IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ チャーター コミュニケーションズ オペレーティング、エルエルシーの特許一覧

特許7315580統合された大容量データ及びワイヤレス・ネットワーク・サービスのための装置及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-18
(45)【発行日】2023-07-26
(54)【発明の名称】統合された大容量データ及びワイヤレス・ネットワーク・サービスのための装置及び方法
(51)【国際特許分類】
   H04B 10/2575 20130101AFI20230719BHJP
   H04W 16/14 20090101ALI20230719BHJP
   H04W 4/33 20180101ALI20230719BHJP
   H04L 27/26 20060101ALI20230719BHJP
【FI】
H04B10/2575 110
H04W16/14
H04W4/33
H04L27/26 100
【請求項の数】 22
(21)【出願番号】P 2020556873
(86)(22)【出願日】2019-04-12
(65)【公表番号】
(43)【公表日】2021-08-26
(86)【国際出願番号】 US2019027355
(87)【国際公開番号】W WO2019204165
(87)【国際公開日】2019-10-24
【審査請求日】2020-12-14
(31)【優先権主張番号】62/658,465
(32)【優先日】2018-04-16
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/216,835
(32)【優先日】2018-12-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520040566
【氏名又は名称】チャーター コミュニケーションズ オペレーティング、エルエルシー
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ジャヤワルダネ、ディウェラワッテ
(72)【発明者】
【氏名】ジンダル、マニシュ
(72)【発明者】
【氏名】ダス、プラティク
【審査官】対馬 英明
(56)【参考文献】
【文献】特開2011-254495(JP,A)
【文献】特開2017-118483(JP,A)
【文献】中国特許出願公開第105071860(CN,A)
【文献】MAAMOUN K. M. et al.,A Survey and a Novel Scheme for RoF-PON as FTTx Wireless Services,2009 6th International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET),IEEE,2009年,pages 246-253
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/00-10/90
H04J 14/00-14/08
H04B 7/24-7/26
H04W 4/00-99/00
H04L 27/00-27/38
(57)【特許請求の範囲】
【請求項1】
統合されたワイヤレス・データ・サービスを配信するために現存するインフラストラクチャが使用されるように、無線周波数(RF)ネットワークを動作させるコンピュータ化された方法であって、前記方法は、
少なくとも、前記現存するインフラストラクチャの通常動作帯域よりも周波数が広い周波数帯域を使用して、前記現存するインフラストラクチャの少なくとも一部分上でOFDM(直交周波数分割多重)波形が送信されるステップであって、前記周波数帯域は、ユーザ周波数帯域よりも周波数が低い、ステップと、
少なくとも1つのコンピュータ化された構内デバイスを介して、前記送信されたOFDM波形を受信するステップと、
アップコンバートされた波形を形成するために、前記受信されたOFDM波形を前記ユーザ周波数帯域にアップコンバートするステップと、
前記アップコンバートされた波形を少なくとも1つのコンピュータ化されたユーザ・デバイスに送信するステップと
を含む、コンピュータ化された方法。
【請求項2】
前記現存するインフラストラクチャが、ハイブリッド・ファイバー同軸(HFC)インフラストラクチャを備え、前記統合されたワイヤレス・データ・サービスが、1Gbpsを超過するレートにおけるデータ配信を備える、請求項1に記載のコンピュータ化された方法。
【請求項3】
