IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シスナヴの特許一覧

特許7312773歩行中の歩行者のストライドを分析する方法
<>
  • 特許-歩行中の歩行者のストライドを分析する方法 図1
  • 特許-歩行中の歩行者のストライドを分析する方法 図2
  • 特許-歩行中の歩行者のストライドを分析する方法 図3
  • 特許-歩行中の歩行者のストライドを分析する方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-12
(45)【発行日】2023-07-21
(54)【発明の名称】歩行中の歩行者のストライドを分析する方法
(51)【国際特許分類】
   A61B 5/11 20060101AFI20230713BHJP
【FI】
A61B5/11 230
【請求項の数】 13
(21)【出願番号】P 2020570742
(86)(22)【出願日】2019-06-21
(65)【公表番号】
(43)【公表日】2021-10-14
(86)【国際出願番号】 EP2019066534
(87)【国際公開番号】W WO2019243609
(87)【国際公開日】2019-12-26
【審査請求日】2022-04-15
(31)【優先権主張番号】1855524
(32)【優先日】2018-06-21
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】518120924
【氏名又は名称】シスナヴ
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ヴィシエール,ダヴィド
(72)【発明者】
【氏名】グレレ,マルク
【審査官】磯野 光司
(56)【参考文献】
【文献】特表2017-504440(JP,A)
【文献】国際公開第2014/108948(WO,A1)
【文献】国際公開第2018/089916(WO,A1)
【文献】A. Seferian et al.,Longitudinal results of magneto-inertial motion analysis in Duchenne muscular dystrophy ambulant patients,Neuromuscular Disorders,2016年,26 (2016),S184-185,DOI:10.1016/J.NMD.2016.06.357
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06-5/22
(57)【特許請求の範囲】
【請求項1】
歩行中の歩行者のストライドを分析する方法であって、
(a)記録期間中に、歩行者の下肢の運動測定を取得するステップと、
(b)データ処理ユニットによって、前記運動測定に基づいて前記記録期間中に前記歩行者によって作られる各ストライドを特定するステップと、
(c)前記記録期間を記録サブ期間に分割するステップと、
(d)いくつかの検出されたストライドに対して、前記運動測定に基づいて、前記ストライドの特徴量を推定するステップであって、前記特徴量は、ストライド長であるか、又はストライド長に依存する、ステップと、
(e)前記特徴量の値が小さい順に順序づけられ、記録サブ期間中に発生する、推定された複数の前記特徴量によって形成されるセットの中から、所定のパーセンタイル範囲内の少なくとも1つの特徴ストライド量を選択するステップと、
(f)複数の前記記録サブ期間に対してステップ(e)を繰り返すステップと、
を含み、
前記所定のパーセンタイル範囲は70パーセンタイルと100パーセンタイルとの間に含まれる、方法。
【請求項2】
前記特徴ストライド量は平均ストライド速度である、
請求項1記載の方法。
【請求項3】
前記所定のパーセンタイル範囲は95パーセンタイルからなる、
請求項1又は2いずれか1項記載の方法。
【請求項4】
前記運動測定の取得は、加速度計又はジャイロメータなどの少なくとも1つの慣性センサによって行われる、
請求項1乃至いずれか1項記載の方法。
【請求項5】
前記慣性センサは、前記歩行者の下肢、例えば前記歩行者の足関節、に取り付けられている、
請求項記載の方法。
【請求項6】
前記ストライドの特定は、所定の閾値を超える絶対値の加速度の、所与の時点に対する、検出を含み、
この時点は前記ストライドの開始及び以前のストライドの終了を特定する、
請求項1乃至いずれか1項記載の方法。
【請求項7】
前記ストライドの長さは、水平面上の前記ストライドの経路の投影長さであるか、又は、前記ストライドの経路の曲線長さであり、
前記経路は前記運動測定に基づいて推定される、
請求項1乃至いずれか1項記載の方法。
【請求項8】
前記ストライドの平均速度は、前記ストライドの長さと、その開始と終了との間に経過する経過期間と、の間の比である、
請求項2を引用する請求項7記載の方法。
【請求項9】
ストライドが、複数の連続したストライドの継続的シークエンスにストライドが属する基準にしたがっているかどうかを検証するステップをさらに含み、
