IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社安藤・間の特許一覧

<>
  • 特許-掘削面地質評価方法 図1
  • 特許-掘削面地質評価方法 図2
  • 特許-掘削面地質評価方法 図3
  • 特許-掘削面地質評価方法 図4
  • 特許-掘削面地質評価方法 図5
  • 特許-掘削面地質評価方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-18
(45)【発行日】2023-07-26
(54)【発明の名称】掘削面地質評価方法
(51)【国際特許分類】
   G01V 1/00 20060101AFI20230719BHJP
   E21D 9/093 20060101ALI20230719BHJP
   E21D 9/00 20060101ALI20230719BHJP
【FI】
G01V1/00 C
E21D9/093 F
E21D9/00 Z
【請求項の数】 5
(21)【出願番号】P 2019227071
(22)【出願日】2019-12-17
(65)【公開番号】P2021096140
(43)【公開日】2021-06-24
【審査請求日】2022-11-01
(73)【特許権者】
【識別番号】303057365
【氏名又は名称】株式会社安藤・間
(74)【代理人】
【識別番号】110001564
【氏名又は名称】フェリシテ弁理士法人
(72)【発明者】
【氏名】大沼 和弘
【審査官】山口 剛
(56)【参考文献】
【文献】特開平08-304559(JP,A)
【文献】特許第6420054(JP,B2)
【文献】米国特許出願公開第2010/0268491(US,A1)
【文献】特開2017-115388(JP,A)
【文献】特開2000-045679(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01V 1/00 - 99/00
E21D 9/00 - 9/14
(57)【特許請求の範囲】
【請求項1】
トンネル坑内の切羽を含む土木工事における掘削面の掘削毎に前記各掘削面から所定の距離離れた所定の設置位置にマイクロフォンの機能を有する機器を含むマイクロフォンを設置して、前記マイクロフォンに通信ケーブルを介してパーソナルコンピュータ、ICレコーダを含む録音機能を有する各種記録装置を接続し、
前記掘削面毎に前記各掘削面に一定の破砕力を加えて破砕音を発生させ、前記各掘削面と前記マイクロフォンの設置位置との間の空中を伝播する前記破砕音を前記マイクロフォンで集音し、前記各掘削面で前記破砕音の発生前から記録動作を開始させた前記各種記録装置に記録して、
前記各種記録装置に記録された前記掘削面毎の前記破砕音の音波データから音波の周波数特性を算出し、
前記掘削面毎の前記音波の周波数特性に基づいて前記各掘削面の地質状況を推定し評価する、
ことを特徴とする掘削面地質評価方法。
【請求項2】
予め、掘削面付近を含む土木工事の現場の適宜の位置に警報器を配備しておき、掘削面毎に前記警報器により掘削面の地質状況の評価に応じた警報を発する請求項1に記載の掘削面地質評価方法。
【請求項3】
掘削面を発破により掘削する土木工事では、前記掘削面に加える一定の破砕力として探査用の発破を使用し、前記探査用の発破は一定量の爆薬を瞬発雷管により起爆させ、前記掘削面を掘削するための発破は所定量の爆薬を段発雷管により起爆させる請求項1又は2に記載の掘削面地質評価方法。
【請求項4】
掘削面をブレーカ、ハンマを含む建設機械・器具により掘削する土木工事では、前記建設機械・器具を前記掘削面に加える一定の破砕力として使用し、前記建設機械・器具で前記掘削面を一定の打撃力で破砕する請求項1又は2に記載の掘削面地質評価方法。
【請求項5】
パーソナルコンピュータに音波データを解析する解析ソフトを搭載し、解析装置として使用する請求項1乃至4のいずれかに記載の掘削面地質評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トンネル工事などの土木工事においてトンネル切羽の岩盤の良否など掘削面や掘削位置の地質状態の把握に使用する掘削面地質評価方法に関する。
