IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ タタ コンサルタンシー サービシズ リミテッドの特許一覧

特許7314323コンバインド・サイクル・ガス・タービン運転の最適化のための方法及びシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-14
(45)【発行日】2023-07-25
(54)【発明の名称】コンバインド・サイクル・ガス・タービン運転の最適化のための方法及びシステム
(51)【国際特許分類】
   G05B 23/02 20060101AFI20230718BHJP
【FI】
G05B23/02 302R
【請求項の数】 14
(21)【出願番号】P 2021576168
(86)(22)【出願日】2020-06-20
(65)【公表番号】
(43)【公表日】2022-08-25
(86)【国際出願番号】 IN2020050544
(87)【国際公開番号】W WO2020255173
(87)【国際公開日】2020-12-24
【審査請求日】2022-02-18
(31)【優先権主張番号】201921024605
(32)【優先日】2019-06-20
(33)【優先権主張国・地域又は機関】IN
(73)【特許権者】
【識別番号】510337621
【氏名又は名称】タタ コンサルタンシー サービシズ リミテッド
【氏名又は名称原語表記】TATA Consultancy Services Limited
【住所又は居所原語表記】Nirmal Building,9th Floor,Nariman Point,Mumbai 400021,Maharashtra,India.
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】アガーワル、シャシャンク
(72)【発明者】
【氏名】ニスタラ、スリ ハーシャ
(72)【発明者】
【氏名】ランカナ、ヴェンカタラマナ
(72)【発明者】
【氏名】セルヴァナタン、バラジ
(72)【発明者】
【氏名】ゾープ、カルヤニ
【審査官】山村 秀政
(56)【参考文献】
【文献】特表2002-526852(JP,A)
【文献】特開2012-099071(JP,A)
【文献】米国特許出願公開第2017/0068226(US,A1)
【文献】米国特許出願公開第2015/0185716(US,A1)
【文献】米国特許出願公開第2009/0138324(US,A1)
【文献】米国特許出願公開第2009/0320493(US,A1)
【文献】米国特許出願公開第2018/0313224(US,A1)
【文献】国際公開第2018/181009(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/02
(57)【特許請求の範囲】
【請求項1】
コンバインド・サイクル・ガス・タービン(CCGT)プラントの運転を最適化するためのプロセッサ実装方法(400)であって、前記方法は、
前記CCGTプラントの1つ又は複数のデータベースから所定の頻度で複数のデータを受信するステップであって、前記複数のデータがリアルタイム・データ及び非リアルタイム・データを含む、ステップ(402)と、
1つ又は複数のハードウェア・プロセッサを介して、前記複数のデータを前処理するステップ(404)と、
前記1つ又は複数のハードウェア・プロセッサを介して、複数のソフト・センサーを使用してソフト・センサー・パラメータのセットを推定するステップ(406)と、
前記1つ又は複数のハードウェア・プロセッサを介して、ソフト・センサー・パラメータの前記セットを前記前処理された複数のデータと統合するステップであって、前記統合されたデータが操作変数の第1のセットを含み、前記操作変数が、1つ又は複数の燃料制御弁の開度のパーセンテージと、入口案内翼(IGV)の開度と、タービン冷却流量と、異なる燃料の混合比率と、蒸気制御弁のパーセンテージ開度とを含む、ステップ(408)と、
前記1つ又は複数のハードウェア・プロセッサを介して、複数の異常検出モデルを使用して、前記CCGTプラント及び前記CCGTプラントの個々のユニットに関係するプロセス異常及び機器異常を検出するステップであって、前記複数の異常検出モデルが前記データベースから取り出され、前記個々のユニットと前記CCGTプラント全体との各々についての異常スコアを計算するために、前記操作変数の1つ又は複数の特定のサブセットが利用される、ステップ(410)と、
前記1つ又は複数のハードウェア・プロセッサを介して、複数の異常診断モデルを使用して、前記検出された異常の少なくとも1つの原因を特定するステップであって、前記複数の異常診断モデルが前記データベースから取り出され、前記個々のユニットと前記CCGTプラント全体との各々についての異常の前記原因を特定するために、前記操作変数の1つ又は複数の特定のサブセットが利用される、ステップ(412)と、
前記1つ又は複数のハードウェア・プロセッサを介して、複数の状態決定モデルを使用して、前記CCGTプラントの運転状態を決定するステップであって、前記状態が定常状態又は非定常状態であり得、プロセス変数のセットのリアルタイム値を利用することによって、前記CCGTプラントの運転モードを、定常状態と、負荷上昇状態と、負荷降下状態と、始動状態と、停止状態とのうちの1つに分類するために、前記状態決定モデルが使用される、ステップ(414)と、
1つ又は複数のハードウェア・プロセッサを介して、複数の予測モデル及び前記統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータを予測するステップであって、前記複数の予測モデルが前記データベースから取り出される、ステップ(416)と、
前記1つ又は複数のハードウェア・プロセッサを介して、前記CCGTプラントの前記複数の重要業績評価パラメータを最適化するために、前記複数の予測モデルを使用してオプティマイザを構成するステップ(418)と、
前記1つ又は複数のハードウェア・プロセッサを介して、前記構成されたオプティマイザを使用して操作変数の第2のセットを生成するステップ(420)と、
前記1つ又は複数のハードウェア・プロセッサを介して、
前記検出された異常の前記原因と、
前記CCGTプラントの前記決定された状態と、
前記CCGTプラントの前記複数の重要業績評価パラメータの重要度であって、前記重要度が、ユーザによって定義されるか、又は前記データベースから取得されるかのいずれかである、重要度と
に基づいて、操作変数の前記第1のセットと操作変数の前記第2のセットとを使用して操作変数の最適セットを決定するステップ(422)と、
前記1つ又は複数のハードウェア・プロセッサを介して、操作変数の前記第1のセットと前記第2のセットの両方について、前記業績評価パラメータの各々についての決定された重要度を使用して、前記複数の重要業績評価パラメータの各々についての格付けポイントを計算するステップ(424)と、
前記1つ又は複数のハードウェア・プロセッサを介して、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値を計算するステップ(426)と、
前記1つ又は複数のハードウェア・プロセッサを介して、前記報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の前記最適セットを選定するステップであって、前記CCGTプラントの前記運転を最適化するために、操作変数の前記最適セットが使用される、ステップ(428)と
を含む、方法(400)。
【請求項2】
複数のソースが、分散型制御システム(DCS)、ヒストリアン、ラボラトリー情報管理システム(LIMS)、製造実行システム(MES)、又は手動入力のうちの1つ又は複数を含み、前処理が、アウトライアーの削除、異なるデータ・シリーズの同期、又は高周波数非プロセス関係雑音の識別及び削除によって、履歴データをクリーニングすることを含む、請求項1に記載の方法。
【請求項3】
前記CCGTプラントの前記運転を最適化するために操作変数の前記最適セットを与えるステップをさらに含む、請求項1に記載の方法。
【請求項4】
オフライン・モードにおいて前記CCGTプラントに関するシミュレーション・タスクを実行し、それにより、高忠実度物理ベース・モデル及びデータ駆動型モデルを使用して、リアルタイム最適化プロセスが特定のテスト・ケースを生成し、シミュレートするのを支援するステップをさらに含む、請求項1に記載の方法。
【請求項5】
操作変数の前記最適セットを決定するステップに、燃料組成センサー及び発熱量計からのリアルタイム出力を与えるステップをさらに含む、請求項1に記載の方法。
【請求項6】
前記複数の異常検出モデルが、データ駆動型モデルである、請求項1に記載の方法。
【請求項7】
前記複数の異常診断モデルが、データ駆動型モデルである、請求項1に記載の方法。
【請求項8】
前記複数の状態決定モデルが、データ駆動型分類器である、請求項1に記載の方法。
【請求項9】
複数の重要業績評価指標が、熱効率と、生成された電力と、生成された電力の周波数と、排ガス温度と、運転コストと、排ガス中の汚染物質とを含む、請求項1に記載の方法。
【請求項10】
前記事前定義された条件のセットは、
前記報酬値が前記下限しきい値を下回る場合、操作変数の前記最適セットとして操作変数の第1のセットを選定することと、
前記報酬値が前記上限しきい値を上回る場合、操作変数の前記最適セットとして操作変数の第2のセットを選定することと、
前記報酬値が前記上限しきい値と前記下限しきい値との間である場合、操作変数の前記最適セットとして、操作変数の前記第1のセットと前記第2のセットとの間の関数関係であって、複数のKPIと前記操作変数の各々との間の物理的関係に基づいて定義される関数関係である操作変数を選定することと
を含む、請求項1に記載の方法。
【請求項11】
前記複数のソフト・センサーが、ガス・タービンによって生成された電力と、蒸気タービンによって生成された電力と、加湿後の流入空気の相対湿度と、タービン入口温度(TIT)と、ガス・タービン冷却空気の流量及び温度とを含む、物理ベース・ソフト・センサー及びデータ駆動型ソフト・センサーである、請求項1に記載の方法。
【請求項12】