前記方法のステップ(d)から(f)は、複数の連続したストライドの継続的シークエンスに属するストライドにのみ実行される、
請求項1乃至いずれか1項記載の方法。
【請求項10】
前記ストライドの開始と以前の又は次のストライドの開始との間の期間が0秒と10秒との間に含まれる場合、又は3秒を下回る場合であって、前記ストライドが少なくとも2つの連続するストライド、又は6つの連続するストライドのシークエンスの一部である場合は、ストライドは複数の連続したストライドの継続的シークエンスに属する、
請求項記載の方法。
【請求項11】
前記記録サブ期間は、2日を超える又は15日を超える期間を有するか、及び/又は、5時間、10時間50時間、又は180時間を超える、累積記録経過期間を有する、
請求項1乃至10いずれか1項記載の方法。
【請求項12】
歩行中の歩行者のストライドを分析するための装置であり、
記録期間の間に、歩行者の下肢の運動測定を取得する少なくとも1つの慣性センサと、
データ処理ユニットであって、
前記運動測定に基づいて前記記録期間中に前記歩行者によって作られる各ストライドを特定し、
前記記録期間を記録サブ期間に分割し、
いくつかの検出されたストライドに対して、前記運動測定に基づいて、前記ストライドの特徴量を推定し、前記特徴量はストライドの長さであるか、又はストライドの長さに依存し、
前記特徴量の値が小さい順に順序づけられ、前記記録サブ期間中に発生する、推定された前記特徴量によって形成されるセットの中から、所定のパーセンタイル範囲内の少なくとも1つの特徴ストライド量を選択し、
複数のサブ期間について前選択を繰り返
前記所定のパーセンタイル範囲は70パーセンタイルと100パーセンタイルとの間に含まれる、
ように構成されたデータ処理ユニットと、
を有する装置。
【請求項13】
コンピュータで実行される場合に、請求項1乃至11のいずれか1項記載の歩行中の歩行者のストライドを分析する方法を実行するためのコード命令を含むことを特徴とするコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は歩行中の歩行者のストライドを分析する分野に関する。
【背景技術】
【0002】
個人の歩行は、1つ以上のストライドのシーケンスを含む。ストライドは2つのフェーズからなる:足が地面に接触している第1フェーズと、足が空中にある第2フェーズである。図1に示すように、ストライドは、片足が地面に接触すると始まり、同じ足が再び地面に接触すると終わる。
【0003】
歩行にはいくつかの筋肉の使用と協調が必要である。従って、ストライドの分析は、個人のフィットネス状態(fitness state)、特に個人が発現する(develop)ことのできる筋力を特徴づけるために用いられることができる。この筋力は、個人のフィットネス状態、年齢、身体トレーニング、又は、個人が受ける、筋肉の効率に影響する処置など、多くの要因に依存して変化する可能性が高い。
【0004】
時間経過に伴うストライド特徴の進展は、特に神経筋疾患又は神経変性疾患を有する個人の場合に、個人のフィットネス状態の進展(evolution)を表していると考えられる。デュシェンヌ型筋ジストロフィ(DMD)などの、これらの疾患は、疾患が進行するにつれて、個人の筋力を低下させる。これにより、ストライド特徴が変化し、典型的には、より遅く、より短く、より少なくなる。
【0005】
既知の方法では、6分間の歩行テスト(6MWT)、ノーススター歩行評価(NSAAテスト)、又は計時4ステップ階段昇降テストなどのテスト中に、個人のストライドを分析することができる。
【0006】
6MWTは、最大能力で6分間歩くことを個人に依頼し、移動距離を分析することである。6MWTは、整形外科や様々な神経-筋病理学などの多くの分野で使用されており、その人のフィットネス状態を規範群との関係で特徴づけるために、個人が生み出すことができる最大労力を測定することを目的としている。実際に、個人によって発現れる最大の力は、その人の身体的状態と筋肉の力を表している。
【0007】
NSAAテストには、10分間の歩行又は走行、座位、立位及び横臥位の切り替え、階段の昇降、ジャンプなど、17の機能的活動が含まれる。
【0008】
最後に、計時4ステップ階段昇降テスト(timed 4-step stair climb test)は、個人が4階段ステップに必要な最短経過期間を測定する。
【0009】
これらのテストは、個人のフィットネス状態の進展を追跡するために、異なる時期に繰り返されることができる。それにもかかわらず、かかるテストは、予期される条件を検証するために、管理された環境(一般的には臨床センター)、特定のコース(屋内、平坦、理想的には一定距離の直線コース)、及び、有資格スタッフの立会いの下で実施する必要があるため、限定的である。したがって、テストを実施するために、個人は定期的に臨床センターに足を運ばなければならない。さらに、個人は1回のセッションでのみこれらのテストを行うことができ、テストは、テスト時の個人の能力に影響する外的条件(一時的な疲労、あるセッションから別のセッションへと変化する動機づけと集中力、レーン長、地面接着、テスト中に与えられる励ましなど)によってバイアスされることがある。6MWTの間、個人は自発的又は無意識的に、テスト全体を通してより速く又は遅く歩くことができる。4ステップ階段上昇テストは非常に速いので、測定開始に関連するバイアスを観察することができる。