前記現存するインフラストラクチャの通常動作帯域よりも周波数が広い前記周波数帯域は、総帯域幅が少なくとも1.6GHzの周波数帯域を備える、請求項2に記載のコンピュータ化された方法。
【請求項4】
総帯域幅が少なくとも1.6GHzの前記周波数帯域を2つ又はそれ以上のサブバンドに割り振るステップをさらに含む、請求項3に記載のコンピュータ化された方法。
【請求項5】
総帯域幅が少なくとも1.6GHzの前記周波数帯域を前記2つ又はそれ以上のサブバンドに前記割り振るステップが、広帯域増幅器装置を使用して割り振るステップを含む、請求項4に記載のコンピュータ化された方法。
【請求項6】
前記割り振るステップが、1つ又は複数の現存するHFCネットワーク・ハブへの前記2つ又はそれ以上のサブバンドを介してデータを配信することをさらに含む、請求項4に記載のコンピュータ化された方法。
【請求項7】
前記受信されたOFDM波形を前記ユーザ周波数帯域に前記アップコンバートするステップが、5GHzを含む周波数帯域にアップコンバートするステップを含む、請求項1に記載のコンピュータ化された方法。
【請求項8】
前記アップコンバートされた波形を前記少なくとも1つのコンピュータ化されたユーザ・デバイスに前記送信するステップが、無認可無線周波数帯域において、少なくとも3GPP(3rd Generation Partnership Project)第5世代(5G)新無線(NR)準拠エア・インターフェースを使用して送信するステップを含む、請求項1に記載のコンピュータ化された方法。
【請求項9】
前記現存するインフラストラクチャの少なくとも一部分上でOFDM(直交周波数分割多重)波形が前記送信されるステップが、少なくとも同軸ケーブル上で、及び前記同軸ケーブルに結合された複数の増幅器段を介して前記OFDM波形が送信されるステップを含む、請求項1に記載のコンピュータ化された方法。
【請求項10】
前記送信されたOFDM波形を受信するステップは、前記少なくとも1つのコンピュータ化された構内デバイスから前記現存するインフラストラクチャ内のネットワーク・コアに向かうアップストリームに配置されたコンピュータ化されたネットワーク・エンティティから前記送信されたOFDM波形を受信することを含む、請求項1に記載のコンピュータ化された方法。
【請求項11】
前記少なくとも1つのコンピュータ化された構内デバイスから前記現存するインフラストラクチャ内のネットワーク・コアに向かうアップストリームに配置されたコンピュータ化されたネットワーク・エンティティから前記送信されたOFDM波形を受信することは、少なくともハイブリッド・ファイバー同軸(HFC)インフラストラクチャの同軸ケーブル・インフラストラクチャを介して、前記送信されたOFDM波形を受信することを含む、請求項1に記載のコンピュータ化された方法。
【請求項12】
コンテンツ配信ネットワークの現存するインフラストラクチャを介して、統合されたデータ・サービスの配信のために使用されるコンピュータ化された構内装置であって、該コンピュータ化された構内装置は、
デジタル処理装置と、
前記デジタル処理装置とデータ通信を行う無線周波数装置と、
前記デジタル処理装置とデータ通信を行う記憶装置であって、前記デジタル処理装置上で実行されると、前記コンピュータ化された構内装置に
少なくとも1つのユーザ・デバイスに配信するために、3GPP(Third Generation Partnership Project)LTE(Long Term Evolution)又は5G NR(Fifth Generation New Radio)無線規格のうちの少なくとも1つに準拠する1つ又は複数のOFDM(直交周波数分割多重)波形を処理することであって、少なくとも、前記現存するインフラストラクチャの通常動作帯域よりも周波数が広くユーザ周波数帯域よりも周波数が低い周波数帯域を使用して、前記現存するインフラストラクチャの少なくとも一部分上で前記1つ又は複数のOFDM波形が受信される、前記処理すること、及び
前記少なくとも1つのユーザ・デバイスに処理された前記波形を送信すること
を実行させるように構成された少なくとも一つのコンピュータ・プログラムを含む、前記記憶装置と、
を含む、コンピュータ化された構内装置。
【請求項13】
前記現存するインフラストラクチャの通常動作帯域よりも周波数が広い周波数帯域は、前記現存するインフラストラクチャが統合されていないデータ・サービスのために使用されるとき、前記現存するネットワーク・インフラストラクチャの規定された動作帯域よりも周波数が広い周波数帯域を含み、
受信された前記波形の処理は、少なくとも一部が前記周波数帯域の一部よりも周波数が高いユーザ周波数帯域への前記波形のアップコンバージョンを含む、請求項12に記載のコンピュータ化された構内装置。
