNP0又はMNP1のゲートが充電された後に充電電流Ipuを取り込むことによって、それぞれの電力FET MNP0、MNP1について一定の最大ゲート・ソース電位差VGSを維持する。そのため、電力FET MNP0の場合、ゲート・ソース電位差VGSは、ノードGATE_SENSEFETにおける電位とノードPPHVにおける電位との間の差であり、電力FET MNP1の場合、ゲート・ソース電位差VGSは、ノードGATE_PASSFETにおける電位とノードVBUSとの間の電位差である。チャージポンプ電圧ノードVCPは、下記式によって示されるように、共通ドレイン電圧CMDRN及び入力電源(図示せず)、例えば3.3ボルトの入力電源VDD_3P3、から導出される入力を有する。
VCP=CMDRN(Max(PPHV、VBUS))+n×3.3V
ここで、nはチャージポンプの段数である。
【0021】
チャージポンプ電圧VCPは、下記式によって示されるように、(a)充分なゲート・ソース電位差VGSを供給することによる電力FETと、(b)カスコード電流源に必要なドレイン・ソース電圧と、(c)電力経路におけるすべての他の高電圧回路とのすべてに電力供給するのに充分でなければならない、
VCP=CMDRN(Max(PPHV,VBUS))+VGS(MNP0)+VDS(MP2)+VDS(MP3)
+負荷によるチャージポンプのドロップアウト、
又は同様に、
VCP=CMDRN(Max(PPHV,VBUS)+VGS(MNP1)+VDS(MP4)+VDS(MP5)
+負荷によるチャージポンプのドロップアウト
例えば、設計によって、ゲートクランプ(例えば、206)によって実現されるような電力FET(例えば、MNP1)のターゲットVGSが10ボルト又はそれより高い場合、チャージポンプ電圧VCPは、負荷に適応した後、共通ドレイン電圧CMDRN(即ち、PPHV又はVBUSの大きい方)よりも少なくとも約10.3ボルト高い電位に維持され得る。このような例では、チャージポンプ電圧が常にCMDRNよりも少なくとも約10.3ボルト高くなるように、チャージポンプはn=4段にする必要がある。また、VCPがこの値より1又は2ボルト上であれば許容可能である。
【0022】
電力FET MNP0、MNP1は、例えば、電力放散を低減するために非常に低いドレイン・ソース オン抵抗RDSonを有する低コスト垂直電力FETであるNexFETなどの、高電圧MOSFETであり得る。NexFETは、例えば、20ボルトの最大ゲート・ソース電圧(VGS)定格を有し得る。幾つかの例において、NexFETプロセスを用いて製造されたNexFETダイと、例えばモノリシックプロセスなどの異なるプロセスを用いて製造されたコントローラダイとを共にパッケージするためにマルチチップモジュール(MCM)が用いられるが、他の例において、別個のNexFET構成要素及びコントローラ構成要素が、MCM内にパッケージさることなく個別に組み立てられる。PPHV又はVBUS上の最大電圧は、USB PD応用例の場合、24ボルトである。
【0023】
電力FETゲート・ソース電圧VGS(即ち、ゲートクランプ206によって実現されるターゲットVGS)が10ボルトとして選択される場合、最小チャージポンプ電圧VCPは、ドライバ電流源デバイス(例えば、MP2、MP3、MP4、MP5)のためのヘッドルームを可能にするために34ボルトより大きい必要がある。幾つかの例において、チャージポンプ電圧VCPは、例えば36ボルト又はそれ以上のレール電圧まで上昇することがある。従って、トポロジー200に配置されるように、ドライバ電流源デバイス(例えば、MP2、MP3、MP4、MP5)は、潜在的な大きなターゲットVGS値(例えば、10~20ボルト)に適応するために40ボルトVDSに対して定格される必要がある。40ボルトVDSに対して定格されていないデバイスは、40ボルト又はそれ以上の電位差が任意のこのようなデバイスのドレイン及びソースの間に置かれると、ダメージを受けるか、又は性能が低下する可能性がある。40ボルトドレイン拡張PMOS(DEPMOS)デバイスは、40ボルトVDSに対して定格されたデバイスの一例を構成する。しかしながら、40ボルトDEPMOSデバイスは、製造において、例えば、二重拡散ウェル(DWELL)マスク又はP-埋め込み層(PBL)マスクなどの、余分な高電圧(HV)マスクを要する。