コンバインド・サイクル・ガス・タービン(CCGT)プラント(102)の運転を最適化するためのシステム(100)であって、前記システムは、
入出力インターフェース(106)と、
1つ又は複数のハードウェア・プロセッサ(110)と、
前記1つ又は複数のハードウェア・プロセッサと通信しているメモリ(108)と
を備え、前記1つ又は複数の第1のハードウェア・プロセッサは、
前記CCGTプラントの1つ又は複数のデータベースから所定の頻度で複数のデータを受信するステップであって、前記複数のデータがリアルタイム・データ及び非リアルタイム・データを含む、ステップと、
前記複数のデータを前処理するステップと、
複数のソフト・センサーを使用してソフト・センサー・パラメータのセットを推定するステップと、
ソフト・センサー・パラメータの前記セットを前記前処理された複数のデータと統合するステップであって、前記統合されたデータが操作変数の第1のセットを含む、ステップと、
複数の異常検出モデルを使用して、前記CCGTプラント及び前記CCGTプラントの個々のユニットに関係するプロセス異常及び機器異常を検出するステップであって、前記複数の異常検出モデルが前記データベースから取り出される、ステップ
数の異常診断モデルを使用して、前記検出された異常の少なくとも1つの原因を特定するステップであって、前記複数の異常診断モデルが前記データベースから取り出される、ステップと、
複数の状態決定モデルを使用して、前記CCGTプラントの運転状態を決定するステップであって、前記状態が定常状態又は非定常状態であり得る、ステップと、
複数の予測モデル及び前記統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータを予測するステップであって、前記複数の予測モデルが前記データベースから取り出される、ステップと、
前記CCGTプラントの前記複数の重要業績評価パラメータを最適化するために、前記複数の予測モデルを使用してオプティマイザを構成するステップと、
前記構成されたオプティマイザを使用して操作変数の第2のセットを生成するステップと、
前記検出された異常の前記原因と、
前記CCGTプラントの前記決定された状態と、
前記CCGTプラントの前記複数の重要業績評価パラメータの重要度であって、前記重要度が、ユーザによって定義されるか、又は前記データベースから取得されるかのいずれかである、重要度と
に基づいて、操作変数の前記第1のセットと操作変数の前記第2のセットとを使用して操作変数の最適セットを決定するステップと、
操作変数の前記第1のセットと前記第2のセットの両方について、前記業績評価パラメータの各々についての決定された重要度を使用して、前記複数の重要業績評価パラメータの各々についての格付けポイントを計算するステップと、
操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値を計算するステップと、
前記報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の前記最適セットを推奨するステップ
を行うために、前記メモリに記憶されたプログラムされた命令を実行するように構成されている、システム(100)。
【請求項13】
燃料の燃料密度及び発熱量のリアルタイム値を与えるための、燃料制御弁の入口における燃料組成センサーと発熱量計とをさらに備える、請求項1に記載のシステム。
【請求項14】
1つ又は複数の命令を含む1つ又は複数の非一時的機械可読情報記憶媒体であって、前記命令は、1つ又は複数のハードウェア・プロセッサによって実行されたとき、
CCGTプラントの1つ又は複数のデータベースから所定の頻度で複数のデータを受信するステップであって、前記複数のデータがリアルタイム・データ及び非リアルタイム・データを含む、ステップと、
前記複数のデータを前処理するステップと、
複数のソフト・センサーを使用してソフト・センサー・パラメータのセットを推定するステップと、
ソフト・センサー・パラメータの前記セットを前記前処理された複数のデータと統合するステップであって、前記統合されたデータが操作変数の第1のセットを含む、ステップと、
複数の異常検出モデルを使用して、前記CCGTプラント及び前記CCGTプラントの個々のユニットに関係するプロセス異常及び機器異常を検出するステップであって、前記複数の異常検出モデルが前記データベースから取り出される、ステップ
数の異常診断モデルを使用して、前記検出された異常の少なくとも1つの原因を特定するステップであって、前記複数の異常診断モデルが前記データベースから取り出される、ステップと、
前記1つ又は複数のハードウェア・プロセッサを介して、複数の状態決定モデルを使用して、前記CCGTプラントの運転状態を決定するステップであって、前記状態が定常状態又は非定常状態であり得る、ステップと、
複数の予測モデル及び前記統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータを予測するステップであって、前記複数の予測モデルが前記データベースから取り出される、ステップと、
前記CCGTプラントの前記複数の重要業績評価パラメータを最適化するために、前記複数の予測モデルを使用してオプティマイザを構成するステップと、
前記構成されたオプティマイザを使用して操作変数の第2のセットを生成するステップと、
前記検出された異常の前記原因と、
前記CCGTプラントの前記決定された状態と、
前記CCGTプラントの前記複数の重要業績評価パラメータの重要度であって、前記重要度が、ユーザによって定義されるか、又は前記データベースから取得されるかのいずれかである、重要度と
に基づいて、操作変数の前記第1のセットと操作変数の前記第2のセットとを使用して操作変数の最適セットを決定するステップと、
操作変数の前記第1のセットと前記第2のセットの両方について、前記業績評価パラメータの各々についての決定された重要度を使用して、前記複数の重要業績評価パラメータの各々についての格付けポイントを計算するステップと、
操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値を計算するステップと、
前記報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の前記最適セットを推奨するステップ
を行わせる、1つ又は複数の非一時的機械可読情報記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、日本国内段階出願であり、2019年6月20日に出願したインド特許出願番号201921024605の優先権を主張する、2020年6月20日に出願した国際出願番号PCT/IN2020/050544の優先権を主張する。
【0002】
本明細書における開示は、一般に、コンバインド・サイクル・ガス・タービン発電所の分野に関し、より詳細には、操作変数(manipulated variable)の最適値を計算することによるコンバインド・サイクル・ガス・タービン運転の最適化のための方法及びシステムに関する。
【背景技術】
【0003】
近年、コンバインド・サイクル・ガス・タービン(CCGT:combined cycle gas turbine)発電所は、従来の石炭火力発電所と比較して、それらの高い効率により、電力の生成向けに一般的になった。コンバインド・サイクル・ガス・タービン・プラントは、異なるプロセスの動的特性をもつ複数のユニットを伴う複雑なシステムである。歴史的に、CCGTプラントの全体的性能を改善するために、プラント自動及び制御システムに関する多くの作業が行われた。CCGTプラントにおける既存の制御システムは、「モードベース」であり、(負荷需要を満たすために)生成された電力を、追跡されるべき最も重要な業績評価パラメータのうちの1つと考える。負荷需要を満たすことにより大きい重点を置くことは、しばしば、特に変動する負荷需要の場合、効率の低下につながる。
【0004】
CCGTプラントの性能を改善するための別の手法は、プロセス最適化によるものであり、燃料制御弁開度や入口案内翼角などの操作変数の最適設定は、CCGTプラントの挙動モデルを使用して取得され得る。しかしながら、CCGTプラントにおける運転状態は、ユニットの変動する負荷需要と固有の動的特性とにより、定常状態から非定常状態に、及び非定常状態から定常状態にかなり頻繁に変化する。CCGTプラントはまた、重要なパラメータがそれらの予想される挙動から逸脱し、予定外の停止につながり得る、プロセス異常及び機器異常を起こしやすい。運転状態(定常状態対非定常状態、及び正常状態対異常状態)を識別することなしでのプロセス最適化の適用は、操作変数の最適以下の設定、又はさらには誤った設定につながり得る。さらに、CCGT運転の複雑な性質により、プロセス最適化からの最適設定を、制御システムによって規定された操作変数の設定と非常に高い頻度で調和させることなしに、それらの最適設定を実装することは危険である。
【0005】
また、物理的に測定されることができないが、プラント性能にかなりの影響を及ぼす、CCGTプラントのユニットにおける様々な変数(たとえばタービン入口温度)がある。そのような変数の間接的な推定により、プロセス最適化からの推奨が改善され得る。
【発明の概要】
【課題を解決するための手段】
【0006】