【請求項14】
処理された前記波形の前記送信は、無線周波数(RF)スペクトルの無認可の部分を介した送信を含む、請求項12に記載のコンピュータ化された構内装置。
【請求項15】
前記コンテンツ配信ネットワークの前記現存するインフラストラクチャは、同軸ケーブル・ベアラを含み、
前記1つ又は複数の波形の前記受信は、TDD(time division duplex)多重を使用する受信を含む、請求項12に記載のコンピュータ化された構内装置。
【請求項16】
前記同軸ケーブル・ベアラは、第1の周波数帯域内で動作するように構成され、受信された前記1つ又は複数の波形は、前記第1の周波数帯域の上に延長する周波数帯域を介して少なくとも一部が受信される、請求項15に記載のコンピュータ化された構内装置。
【請求項17】
前記1つ又は複数の波形は、3GPP 5G NR gNB(gNodeB)制御ユニット(CU)プロセスによって少なくとも部分的に制御される3GPP(3rd Generation Partnership Project)第5世代新無線(5G NR gNB(gNodeB)配信ユニット(DU)プロセスから、前記現存するインフラストラクチャを介して、前記コンピュータ化された構内装置によって受信される、請求項12に記載のコンピュータ化された構内装置。
【請求項18】
非一時的記憶媒体を含むコンピュータ可読装置であって、前記非一時的記憶媒体は、複数の命令を有する少なくとも1つのコンピュータ・プログラムを含み、前記複数の命令は、処理装置上で実行されるとき、コンピュータ化された構内装置に
現存するネットワーク・インフラストラクチャ内のコンピュータ化された構内装置からアップストリームに配置された3GPP(Third Generation Partnership Project)5G NR(Fifth Generation New Radio)に準拠するノード装置から送信された1つ又は複数のOFDM(直交周波数分割多重)波形を受信することであって、少なくとも前記現存するインフラストラクチャの通常動作帯域よりも周波数が広くユーザ周波数帯域よりも周波数が低い周波数帯域の使用を含む、前記1つ又は複数のOFDM波形を受信すること、
少なくとも1つのコンピュータ化されたユーザ・デバイスへの送信のために、3GPP LTE(Long Term Evolution)又は5G NR無線規格のうちの少なくとも1つに基づいて、前記1つ又は複数のOFDM(直交周波数分割多重)波形を処理することであって、前記1つ又は複数のOFDM波形の前記処理は、アップコンバートされた波形を形成するための前記ユーザ周波数帯域に対して受信された前記1つ又は複数のOFDM波形のアップコンバージョンを含む、処理すること、及び
前記少なくとも1つのコンピュータ化されたユーザ・デバイスに処理された前記波形を送信すること
を実行させるように構成されている、コンピュータ可読装置。
【請求項19】
前記ノード装置は、少なくともネットワーク5G NR CU(controller unit)によって制御される3GPP 5G NR DU(distributed unit)を含み、
前記1つ又は複数のOFDM波形の前記受信は、各々異なる周波数の複数のキャリア上で変調された前記1つ又は複数のOFDM波形の受信を含む、請求項18に記載のコンピュータ可読装置。
【請求項20】
前記通常動作帯域の一部ではないより広い前記周波数帯域の一部は、800MHzよりも上に配置された部分を含む、請求項19に記載のコンピュータ可読装置。
【請求項21】
前記1つ又は複数のOFDM波形の前記受信は、少なくとも現存する同軸ケーブル・インフラストラクチャ上の前記1つ又は複数のOFDM波形の受信と、少なくとも前記現存するネットワーク・インフラストラクチャの前記通常動作帯域よりも周波数が広い周波数帯域で動作するようにそれぞれ設計された複数の増幅器装置の使用を含む、請求項18に記載のコンピュータ可読装置。
【請求項22】
前記1つ又は複数のOFDM波形の前記受信は、3GPP(Third Generation Partnership Project)に準拠する4G(Fourth Generation)又は5G(Fifth Generation)波形の受信を含む、請求項18に記載のコンピュータ可読装置。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、その全体が参照により本明細書に組み込まれる、2018年4月16日に出願された、「APPARATUS AND METHODS FOR INTEGRATED HIGH-CAPACITY DATA AND WIRELESS NETWORK SERVICES」と題する米国仮特許出願第62/658,465号の優先権の利益を主張する。本出願はまた、その全体がまた、参照により本明細書に組み込まれる、2018年12月11日に出願された、「APPARATUS AND METHODS FOR INTEGRATED HIGH-CAPACITY DATA AND WIRELESS NETWORK SERVICES」と題する米国特許出願第16/216,835号の優先権の利益を主張する。