【背景技術】
【0002】
通常、トンネル工事においては、トンネルの掘削や支保を安全かつ効率よく施工するために、トンネルの掘削前に地山の弾性波速度分布を推定することが行われる。また、トンネルの掘削中に掘削面である切羽付近の地質状態を把握するため、トンネル坑内においてトンネル切羽の弾性波速度の測定が行われる。
【0003】
従前、本願発明者はこの種の弾性波速度測定方法を特許文献1により提案している。
この弾性波速度測定方法は、機材設置ステップ、音波振動、弾性波振動記録ステップ、弾性波速度算出ステップを順次実施する。
【0004】
まず機材設置ステップでは、トンネル坑内の切羽を含む土木工事における掘削位置から後方に所定の距離離れた所定の位置にロックボルトを設置しロックボルトに可搬型のジオフォンを固定設置して、ジオフォンに通信ケーブルを介してICレコーダを接続する。
【0005】
続く音波振動、弾性波振動記録ステップでは、掘削位置で振動を発生させ、掘削位置の振動により発生し掘削位置とジオフォンの設置位置との間の地山を伝播する弾性波の振動を、掘削位置の振動により発生し掘削位置とジオフォンの設置位置との間の空中を伝播する音波の振動とともに、ジオフォンのみで受振、計測し、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダに記録する。
【0006】
そして弾性波速度算出ステップでは、ICレコーダに記録された音波の振動データ及び弾性波の振動データに基いて弾性波速度を算出する。この弾性波速度算出ステップの場合、音波の振動データから、音波到達時間として、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダの記録動作の開始の時点から掘削位置の振動により発生し空中を伝播する音波の振動がICレコーダに到達した時点までの時間を抽出するとともに、弾性波の振動データから、弾性波到達時間として、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダの記録動作の開始の時点から掘削位置の振動により発生し地山を伝播する弾性波の振動がICレコーダに到達した時点までの時間を抽出し、所定の距離及び既知の空気中の音速と音波到達時間とに基いて、ICレコーダの記録動作の開始の時点から掘削位置で振動を発生させた時点までの振動発生時間を推定して、所定の距離と弾性波到達時間及び振動発生時間とに基いて、掘削位置とジオフォンの設置位置との間の弾性波速度を算出する。
【0007】
このようにして簡易な汎用機材の可搬型のジオフォン、簡易な汎用機材の可搬型のICレコーダのみで、弾性波速度を確実かつ容易に測定し、弾性波速度の測定を低コストで実施することができる。
【先行技術文献】
【特許文献】
【0008】
【文献】特許第6420054号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、従来の切羽前方の探査を行う方法では、次のような問題がある。
(1)上記特許文献1の弾性波速度測定方法では、地山を伝播する弾性波速度は伝播距離と伝播時間から算出されるため、切羽付近の弾性波速度を算出するためには、伝播距離を変えた複数回の発破を1台の地震計で測定する必要があり、弾性波速度の測定に、比較的長い時間を要する。
(2)これに対して、トンネル坑内における従来の弾性波探査手法として、1回の発破を複数台の地震計で測定する手法が知られているが、この測定手法では、複数台の地震計をトンネル坑内に設置する必要があり、地震計の設置のために、比較的長時間を要する。また、この測定手法では、比較的高価な多チャンネル式のデータ記録装置が必要で、全体としてコストは増大する。
【0010】