本開示の実施例は、従来のシステムにおける発明者らによって認識された上述の技術的問題のうちの1つ又は複数に対する解決策としての技術的改善を提示する。たとえば、一実施例では、コンバインド・サイクル・ガス・タービン(CCGT)プラントの運転を最適化するためのシステムであって、本システムは、入出力インターフェースと、1つ又は複数のハードウェア・プロセッサと、1つ又は複数のハードウェア・プロセッサと通信しているメモリとを備え、1つ又は複数の第1のハードウェア・プロセッサは、CCGTプラントの1つ又は複数のデータベースから所定の頻度で複数のデータを受信することであって、複数のデータがリアルタイム・データ及び非リアルタイム・データを含む、複数のデータを受信することと、複数のデータを前処理することと、複数のソフト・センサーを使用してソフト・センサー・パラメータのセットを推定することと、ソフト・センサー・パラメータのセットを前処理された複数のデータと統合することであって、統合されたデータが操作変数の第1のセットを含む、ソフト・センサー・パラメータのセットを前処理された複数のデータと統合することと、複数の異常検出モデルを使用して、CCGTプラント及びCCGTプラントの個々のユニットに関係するプロセス異常及び機器異常を検出することであって、複数の異常検出モデルがデータベースから取り出される、CCGTプラント及びCCGTプラントの個々のユニットに関係するプロセス異常及び機器異常を検出することと、複数の異常診断モデルを使用して、検出された異常の少なくとも1つの原因を特定することであって、複数の異常診断モデルがデータベースから取り出される、検出された異常の少なくとも1つの原因を特定することと、複数の状態決定モデルを使用して、CCGTプラントの運転状態を決定することであって、その状態が定常状態又は非定常状態であり得る、CCGTプラントの運転状態を決定することと、複数の予測モデル及び統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータ(key performance parameter)を予測することであって、複数の予測モデルがデータベースから取り出される、CCGTプラントの複数の重要業績評価パラメータを予測することと、CCGTプラントの複数の重要業績評価パラメータを最適化するために、複数の予測モデルを使用してオプティマイザを構成することと、構成されたオプティマイザを使用して操作変数の第2のセットを生成することと、検出された異常の原因と、CCGTプラントの決定された状態と、CCGTプラントの複数の重要業績評価パラメータの重要度であって、その重要度が、ユーザによって定義されるか、又はデータベースから取得されるかのいずれかである、重要度とに基づいて、操作変数の第1のセットと操作変数の第2のセットとを使用して操作変数の最適セットを決定することと、操作変数の第1のセットと第2のセットの両方について、業績評価パラメータの各々についての決定された重要度を使用して、複数の重要業績評価パラメータの各々についての格付けポイント(rating point)を計算することと、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値を計算することと、報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の最適セットを推奨することとを行うために、メモリに記憶されたプログラムされた命令を実行するように構成される。
【0007】
別の態様では、コンバインド・サイクル・ガス・タービン(CCGT)プラントの運転を最適化するための方法が提供される。最初に、CCGTプラントの1つ又は複数のデータベースからの複数のデータが所定の頻度で受信され、複数のデータはリアルタイム・データ及び非リアルタイム・データを含む。受信された複数のデータは、次いで、前処理される。さらに、複数のソフト・センサーを使用してソフト・センサー・パラメータのセットが推定される。ソフト・センサー・パラメータのセットは、次いで、前処理された複数のデータと統合され、統合されたデータは操作変数の第1のセットを含む。次のステップにおいて、複数の異常検出モデルを使用して、CCGTプラント及びCCGTプラントの個々のユニットに関係するプロセス異常及び機器異常が検出され、複数の異常検出モデルはデータベースから取り出される。さらに、複数の異常診断モデルを使用して、検出された異常の少なくとも1つの原因が特定され、複数の異常診断モデルはデータベースから取り出される。さらに、複数の状態決定モデルを使用して、CCGTプラントの運転状態が識別され、その状態は定常状態又は非定常状態であり得る。次のステップにおいて、複数の予測モデル及び統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータが予測され、複数の予測モデルはデータベースから取り出される。次いで、CCGTプラントの複数の重要業績評価パラメータを最適化するために、複数の予測モデルを使用してオプティマイザが構成される。さらに、構成されたオプティマイザを使用して操作変数の第2のセットが生成される。次いで、検出された異常の原因と、CCGTプラントの決定された状態と、CCGTプラントの複数の重要業績評価パラメータの重要度であって、その重要度が、ユーザによって定義されるか、又はデータベースから取得されるかのいずれかである、重要度とに基づいて、操作変数の第1のセットと操作変数の第2のセットとを使用して操作変数の最適セットが決定される。次のステップにおいて、操作変数の第1のセットと第2のセットの両方について、業績評価パラメータの各々についての決定された重要度を使用して、複数の重要業績評価パラメータの各々についての格付けポイントが計算される。さらに、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値が計算される。最後に、報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の最適セットが推奨される。
【0008】
また別の態様では、1つ又は複数のハードウェア・プロセッサによって実行されたとき、コンバインド・サイクル・ガス・タービン(CCGT)プラントの運転を最適化させる1つ又は複数の命令を含む1つ又は複数の非一時的機械可読情報記憶媒体が提供される。最初に、CCGTプラントの1つ又は複数のデータベースからの複数のデータが所定の頻度で受信され、複数のデータはリアルタイム・データ及び非リアルタイム・データを含む。受信された複数のデータは、次いで、前処理される。さらに、複数のソフト・センサーを使用してソフト・センサー・パラメータのセットが推定される。ソフト・センサー・パラメータのセットは、次いで、前処理された複数のデータと統合され、統合されたデータは操作変数の第1のセットを含む。次のステップにおいて、複数の異常検出モデルを使用して、CCGTプラント及びCCGTプラントの個々のユニットに関係するプロセス異常及び機器異常が検出され、複数の異常検出モデルはデータベースから取り出される。さらに、複数の異常診断モデルを使用して、検出された異常の少なくとも1つの原因が特定され、複数の異常診断モデルはデータベースから取り出される。さらに、複数の状態決定モデルを使用して、CCGTプラントの運転状態が識別され、その状態は定常状態又は非定常状態であり得る。次のステップにおいて、複数の予測モデル及び統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータが予測され、複数の予測モデルはデータベースから取り出される。次いで、CCGTプラントの複数の重要業績評価パラメータを最適化するために、複数の予測モデルを使用してオプティマイザが構成される。さらに、構成されたオプティマイザを使用して操作変数の第2のセットが生成される。次いで、検出された異常の原因と、CCGTプラントの決定された状態と、CCGTプラントの複数の重要業績評価パラメータの重要度であって、その重要度が、ユーザによって定義されるか、又はデータベースから取得されるかのいずれかである、重要度とに基づいて、操作変数の第1のセットと操作変数の第2のセットとを使用して操作変数の最適セットが決定される。次のステップにおいて、操作変数の第1のセットと第2のセットの両方について、業績評価パラメータの各々についての決定された重要度を使用して、複数の重要業績評価パラメータの各々についての格付けポイントが計算される。さらに、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値が計算される。最後に、報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の最適セットが推奨される。
【0009】
上記の一般的な説明と以下の詳細な説明の両方は、例示的で説明的なものにすぎず、特許請求されている本発明を限定しないことを理解されたい。
【0010】
本開示に組み込まれ、本開示の一部を構成する添付の図面は、例示的な実施例を示し、本説明と併せて、開示された原理を説明するのに役立つ。
【図面の簡単な説明】
【0011】
図1】本開示のいくつかの実施例による、コンバインド・サイクル・ガス・タービン・プラントの運転を最適化するためのシステムのアーキテクチャ図である。
図2】本開示のいくつかの実施例による、コンバインド・サイクル・ガス・タービン・プラントの運転のリアルタイム最適化のための、図1に記載されたシステムの機能ブロック図である。
図3】本開示のいくつかの実施例による、コンバインド・サイクル・ガス・タービン・プラントの概略表現を示す図である。
図4】本開示のいくつかの実施例による、リアルタイム・プロセス最適化モジュールのブロック図である。
図5】本開示の一実施例による、オフライン・シミュレーション・モジュールのブロック図である。
図6】本開示の一実施例による、2つの次元におけるコンバインド・サイクル・ガス・タービン・プラント内のプロセス異常を示す図である。
図7】本開示の一実施例による、異常スコアが事前定義されたしきい値よりも高い、CCGTプラントの運転中の異常挙動の識別を示す図である。
図8】本開示の一実施例による、CCGTプラント運転の、定常状態と、負荷上昇(load-up)状態と、負荷降下(load-down)状態とへの分類を示す図である。
図9】本開示のいくつかの実施例による、操作変数の最適セットを選択するための方法を示すフローチャートである。
図10】本開示のいくつかの実施例による、最終報酬値の最大値及び最小値の図式表現である。
図11A】本開示の一実施例による、相対的KPI及び絶対的KPIの場合における定義された曲線に基づく誤差の補間の図式表現を与える図である。
図11B】本開示の一実施例による、相対的KPI及び絶対的KPIの場合における定義された曲線に基づく誤差の補間の図式表現を与える図である。
図11C】本開示の一実施例による、相対的KPI及び絶対的KPIの場合における定義された曲線に基づく誤差の補間の図式表現を与える図である。
図12】本開示の一実施例による、報酬値が上限しきい値と下限しきい値との間であるときに操作変数(manipulating variable)を選定する一実例を示す図である。
図13A】本開示のいくつかの実施例による、コンバインド・サイクル・ガス・タービンの運転を最適化するためのフローチャートである。