【0010】
したがって、上述のテストは、その個人の一般的なフィットネス状態を代表するものではなく、これらのテストのために所与の個人に受け容れられる可変性及び臨床的実質的変化に対応する値は、非常に高いものである。例えば、6MWTでは、受け容れられる可変性は約15%であり、臨床的に実質的な変化は約30mである。
【0011】
また、公知の方法では、いくつかの用途、例えば、歩数計、携帯電話又はコネクティッドウォッチなどは、個人の活動のエピソードの数又はストライドを数えることを可能にする。個人が移動した距離は、その後、かかるデバイスに搭載されたGPS受信機によって測定できる。しかしながら、この測定は正確さを欠き、これらの用途はストライドの経路を特定しない。しかしながら、ストライド数は必ずしも個人の健康状態を表しているとは限らない。実際、このパラメータは、個人のスケジュール、ライフスタイルの可能な変化などの外的変数に非常に敏感である。一方、個人は、非常に限られた速度で、又は非常に短い長さで、多数のストライドを行うことができる。最後に、筋力の弱体化または中程度の改善は、個人の力又は耐久限度にほとんど近づかない、最も一般的な動きに影響を与えない場合がある。したがって、ストライド数の単純なカウント、及び平均ストライド長値の単純な表示では、個人のフィットネス状態を満足のいく方法で特徴付けることができない。
【0012】
さらに、US2013/123665A1は、足部に取り付けられた装置を用いて、個人のストライドの経路を分析することを提案している。しかし、この装置は、個人が発現可能な最大筋力を表すスライド解析を実行せず、個人のフィットネス状態の経時的進展(evolution over time)を解析することはできない。
【先行技術文献】
【特許文献】
【0013】
【文献】米国特許公開第2013/123665号公報
【発明の概要】
【0014】
本発明の1つの目的は、歩行者の歩行のストライドを分析する方法を提案することであり、これは、歩行者のフィットネス状態の経時的進展の追跡を可能にする。
【0015】
本発明の別の目的は、ストライド分析から、個人が発現することができる最大筋力に関する情報を推論することである。
【0016】
本発明の別の目的は、この方法を、個人に対するより少ない制約で、継続的に行うことができるようになることである。
【0017】
第1態様によれば、本発明は、歩行中の歩行者のストライドを分析する方法であって、
(a)記録期間中に、歩行者の下肢の運動測定を取得するステップと、
(b)データ処理ユニットによって、運動測定に基づいて記録期間中に歩行者によって作られる各ストライドを特定するステップと、
(c)記録期間を記録サブ期間に分割するステップと、
(d)いくつかの検出されたストライドに対して、運動測定に基づいて、ストライドの特徴量を推定するステップであって、
特徴量は、ストライドの長さであるか、又はストライドの長さに依存する、ステップと、
(e)値が増加することよって順序づけられ、記録サブ期間中に発生する(ordered by increasing values and occurring during a recording sub-period)、推定された、複数の特徴ストライド量によって形成されるセットの中から、所定のパーセンタイル範囲内の少なくとも1つの特徴ストライド量を選択するステップと、
(f)いくつかの記録サブ期間に対してステップ(e)を繰り返すステップと、
を含む方法に関する。
【0018】
ステップ(e)の間、所与の記録サブ期間に対する所定のパーセンタイル範囲内の特徴ストライド量を選択するステップは、所与のサブ期間の間に、個人のフィットネス状態の単純な関連性のあるインジケータ(この場合、この特徴量のパーセンタイル)を有することを可能にする。
【0019】
ステップ(f)の間に、いくつかの記録サブ期間に対してステップ(e)を繰り返すステップは、個人のフィットネス状態の経時的進展をフォローすることを可能にする。
【0020】
本方法のいくつかの好ましいが非限定的な特徴は、以下のとおりであり、個別に又は組み合わせで取られる:
・ 特徴ストライド量は平均ストライド速度である。
・ 所定のパーセンタイル範囲は70パーセンタイルと100パーセンタイルとの間に含まれる。高パーセンタイルの特徴量は、個人が発現することができる最大筋力を反映する。
・ 所定のパーセント範囲は95パーセントからなる。
・ 運動測定の取得は、加速度計又はジャイロメータなどの少なくとも1つの慣性センサによって実行される。