本発明は、このような従来の問題を解決するものであり、この種の掘削面地質評価方法において、汎用機器、機材を用いて、簡易、低コストにかつ安全に、しかも短時間に精度よく、岩盤の良否など掘削面の地質状況を推定すること、を目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の掘削面地質評価方法は、
トンネル坑内の切羽を含む土木工事における掘削面の掘削毎に前記各掘削面から所定の距離離れた所定の設置位置にマイクロフォンの機能を有する機器を含むマイクロフォンを設置して、前記マイクロフォンに通信ケーブルを介してパーソナルコンピュータ、ICレコーダを含む録音機能を有する各種記録装置を接続し、
前記掘削面毎に前記各掘削面に一定の破砕力を加えて破砕音を発生させ、前記各掘削面と前記マイクロフォンの設置位置との間の空中を伝播する前記破砕音を前記マイクロフォンで集音し、前記各掘削面で前記破砕音の発生前から記録動作を開始させた前記各種記録装置に記録して、
前記各種記録装置に記録された前記掘削面毎の前記破砕音の音波データから音波の周波数特性を算出し、
前記掘削面毎の前記音波の周波数特性に基づいて前記各掘削面の地質状況を推定し評価する、
ことを要旨とする。
また、この方法では、予め、掘削面付近を含む土木工事の現場の適宜の位置に警報器を配備しておき、掘削面毎に前記警報器により掘削面の地質状況の評価に応じた警報を発するようにしてもよい。
【0012】
そして、この方法は次のように具体化される。
(1)掘削面を発破により掘削する土木工事では、前記掘削面に加える一定の破砕力として探査用の発破を使用し、前記探査用の発破は一定量の爆薬を瞬発雷管により起爆させ、前記掘削面を掘削するための発破は所定量の爆薬を段発雷管により起爆させる。
(2)掘削面をブレーカ、ハンマを含む建設機械・器具により掘削する土木工事では、前記建設機械・器具を前記掘削面に加える一定の破砕力として使用し、前記建設機械・器具で前記掘削面を一定の打撃力で破砕する。
(3)パーソナルコンピュータに音波データを解析する解析ソフトを搭載し、解析装置として使用する。
【発明の効果】
【0013】
本発明の掘削面地質評価方法によれば、上記の方法により、汎用機器、機材を用いて、簡易、低コストにかつ安全に、しかも短時間に精度よく、岩盤の良否など掘削面の地質状況を推定することができる、という本発明独自の格別な効果を奏する。
【図面の簡単な説明】
【0014】
図1】本発明の一実施の形態における掘削面地質評価方法の流れを示す図
図2】同方法の流れの具体例を示す図
図3】同方法における機材設置ステップ、音波記録ステップの具体例を示す図
図4】同方法における音波記録ステップでマイクロフォンにより集音しパソコンに記録された波形データの一例を示す図
図5】同方法におけるパワースペクトル周波数算出ステップのFFT解析による音波のパワースペクトル分布の一例を示す図
図6】同方法における音波記録ステップ、パワースペクトル周波数算出ステップ、地質状況推定評価ステップの繰り返しによる切羽の掘削進捗に伴う音波のパワースペクトル周波数の推移を示す図
【発明を実施するための形態】
【0015】
次に、この発明を実施するための形態について図を用いて説明する。図1に掘削面地質評価方法の流れを示している。図1に示すように、この掘削面地質評価方法は、次の機材設置ステップST1、音波記録ステップST2、パワースペクトル周波数算出ステップST3、地質状況推定評価ステップST4を順次実施することにより行う。
【0016】
まず、機材設置ステップST1で、トンネル坑内の切羽を含む土木工事における掘削面の掘削毎に各掘削面から後方に所定の距離離れた所定の設置位置にマイクロフォンの機能を有する機器を含むマイクロフォンを設置して、マイクロフォンに通信ケーブルを介してパーソナルコンピュータ(以下、単にパソコンという。)、ICレコーダを含む録音機能を有する各種記録装置を接続する。
【0017】
次に、音波記録ステップST2で、掘削面毎に各掘削面に一定の破砕力を加えて破砕音を発生させ、各掘削面とマイクロフォンの設置位置との間の空中を伝播する破砕音をマイクロフォンで集音し、各掘削面で破砕音の発生前から記録動作を開始させた各種記録装置に記録する。