図13B】本開示のいくつかの実施例による、コンバインド・サイクル・ガス・タービンの運転を最適化するためのフローチャートである。
【発明を実施するための形態】
【0012】
例示的な実施例について、添付の図面を参照しながら説明する。図において、参照番号の左端の数字は、その参照番号が最初に現れる図を特定する。便利な場合はいつでも、図面全体にわたって同じ又は同様の部分を指すために同じ参照番号が使用される。開示されている原理の実例及び特徴について本明細書で説明するが、開示されている実施例の範囲から逸脱することなく、改変、適応、及び他の実装が可能である。以下の詳細な説明は例示的なものにすぎないと考えられ、真の範囲は以下の特許請求の範囲によって示されることが意図される。
【0013】
次に図面、より詳細には、図全体にわたって同様の参照符号が対応する特徴を一貫して示す、図1から図13Bまでを参照すると、好ましい実施例が示されており、以下の例示的なシステム及び/又は方法の文脈においてこれらの実施例について説明する。
【0014】
本開示の一実施例によれば、コンバインド・サイクル・ガス・タービン(CCGT)プラント102の運転を最適化するためのシステム100が、図1のブロック図中に示されている。システム100は、重要業績評価パラメータ(KPI:key performance parameter)のうちの1つとして効率を用いて操作変数(MV:manipulated variable)の最適値を計算するように構成される。既存のCCGT自動化システムからの操作変数、すなわち操作変数の第1のセットと、最適化手法からの操作変数、すなわち操作変数の第2のセットとが、操作変数の最適セットを決定するために組み合わせられる。
【0015】
システム100は、ラップトップ・コンピュータ、デスクトップ・コンピュータ、ノートブック、ワークステーション、クラウドベースの計算環境など、1つ又は複数の計算デバイス104を備え得ることが理解され得る。システム100は、I/Oインターフェース106と総称される、1つ又は複数の入出力インターフェース106-1、106-2…106-Nを通してアクセスされ得ることが理解されよう。I/Oインターフェース106の実例は、限定はしないが、ユーザ・インターフェース、ポータブル・コンピュータ、パーソナル・デジタル・アシスタント、ハンドヘルド・デバイス、スマートフォン、タブレット・コンピュータ、ワークステーションなどを含み得る。I/Oインターフェース106はネットワーク108によってシステム100に通信可能に結合される。
【0016】
一実施例では、ネットワーク108は、無線ネットワーク若しくは有線ネットワーク、又はそれらの組合せであり得る。一実例では、ネットワーク108は、仮想プライベート・ネットワーク(VPN:virtual private network)、イントラネット、ローカル・エリア・ネットワーク(LAN:local area network)、ワイド・エリア・ネットワーク(WAN:wide area network)、インターネットなど、異なるタイプのネットワークのうちの1つとしてのコンピュータ・ネットワークとして実装され得る。ネットワーク108は、専用ネットワーク、又は、互いに通信するために、様々なプロトコル、たとえば、ハイパーテキスト転送プロトコル(HTTP:Hypertext Transfer Protocol)、伝送制御プロトコル/インターネット・プロトコル(TCP/IP:Transmission Control Protocol/Intemet Protocol)、及びワイヤレス・アプリケーション・プロトコル(WAP:Wireless Application Protocol)を使用する、異なるタイプのネットワークの結合を表す共有ネットワークのいずれかであり得る。さらに、ネットワーク108は、ルータ、ブリッジ、サーバ、計算デバイス、記憶デバイスを含む、様々なネットワーク・デバイスを含み得る。ネットワーク108内のネットワーク・デバイスは通信リンクを通してシステム100と対話し得る。
【0017】
一実施例では、計算デバイス104は、以下でプロセッサ110と呼ばれる1つ又は複数のハードウェア・プロセッサ110と、以下でメモリ112と呼ばれる1つ又は複数のメモリ112と、データ・リポジトリ114又はデータベース114、たとえばリポジトリ114とをさらに含む。メモリ112は1つ又は複数のハードウェア・プロセッサ110と通信しており、1つ又は複数のハードウェア・プロセッサ110は、本開示の後部で説明される様々な機能を実行するために、メモリ112に記憶されたプログラムされた命令を実行するように構成される。リポジトリ114は、システム100によって処理、受信、及び生成されたデータを記憶し得る。
【0018】
システム110は、BLUETOOTH(登録商標)、USB、ZigBee、及び他のセルラー・サービスなど、様々なコネクティビティ・オプションをサポートする。ネットワーク環境は、インターネット、WAN、MANなどを含む、任意の通信リンクを使用してシステム110の様々な構成要素の接続を可能にする。例示的な一実施例では、システム100は、スタンドアロン・デバイスとして動作するように実装される。別の実施例では、システム100は、スマート計算環境に対する疎結合デバイスとして働くように実装され得る。システム110の構成要素及び機能についてさらに詳細に説明する。
【0019】
本開示の一実施例によれば、コンバインド・サイクル・ガス・タービン(CCGT)102の運転を最適化するためのシステム100が図2のブロック図に示されている。システム(100)は、(図示されていない)リアルタイム燃料品質測定センサーと、CCGT自動化システム又は分散型制御システム(DCS:distributed control system)116と、CCGTデータ・ソース118と、サーバ120と、リアルタイム・プロセス最適化モジュール122と、オフライン・シミュレーション・モジュール124と、モデル・リポジトリ126と、知識データベース128と、静的及び動的データベース130とを含む。モデル・リポジトリ126、知識データベース128、並びに静的及び動的データベース130は、データ・リポジトリ114の一部であり得ることを諒解されたい。
【0020】
本開示の一実施例によれば、コンバインド・サイクル・ガス・タービン・プラント102の動作が図3のブロック図に示されている。コンバインド・サイクル・ガス・タービン・プラント102は、蒸気タービン・ユニットと結合されたガス・タービンを含む。CCGTプラントは、複数のガス・タービン及び蒸気タービンを構成することができるが、それらの各々のうちの少なくとも1つは単一のCCGTユニット中に存在すべきである。空気及び炭化水素燃料(天然ガスなどの気体燃料、又はディーゼル油などの液体燃料)はガス・タービンへの入力である。大気が1次及び2次エア・フィルタを通して大型の空気入口セクションに引き入れられ、そこで、大気は、(必要とされる場合)加湿され、最後に、入口案内翼を通って圧縮機に入る。空気が圧縮機を通る際に、空気の圧力及び温度が上昇する。加熱された空気は、1200℃と1600℃との間の温度における煙道ガスを生成するために、燃焼室内で、予熱された炭化水素燃料と混合され、燃焼させられる。煙道ガスがタービン・セクションを通って移動する際に、高い温度及び圧力において煙道ガスは膨張し、シャフトに取り付けられた一連のタービン・ブレードと、発電機とを回転させ、それによって電気を生成する。圧縮機からの予熱された空気のある部分は、取り出され、運転中にタービン・ブレードを冷却するために使用される。
【0021】
ガス・タービンからの排ガスは、550℃と650℃との間の温度で排出され、420℃と580℃との間の温度をもつ生蒸気を生成するために、熱回収蒸気生成器(HRSG:heat recovery steam generator)に通される。HRSGにおいて、高度精製水がチューブ中を流れ、一方、高温ガスがチューブの周りに流れ、それによりチューブの内側に蒸気が生成される。蒸気は、異なる圧力でHRSGから出ることができ、より多くの電気の生成につながる高圧、中圧及び低圧のために構成された一連の蒸気タービンを動作させるために使用される。ガス・タービン及び蒸気タービンは、同じシャフト上に取り付けられるか、又は異なるシャフト上に取り付けられ得る。
【0022】
生成された蒸気のある部分は、ガス・タービンへの燃料を予熱するために、並びにガス・タービン中の燃焼器を冷却するために使用される。高温ガスは、140℃でHRSGを出て、適切なガス処理の後にスタックを通して大気中に排出される。蒸気タービンから出た低圧蒸気は、コンデンサ中で水塊(湖、川又は海洋)からの冷却水を使用して凝結される。凝結物はHRSGへの給水として使用され、HRSGはその給水を連続循環中に保持する。コンデンサからの温水は、次いで、大型の冷却塔中で冷却される。コンバインド・サイクル発電所におけるガス・タービンと蒸気タービンとの複合運転により、総合効率は50%超まで上昇する。コンバインド・サイクル・ガス・タービン・プラントの重要業績評価パラメータは、生成された電力、総合熱効率、電力周波数、ガス・タービン排ガス温度、出口ガス(exit gas)中の窒素酸化物(NOx)及び硫黄酸化物(SOx)などの汚染物質、並びに総運転コストを含む。プラントの性能は、(燃料制御弁のパーセンテージ開度を変動させることによる)燃料の流量、(入口案内翼の開度を変動させることによる)流入大気の流量、タービン冷却水流量、様々な燃料の混合比率、並びに(蒸気制御弁を使用して変動させられる)冷却及び加熱のために使用される蒸気流量など、操作変数(MV)を変動させることによって調節され得る。したがって、操作変数は、限定はしないが、1つ又は複数の燃料制御弁の開度のパーセンテージ、入口案内翼(IGV:inlet guide vane)の開度、タービン冷却流量、異なる燃料の混合比率、及び蒸気制御弁のパーセンテージ開度を含む。
【0023】
本開示の一実施例によれば、燃料熱量計(fuel calorific meter)132と燃料組成センサー134とが、図3に示されているように、燃料制御弁の入口において物理的システムに追加される。通常、燃料の組成は、入口における異なる等級の燃料の混合により変化する。燃料発熱量はかなり大きく変動し得、したがって、リアルタイムの組成とともに発熱量を知ることは燃料の最適使用のために重要である。このことは、操作変数の最適値を決定している間、かなりの影響を及ぼし得る。センサー132及び134は、したがって、助けになり得、燃料制御弁の入口に設置される。燃料発熱量及び燃料の組成のリアルタイム値はサーバ120に供給され、サーバ120は、さらに、図2に示されているように、それらのリアルタイム値をリアルタイム・プロセス最適化モジュール122に導く。