・ 慣性センサは、歩行者の下肢、例えば前記歩行者の足関節、に取り付けられる。かかる配置は、特に、個人の足部に取り付けられたセンサと比較して、人間工学、快適さ、審美性(センサはズボンの下に隠されている)及び安全性(足部に取り付けられたセンサが外部要素に引っ掛かって落下するリスク)の点で有利である。
・ ストライドの特定は、所定の閾値を超える絶対値の加速度の所与の時点の検出を含み、この時点はストライドの開始及び以前のストライドの終了を特定する。
・ ストライドの長さは、水平面上のストライドの経路の投影長さであるか、ストライドの経路の曲線長さであり、経路は運動測定に基づいて推定される。
・ 平均ストライド速度は、ストライドの長さと、その開始と終了との間に経過する経過期間と、の間の比である、
・ ストライド分析方法は、複数の連続したストライドの継続的シークエンス(a continuous sequence of several consecutive strides)にストライドが属する基準を検証するステップをさらに含み、本方法のステップ(d)から(f)は、複数の連続したストライドの継続的シークエンスに属するストライドにのみ実行される。かかるステップは、足踏み(trampling)、分離したストライド(isolated strides)又は微小運動(small movements)に基づく分析無しで、個人の自然な継続的歩行を表すストライドのみに基づいて分析することを可能にする。
・ あるストライドの開始と以前の又は次のストライドの開始との間の経過期間が0秒と10秒との間に含まれる場合、好ましくは3秒を下回る場合であって、そのストライドが少なくとも2つの連続するストライド、好ましくは少なくとも6つの連続するストライドのシークエンスの一部である場合は、複数の連続したストライドの継続的シークエンスにストライドが属する。
・ 記録サブ期間(recording sub-period)は、2日を超える、好ましくは15日を超える経過期間(duration)を有するか、及び/又は、5時間、10時間又は50時間、好ましくは180時間を超える、累積記録経過期間を有する。これらの基準は、個人の日常活動を表すのに十分な量のデータを含むサブ期間を定義することを可能にし、個人のフィットネス状態がこの経過期間に有意に変更される可能性は低い。
【0021】
第2態様によれば、本発明は、歩行中の歩行者のストライドを分析するための装置に関し、本装置は、
- 記録期間中に、歩行者の下肢の運動測定を取得する少なくとも1つの慣性センサと、
- データ処理ユニットであって、
・ 運動測定に基づいて、記録期間中に歩行者によって作られる各ストライドを特定し、
・ 記録期間を記録サブ期間に分割し、
・ いくつかの検出されたストライドに対して、運動測定に基づいて、ストライドの特徴量を推定し、その特徴量はストライドの長さであるか、又はストライドの長さに依存し、
・ 値が増加することよって順序づけられ、記録サブ期間中に発生する、推定された、複数の特徴ストライド量によって形成されるセットの中から、所定のパーセンタイル範囲内の少なくとも1つの特徴ストライド量を選択し、
・ いくつかのサブ期間について前のステップを繰り返す、
ように構成されているデータ処理ユニットと、を備える。
【0022】
第3態様によれば、本発明は、本プログラムがプロセッサによって実行される場合に、第1態様にかかる歩行中の歩行者のストライドを分析する方法を実行するためのコード命令を備えるコンピュータプログラム製品に関する。
【図面の簡単な説明】
【0023】
本発明の他の態様、目的、及び利点は、以下の図によって示される、非限定的な例示によって与えられる、以下の詳細な説明を読むことによって明らかになるであろう。
図1図1は、個人のストライドを表す図である。
図2】本発明による歩行中の歩行者のストライドを分析する装置を表す図である。
図3】歩行者の下肢に取り付けられた、本発明による歩行中の歩行者のストライドを分析するための装置を表す図である。
図4】複数のストライド中の足関節の経路の例を表すグラフである。
【発明を実施するための形態】
【0024】
ストライド分析装置
図2を参照すると、ストライド分析装置10は慣性センサ11を備える。慣性センサ11は、加速度計及びジャイロ計を含むことができる。好ましくは、慣性センサ11は、例えばMEMSタイプの少なくとも3つの加速度計及び3つのジャイロメータを含む慣性ユニットを含む。
【0025】
ストライド分析装置10はまた、バッテリ、磁力計14、高度計及び/又はGPSを備えることができる。ストライド分析装置10は、データ処理をリアルタイムで実施するためのデータ処理ユニット12(典型的にはプロセッサ)を備えることができる。また、ストライド分析装置10は、データ処理ユニット12によって作製された及び/又は処理されるべき測定値、又は、既に処理されたデータを格納することができるストレージ手段13(例えば、フラッシュ型メモリ)を備えることもできる。また、ストライド分析装置10は、推定位置を伝送するための通信手段15を含むことができる。例えば、装着者の位置は、ナビゲーションソフトウェアのインタフェース内に表示されるモバイル端末に送信することができる。