【0018】
続いて、パワースペクトル周波数算出ステップST3で、各種記録装置に記録された掘削面毎の破砕音の音波データから音波の周波数特性を算出する。
【0019】
そして、地質状況推定評価ステップST4で、掘削面毎の音波の周波数特性に基づいて各掘削面の地質状況を推定し評価する。
【0020】
このようにこの掘削面地質評価方法によると、マイクロフォン、パソコンやICレコーダなどの汎用機器、機材を用いて、簡易、低コストにかつ安全に、しかも短時間に精度よく、岩盤の良否など掘削面の地質状況を推定することができる。
【0021】
図2及び図3にトンネル切羽を発破を使用して掘削する土木工事においてこの掘削面地質評価方法を適用してトンネル切羽の岩盤の良否など地質の状況を推定評価する掘削面地質評価方法の具体例(以下、本方法という。)を示している。本方法では、切羽に加える一定の破砕力として探査用の発破を使用し、探査用の発破は一定量の爆薬を瞬発雷管により起爆させ、切羽を掘削するための発破は所定量の爆薬を段発雷管により起爆させる。
【0022】
図2に示すように、本方法は、次の機材設置ステップST1、音波記録ステップST2、パワースペクトル周波数算出ステップST3、地質状況推定評価ステップST4を順次実施することにより行う。また、本方法ではさらに警報ステップを含む。
【0023】
(機材設置ステップ(図2中、ST1))
まず、機材設置ステップで、図3に示すように、トンネル坑内の切羽から所定の距離離れた後方所定の設置位置にマイクロフォン1及びデジタル記録装置2を設置し、マイクロフォン1とデジタル記録装置2とを通信ケーブル3を介して接続する。この場合、マイクロフォン1に一般に市販されている汎用マイクロフォンを採用し、このマイクロフォン1をトンネル坑内の所定の位置に設置する。なお、マイクロフォンの機能を有する機器であれば、それに代用可能である。記録装置2にはやはり市販品の可搬型の汎用パソコンを採用する(以下、記録装置2に代えてパソコン2という。)。近時のパソコンは通常ピンジャックが付設されていて録音が可能であり、パソコン2のピンジャックにマイクロフォン1を通信ケーブル3を介して接続する。なお、記録装置は録音機能を有する機器であれば、それに代用可能である。機材設置作業の簡便性を重視すれば、記録装置にやはり市販品の可搬式のICレコーダを用いてもよい。この場合、ICレコーダで録音したデータを適宜の時点でパソコンに移せばよい。このようにしてこれら市販品のマイクロフォン1とパソコン2を後述する切羽の破砕音(音波の振動)の測定に用いる。さらに、このパソコン2には音波データを解析する解析ソフト(例えば、SP-WAVEなど)を搭載し、このパソコン2を解析装置としても使用する。
【0024】
(音波記録ステップ(図2中、ST2))
次に、音波記録ステップで、図3を参照すると、トンネル坑内の切羽毎に各切羽に発破で一定の破砕力を加えて破砕音を発生させ、各切羽とマイクロフォン1の設置位置との間の空中を伝播する音波をマイクロフォン1で集音し、各切羽で破砕音の発生前から記録動作を開始させたパソコン2に記録する。
【0025】
本方法の場合、各切羽での破砕音の音源(音波の振動源)に探査用の発破を使用し、各切羽に探査用の発破孔を設けて爆薬を装填する。探査用の発破孔は1孔、掘削用の発破に使用する発破孔とは異なる位置に設けるものとし、原則として探査用の発破孔は切羽の中央に設ける。但し、切羽観察などから予測箇所として探査位置を限定する場合は、探査用の発破孔は切羽内の重点的に探査しようとする位置に変更してもよい。また、掘削用の発破孔は、探査用の発破孔の両側に芯抜き孔を設け、その周辺に払い孔を設ける。そして、各発破孔に電気雷管を装着した爆薬を装填する。探査用の発破孔には瞬発雷管を装着した爆薬を装填する。この場合、爆薬量の違いなど発破の仕様の変化により、各切羽での発破による破砕で発生する音波が変化することを防止するため、探査用の発破孔では、爆薬量を一定にする他発破仕様を探査トンネル対象区間において同一とする。