【0024】
そのため、図2に示される電流源トポロジーは、例えば、NexFETなどの、10ボルト又はそれより大きいVGSを有する電力FET MNP0、MNP1を駆動するために用いられる場合、ある制約を有する。例として、図2の電流源トポロジーは、付加的なHVマスク(例えば、40ボルトPBLマスク)を必要とし、ドライバ電流源デバイスMP2、MP3、MP4、MP5は、40ボルトVDSのために定格される必要がある。また、カスコードデバイスMP4は、電力FET MNP0、MNP1を介する電流を制限するために電流制限動作の間、電力FETゲートノードGATE_PASSFETが低にプルされるとき、|VGS|違反(例えば、5ボルトより大きい絶対値ゲート・ソース電圧)に遭遇する。カスコードデバイスMP2は、逆電流保護の間電力FETゲートノードGATE_SENSEFETが低にプルされて、ソースモードの間VBUSがPPHVよりも大きく、そのためMNP0をオフするか感知するときに、同様の|VGS|違反に遭遇する。
【0025】
従って、図2に示されたゲート駆動トポロジー200は、そのカスコード電流源に低電圧デバイスを用いることに限定された場合、5ボルト以下のゲート・ソース電圧VGSを有する内部電力FETを駆動するためにのみ適しており、電力FETのゲート・ソース電圧VGSが、5ボルトよりも大きいと予期されるか又は5ボルトより大きい電位を有する場合、本応用例に用いられ得ない。
【0026】
図3は、USB PD電力経路における高電圧(HV)NexFETゲートドライバ回路に用いられる電流源トポロジー300を示す。トポロジー300は、図2におけるトポロジー200と多くの特徴を共有しているが、図の上部の、カスコードトランジスタMP4、MP5,フィードバックトランジスタMNF、及びディバイダ抵抗器R1、R2で構成されるカスコードゲートドライバの設計が異なる。例示を明瞭にするために、GATE_PASSFET(MNP1)のための電流源駆動のみを示し、GATE_SENSEFETのための電流源駆動は省いている。トポロジー300内の同じカスコードゲートドライバは、MNP0のゲートを駆動するためにも用いられ得る(図示せず)。例として、MP4、MP5は、35ボルトの最小ドレイン・ソース降伏電圧(BVDSS)定格の、30ボルトVDS定格DEPMOSデバイスとし得る。これらの定格は、FETデバイスを製造するために用いられるプロセスの関数である。例示されたトポロジー300は、40ボルトHVマスクの必要性を回避する。
【0027】
フィードバックトランジスタMNFと、抵抗R1及びR2によって形成される分圧器とが、図1におけるカスコード保護回路122に対応し得るカスコード保護回路を形成する。図3に図示されるように、カスコード保護回路は、カスコードノードVYにおける電圧をサンプリングし、カスコードの下側段デバイスMP4のゲート・ソース電圧が常に|VGS|違反から保護されるように、カスコードの下側段のゲート、即ち、ディバイダノードVBP、への電圧を適応的に変化させる。また、カスコードの下側段デバイスのドレイン、即ち、GATE_PASSFETと記されたノードが、例えば、VBUSへの/VBUSからの電力経路を介する電流の制限を必要とする過電流状態の間起こり得るように電流制限回路によって、低にプルされると、カスコード保護回路は、下側段トランジスタMP4をソースフォロワとして自動的に構成し、カスコード下側段トランジスタMP4を飽和にする。カスコード保護回路は、フィードバックループを閉じて、カスコードノードVYが、VBPの値にMP4のVGSを加えた値に整定することを確実にする。
【0028】
矢印302によって示されるように、電力経路回路300は、ソースモードで、即ち、システム側高電圧電力経路ノードPPHV(図3では省略)から周辺機器側バス電圧ノードVBUSへの電流フローを提供するように動作し得る。ゲート・ソースクランプ回路306は、電力FET MNP1のゲートが充電された後に充電電流Ipuを取り込むことによって、電力FET MNP1に対する一定のゲート・ソース電位差VGS(即ち、ターゲットVGS)を維持する。