【0002】
本開示は、一般に、データ・ネットワーク及びワイヤレス・デバイスの分野に関し、詳細には、例示的な一態様では、様々な異なるロケーション及び使用事例における高スピード・データ・サービスの提供を統合又は統一するアーキテクチャに関する。
【背景技術】
【0003】
現在、データ通信サービスは、ユーザ構内(たとえば、家、オフィス、さらには車両)全体にわたって偏在する。そのようなデータ通信サービスは、管理された又は管理されないネットワークを介して提供され得る。たとえば、一般的な家は、ケーブル又は衛星ネットワークなど、管理されたネットワークを介して1つ又は複数のネットワーク・サービス・プロバイダによって提供されるサービスを有する。これらのサービスは、コンテンツ配信(たとえば、リニア・テレビジョン、オンデマンド・コンテンツ、パーソナル又はクラウドDVR、「スタート・オーバー(start over)」など)、並びにいわゆる「オーバーザトップ(over the top)」サード・パーティ・コンテンツを含み得る。同様に、インターネット及びテレフォニー・アクセスも一般に提供され、上述のコンテンツ配信機能とともにサブスクリプション・パッケージにバンドルされ得、サブスクリプション・パッケージは、それらの構築及びコンテンツにおいてますますよりユーザ固有又は構内固有になりつつある。そのようなサービスはまた、「どこでも、いつでも」のパラダイムを採用することをますます試みており、したがって、ユーザ(加入者)は、自分の家屋の異なる部屋において、移動しながら自分のモバイル・デバイス上でなど、いくつかの異なる受信及びレンダリング・プラットフォームを介して、所望のサービスにアクセスする(たとえば、映画を見る)ことができる。
【0004】
管理されたケーブル・ネットワーク
ネットワーク事業者は、様々な異なるデバイスを使用してデータ・サービス(たとえば、ブロードバンド)及びビデオ・プロダクトを顧客に配信し、それにより、そのユーザ又は加入者が、いくつかの異なるコンテキスト、固定(たとえば、その居住地において)とモバイル(移動しながら、又は家から離れてなど)の両方において、データ/コンテンツにアクセスすることを可能にする。図1及び図2は、そのようなデータ・サービスをそのユーザ及び加入者に提供するために使用される、一般的な従来技術の管理された(たとえば、ケーブル)コンテンツ配信ネットワーク・アーキテクチャを示す機能ブロック図である。
【0005】
データ/コンテンツ配信は、ビデオ・コンテンツが、ネットワーク事業者又はそれのプロキシによって取り込まれ、ネットワーク事業者のプロダクト又はサービスとしてネットワーク・ユーザ又は加入者に配信される場合など、ネットワーク事業者に固有であり得る。たとえば、ケーブル複数システム事業者(MSO:multiple systems operator)は、複数の異なるソース(たとえば、全国ネットワーク、コンテンツ・アグリゲータなど)からコンテンツを取り込み、取り込まれたコンテンツを処理し、そのコンテンツを、たとえば、ハイブリッド・ファイバー同軸(HFC:hybrid fiber coax)ケーブル/ファイバー・ネットワークを介して、加入者のセットトップ・ボックス又はDOCSISケーブル・モデムになど、MSO加入者に配信し得る。そのような取り込まれたコンテンツは、必要に応じて必要なフォーマット(たとえば、MPEG-2又はMPEG-4/AVC)にトランスコーディングされ、適切なメディア・コンテナ・フォーマットでフレーム化され、配置され(「パッケージングされ」)、たとえば、統計的多重化を介して送信されて、加入者RFチューナーによる受信のために6MHz無線周波数(RF:radio frequency)チャネル上でマルチ・プログラム・トランスポート・ストリーム(MPTS:multi-program transport stream)になり、多重化解除され、復号され、規定されたコーディング・フォーマットに従ってユーザのレンダリング・デバイス(たとえば、デジタルTV)上でレンダリングされる。
【0006】