【0026】
変形例として、ストライド分析装置10は、測定値をモバイル端末又は遠隔サーバなどの外部デバイスに伝送する通信手段15を備えることができる。これらの通信手段15は、短距離無線通信、例えば、(特に、モバイル端末を有する一実施形態において)Bluetooth又はWifiなどを実装することができ、又は、長距離通信のためのモバイルネットワーク(典型的には、UMTS/LTE)に接続するための手段であることができる。なお、通信手段15は、例えば、ローカルデータストレージ手段13からモバイル端末又はサーバのデータにデータを転送するための有線接続(典型的にはUSB)であることもできる。モバイル端末又はリモートサーバは、その場合、データ処理の実施のためのデータ処理ユニット12(典型的にはプロセッサ)を含む。
【0027】
本説明の残りの部分では、ストライド分析装置10、移動端末及び遠隔サーバのそれぞれのデータ処理ユニット12は、アプリケーションに応じて、本方法のステップの全部又は一部を等しく実行することができることが分かる。
【0028】
ストライド分析装置10はさらに、慣性センサ11を備えるケーシング17を備えることができる。ケーシング17はさらに、可能なデータ処理ユニット12、ストレージ手段13及び通信手段15を備えることができる。
【0029】
図3を参照すると、歩行者は、脚などの少なくとも1つの下肢1を有する。歩行者の2つの下肢1のいずれか又はそれぞれに、ストライド分析装置10を装着できることが理解されよう。
【0030】
ストライド分析装置10は、例えば、歩行者の足部、足関節、脛節又は腿節などの下肢1に取り付けるための手段16をさらに備えることができる。例えば、ストライド分析装置10は、歩行者の足関節3に取り付け手段16を備える。ケーシング17の取り付け手段16は、下肢1の周囲のストラップ、又は、下肢1をクランプしてケーシング17への(、したがって、それが含む慣性センサ11への)固定的接続を可能にするフック&ループテープ(hook-and-loop tape)を備えることができる。したがって、慣性センサ11は、地上基準フレーム内で、歩行者の足関節3の動きと実質的に同一の動きを有する。さらにまた、ケーシング17及びその取り付け手段16は、個人のズボンの下に隠され、保護されたままにすることができる。個人は、毎日のように、継続的に、ケーシング17を着用することができ、ストライド分析の妥当性を増大させる。しかし、これらの慣性センサ11は、例えば、歩行者の脛又は大腿に配置することもできる。
【0031】
ストライド分析方法
歩行中の歩行者のストライドを分析する方法は、以下のステップを含む。
【0032】
慣性センサ11は、好ましくは、歩行者の下肢1に、例えば、足部、足関節、脛節又は腿節に取り付けられる。好ましくは、慣性センサ11は、歩行者の足関節3に取り付けられる。
【0033】
ストライド分析方法は、記録期間中に、歩行者の下肢1の運動の測定値を取得する第1ステップ(a)を含む。取得は、好ましくは、加速度計又はジャイロメータなどの少なくとも1つの慣性センサによって実行される。運動測定は、例えば、歩行者の足関節3の加速度及び角速度の測定である。
【0034】
記録期間は、個人がストライド分析装置10を着用する可能性が高い経過期間に対応し、その際、慣性センサ11は慣性測定を行うことができる。例えば、個人は、1日、より詳しくは、約12時間/日の間、ケーシング17を着用することができる。
この場合、15日間の記録期間に対して、ストライド分析装置10は、180時間の記録を完了する。また、個人がストライド分析装置10を12時間/日、ただし一定の日、例えば1日おきに装着することも可能である。この場合、同じ15日間の記録期間において、ストライド分析装置10は、90時間の記録のみを完了する。
【0035】
ストライド分析方法は、データ処理ユニット12によって、運動測定に基づいて記録期間中に歩行者によって作られる各ストライドを特定する第2ステップ(b)を含む。これは、ストライド開始時点とストライド終了時点を特定することと同様に、ストライドが行われたかどうかを特定することを含む。
【0036】
歩行者の靴に取り付けられたストライド分析装置の場合、ストライドの特定は、重力に等しいゼロ角速度と加速度基準の位相を探索することによって行うことができる。この方法は、ZUPT(ゼロ速度アップデート)方法のフレームワーク内で特に知られている[Foxlin, Eric, “Pedestrian Tracking with Shoe-Mounted Internatial Sensors”, IEEE Computer Society, Nov./Dec. 2005, pp. 38-46]。
【0037】