【0029】
フィードバックトランジスタMNF及びディバイダ抵抗器R1、R2は、下記のように、トポロジー300がトポロジー200に固有の|VGS|違反の問題を決して受けないように設計され得る。フィードバックトランジスタMNFは、ソースフォロワとして動作する。フィードバックトランジスタMNFとフィードバック抵抗器R1及びR2で構成される分圧器とが、MP4及びMP5が常にそれらのゲート・ソース電圧VGS(例えば、5ボルト未満)及びドレイン・ソース電圧VDS(例えば、30ボルト未満)の信頼性限界内で動作するように、電力FETゲートノードGATE_PASSFETにおける電圧に基づいて、ノードVXにおける電圧、及びそのため、ノードVBP2における電圧を設定する。
【0030】
回路300は幾つかの動作モードを有し得、これらのモードには、電力が閾値電流制限未満でPPHV‐VBUS電力経路にわたって供給されているときの「通常動作」モードと、電力経路にわたる閾値を超える電流引き込みが、電流制限動作310(例えば、電流制限増幅器)に、電力FET MNP1を介する及び従ってPPHV‐VBUS電力経路を介する電流を制限させるときの「電流制限動作」モードとが含まれる。トポロジー300のカスコードゲートドライバ回路は、モード間の遷移時にデバイスMP4、MP5を自動的に保護し、|VGS|違反がないことを確実にすることができる。
【0031】
トポロジー300の通常動作の間、即ち、過電流状態がトリガされないように所定の閾値電流より低い電流を供給するための動作の間、電流源トランジスタMP5は飽和で動作し、MP4は、電力FET MNP1の完全な特定ゲート・ソース電圧VGS又はその付近(例えば、GATE_PASSFET=VBUS+10ボルト)の電力FETゲートノードGATE_PASSFETにおける電圧として、その線形領域で動作する。これは、すぐ下の式によって示されるように、(a)チャージポンプ電圧VCPが完全にロードされ、その最小電圧が約VBUS+10.3ボルトであり、(b)GATE_PASSFET=VBUS+10ボルトであり、MP4が飽和になるためのヘッドルームを残さないからである。MP5は、より大きな電流ミラー精度のために、より長いチャネル長を有するような寸法とされ得る。例えば、MP5は、最小チャネル長より少なくとも5倍長いチャネル長を有する(つまり、LMPS>5×Lmin)ような寸法とされ得る。下記の式において、閾値電圧VTHPは、MOSFETのドレインとソースとの間に電圧が印加されたときに電流を流す最小ゲート・ソース電圧であり、VSDMP4は、トランジスタMP4のソース-ドレイン電圧であり、VGSMNFは、トランジスタMNFのゲート・ソース電圧であり、他方のノードの電圧は図3において示されるとおりである。
PPHV=24V、

GATEPASSFET=VBUS+10V、
R2/(R1+R2)=3/4と仮定する。
飽和のためVSDMP4>0.5Vと仮定すると、VY=VBUS+10.5Vとなり、

VSDMP4>VY-VBP-VTHP


となり、
そのため、MP4は線形領域になる。
【0032】
飽和閾値が0.3ボルトとされる場合でも同様に、上記不等式は満たされない。これは、上記分析におけるように、0.5ボルトが2.375ボルトより大きくないのと同様、0.3ボルトが2.375ボルトより大きくないためである。
【0033】
チャージポンプ電圧VCPのいかなる増加も、35ボルトより大きい、基板へのドレイン/ソーススタンドオフ電圧、及び衝撃デバイス信頼性を増大させ得るため、エリア及びプロセス信頼性仕様によって制限される。最大バス電圧VBUSが24ボルトであり、ゲートクランプ306によって実現されるターゲット電力FET VGSが10ボルトである場合、CMDRNは24ボルトであり、GATE_PASSETは34ボルトであり、VBPは30.75ボルトであり、VXは33ボルトであり、カスコードノードVYは34ボルトであり、MP5はその飽和領域で動作しており、MP4はその線形領域で動作している。