ケーブル・プラント内で、コンテンツを提供し、シングル・プログラム・トランスポート・ストリーム(SPTS:single-program transport stream)配信モダリティを利用するために、VOD及びいわゆるスイッチド・デジタル・ビデオ(SDV:switched digital video)も使用され得る。たとえば米国ケーブル・システムでは、テレビ番組の送信のために使用されるダウンストリームRFチャネルは、6MHz幅であり、54MHzから860MHzの間の6MHzスペクトル・スロットを占有する。VODサービスの展開は、このスペクトルを、上記で説明されたものなど、すでに確立されたアナログ及びデジタル・ケーブル・テレビジョン・サービスと共有しなければならない。所与のケーブル・プラント内で、近隣を通る同じケーブル・フィードに電気的に接続されたすべての家は、同じダウンストリーム信号を受信することになる。たとえば、VODサービスを管理する目的で、これらの家は、一般にサービス・グループと呼ばれる論理グループにグループ化される。同じサービス・グループに属する家は、RFチャネルの同じセット上でそれらのVODサービスを受信する。
【0007】
VODサービスは、一般に、ケーブルにおける利用可能なスペクトルからの所与の数(たとえば、4つ)のRFチャネル上で与えられる。したがって、VODサービス・グループは、同じ4つのRFチャネル上でVOD信号を受信する家からなる。
【0008】
たいていのケーブル・ネットワークでは、MPEG(たとえば、MPEG-2)オーディオ/ビデオ圧縮を使用して、プログラムが送信される。ケーブル信号が、直交振幅変調(QAM:Quadrature Amplitude Modulation)方式を使用して送信されるので、HFCシステム上で使用される一般的な変調レート(QAM-256)についての利用可能なペイロード・ビットレートは、ほぼ38Mbpsである。たとえば、多くのVOD展開では、NTSCブロードキャスト信号と等価な解像度及び品質において1つのビデオ・プログラムを送るために、3.75Mbpsの一般的なレートが使用される。デジタル・テレビジョン用語では、これは、標準精細度(SD:Standard Definition)テレビジョン解像度と呼ばれる。したがって、MPEG-2及びQAM変調の使用は、1つのRFチャネル上の10個のSDセッションの搬送を可能にする(10×3.75=37.5Mbps<38Mbps)。一般的なサービス・グループが4つのRFチャネルからなるので、サービス・グループ内に40個の同時SD VODセッションが収まり得る。
【0009】
HD(高精細度(High Definition))信号のエンターテインメント品質送信は、SDの約4倍の帯域幅を必要とする。例示的なMPEG-2メイン・プロファイル-高レベル(MP@HL:Main Profile-High Level)ビデオ圧縮の場合、各HDプログラムは、約15Mbpsビットレートを必要とする。
【0010】
OTT
代替的に、ネットワーク内でサービスを提供するために、いわゆる「オーバーザトップ」又はOTT配信が使用され得、ネットワーク事業者と提携しないことがあるサード・パーティ・ソースからのコンテンツが、ネットワーク事業者の(上記で説明されたケーブル・アーキテクチャを含む)インフラストラクチャを介して、たとえば、IPベース・トランスポートを介して、要求側ユーザ又は加入者に直接コンテンツを提供し、すなわち、コンテンツは、よく知られているインターネット・プロトコル・ネットワークレイヤ・プロトコルに従って、上述の高スピードDOCSISケーブル・モデムなどを介して、ユーザのネットワーク又はIPアドレスに基づいて要求側ユーザへの配信のためにパケット化され、ルーティングされる。
【0011】
ユーザが、コンテンツへのアクセスを獲得するために、規定されたURLにアクセスし、ユーザの証明書を用いてログインすることを介して、OTTコンテンツがネットワーク上で分散される機構として、従来、IPユニキャスト(ポイント・ツー・ポイント(point to point))又はマルチキャスト(ポイント・ツー・マルチポイント(point to multiple points))が使用されてきた。IPコンテンツは、次いで、ユニキャスト/マルチキャストを介して(1つ又は複数の)要求側ユーザにストリーミングされ、ユーザのPC、ラップトップ、又は他のIP対応エンドユーザ・デバイス上でメディア・プレーヤ・アプリケーション・プログラム(「アプリ」)によって受信及び復号される。
【0012】
クラウドベース機能