【0024】
好ましい実施例では、制御システム又はCCGT自動化システム116は、プラントが、運転を安全且つ消費される総燃料に関して最適に保ち、排出物が規定された限界内になるようにしながら、グリッドからの必要とされる負荷需要を満たすように、規定された様式でCCGTを運転する。システム116は、CCGTアクチュエータへの入力として働き、それによりCCGTアクチュエータをリアルタイムで駆動する、操作変数を生成する。CCGT自動化システム116は、ラボラトリー情報管理システム(LIMS:laboratory information management system)、ヒストリアン(Historian)、製造実行システム(MES:manufacturing execution system)を含む、様々なそれぞれのCCGTデータ・ソース118と対話し、これらのデータ・ソース内にリアル・タイム・データを保存する。CCGT自動化システム(104)はまた、OPCサーバなど、サーバ120を通してリアルタイム・プロセス最適化モジュール122と対話する。リアルタイム・プロセス最適化モジュール122は、サーバ120を介してCCGT自動化システム116からリアルタイム・データを受信し、CCGTデータ・ソース118からリアルタイム・データ及び非リアルタイム・データを受信し、静的及び動的データベース120並びに知識データベース128から他の関連情報を受信する。これらのデータベースは、リアルタイム・プロセス最適化モジュール122及びオフライン・シミュレーション・モジュール124によって処理された情報を保持する。リアルタイム・プロセス最適化モジュール122は、受信されたデータを前処理し、前処理されたデータとソフト・センサーとを使用して、シミュレートされたデータを取得し、統合されたデータを取得するために、シミュレートされたデータを前処理されたデータと組み合わせ、知識データベース、静的及び動的データベース130、並びにモデル・リポジトリ126を使用して、異常検出及び診断、定常状態決定、並びにプロセス最適化などのサービスを提供するために、統合されたデータを使用する、いくつかのモジュールを含む。モデル・リポジトリ126は、様々なCCGT業績評価パラメータ及び関係する他の重要変数のための物理ベースのモデルとデータ駆動型モデルとを記憶する。それらのモデルは、運転履歴並びに実験室データを使用して調整又は作成される。
【0025】
本開示の一実施例によれば、図2を参照すると、静的及び動的データベース130のうちの静的データベースは、原材料の静的特性、副産物及び最終生成物、排出物などからなる材料データベース、機器設計データ、構成材料の詳細などからなる機器データベース、並びにプロセス・フローシート、機器レイアウト、制御及び計装ダイヤグラムなどからなるプロセス構成データベースなど、時間とともに変動しないデータ及び情報を含む。また、静的データベースは、データ駆動型モデル、物理ベースのモデル、及びハイブリッド・モデルのアルゴリズム及び技法と、物理ベースのモデル、ハイブリッド・モデル、及び最適化問題のためのソルバーとからなるアルゴリズム・データベースを構成する。
【0026】
さらに、静的及び動的データベース130のうちの動的データベースは、性質上動的であり、周期的に、又は毎回の適応学習サイクルの後に更新される、データ及び情報を含む。動的データベースは、プロセス変数やセンサー・データからなる運転データベースと、実験室における試験により取得された、原材料、副産物、及び最終生成物の特性からなるラボラトリー・データベースと、プロセスの状態、機器の健全度、様々な機器に関する是正又は改善措置などを示す保守記録からなる保守データベースと、周囲温度、大気圧、湿度、塵埃量(dust level)などの気象及び天候データからなる環境データベースとを含む。
【0027】
本開示の一実施例によれば、図2を参照すると、知識データベース128は、リアルタイム・プロセス最適化モジュール122を動作させている間に導出された知識を構成し、潜在的に、運転の任意の後の段階において使用されるべき有用な情報である。これはまた、オフライン・シミュレーション・モジュール124を使用する多数のオフライン・シミュレーションを使用して履歴データから導出された重要業績評価曲線を含み、それらの重要業績評価曲線は推奨モジュール320によって使用される。知識データベースはまた、静的データベースに記憶された様々なアルゴリズムの性能に関係する情報を含む。この情報は、それらのアルゴリズムの前の性能に基づいて好適なアルゴリズムを推奨することを支援することができる。
【0028】
さらに、オフライン・シミュレーション・モジュール124は、本システムの複雑さにより必要とされないか又はリアルタイムでは不可能であるが、一定の間隔において実行されるのに有用である、CCGTプラントに関するシミュレーション・タスクを実行する。オフライン・シミュレーション・モジュール124は、高忠実度物理ベースのモデルとデータ駆動型モデルとを使用してシミュレートされる、シミュレーションのための特定のテスト・インスタンスを生成する。これらのモジュールはCCGTプラント102の運転全体に対する洞察を与える。オフライン・シミュレーション・モジュール124は、いくつかのシミュレーションを実行するために、静的及び動的データベース130、知識データベース128、並びにモデル・リポジトリ126と対話する。オフライン・シミュレーション・モジュール124はまた、情報及びシミュレーション要求を受信し、オフライン・シミュレーションに基づくシミュレーション結果及び洞察を最適化モジュールに戻すために、リアルタイム・プロセス最適化モジュール122と対話する。
【0029】
様々なモジュールの出力はユーザ・インターフェース106を介してユーザに示される。リアルタイム・プロセス最適化システムからの推奨は、CCGTの重要業績評価パラメータを改善するための、燃料制御弁のパーセンテージ開度、入口案内翼のパーセンテージ開度又は角度、タービン冷却水流量、様々な燃料の混合比率、蒸気制御弁のパーセンテージ開度など、MVの最適設定を含む。
【0030】
本開示の一実施例によれば、リアルタイム・プロセス最適化モジュール122のワークフローを示す機能ブロック図が図4に示されている。リアルタイム・プロセス最適化モジュール122は、受信モジュール402と、前処理モジュール404と、ソフト・センサー・モジュール406と、異常検出及び診断モジュール408と、定常状態決定モジュール410と、予測モジュール412と、最適化構成モジュール414と、最適化実行モジュール416と、操作変数決定モジュール418と、推奨モジュール420とを備える。
【0031】
本開示の一実施例によれば、受信モジュール402は、サーバ120からのリアルタイム・データと、CCGTデータ・ソース118からの非リアルタイム・データとを所定の頻度で受信するように構成される。CCGTプラント102は動的システムであるので、データは、3秒、5秒、10秒、又は1分に1回の頻度で受信されるように構成され得る。リアルタイム・データは、圧縮機、燃焼器、燃料加熱器、ガス・タービン、タービン冷却器、HRSG、蒸気タービン、コンデンサ、発電機、及び出口ガス・システムなど、異なるサブユニットにおいて測定された、温度、圧力、流量、レベル、弁開度パーセンテージ、及び振動など、運転データを含む。リアルタイム・データはまた、周囲温度、大気圧、周囲湿度、降雨量など、環境データを含む。リアルタイム・データは、OPCサーバなどの通信サーバを介して、又はヒストリアンなどの運転データ・ソースを介して、分散型制御システム(DCS)などのプラント自動化システムから取得される。非リアルタイムは実験室試験及び保守活動からのデータを含む。実験室データは、ガス・タービン中で使用される燃料の化学組成、密度、及び発熱量からなるが、保守データは、プラントの1つ又は複数のユニット上で実行される予定された保守活動及び予定外の保守活動の詳細、並びにプラント中のプロセス及び様々な機器の状態及び健全度を含む。非リアルタイム・データは、LIMS、MES、ヒストリアン、及び他のプラント保守データベースから取得される。一般的なCCGTプラントでは、様々なデータ・ソースからの変数の総数は200個の変数と500個の変数との間であり得る。
【0032】
本開示の一実施例によれば、前処理モジュール404は、コンバインド・サイクル発電所の複数のデータ・ソースから受信されたリアルタイム・データ及び非リアルタイム・データの前処理を実行するように構成される。前処理は、冗長データの削除、サンプリング頻度の統一、アウトライアーの識別及び削除、消失したデータのインピュテーション(imputation)、複数のデータ・ソースからの変数の同期及び統合を伴う。リアルタイム・データ及び非リアルタイム・データのサンプリング頻度は、たとえば、1分ごとに1回に統一され得、リアルタイム・データは必要に応じて平均化され、非リアルタイム・データは必要に応じて補間又は複製される。
【0033】
本開示の一実施例によれば、ソフト・センサー・モジュール406は、前処理されたデータと、物理ベースのソフト・センサー又はデータ駆動型ソフト・センサーとを使用して、シミュレートされたデータ又はソフト感知された(soft-sensed)データを取得するように構成される。一実例では、ソフト・センサー・モジュールは複数のソフト・センサーとも呼ばれる。ソフト・センサーは、プラントの重要業績評価パラメータに影響を及ぼすが、物理センサーを使用して測定されることができない、パラメータである。CCGTプラントの場合、重要なソフト・センサーは、ガス・タービンによって生成された電力、蒸気タービンによって生成された電力、加湿後の流入空気の相対湿度、タービン入口温度(TIT:turbine inlet temperature)、並びにタービン冷却空気の流量及び温度を含む。これらのソフト・センサーの値は、熱及び質量収支(mass balance)(又はエンタルピー収支)計算を使用して、又はコンバインド・サイクル発電所中のユニットの高忠実度1次元又は2次元モデル化を使用して推定される。TITなどのソフト・センサーはまた、ガス・タービン排ガス温度を伴うデータ駆動型ソフト・センサーを使用して推定され得、それらの二者間の関係は、プラント規模の実験から取得されるか、又は相手先ブランド製造会社(OEM:original equipment manufacturer)によって与えられ得る。ソフト・センサー計算が計算集約的でないか又は時間がかかる場合、ソフト・センサー推定はリアルタイム・プロセス最適化モジュール122中で実行され得る。ソフト・センサーが高忠実度物理ベースのモデルを含む場合、ソフト・センサー推定はオフライン・シミュレーション・モジュール124から要求される。ソフト感知パラメータは、CCGTプラント102の統合されたデータを取得するために、前処理されたデータと統合される。