【0034】
電流制限動作の間、電力FETのゲート、即ち、図3に図示された例におけるMNP1は、電力FET MNP1を介する電流を制限するために、電流制限回路310によって低く(例えば、0.5ボルト~1.5ボルトなど、例えば、1ボルト近くまで)プルされる。その結果、このようなドレインノードは、電力FETのゲート、即ち図3に図示された例におけるGATE_PASSFET、と同じノードであるので、下側段デバイスMP4のドレインも低にプルされる。そのため、上側段デバイスMP5のソースと下側段デバイスMP4のドレインとの間には大きな電圧差があり、MP4のための大きなVDSとなり、MP4が飽和に入ることができるようにする。回路300の配置のおかげで、MP4のドレイン・ソース電圧VDSが増加すると、カスコード保護回路は、飽和にMP4及びMP5を自動的にバイアスし、電流制限の間、より高い電流精度を提供し、電力FET MNP1のゲート及び電流制限回路310に一層高い出力インピーダンスを提示する。MP4は、ソースフォロワとして動作し、カスコードノードVYにおける電圧を、ディバイダノードVBPより上の1つの下側段VGSとして定義する。
【0035】
電流制限回路310は、電力FET MNP1のドレイン・ソース電圧VDSを感知し、電力FETを介する電流が所定の電流閾値Irefを超えるとき、電力FET MNP1を介する電流を制限するようにGATE_PASSETを絞る。一例として、電流制限回路310は、PPHV-VBUS電力経路を介する電流をサンプルし得、この電流経路電流サンプル値は、図3にIpower_sampとして示され、このサンプリングされた電力経路電流値を閾値電流値Irefと比較し、その正確な値は、プログラム可能又は選択可能であり得る。Ipower_sampがIref閾値を超えると、電流制限回路310は、GATE_PASSFETの電圧をプルダウンし始める。
【0036】
この電流制限動作の間、カスコードゲートドライバは、より高いインピーダンスを電力FET MNP1及び電流制限回路310のゲートに自動的に提示し、それによって電流制限回路310の小信号安定性を改善する。最大バス電圧VBUSが24ボルトである場合、CMDRNは24ボルトであり、GATE_PASSETは1ボルトであり、カスコードノードVYは27ボルトであり、VXは約26ボルトであり、VCPは34.4ボルトであり、MP4及びMP5はいずれも飽和領域で動作している。このような例においてフィードバックトランジスタMNFのVGSは約1ボルトである(即ち、VXはカスコードノードVYより約1ボルト小さい)。このMP4が電流制限動作の間飽和領域で動作することは、下記のように実証される。


従って、MP4は飽和している。
【0037】
フィードバック抵抗器R1及びR2は、例えば、Poly VSR抵抗器であり得、カスコードデバイスMP4、MP5がそれらの信頼性限界内(例えば、5ボルト未満)にそれらの|VGS|を有するように選択され得る。「Poly VSR」抵抗器は、非常に高いシート抵抗(VSR)を有するポリシリコン抵抗器である。Poly VSRは、他のタイプの抵抗器よりも高い温度変動を有し得る低面積抵抗器である。しかしながら、抵抗は、回路300において比で用いられるので、温度の関数とした抵抗におけるこのような絶対変動は、回路動作に実質的な効果を及ぼさない。R1及びR2は、VBUSが0ボルトの場合でもMP4に対する|VGS|違反を回避するために、フィードバック比R2/(R1+R2)が充分に大きくなるように選択され得る。例えば、フィードバック比は5/9より大きくし得、例えば、3/4であり得る。一例として、R1は2.25メガオームになるように選択され得、R2は、6.77メガオームになるように選択され得る。下記の分析は、3/4などの充分に大きなフィードバック比を選ぶ根拠となる論理を示している。下記の分析から分かるように、小さすぎるフィードバック比(1/2など)を選ぶと、MP4に対する|VGS|違反となる可能性がある。