標準の発破仕様として、削孔長を50cm、爆薬量を100gとするが、発破仕様はトンネル毎の発破孔周辺の岩盤破砕状況により設定し、削孔長を30cm-100cmの範囲で、爆薬量を100g-200gの範囲で、一定とする。掘削用の発破は、芯抜き孔に2段の段発雷管を装着した爆薬を装填し、その周辺の払い孔に3段以降の段発雷管を装着した爆薬を装填する。これら瞬発雷管、段発雷管を同一回路で結線する。なお、切羽に発破孔を設けている間や発破孔に爆薬を装填している間、あるいは発破孔に爆薬を装填した後の爆薬の起爆の直前など、爆薬の起爆前にパソコン3による記録動作を開始(つまり、録音をスタート)し、録音(中の)状態にしておく。
【0026】
発破の準備が完了したところで、発破スイッチをON操作し、切羽の爆薬を同時に起爆させて切羽を爆破し、破砕音を発生させる。この場合、まず探査用の発破、つまり、瞬発雷管が爆発し、この瞬発雷管の起爆後、切羽掘削用の発破、まず2段の段発雷管が僅かに遅れて(DS雷管の場合、250msの時間遅れで)起爆し、続いてこれに僅かに遅れて3段以降の段発雷管が起爆する。この爆発により、切羽から発生した破砕音の音波は坑内(空中)を伝播し、切羽後方のマイクロフォン1に到達する。この音波の振動をマイクロフォン1で受振、計測し、これを録音(中の)状態になっているパソコン2(のメモリ)に記録する。このように切羽面において切羽掘削用の発破の直前に探査用の発破を行い、その一定量の爆薬を起爆させることにより、切羽に一定の破砕力を加えて最初に発生する破砕音をマイクロフォン1及びパソコン2で測定する。
【0027】
このようにしたことで、後述するとおり、切羽毎に測定された音波データから、音波データの周波数特性の類似性により、切羽の地質状況の変化を推定することができ、切羽の地質状況の推定精度の向上を図ることができる。また、この破砕音の測定作業はマイクロフォン1やパソコン2などの測定装置が破砕音の音波の振動源、つまり、切羽の発破点から十分に離された位置に設置されて実施されるので、この測定作業自体を安全に行うことができる。なお、記録装置にICレコーダを用いた場合は、ICレコーダに記録した音波データをパソコンへ通信ケーブル又は記録媒体を用いて入力することになる。さらに、探査用の発破は掘削の一部となることから、従来の掘削用の発破、使用する爆薬量及び掘削作業時間などに大きな変化がなく、切羽の掘削作業に与える影響がない。また、切羽の探査に使う発破の瞬発雷管が起爆後、250msの時間遅れで、切羽の掘削に使う発破の2段以降の段発雷管が起爆することから、切羽の探査作業や掘削作業に与える影響がない。
【0028】
この音波記録ステップでの測定結果の一例として、図4にトンネル坑内の孔壁のロックボルトのナットに設置したジオフォンをマイクロフォンとしても使用して測定した場合のパソコン2に記録された波形データを示している。この波形データはパソコン2のディスプレイに表示される。この場合、横軸は時刻、縦軸は振幅を示し、サンプリング周波数を44.1kHz、量子化ビット数を24bitとしている。測定結果は、発破点火後、地山を伝播した弾性波がまず記録されているが、その後空中を伝播した切羽の破砕音が記録される。上段は発破信号の測定記録(本願特許では使用しない)で、この記録から、記録開始後8.685msに発破が起爆され、切羽から弾性波及び音波が発生したことが分かる。下段はジオフォン(マイクロフォン)の測定記録である。この結果から、弾性波は22.971msにジオフォン(マイクロフォン)に到達し、音波が148.367msにジオフォン(マイクロフォン)に到達したことが分かる。弾性波は比較的低周波成分が卓越するのに対し、発破音では高周波成分が卓越し、測定波形から明瞭に判別できる。
【0029】
(パワースペクトル周波数算出ステップ(図2中、ST3))
続いて、パワースペクトル周波数算出ステップで、パソコン2に記録された音波データから音波のパワースペクトル周波数を算出する。ここでは、パソコン2に記録された音波についてパソコン2(の解析ソフト)でFFT解析を行い、それぞれのパワースペクトルを算出する。この場合、解析ソフトはSP-WAVEを使用する。