【0034】
本開示の一実施例によれば、異常検出及び診断モジュール408は、リアルタイムで、プロセス異常(又は障害)及び機器異常(又は障害)を検出し、異常を位置特定し、異常の根本原因を特定するように構成される。CCGTプラントの異なるユニットは異なるダイナミクスを有する。たとえば、ガス・タービンは極めて動的なユニットであり、負荷、燃料流量、空気流量などの変化は秒又は分のオーダーで起こり得るが、HRSG及び蒸気タービンはより緩慢なダイナミクスを有し、電力需要の変化があるとき、蒸気の流量及び温度は、変化するのに30~40分かかる。不均等で複雑なプロセス・ダイナミクスにより、CCGTプラント102は、KPI及び他の重要な変数がそれらの予想される挙動から逸脱し、予定外の停止につながり得る、異常運転を起こしやすい。図6は、(主成分分析又はエンコーダデコーダなどの次元削減(dimensionality reduction)技法を使用して、CCGTにおけるすべての変数の高次元空間から導出される)2つの次元におけるコンバインド・サイクル・ガス・タービン・プラント102内のプロセス異常を示す。異常点は正常運転のクラスタから遠くにあり、クラスタは、周囲温度、運転負荷、機器の状態などの差によるものであり得る。
【0035】
異常検出及び診断モジュール408は、複数の異常検出モデルと、プラントにおけるすべての変数のサブセットとを使用して、CCGTプラント102におけるプラント全体並びに個々のユニットの運転を要約する異常スコアをリアルタイムで計算する。本明細書では、異常検出モデルは、ガス・タービン、蒸気タービン、HRSG、発電機、コンデンサ、及び燃料燃焼器を含む、CCGTプラント102中のすべてのユニットのために利用可能であり得る。異常スコアは少なくとも1つのしきい値を有する。あらゆる時間インスタンスについて、異常スコアはそれのしきい値と比較される。異常スコアが1つ又は複数のインスタンスについてしきい値を上回った場合、異常診断が実行される。図7は、異常スコアがしきい値よりも高い、CCGTプラントの運転中の異常挙動の識別を示す。同じ時間期間中の他の重要な変数の挙動も図に示されている。異常診断は、検出された異常のユニット及びサブユニット並びにあり得る根本原因を特定するために実行される。CCGTプラントが異常挙動を呈している場合、ユーザは、異常の場所、深刻度、及びあり得る根本原因を通知され、定常状態決定の後続のステップは実行されないことを諒解されたい。
【0036】
異常検出及び診断モデルは、CCGTプラントの履歴データを使用してトレーニングされ、主成分分析、マハラノビス(Mahalanobis)距離、アイソレーション・フォレスト、ランダム・フォレスト分類器、1クラス・サポート・ベクター・マシン、人工ニューラル・ネットワーク及びそれの変形態、楕円エンベロープ及びオートエンコーダ(たとえば、高密度オートエンコーダ、LSTMオートエンコーダ)、並びにベイジアン・ネットワークなど、統計技法、機械学習技法、及び深層学習技法を使用して構築される、データ駆動型モデルであることを諒解されたい。データ駆動型モデルは、(データ・インスタンス間の時間関係を考慮しない)ポイント・モデルであるか、又は(データ・インスタンス間の時間関係を考慮する)時系列モデルであり得る。
【0037】
本開示の一実施例によれば、定常状態決定モジュール410は、複数の状態決定モデルを使用して、限定はしないが、生成された電力合計、生成された電力の周波数(又はシャフトの回転速度)、燃料流量、及び流入空気流量を含む、プラント変数のサブセットを使用して、CCGTプラント102の運転状態を定常状態と非定常状態とにリアルタイムで分類するように構成される。定常状態は、プラントによって生成される電力の変動が、回転速度、燃料流量、及び空気流量など、他の重要なCCGT変数の小さい変動とともに、許容限度内であるときの運転状態として定義される。非定常状態は、プラントによって生成される電力及び他のCCGT変数の変動が定常状態限界を超える運転状態として定義される。
【0038】
状態決定モデルは、CCGTプラントの履歴データを使用してトレーニングされるデータ駆動型分類器であることを諒解されたい。状態決定モデルは、ルールベースである分類器、並びに機械学習及び深層学習デシジョン・ツリー、ランダム・フォレスト、サポート・ベクター・マシン、人工ニューラル・ネットワークを使用して構築される分類器及びそれの変形態(たとえば、多層パーセプトロン、LSTM分類器など)を含む。状態決定モデルは、(データ・インスタンス間の時間関係を考慮しない)ポイント・モデルであるか、又は(データ・インスタンス間の時間関係を考慮する)時系列モデルであり得る。CCGTプラントの非定常運転は、(プラントによって生成される電力が時間とともに増加している)負荷上昇と、(プラントによって生成される電力が時間とともに減少している)負荷降下と、(CCGTプラントのすべてのユニットがシーケンスの通りに始動されている)始動と、(CCGTプラントのすべてのユニットがシーケンスの通りに停止されている)停止とにさらに分類されることに留意されたい。図8は、CCGTプラント運転の、定常状態と、負荷上昇状態と、負荷降下状態とへの分類を示す。
【0039】
本開示の一実施例によれば、予測モジュール412は、複数の予測モデル及び統合されたデータを使用して、CCGTプラント102の複数の重要業績評価パラメータ又は複数の業績評価指標(KPI)をリアルタイムで予測するように構成される。CCGTプラント102の重要業績評価パラメータは、熱効率、生成された電力、生成された電力の周波数、排ガス温度、運転コスト、及び出口ガス中の汚染物質を含む。複数の予測モデルは、CCGTプラントの履歴データを使用してトレーニングされることに留意されたい。複数のモデルは、回帰の変形態(多重線形回帰、段階的回帰、前進型回帰、後退型回帰、部分最小二乗法回帰、主成分回帰、ガウス過程回帰、多項式回帰など)、デシジョン・ツリー及びそれの変形態(ランダム・フォレスト、バギング、ブースティング、ブートストラッピング)、サポート・ベクトル回帰、k最近傍法回帰(k-nearest neighbors regression)、スプライン・フィッティング又はそれの変形態(たとえば多適応回帰スプライン)、人工ニューラル・ネットワーク及びそれの変形態(多層パーセプトロン、再帰型ニューラル・ネットワーク及びそれの変形態、たとえば、長短期記憶ネットワーク、及び畳み込みニューラル・ネットワーク)、並びに時系列回帰モデルを含む、機械学習及び深層学習技法を使用して構築される、データ駆動型モデル又はハイブリッド・モデルである。予測モデルは、(データ・インスタンス間の時間関係を考慮しない)ポイント・モデルであるか、又は(データ・インスタンス間の時間関係を考慮する)時系列モデルであり得る。
【0040】
本開示の一実施例によれば、最適化構成モジュール414は、最適化問題をセットアップするように構成される。最適化構成モジュール414は、制約なし最適化問題又は制約付き最適化問題のいずれかをセット・アップすることによって複数のKPIを最適化するために、モデル・リポジトリ126からの複数の予測モデルと、あらかじめ定義されたシステム制約とを利用する。さらに、最適化構成モジュール414は、実行されるべき最適化問題の種類を定義するために、定常状態決定モジュール410を利用する。たとえば、定常状態運転の場合は、シングル・ポイント最適化問題を実行するためにオプティマイザがセットアップされるが、非定常運転の場合は、軌道最適化問題を実行するためにオプティマイザがセットアップされる。最適化構成モジュールの出力は、重要業績評価パラメータに関する規定された制約に沿って解かれるように構成されたコスト関数を生じる。
【0041】
本開示の一実施例によれば、最適化実行モジュール416は、最適化構成モジュール414によって示唆されるように、規定された制約に沿ってコスト関数を解くように構成される。最適化実行モジュール416は、勾配降下法、準ニュートン(quasi Newton)法などの反復法、並びに、粒子群最適化(PSO:Particle Swarm Optimization)、遺伝的アルゴリズム、及びビー・コロニー(bee colony)最適化を含む、ヒューリスティック最適化手法を含む、特定の問題に基づく複数の最適化ソルバーを利用し、本開示の後部で説明するように、操作変数の第2のセットを生成する。CCGTプラント102の異なるユニットは異なるダイナミクスを有する。ガス・タービンは極めて動的なユニットであり、負荷、燃料流量、空気流量などの変化は秒又は分のオーダーで起こり得るが、HRSG及び蒸気タービンはより緩慢なダイナミクスを有し、電力需要の変化があるとき、蒸気流量及び温度は、変化するのに30~40分かかる。最適化実行モジュール314は、時間制約付き最適化の概念を利用することによって問題のこの態様に対処する。
【0042】
本開示の一実施例によれば、MV決定モジュール418は、最適化モジュール416から生成された操作変数の第2のセットと、分散型制御システム又はCCGT自動化システム116から取得された操作変数の第1のセットとを利用するように構成される。操作変数決定モジュール418は、それぞれの定義されたKPIに重要度を割り当てることと、操作変数の第1のセット及び第2のセットに関する各KPIについての格付けポイントを計算することとによって、GTCCプラント102が、必要とされる性能に関して可能な最良のゾーンにおいて働くように、操作変数の最適セットを生成する。