|VGSMP4|<5VとなるようにR1とR2を選ぶ
ケース1、R2/(R1+R2)=1/2’の場合、

ケース2、R2/(R1+R2)=3/4’の場合、
【0038】
電力FET MNP0、MNP1が高電力FET製造プロセス(例えば、NexFETプロセス)を用いて1つのIC上に製造され、示されている様々な他のFET構成要素がより低電力の製造プロセスを用いて別個のコントローラIC上に製造されるとき、図3の回路300が用いられ得る。例えば、図3の回路300は、より高いゲート・ソース電圧VGS(即ち、VGS≧10V)でNexFETを駆動するために信頼性のあるゲート駆動回路を提供し、余分な高電圧プロセスマスク(例えば、DWELL又はPBLマスク)を節約し、それによってUSB PD ICのコストを減少させながら、図2の回路の信頼性制約を克服する。フィードバックトランジスタMNF及び抵抗器R1及びR2は、MP2、MP3、MP4、及びMP5が常にVGS(例えば、5ボルト未満)及びVDS(例えば、30ボルト未満)のプロセス信頼性限界で動作するように、電力FET(GATE_SENSEFET、GATE_PASSFET)のゲートにおける電圧に基づいて、VXを自動的に設定し、そのためVBPをカスコードバイアスする。MP4のゲート・ソース電圧VGSは、通常動作の間、保護され、Ipuは、電流制限動作の間、非常に良好な電流源として挙動する。図3の回路300は、30ボルトVDS定格MOSFETを用いた40ボルト電力FETコントローラIC設計を実現し、40ボルトプロセスを用いてつくられる場合よりも製造コストを低く抑える。
【0039】
図4は、電力供給において電力を供給する(又はレギュレートする)例示的な方法400を図示するフローチャートである。方法400において、出力を有する電力経路を介して電力をレギュレートするために、電力FETのゲートに電流が供給され得る(402)。この電流は、例えば、カスコード電流源によって供給され得る。この方法は、電力経路を介する電流が所定の電流制限閾値を超えることを検出すること(404)で継続する。検出(404)に基づいて、電力FETのゲートは、例えば、電力経路を介する電流をサンプリングして閾値と比較するように配置される電流制限回路によって、プルダウンされ得る(406)。方法400は、電力FETのゲートがプルダウンされたことを検出すること(408)で継続し、カスコード電流源の下側段は飽和で動作するようにバイアスされ(410)、それによって、電力FETのゲートに対するカスコード電流源の出力インピーダンスを増加させ(412)、カスコード電流源の電流精度を増加させる(414)。
【0040】
バイアスは、例えば、カスコード電流源に接続されるフィードバックトランジスタ及びフィードバック分圧器などを含み得るカスコード保護回路によって行うことができる。電力FETのゲートの電圧の低減(406)は、電力経路を介する電流のサンプリングされた値が閾値電流を超えることに基づき得る。
【0041】
カスコード電流源の上側段及び下側段は、35ボルトの最小BVDSS定格の30ボルトVDS定格DEPMOSデバイスとし得る。幾つかの例において、これらは、40ボルトVDS又はそれ以上には定格されていない。電力FETのゲートの電圧電位は、電力経路の出力の電圧電位よりも少なくとも10ボルト高くし得る。チャージポンプは、電力FETのドレインの電圧電位より高いカスコード電流源に電圧を供給し得る。チャージポンプの最小出力は、電力経路出力の電圧電位よりも少なくとも10.3ボルト多くし得る。
【0042】
電流制限動作の間、電力FETのゲートの電圧電位は、例えば0.5~1.5ボルトなど、約1ボルトまでプルダウンされ得る(406)。電力FETのゲートがプルダウンされたことを検出すること(408)は、カスコード電流源の下側段のソースとゲートとの間の信号をフィードバックすることによって、カスコード電流源の下側段のVDSの増大を感知することを含み得る。このようなフィードバック信号は、フィードバックトランジスタ、及び、フィードバックトランジスタに接続される上側抵抗R1と、電力FETのドレインに接続される下側抵抗R2とを有し得るフィードバック分圧器の上側抵抗を介して設定され得、これらの抵抗は、R2/(R1+R2)のフィードバック比が、5/9より大きく、例えば約3/4であるように選択され得る。分圧器抵抗を参照して用いられるように、「下側」という用語は、位相幾何学的位置を示すものであり、相対的抵抗値を示すものではない。