動作及び経済的効率を獲得するために、HFCベース・ケーブル・ネットワークなどのコンテンツ配信ネットワーク内の技術スタックが、時間とともに、概して、ネットワークの「クラウド」又はネットワーク側に向かって(たとえば、地域ごとに分けられたデータ・センターに)、及びエンド・ユーザ(クライアント)消費デバイスから離れて、移行した。したがって、クライアント・デバイスのコンテンツ・プレゼンテーション能力が、ますます、クライアント・デバイスのオンボード・ストレージ及び処理能力並びにクライアント・デバイスの関連するソフトウェア・スタックとともに、(ネットワーク側キャッシュ・アーキテクチャを含む)これらのクラウドベース機能によって決められる。
【0013】
たとえば、クラウドベースEPG(電子プログラム・ガイド(electronic program guide))が、合理化されたユーザ・エクスペリエンス、低減されたデバイス処理及びストレージ・フットプリント、並びに、複数の異なるタイプのHW/SWプラットフォーム(たとえば、異なるOEMデバイス)にわたるソフトウェア・アップグレードのための無矛盾で単純な機構を提供するように、ますます構成される。たとえば、そのような機能を実装するために、HTML 5ベースクラウド・アプリが、ますますネイティブ・アプリ(すなわち、製造時にデバイスの設計に組み込まれたアプリ)に取って代わっている。本出願の譲受人によって与えられる、クラウドベース「スペクトル・ガイド」などの実装形態は、主に、クライアント・プロセス又は機能がネットワーク側エンティティ又はプロセスとインターフェースする必要により、クライアントにとってより労働集約的である。
【0014】
クラウド配信EPGの上記の実例では、(コンテンツ・ポスター・アートから日/時間グリッドの要素、及びたいていの視覚ビデオ・コンテンツに至る)すべてのオブジェクトがスティッチされ、クライアント・デバイス(たとえば、DSTB)に単一のストリームとして、DSTBによって生来生成されるものとは対照的に、配信される。詳細には、プログラム・ガイド要素(たとえば、グラフィックス)は、トランスポート・ストリームとして一緒にスティッチされるが、ウェブ・ブラウザの動作に似て、ユーザ・デバイス上のこのプログラム・ガイドのウィンドウ又は他のディスプレイ要素内で利用されるビデオ・コンテンツが、異なるソースから来て、さらに任意の広告が第3のロケーションから来る。この手法は、性能において、詳細には、あるプログラム・チャネルから別のプログラム・チャネルへのビデオ遷移、(VODからDVRへなどの)あるタイプのコンテンツから別のタイプのコンテンツへのビデオ遷移、並びにビデオ・コンテンツから広告コンテンツ(たとえば、上記で説明された、線形アドレス指定可能なコンテンツ)へのビデオ遷移に関連するレイテンシに関して、いくつかの課題を提示し得る。最も基本的なチャネル同調機能においてさえ、そのような遷移は、とりわけ、クラウド・データ及びサービスに基づいてEPGディスプレイ要素を再ポピュレート/生成する必要により、数秒を要することがある。
【0015】
手短に言えば、加入者又はユーザは、特徴として、(本出願の譲受人の事例証拠に基づいて)1秒未満でプログラミング選択判断を行う。逆に、一般的なユーザは、数ミリ秒未満の遅延を知覚することが困難である。したがって、上述の複数秒のレイテンシ又は遅延は、ユーザを特定のコンテンツに及び一般にサービス・プロバイダ・ブランドに関与したままにすることができないことによるものを含め、ユーザ・エクスペリエンスにとって極めて不利益である。
【0016】
コンテンツ切替えトランザクションにおける遅延の他のソースも存在し得る。たとえば、(1次)ビデオ・コンテンツが、あるフォーマット(たとえば、H.264)で符号化されて配信され、切替え後のコンテンツ(たとえば、アドレス指定可能な広告)が、異なるフォーマット(たとえば、MPEG-2)で符号化される場合、MPEG-2コンテンツを処理する際の遅延が、とりわけ、MPEG-2コンテンツのレンダリングをサポートするための処理(たとえば、クライアント・デバイス上のMPEG-2適合デコーダ又はプレーヤの識別及び利用)から起こり得る。逆に、(以下でさらに詳細に説明される)H.264及び他のアドバンスト・コーデックに関連する動き補償及び他の特徴は、かなりの処理オーバーヘッドを必要とし、それによりDSTB(又は他のクライアント・デバイス)の計算負担を増やすことがある。同様に、オープンGOP(ピクチャグループ(group of pictures))処理対クローズドGOP処理が、追加の時間及びリソースを消費することがある。
【0017】
ワイヤレス