【0030】
図5にFFT解析による音波のスペクトル分布の一例を示す。このFFT解析による解析結果はパソコン2のディスプレイに表示される。この結果から、音波のパワースペクトル周波数は1119.727Hzをピークとし、これが卓越した周波数となることが分かる。
【0031】
(地質状況推定評価ステップ(図2中、ST4))
そして、地質状況推定評価ステップで、音波のパワースペクトル周波数に基づいて切羽の地質状況を推定し評価する。ここでは、パソコン2で、まず、切羽で発破の振動により発生させた音波について、現地点の切羽での音波パワースペクトル周波数と一つ前の地点の切羽での音波パワースペクトル周波数とを比較して、前地点の切羽の地質と現地点の切羽の地質の変化を判定し、切羽地質変化の評価を行う。ここで、切羽地質変化の評価は次の式(1)-(3)により、次のように行う。
【数1】
この場合、閾値αは20Hz-30Hzの範囲、閾値βは50Hz-100Hzの範囲で、それぞれ、設定する。なお、閾値α、βは、トンネルの距離や規模、また地質の変化など、トンネル毎に設定することが好ましい。
式(1)を満足する場合、切羽の地質状況が変化する可能性は小さい、と評価する。
式(2)を満足する場合、切羽の地質状況が変化する可能性がある、と評価する。
式(3)を満足する場合、切羽の地質状況が変化する可能性が大きい、と評価する。
【0032】
これらの評価結果は、パソコン2のディスプレイに例えばA判定、B判定、C判定と表示する。すなわち、切羽の地質状況が変化する可能性は小さいと評価された場合は、パソコン2のディスプレイにA判定と表示する。切羽の地質状況が変化する可能性があると評価された場合は、パソコン2のディスプレイにB判定と表示する。切羽の地質状況が変化する可能性が大きいと評価された場合は、パソコン2のディスプレイにC判定と表示する。
【0033】
図6に切羽の掘削進行に伴う音波のパワースペクトル周波数の推移を示す。
図6では、切羽の掘削進捗に伴い、切羽の地質が花崗閃緑岩から細粒凝灰岩に変化した箇所付近での音波のパワースペクトル周波数の推移を示している。この測定結果は、パソコン2のディスプレイに表示される。各切羽の距離程を横軸、パワースペクトル周波数を縦軸とし、ひし形のマークが音波のパワースペクトル周波数を示している。なお、点線は5切羽のパワースペクトル周波数の移動平均値を参考として示している。
ここで、花崗閃緑岩、細粒凝灰岩の各同一地質の区間では、各切羽での音波のパワースペクトル周波数は大きく変化していないことから、地質状況が変化していないことが分かる。一方、花崗閃緑岩から細粒凝灰岩への地質変化に伴い、地質変化点で音波のパワースペクトル周波数の上昇が認められ、音波のパワースペクトル周波数が大きく変化しており、異なる地質間では地質状況が変化していることが分かる。なお、閾値α、βは、FFT解析における周波数分解能とばらつきを考慮して設定している。
【0034】
(警報ステップ)
本方法ではこの地質状況推定評価ステップに続いて切羽の地質状況の評価に応じて警報を発する警報ステップを実施する。この警報ステップでは、図3に示すように、予め、切羽付近を含む土木工事の現場の適宜の位置に警報器4を配備しておき、切羽毎に警報器4により切羽の地質状況の評価に応じた警報を発する。
【0035】
本方法では、警報器4の警報方式は掘削面の地質状況の評価に応じた警報音や音声、警告灯、又はこれらの組み合わせとする。そして、これらの警報器4をパソコン2に電気的に接続し、パソコン2による地質状況の評価に基づいて、パソコン2のディスプレイでの地質状況の評価結果の表示とともに、作動させる。例えば、パソコン2で切羽の地質状況が変化する可能性が小さいと評価された場合は、パソコン2のディスプレイにA判定と表示し、警報器4で警報を発する。この場合、警報音、音声形式の警報器4であれば、サイレンや音声は発しない。警告灯式の警報器4であれば、消灯又は安全を報知する色を発光させる。