足関節3上に配置されたストライド分析装置10の場合、足部2が地面に接触するフェーズの間、踵の周りに回転があるため、足部2が地面に配置されたときを含めて、測定された加速度及び角速度はゼロではない。したがって、ZUPT法などの方法を直接適用することはできず、ストライドを特定するためには、ゼロ又はゼロに近い測定値以外の基準に依存することが望ましい。
【0038】
好ましい実施形態によれば、ストライドの特定は、所与の時点に対する、所定の閾値を超える絶対値の加速度の検出を含み、この時点は、ストライドの開始及び前のストライドの終了を画定する。実際、足部2が地面に衝突するときに、下肢1の全体に衝撃が生じる。加速度計によって測定された加速度の絶対値は、その際、所定の閾値を超える可能性が高い。この閾値は、例えば、5m/s~50m/sの間に含まれ、例えば、15m/sに等しい。
【0039】
ストライドの検出の精度を改善するために、所定の閾値よりも大きい絶対値の加速度の検出と、第2ストライド特定基準とを組み合わせることが可能である。この第2基準は、衝撃から経過した経過期間、一定の経過期間に対して測定された特定の加速度、衝撃に対応する加速度ピーク、衝撃から経過した経過期間に対して測定された角速度、及び/又は、衝撃から経過した経過期間に対する角速度の変化、に依存し得る。
【0040】
より具体的には、この第2基準は、特に、上記のパラメータの1つ以上に依存する式の最小化の形態であり得る。式の最小値は、衝撃後の一定の経過期間、例えば、ショック後0秒から1秒間に含まれる経過期間、好ましくはショック後0.5秒の期間を含む経過時間にわたって求めることができる。最小化されるべき式は、次の形式で書くことができる:
【数1】
ここで、Shockは、最後に検出された特定の加速度ピーク、
即ち、1gの所定の閾値よりも大きい、好ましくは1.05gよりも大きい標準を有する値を表す。
Δt_shockは、検出された衝撃から目下の時点(current moment)までの間に経過した経過期間を、所定の閾値を超える絶対値の加速度によって表し、
|accel|は、Xmsに対して、m/sで測定された特定の加速度の平均絶対値を表し、Xは10~500の間に含まれ、好ましくは40に等しい。
αは、例えば、1から100の間に含まれ、好ましくは12に等しい数であり、
|Vang|Xmsは、°/sでXmsにわたって測定された角速度の絶対値の平均を表し、Xは好ましくは10と500との間に含まれ、好ましくは40に等しく、
βは、例えば、1と100との間に含まれ、好ましくは、10に等しい数であり、
ΔVangXmsは、脚部及び足部に垂直な軸における角速度の変化を表し、°/sで、Xmsに対して測定され、Xは好ましくは10~500の間に含まれ、好ましくは40と等しい。
【0041】
ストライドの開始は、上記の式が最小化される時点に対応し、この時点は前のストライドの終了にも対応する。所定の閾値よりも大きい絶対値の加速度の検出と、上記の式の最小化との組み合わせは、ストライドを正確かつ一貫して特定することを可能にする。
【0042】
変形例として、ニューラルネットワーク、ランダムフォレスト、回帰又は任意の他の公知の統計学習アルゴリズムなどの機械学習方法は、測定変動の典型的なパターンを同定するために使用されることができ、このパターンは、ストライドを特定することを可能にする。
【0043】
ストライド分析方法は、記録期間を記録サブ期間に分割する第3ステップ(c)を含む。このステップは、測定された変数の進展を追跡し、従って、サブ期間毎(sub-period after sub-period)の個人のサブ期間のフィットネス状態の進展を追跡することを可能にする。例えば、記録期間が6ヶ月である場合、個人のフィットネス状態の月毎(month after month)の進展を有することは興味深いことであり、記録期間は、記録期間全体に対して単一の結果を持つのではなく、6ヶ月のサブ期間に分割される。
【0044】
記録サブ期間は、個人の健康状態を表すために含まれるストライド分析に十分な長さの経過期間と累積記録経過期間を有しなければならない。好ましい実施形態によれば、記録サブ期間は、2日を超える、好ましくは15日を超える経過期間を有するか、及び/又は、5時間、10時間又は50時間、好ましくは180時間を超える、累積記録経過期間を有する。
【0045】
実際、個人がストライド分析デバイス10を15日間装着しなかった場合、対応する記録サブ期間は15日間であるが、累積記録経過期間は0時間である。かかるサブ期間は、ストライドを含まないので、個人のフィットネス状態を表すものではない。
【0046】
個人の日々の活動を表す十分なデータ量を保証するために、15日間及び180時間の記録の継続は、先験的に(a priori)十分に長く、その一方で、個人のフィットネス状態がこの経過期間中に実質的に変更されないように十分に短い。
かかる経過期間はまた、ストライド分析装置10を着用している個人にとってあまりにも大きな制約を表さずに、測定値の変動(variability)を低減することを可能にする。
【0047】
変形例として、サブ期間の経過期間と、累積記録経過期間と、のこれらの基準のいずれかのみを満たさなければならない。