【0043】
図5は、電力供給において電力を供給する(又はレギュレートする)例示的な方法500を示すフローチャートである。方法500では、出力を有する電力経路を介して電力をレギュレートするために、電力FETのゲートに電流が供給される(502)。この電流は、例えば、カスコード電流源によって供給され得る。所定の電流制限閾値より小さい、電力経路を介する電流を供給するための通常動作の間、カスコード電流源の上側段トランジスタは飽和で動作し(504)、カスコード電流源の下側段トランジスタは、その線形領域で動作する(504)。
【0044】
電力経路を介する電流を所定の電流制限閾値に制限するための電流制限動作の間、電力FETのゲートは、例えば、電力経路を介する電流をサンプリングし閾値と比較するように配置される電流制限回路によって、低にプルされ得(506)、上側段及び下側段トランジスタは飽和で動作するようにバイアスされ(508)、それによって、電力FETのゲートと及び電流制限回路との両方に対してより高い出力インピーダンスを提示し(510)、電流制限回路の小信号安定性を改善する(512)。このバイアスは、例えば、カスコード電流源に接続されるフィードバックトランジスタ及びフィードバック分圧器を含み得るカスコード保護回路などによって行われ得る。電流制限動作の間の電力FETのゲートの電圧の低減(506)は、電力経路を介する電流のサンプリングされた値が閾値電流を超えることに基づき得る。
【0045】
方法500では、カスコード電流源の上側段及び下側段トランジスタは、35ボルトの最小BVDSS定格の30ボルトVDS定格DEPMOSデバイスとし得るが、幾つかの例において、40ボルトVDS又はそれ以上には定格されない。電力FETのゲートの電圧電位は、電力経路の出力の電圧電位よりも少なくとも10ボルト高くし得る。チャージポンプは、電力FETのドレインの電圧電位よりも高いカスコード電流源に電圧を供給し得る。チャージポンプの最小出力は、電力経路出力の電圧電位よりも少なくとも10.3ボルト多くし得る。
【0046】
方法500では、通常動作の間、電力FETのゲートの電圧電位は34ボルト又はそれ以上とし得る。チャージポンプの電圧電位は34.3ボルト又はそれ以上とし得る。共通ドレインの電圧電位は約24ボルトとし得、上側段トランジスタのドレインと下側段トランジスタのソースに接続されたカスコード電流源の中間ノードの電圧電位は約34ボルトとし得る。電流制限動作の間、電力FETのゲートの電圧電位は約1ボルト、例えば、0.5~1.5ボルトとし得、チャージポンプの電圧電位は約34.3ボルトとし得、共通ドレインの電圧電位は約24ボルトとし得、上側段トランジスタのドレイン及び下側段トランジスタのソースに接続されたカスコード電流源の中間ノードの電圧電位は約27ボルトとし得る。
【0047】
方法500では、カスコード電流源の下側段トランジスタのVDSは、飽和で動作するように上側段及び下側段トランジスタをバイアスするために、電流制限動作の間、増大する可能性がある。フィードバック分圧器は、フィードバックトランジスタに接続された上側抵抗R1と、電力FETのドレインに接続された下側抵抗R2とを有し得、これらの抵抗は、R2/(R1+R2)のフィードバック比が5/9より大きく、例えば約3/4であるように選択され得る。分圧器抵抗を参照して用いられるように、「下側」という用語は、位相幾何学的位置を示すものであり、相対的な抵抗値を示すものではない。
【0048】
本記載において、「に基づく」という用語は、少なくとも部分的に基づくことを意味する。
【0049】
添付の特許請求の範囲を含む本願の範囲内で、記載された例示の実施例における変形が可能であり、他の実施例も可能である。
図1
図2
図3
図4
図5