パソコン2で切羽の地質状況が変化する可能性があると評価された場合は、パソコン2のディスプレイにB判定と表示し、警報器4で警報を発する。この場合、警報音、音声形式の警報器4であれば、注意を喚起するサイレンや音声を発する。警告灯式の警報器4であれば、注意を喚起する色を発光させる。パソコン2で切羽の地質状況が変化する可能性が大きいと評価された場合は、パソコン2のディスプレイにC判定と表示し、警報器4で警報を発する。この場合、警報音、音声形式の警報器4であれば、退避を警告するサイレンや音声を発する。警告灯式の警報器4であれば、退避を警告する色を発光させる。このようにして地質状況の変化の評価レベルをパソコン2のディスプレイなどに表示して地山の掘削に従事する作業員に対して施工・安全情報として提供したりこの地質状況の変化の評価レベルに応じた警報や警告をトンネル掘削に従事する作業員に向けて発したりすることで、トンネル切羽を含む地山の掘削作業での安全管理に活用することができ、特に、切羽の肌落ち災害を未然に防止することができる。
【0036】
以上説明したように、本方法は、機材設置ステップ、音波記録ステップ、パワースペクトル周波数算出ステップ、地質状況推定評価ステップを順次実施することにより行う。すなわち、まず、機材設置ステップで、トンネル坑内の切羽から所定の距離離れた後方所定の設置位置にマイクロフォン1及びパソコン2を設置し、マイクロフォン1とパソコン2とを通信ケーブル3を介して接続する。次に、音波記録ステップで、トンネル坑内の切羽毎に各切羽に発破で一定の破砕力を加えて破砕音を発生させ、各切羽とマイクロフォン1の設置位置との間の空中を伝播する音波をマイクロフォン1で集音し、各切羽で破砕音の発生前から記録動作を開始させたパソコン2に記録する。続いて、パワースペクトル周波数算出ステップで、パソコン2に記録された音波データから音波のパワースペクトル周波数を算出する。そして、地質状況推定評価ステップで、音波のパワースペクトル周波数に基づいて掘削面の地質状況を推定し評価する。また、本方法では、警報ステップを追加し、予め、切羽付近を含む土木工事の現場の適宜の位置に警報器4を配備しておき、切羽毎に警報器4により切羽の地質状況の評価に応じた警報を発する。
【0037】
このようにして切羽毎に発破直後の各切羽の地質変化を推定し評価するので、切羽毎の岩盤の良否など切羽の地質状況を短時間に精度よく評価することができる。探査用の発破は掘削用の発破と兼用できるため、掘削用の発破の施工時間や費用などは通常の発破と略同様となる。探査機材はマイクロフォン1、パソコン2やICレコーダであり、いずれも汎用品であることから、取扱いが容易であり、かつ、比較的低価格である。この探査で得られた情報はパソコン2上に評価レベルで表示し、さらに、この評価レベルに応じて警報器4で警報を発するので、これらをトンネル掘削に従事する従業員に対する施工・安全情報として提供することができ、さらに、切羽作業における肌落ち災害の防止に資することができる。したがって、本方法によれば、汎用機器、機材を用いて、簡易、低コストにかつ安全に、しかも短時間に精度よく、各切羽の地質状況を評価することができる。
【0038】
なお、この掘削面地質評価方法は、掘削面をブレーカ、ハンマを含む建設機械・器具により掘削する土木工事にも同様に適用することができる。この場合、ブレーカやハンマなどの建設機械・器具を掘削面に加える一定の破砕力として使用し、掘削面毎に、これらの建設機械・器具で掘削面を一定の打撃力で破砕する。そして、その破砕音を同様にマイクロフォンやパソコンなどで測定、解析して評価する。このようにしても上記実施の形態と同様の作用効果を奏することができる。
【0039】
また、この掘削面地質評価方法は、ダムや造成工事などの所謂明かり掘削工事においても適用が可能であり、この種の工事においても上記実施の形態と同様の作用効果を奏することができる。
【符号の説明】
【0040】
1 マイクロフォン
2 パーソナルコンピュータ(記録装置)
3 通信ケーブル
4 警報器
図1
図2
図3
図4
図5
図6