【0048】
ストライド分析方法は、複数の検出されたストライドに対して、運動測定に基づいて特徴ストライド量を推定することを備える、第4ステップ(d)を含む。例えば推定された特徴量は、平均ストライド速度又はストライド長さであることができる。
【0049】
好ましくは、データ処理ユニット12は、記録期間の間に足関節3の経路の推定を作成する。この推定は、運動測定値の二重積分から作成されることができ、二重積分は、好ましくは、足部2が地面に接触するたびに再調整される。足関節の経路の推定を作成するためのデバイスは、文書FR3 042 266に記載されている。図4は、3つの連続するストライドにわたって推定された経路の表現の例を表す。
【0050】
好ましい実施形態によれば、ストライドの長さは、水平面(即ち、ストライド分析装置10を装着している個人が歩く地面に平行な平面)上のストライドの経路の投影の長さであり、ここで経路は、上記のように、運動測定に基づいて推定される。変形例として、ストライドの長さは、例えば、それを水平面に投影することなく、推定された経路の曲線の長さであり得る。
【0051】
ストライドの平均速度は、ストライド長さと、その経過期間、つまりストライドの開始から終了までの間に経過する経過期間に対応するストライドの経過期間と、の間の比率によって画定されることができる。平均ストライド速度の特定は、瞬間的ストライド速度が歩行中に継続的に考慮される場合、又は高周波でサンプリングされる場合と比較して、いくつかの利点を有する。実際、速いストライドよりも長い経過期間を有する非常に遅いストライドは、速いストライドと比較してより多くの速度に関連付けられ、これは結果の分析を変更し得る。さらにまた、瞬間速度を推定することを可能にする経路の導出は、推定された瞬間速度の値に影響を与える可能性のあるノイズを生成するであろう。最後に、所与のストライドに単一の平均速度を割り当てるとことは、これらのデータに対して後続の統計的計算を実行する目的で、処理すべきデータの数を減少させることによってデータの処理を簡素化することを可能にする。
【0052】
別の実施形態は、計算によって許容されるサンプリング周波数での各経路全体の速度を考慮することを含み、好ましい実施形態では、50Hzから1,000Hzの間、好ましくは100Hz付近である。
【0053】
ストライド分析方法は、第5ステップ(e)を含み、第5ステップ(e)は、値が増加することよって順序づけられた、記録サブ期間中に発生する、推定された、複数の特徴ストライド量によって形成されるセットの中から、所定のパーセント範囲内の少なくとも1つの特徴ストライド量(例えば平均速度及び/又は長さ)を選択するステップ、
である。
【0054】
ストライドは、その日付、時間、及び/又は開始及び/又は終了時点に関連付けられることができ、これにより、所定の記録サブ期間に関連付けられることができる。また、ストライドは、その特徴量(例えば、その平均速度及び/又はその長さ)に関連付けられることができる。所与のサブ期間のストライドは、特徴量の値を増加させることによって順序付けられることができる。
【0055】
統計的計算は、その後、値が増加することよって順序づけられ、記録サブ期間中に発生する、推定された特徴ストライド量(例えば、平均速度及び/又は長さ)によって形成されるセットについて、行われることができる。特に、記録サブ期間の特徴ストライド量のセットに関して、この特徴量の平均及び/又はパーセンタイルを計算することが可能である。例えば、所与のサブ期間に対して、中央値に対応する50パーセンタイル、80パーセンタイル、95パーセンタイル、又は他の任意のパーセンタイルの特徴ストライド量の値を計算することが可能である。
【0056】
所定のパーセンタイル範囲は画定されることができ、このパーセンタイル範囲は、ストライド分析に関連する。特に、高いパーセンタイル値は、個人が発現できる最大労力(effort)及び最大筋力を表す。なぜなら、それらは、個人の最速及び/又は最長のストライドを反映し、歩行速度は、筋力強度状態によって制約されるからである。したがって、これらの高いパーセンタイル値は、個人のフィットネス状態に特に感受性が高い。用語「高パーセンタイル」は、本出願においては、70パーセンタイルよりも大きいパーセンタイルを指すために使用される。
【0057】
高パーセンタイルの範囲からストライドを分析する、かかる方法は、個人が日常生活において複数のより長い及び/又はより速いストライドを統計的に達成するので、歩行に特に適している。特に、ストライドの最長及び/又は最速の数パーセントは、個人が発現できる最大パワーを表す。例えば、研究は、6MWTなどの労力テスト(effort test)の測定値と、同じ個人におけるストライド長及び/又は速度の95パーセンタイルとの間の相関を示している。
【0058】
好ましくは、所定のパーセンタイル範囲は70パーセンタイル100パーセンタイルとの間に含まれる。所定のパーセント範囲は95パーセントからなり得る。