無線アクセス技術(「RAT:Radio Access Technology」)としても知られる、多数のワイヤレス・ネットワーキング技術は、無線ベース・通信ネットワークのための接続の基礎をなす手段をユーザ・デバイスに提供する。そのようなRATは、しばしば、認可無線周波数スペクトル(すなわち、委員会の規則のセクション2.106において成文化された、周波数割振りの表に従ってFCCによって割り振られた無線周波数スペクトル)を利用する。現在、9kHzから275GHzの間の周波数帯域のみが割り振られている(すなわち、1つ又は複数の地上波又は空間無線通信サービス、或いは特定の条件下の電波天文学サービスによる使用のために指定されている)。たとえば、一般的なセルラー・サービス・プロバイダは、以下の表1に示されているように、いわゆる「3G」(第3世代)及び「4G」(第4世代)ワイヤレス通信のためのスペクトルを利用し得る。
【表1】
【0018】
代替的に、いわゆるISM帯域内の無認可スペクトルなど、無認可スペクトルが利用され得る。ISM帯域は、ITU無線通信規則(Radio Regulations)(第5条)によって、無線通信規則の脚注5.138、5.150、及び5.280において定義される。米国では、ISM帯域の使用は、連邦通信委員会(FCC:Federal Communications Commission)規則のパート18によって支配されるが、パート15は、無認可通信デバイス、さらにISM周波数を共有する無認可通信デバイスについての規則を含んでいる。以下の表2は、一般的なISM周波数割振りを示す。
【表2】
【0019】
ISM帯域はまた、915MHz帯域と2.450GHz帯域とにおけるワイヤレス・センサー・ネットワーク、並びに915MHz帯域と2.450GHz帯域と5.800GHz帯域とにおけるワイヤレスLAN(たとえば、Wi-Fi)及びコードレス・フォンなど、(非ISM)認可フリー通信適用例と共有されている。
【0020】
さらに、5GHz帯域は、表3に示されているように、たとえば、WLAN機器による使用のために割り振られている。
【表3】
【0021】
ユーザ・クライアント・デバイス(たとえば、スマートフォン、タブレット、ファブレット、ラップトップ、スマートウォッチ、或いは他のワイヤレス対応デバイス、モバイルなど)は、概して、それらのデバイスが、互いに又はネットワーク(たとえば、インターネット、イントラネット、又はエクストラネット)に接続することを可能にし、しばしば、認可スペクトルと無認可スペクトルの両方に関連するRATを含む、複数のRATをサポートする。特に、クライアント・デバイスによる他のネットワークへのワイヤレス・アクセスは、サービス・プロバイダ・ネットワーク(たとえば、ケーブル・ネットワーク)のバックエンド又はバックホール部分によってサービスされる、ワイヤレス・アクセス・ポイント(「WAP:wireless access point」又は「AP」)、スモール・セル、フェムトセル又はセルラー・タワーなど、ネットワーク化されたハードウェアを利用するワイヤレス技術によって可能にされる。ユーザは、概して、ノード又は「ホットスポット」、ワイヤレス範囲内にあるモデム、ルータ、APなどに接続することによってユーザがアクセスを取得し得る物理的ロケーションにおいて、ネットワークにアクセスし得る。
【0022】
ユーザが(たとえば、ケーブル・ネットワーク事業者を通して提供されるサービスを介して)ワイヤレス通信に関与することを可能にする1つのそのような技術は、コンシューマー・エレクトロニクスにおけるワイヤレス・ネットワーキングのための遍在して容認された規格になったWi-Fi(登録商標)(IEEE Std.802.11)である。Wi-Fiは、クライアント・デバイスが1つ又は複数のアクセス・ポイントを介してネットワーク(たとえば、ワイヤレス・ローカル・エリア・ネットワーク(WLAN:wireless local area network))への好都合な高スピード・アクセスを獲得することを可能にする。
【0023】
商業的に、Wi-Fiは、信用できる家又はビジネス環境内など、ベニュー内又は構内のユーザのグループ、或いは外側、たとえば、カフェ、ホテル、ビジネス・センター、レストラン、及び他の公共区域にサービスを提供することが可能である。一般的なWi-Fiネットワーク・セットアップは、バックエンドと通信しているAP(及び/又はAPに接続されたモデム)とワイヤレス通信しているユーザのクライアント・デバイスを含み得、ここで、クライアント・デバイスは、クライアント・デバイスがAPからの信号を検出し、APと通信を行うことを可能にする一定の範囲内になければならない。
【0024】