【0043】
好ましい実施例では、推奨モジュール420は、リアルタイム・プロセス最適化モジュール110からCCGTプラント102に渡されるべきである、MVの最終値を推奨するように構成される。推奨モジュール420は、KPIの各々のための報酬値をさらに計算するために、MV決定モジュール418からの操作変数の第1のセット及び第2のセットに関する各KPIのための入力された格付けポイントを取る。任意のKPIのための報酬の正の値は、操作変数の第2のセットがより良く働くことを示すが、任意のKPIのための報酬の負の値は、操作変数の第1のセットがより良く働くことを示す。最終報酬値は、個々の重要業績評価パラメータからの報酬を組み合わせることによって計算され、それに基づいて操作変数の最終示唆がCCGTプラント102に与えられる。
【0044】
本開示の一実施例によれば、オフライン・シミュレーション・モジュール112のワークフローを示すための機能ブロック図が図5に示されている。オフライン・シミュレーション・モジュール124は、テスト・ケース生成モジュール502と、物理ベースのモデル実行モジュール504と、データ駆動型モデル実行モジュール506とを備える。オフライン・シミュレーション・モジュール124は、知識データベース128、静的及び動的データベース130、並びにモデル・リポジトリ126と対話する。オフライン・シミュレーション・モジュール124は、1つ又は複数のユニット並びにCCGTプラント102全体をシミュレートするために使用され得る。オフライン・シミュレーションの要求は、リアルタイム・プロセス最適化モジュール122から来ることもあり、ユーザ・インターフェース106を介してユーザから来ることもある。オフライン・シミュレーションは、モデル・リポジトリ中で利用可能である、CCGTプラント102の物理ベースのモデル並びにデータ駆動型モデルを利用する。本開示の一実施例によれば、テスト・ケース生成モジュール502は、1つ若しくは複数のユニット又はCCGTプラント全体のオフライン・シミュレーションのための1つ又は複数のテスト・ケースを生成するように構成される。シミュレーション中に変動させられるべき変数の範囲及びレベル、シミュレーション中に一定に保たれるべき変数の値、及びテスト・ケース生成の方法など、テスト・ケース生成のために必要とされる入力は、ユーザ又はリアルタイム・プロセス最適化モジュールのいずれかから取られる。テスト・ケース生成の方法は実験の完全要因のタグチ(Taguchi)及びマニュアル設計を含む。
【0045】
本開示の一実施例によれば、物理ベースのモデル実行モジュール504は、テスト・ケース生成モジュールにおいて生成されたテスト・ケースに関する、1つ若しくは複数のユニット又はCCGTプラント全体に関係する物理ベースのモデルを実行するように構成される。モジュールは、モデル・リポジトリ126中で利用可能な、CCGTプラント102における1つ又は複数のユニットの1次元、2次元、又は3次元の熱及び質量収支(又はエンタルピー収支)モデル、力収支(force balance)モデル、又は熱力学的モデルを含む、物理ベースのモデル及び/又はソフト・センサーを利用する。物理ベースのモデルの実行からの出力は、各生成されるテスト・ケースごとの、圧縮機、燃料燃焼器、ブレード及び排ガス・ダクトを含むガス・タービン、HRSG、蒸気タービン、コンデンサ、及び冷却塔など、重要なユニットにわたる温度、速度、及び圧力のプロファイルを含む。物理ベースのモデル実行モジュール504からの出力は、ユーザ・インターフェース106を介してユーザに表示され、リアルタイム・プロセス最適化モジュール122に返送される。
【0046】
本開示の一実施例によれば、データ駆動型モデル実行モジュール506は、モデル・リポジトリからのデータ駆動型モデルと、物理ベースのモデル実行モジュールからの出力のうちのいくつかとを使用して、テスト・ケース生成モジュール502において生成されたテスト・ケースに関する、1つ若しくは複数のユニット又はCCGTプラント102全体に関係するデータ駆動型モデルを実行するように構成される。モジュールは、CCGTプラントの1つ又は複数のユニット及びKPIのために開発されたデータ駆動型モデル及びソフト・センサーを利用する。モジュールからの出力は、生成された電力合計、圧縮機圧力比、タービン入口温度(TIT)、ブレード・パス温度、排ガス温度、出口ガス温度、及び出口ガス中の汚染物質など、重要業績評価パラメータを含む。このモジュールからの出力は、ユーザ・インターフェースを介してユーザに表示され、リアルタイム・プロセス最適化モジュールに返送される。
【0047】
本開示の一実施例によれば、最適化は、あらかじめ定義されたコスト関数を用いて実行される。CCGTプラント102の場合、CCGT自動化システム又はDCSは、需要を満たすことに向けてすでに働いており、目標を達成し、システム・レベルの制約としての排出量を低減しながら、主要なKPIとしてのCCGT運転経済を用いて最適化フレームワークがセットアップされる。安全関係制約も、条件付き最適化問題の形態で、又は最適化問題の追加のレイヤとして、最適化フレームワーク内で課される。
【0048】
本開示の一実施例によれば、重要業績評価パラメータ又は重要業績評価指標(KPI)は、絶対的KPIと相対的KPIとの2つのタイプであり得る。絶対的KPI(KPlabs)は追跡パラメータを定義し、絶対追跡値との差が小さいほど、システム性能、たとえば、電力又は負荷需要を追跡すること、或いはTIT制御ラインにできる限り近くなるようにシステムを動作させることが良好になる。相対的KPI(KPIrel)は固定の最小値又は最大値を有しない。ここで、性能測定は性質上より相対的である。相対的KPIは、KPIが最大化されるべきである第1の態様と、KPIが最小化されるべきである別の態様との2つのタイプの態様を有することができる。たとえば、「できる限り低く」と称される、汚染物質である窒素酸化物(NoX)の制御、又は、「できる限り高く」と定義される、システム総合効率。
【0049】
本開示の一実施例によれば、操作変数の最適セットを決定するための方法900が図9に示されている。操作変数の最適セットは、さらに、CCGTプラント102に渡され得る。最初に、ステップ902において、CCGT自動化システム(制御システム)116から取得される操作変数の第1のセットと、リアルタイム・プロセス最適化モジュール122から取得される操作変数の第2のセットとが入力として取得される。ステップ904において、システム・レベルKPIの予測を得るために、操作変数の両方のセットが複数の予測モデルに渡される。
【0050】
ステップ906において、個々のKPIの重要度は即時プラント状態に基づいて定義される。たとえば、NOxを低減するほうが良い。しかしながら、NOxがすでに法定限度内である場合、他のKPI、たとえば負荷需要を最適化することがより賢明であろう。KPIのこの態様をカバーするために、KPI重要度パラメータがβとして定義される。したがって、任意の特定のKPIのためのβの値が高いほど、その特定のKPIの重要度は高くなる。このことはまた、MVが所望のKPIに対して調整され得る、プラント運転の柔軟性をもたらす。
【0051】
ステップ908において、個々のKPIの各々について格付けポイントKPIpointが計算される。格付けポイントは、表1~表3と、図11A図11Cに示された対応するグラフとに基づいて計算される。KPIpointは、操作変数の第1のセットと第2のセットの両方について、KPIの各々についての補間によって計算される。計算は、各定義されたKPIタイプごとに異なって見え得る。たとえば、図11Aに示された、絶対タイプKPIであるKPIについて、MVconが3γの誤差を生じた場合、KPIポイントは2.5βとして得られるが、このKPIを満たす際の誤差が5γである場合、表1中の情報に基づいて、補間によって、KPIポイントは1.75βとして得られる。
【0052】
相対タイプKPIであるKPIの場合、制御システム及び最適化システムが示唆したMVに対して、値の相対差が計算される。ポイント(i)において定義されているように、仮に、2つの可能な選択されたMV間に見られる最大のKPIの変化はいずれかの方向におけるα、すなわち、KPIcon-KPIopt<|α|であるとする。表2及び表3中の情報に基づいて、図11B及び図11Cに示された相対タイプKPIの場合、MVcon及びMVopt
【数1】

のようになる。したがって、
【数2】

として相当するポイントが得られる。他のKPIについて同様に、
【数3】

として相当するポイントが得られる。
【表1】

【表2】

【表3】
【0053】
ステップ910において、報酬値(RewardFinal)は、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して計算される。したがって、報酬変数は、以下で与えられるように、すべてのKPIからの報酬を単に合計することによって計算される。
【数4】
【0054】
最後に、ステップ912、914及び916において、最終報酬値を伴う事前定義された条件のセットに基づいて、操作変数の最終セットが決定される。事前定義された条件のセットに応じて、変数の操作されるセットの選択のための3つの可能な領域がある。図10に示されているように、MVcon及びMVoptに基づいて、MVの補間された値が渡される必要があるゾーンを指す、2つのしきい値lowerthres及びupperthresが定義される。
【0055】
事前定義された条件のセットは以下を含む。
a)ステップ314において、RewardFinal<lowerthresである場合、そのことは、単に、オプティマイザのMVが選択されたときのより悪いKPI値を指し、したがってMVfinal=MVconである。
b)ステップ316において、RewardFinal>upperthresである場合、オプティマイザによって操作変数が導出されるときに関連付けられる高い報酬があり、この場合、MVfFinal=MVoptである。
c)ステップ318において、lowerthres<RewardFinal>upperthresである場合、MVFinal=f(MVcon、MVopt)である。
【0056】