【0059】
ストライド分析方法は、いくつかの前記記録サブ期間に対してステップ(e)を繰り返す第5ステップ(f)を含む。
【0060】
かかるステップ(f)は、いくつかの記録サブ期間に対して、所定のパーセンタイル範囲内の特徴ストライド量にアクセスすることを可能にする。好ましくは、所定のパーセンタイル範囲は、ステップ(e)が繰り返される各サブ期間に対して同じである。したがって、サブ期間毎の特徴ストライド量の進展を追跡することが可能である。その後、ストライド分析装置10を装着した個人のフィットネス状態の経時的進展を追跡することができる。
【0061】
好ましい実施態様において、ストライド分析方法は、複数の連続したストライドの継続的シークエンスにストライドが属する基準を検証するステップをさらに含み、本方法のステップ(d)から(f)は、複数の連続したストライドの継続的シークエンスに属するストライドにのみ実行される。
【0062】
かかるステップでは、個人がその運動量に達したときに、継続的で自然な歩行から得られたデータのみを分析することができる。したがって、データは、ストライドが個人のフィットネス状態を表していない、かなりの量の、足踏み、分離したストライド、又は個人の微小運動によってバイアスされる可能性は低い。したがって、パーセンタイルの所定の範囲、特に95パーセンタイルの計算のために考慮されるストライドは、分離したストライド又は足踏みを考慮に入れず、これは対応する測定バイアスを除去する。
【0063】
好ましくは、あるストライドの開始と以前の又は次のストライドの開始との間の経過期間が0秒と10秒との間に含まれる場合、好ましくは3秒を下回る場合であって、そのストライドが少なくとも2つの連続するストライド、好ましくは少なくとも6つの連続するストライドのシークエンスの一部である場合は、ストライドは複数の連続したストライドの継続的シークエンスに属する。
【0064】
実際、例えば0.5秒、3秒又は10秒よりも長い、2つのストライド間の経過期間は、2つのストライドの間に個人がおそらく停止することを示す。その結果、そのストライドは足踏みに対応し、同じ歩行シークエンスには属さず、個人のフィットネス状態を反映しない。
【0065】
さらに、例えば、10、6、又は2つの連続的ストライドのシーケンスの間に、個人は、先験的に、通常の歩行ペースではなく、足踏み又はわずかな動きに対応し、緩慢なペースである。
【0066】
これらの2つの基準を組み合わせることは、その個人が発現することのできる筋力及び個人の継続的な歩行に特徴的でないストライドを処理することができなくなる。変形例として、行われるべき方法のステップ(d)~(f)に対して、上記の2つの基準のうちの1つのみを検証されなければならない。
【0067】
個人のフィットネス状態を表すストライドを処理する同じ目的で、例えば、経路の計算、あるいは、その開始点と終了点の特定において、エラーを有するストライドを同定することが可能である。この目的のために、ストライドのパスを1つ又は複数の参照パスと比較することができる。経路の形状を調査することができ、ストライドの中央付近の最大垂直位置の存在を確認することができ、経路の高さと長さの比を画定することができる。次に、基準パスをから見て期待される特徴から過度に逸脱したストライドはエラーとして識別され、これらのストライドには、方法のステップ(d)~(f)は行われない。従って、データ分析は、経路の計算、ストライドの決定等における可能性のあるエラーによってバイアスされない。
【0068】
変形例として、ニューラルネットワーク、ランダムフォレスト、SVM、又は任意の他の既知の方法などの機械学習アルゴリズムは、ストライドを基準ストライドデータベースと比較するために使用されることができ、ストライドを参照ストライドデータベースと比較し、従って、誤ったストライドを識別することができる。
【0069】
さらに、各歩行の最初のストライドと最後のストライドを識別することができ、これらのストライドには、方法のステップ(d)~(f)は行われない。実際には、これらのストライドは、個人の継続的な歩行を表すものではない。
【0070】
また、コースの変更を含むストライドを識別することができ、これらのストライドには、方法のステップ(d)~(f)は行われない。したがって、直線上の歩行に属するストライドのみが維持される。実際には、コースの変化は減速につながるので、変化を含むストライドは、個人の継続的な歩行及び運動量(momentum)を表すものではない。さらに、かかるストライドはあまりよく決定されていない可能性が高く、ストライドの回転と加速のパターンはコースの変更によって変化する。
【0071】
ストライド分析方法のステップ(a)は、ストライド分析装置10の少なくとも1つの慣性センサ11によって実施されることができる。
【0072】
ストライド分析方法のステップ(b)~(f)、及び、上述した潜在的な追加ステップは、ストライド分析装置10のデータ処理ユニット12によって実施することができる。
図1
図2
図3
図4