図12は、報酬値が上限しきい値と下限しきい値との間であるときに操作変数を選定する一実例を示す。圧縮比(PR:Compression ratio)は、必要とされる電力出力を表し、空気燃料比(AFR:Air to Fuel ratio)は、燃料の単位当たりの空気の量を示す。この図は、熱効率とタービン入口温度との間の関係を示し、それ自体は、空気の単位当たりの燃料の量の関数であり、したがって、CCGT運転のための操作変数として働く。
【0057】
図12に示された関係は、CCGT運転の履歴データから同様に導出され、操作変数の組み合わせられた第1のセットと第2のセットとから操作変数の最適なセットを導出するために使用され得る関数(f(MVcon、MVopt))として働き得る。
【0058】
図12を参照すると、PRの任意の所与の値について、電力は一定のままであり、したがって、実線は、特定の負荷(したがってPR)を表す等電力線(iso-power line)を表し、MVは、それに基づいて、コントロール及びオプティマイザによって示唆されている。MVFinalは、この等電力線上にあり得、より高いタービン入口温度を指令することによってより高い効率を与える。
【0059】
図13は、コンバインド・サイクル・ガス・タービン(CCGT)プラント102の運転を最適化するための方法を示す。最初に、ステップ1302において、CCGTプラント102の1つ又は複数のデータベースから複数のデータが所定の頻度で受信され、複数のデータはリアルタイム・データ及び非リアルタイム・データを含む。さらに、ステップ1304において、複数のデータは前処理される。前処理は、アウトライアーの識別及び削除、消失したデータのインピュテーション、1つ又は複数のデータベースからのデータの同期及び統合を含む。ステップ1306において、複数のソフト・センサーを使用してソフト・センサー・パラメータのセットが推定される。ステップ1308において、ソフト・センサー・パラメータのセットは、前処理された複数のデータと統合され、統合されたデータは操作変数の第1のセットを含む。
【0060】
さらに、ステップ1310において、複数の異常検出モデルを使用して、CCGTプラント及びCCGTプラントの個々のユニットに関係するプロセス異常及び機器異常が検出される。複数の異常検出モデルはモデル・リポジトリ126から取り出される。異常が存在する場合、システム122の完全な運転が保留状態に維持され、異常診断モジュールがシステム異常の考えられる原因を検査する。ステップ1312において、複数の異常診断モデルを使用して、検出された異常の少なくとも1つの原因が特定される。複数の異常診断モデルはモデル・リポジトリ126から取り出される。ステップ1314において、複数の状態決定モデルを使用して、CCGTプラントの運転状態が決定され、その状態は定常状態又は非定常状態であり得る。
【0061】
次のステップ1316において、複数の予測モデル及び統合されたデータを使用してCCGTプラントの複数の重要業績評価パラメータが予測され、複数の予測モデルはデータベースから取り出される。ステップ1318において、CCGTプラント102の複数の重要業績評価パラメータを最適化するために、複数の予測モデルを使用してオプティマイザが構成される。ステップ1320において、構成された最適化システムを使用して操作変数の第2のセットが生成される。
【0062】
次のステップ1322において、検出された異常の原因と、CCGTプラントの決定された状態と、CCGTプラントの複数の重要業績評価パラメータの重要度とに基づいて、操作変数の第1のセットと操作変数の第2のセットとを使用して操作変数の最適セットが決定される。重要度は、ユーザによって定義されるか、又はデータベースから取得されるかのいずれかである(422)。さらに、ステップ1324において、操作変数の第1のセットと第2のセットの両方について、業績評価パラメータの各々についての決定された重要度を使用して、複数の重要業績評価パラメータの各々についての格付けポイントが計算される。ステップ1326において、操作変数の第1のセット及び第2のセットについて計算された格付けポイントを利用して報酬値が計算される。最後に、ステップ1328において、報酬値と上限しきい値及び下限しきい値との比較を伴う、事前定義された条件のセットを使用して操作変数の最適セットが推奨される。
【0063】
本明細書では、いかなる当業者も実施例を製造し、使用することを可能にするために、本明細書の主題について説明した。主題実施例の範囲は、特許請求の範囲によって定義され、当業者が想起する他の改変を含み得る。そのような他の改変が、請求項の文字通りの文言と異ならない、同様の要素を有する場合、又は、それらの他の改変が、請求項の文字通りの文言とのわずかな差異をもつ等価要素を含む場合、それらの他の改変は特許請求の範囲内であることが意図される。
【0064】
本明細書における本開示の実施例は、操作変数を最適化することによって、コンバインド・サイクル・ガス・タービン・ベースの発電所の効率を改善する未解決の問題に対処する。それらの実施例は、したがって、コンバインド・サイクル・ガス・タービンの運転を最適化するための方法及びシステムを提供する。
【0065】
本開示の実施例は、システムの異常挙動を検査し、特定された異常の根本原因を定義する。プロセス最適化モジュールは、システムのいかなる異常もない場合にのみトリガされる。さらに、本開示の実施例は、CCGTプラント102の運転状態、すなわち、定常状態と非定常状態とを識別する。
【0066】
保護の範囲はそのようなプログラムにまで拡大され、メッセージをその中に有するコンピュータ可読手段に加えて、そのようなコンピュータ可読記憶手段は、プログラムがサーバ又はモバイル・デバイス又は任意の好適なプログラマブル・デバイス上で実行するとき、本方法の1つ又は複数のステップの実装のためのプログラムコード手段を含んでいることを理解されたい。ハードウェア・デバイスは、たとえば、サーバ又はパーソナル・コンピュータなどのような任意の種類のコンピュータ、又はそれらの任意の組合せを含む、プログラムされ得る任意の種類のデバイスであり得る。デバイスは、たとえば、たとえば、特定用途向け集積回路(ASIC:application- specific integrated circuit)、フィールドプログラマブル・ゲート・アレイ(FPGA:field-programmable gate array)のようなハードウェア手段、又はハードウェア手段とソフトウェア手段との組合せ、たとえばASICとFPGA、又は、ソフトウェア処理構成要素がその中に配置された少なくとも1つのマイクロプロセッサ及び少なくとも1つのメモリであり得る、手段をも含み得る。したがって、それらの手段はハードウェア手段とソフトウェア手段の両方を含むことができる。本明細書で説明した方法実施例はハードウェア及びソフトウェアにおいて実装され得る。デバイスはソフトウェア手段をも含み得る。代替的に、実施例は、たとえば複数のCPUを使用して、異なるハードウェア・デバイス上に実装され得る。
【0067】
本明細書における実施例はハードウェア要素及びソフトウェア要素を含むことができる。ソフトウェアにおいて実装される実施例は、限定はしないが、ファームウェア、常駐ソフトウェア、マイクロコードなどを含む。本明細書で説明した様々な構成要素によって実行される機能は、他の構成要素、又は他の構成要素の組合せ中に実装され得る。本説明の目的で、コンピュータ使用可能又はコンピュータ可読媒体は、命令実行システム、装置、又はデバイスによって、或いは命令実行システム、装置、又はデバイスとともに使用するためのプログラムを含み、記憶し、通信し、伝搬し、又はトランスポートすることができる、任意の装置であり得る。
【0068】
示されているステップは、示されている例示的な実施例を説明するために提示されており、進行中の技術開発により、特定の機能が実行される様式が変化することが予想されるはずである。これらの実例は、限定ではなく、例示の目的のために本明細書で提示されている。さらに、機能ビルディング・ブロックの境界は、説明の便宜のために、本明細書では任意に画定されている。代替的な境界は、それの指定された機能及び関係が適切に実行される限りにおいて、画定され得る。代替形態(本明細書で説明したものの等価物、拡張、変形形態、逸脱などを含む)は、本明細書に含まれている教示に基づいて、当業者に明らかになろう。そのような代替形態は、開示された実施例の範囲内に入る。また、「備える(comprising)」、「有する(having)」、「含んでいる(containing)」、及び「含む(including)」という単語、並びに他の同様の形態は、同等の意味であり、これらの単語のいずれか1つの前の1つ又は複数の項目が、そのような1つ又は複数の項目の網羅的な列挙であることが意味されるものでも、列挙された1つ又は複数の項目のみに限定されることが意味されるものでもない、オープン・エンドの単語であることが意図される。本明細書及び添付の特許請求の範囲で使用する際、単数形「a」、「an」、及び「the」は、文脈上明らかに別段の規定がない限り、複数形の言及を含むことにも留意されなければならない。
【0069】
さらに、本開示による実施例を実装する際に、1つ又は複数のコンピュータ可読記憶媒体が利用され得る。コンピュータ可読記憶媒体は、プロセッサによって読取り可能な情報又はデータがそれの上に記憶され得る、任意のタイプの物理メモリを指す。したがって、コンピュータ可読記憶媒体は、プロセッサに、本明細書で説明した実施例によるステップ又は段階を実行させるための命令を含む、1つ又は複数のプロセッサによる実行のための命令を記憶し得る。「コンピュータ可読媒体」という用語は、有形の項目を含み、搬送波及び過渡信号を除外する、すなわち非一時的であることが理解されるべきである。実例は、ランダム・アクセス・メモリ(RAM)、読取り専用メモリ(ROM)、揮発性メモリ、不揮発性メモリ、ハード・ドライブ、CD ROM、DVD、フラッシュ・ドライブ、ディスク、及び任意の他の知られている物理記憶媒体を含む。
【0070】
本開示及び実例は例示的なものにすぎないと考えられ、開示された実施例の真の範囲は以下の特許請求の範囲によって示されることが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11A
図11B
図11C
図12
図13A
図13B