広く使用されている別のワイヤレス技術は、(口語的に、特に「LTE」、「4G」、「LTEアドバンスト」とも呼ばれる)ロングターム・エボリューション規格である。LTEネットワークは、発展型パケット・コア(「EPC:Evolved Packet Core」)、インターネット・プロトコル(IP:Internet Protocol)ベース・ネットワーク・アーキテクチャ及びeノードB、無線アクセス・ネットワーク(RAN:Radio Access Network)の一部である発展型ノードB又はE-UTRANノード、によって動かされ、広いカバレージ・エリアとともにユーザの多くのワイヤレス対応デバイスに高スピード・ワイヤレス・データ通信サービスを提供することが可能である。
【0025】
現在、たいていの消費者デバイスはマルチRAT能力を含み、たとえば、同時にであるのか、(デバイス上で稼働しているワイヤレス接続マネージャ・プロセスを介してなど)「フェイル・オーバー」様式であるのかにかかわらず、複数の異なるRATにアクセスする能力を含む。たとえば、スマートフォンは、LTEデータ・アクセスについて可能にされるが、利用不可能なときに、データ通信のために1つ又は複数のWi-Fi技術(たとえば、802.11g/n/ac)を利用し得る。
【0026】
(LTE及びWi-Fiなどの)異なるRATの能力は、所与のクライアント・デバイスへのワイヤレス・サービスの確立に関することを含め、まったく異なり得る。たとえば、Wi-Fi対LTE(LTE-U及びLTE-LAAなど、無認可帯域において動作するように構成されたそれらの技術を含む)を介した接続を初期化するための信号強度しきい値間に差異がある。手短に言えば、LTE-Uは、データ送信のための追加の無線スペクトルを提供するために(たとえば、オーバーフロー・トラフィックを補償するために)無認可スペクトル(たとえば、5GHz)におけるLTEを介したデータ通信を可能にする。LTE-LAAは、無認可スペクトル(たとえば、5GHz)におけるLTEを認可帯域と組み合わせるためにキャリア・アグリゲーションを使用する。LTE-U又はLTE-LAAサービスに必要とされる信号強度の一般的なレベルは、約-80~-84dBmである。比較して、Wi-Fiは、約-72~-80dBmの信号強度、すなわち、より高い(すなわち、より低感度の)検出しきい値に基づいて、クライアント・デバイスによって検出され得る。
【0027】
(上述の規格のワイヤレス・インターフェースのユーザであるのか、他のユーザであるのかにかかわらず)ユーザの増加する数は、いつも、干渉を含む、スペクトルの「混雑」につながる。また、太陽放射、電気機器、軍事使用など、非ユーザ・ソースからの干渉が存在し得る。事実上、スペクトルの所与の量は、それが提供することができる帯域幅の量に対する物理的限界を有し、より多くのユーザが並行して追加されるにつれて、各ユーザは、より多くの干渉及び性能の劣化を潜在的に経験する。
【0028】
その上、Wi-Fiなどの技術は、(それらの帯域において課せられた無認可スペクトル電力マスクに一部起因する)限られた範囲を有し、空間伝搬変動(特に、建築物などの構造内部)及び展開密度問題という欠点があり得る。Wi-Fiは、非常に遍在するようになったので、特に、ホスピタリティ・ユニット(たとえば、ホテル)、企業、混雑したベニューなどの高密度シナリオでは、競合問題は、補償するために極めて多くのWi-Fi APが設置されても、扱いにくいことがある。またさらに、概してそのようなAP間に協調がなく、各APは、事実上、そのAPのバックホール上で帯域幅を求めて他のAPと競合する。
【0029】
さらに、たとえば、管理されたネットワーク事業者によって提供される他のサービスとの統合の欠如が、一般に、Wi-Fiなどの無認可技術に関して存在する。Wi-Fiは、一般に、ネットワーク事業者/サービス・プロバイダによって不明瞭に搬送され(opaquely carried)る「データ・パイプ」として働く。
【0030】
5G新無線(NR:New Radio)及びNG-RAN(次世代無線エリア・ネットワーク(Next Generation Radio Area Network))
NG-RAN又は「NextGen RAN(無線エリア・ネットワーク)」は、3GPP「5G」次世代無線システムの一部である。3GPPは、現在、リリース15 NG-RANと、それの構成要素と、いわゆる「gNB」(次世代ノードB又はeNB)を含む関与するノードの間の対話とを指定している。NG-RANは、超高帯域幅、超低レイテンシ(たとえば、1ms又はそれ以下の「ラウンド・トリップ」程度)ワイヤレス通信を提供し、適用例に応じて、屋内「スポット」使用、都市「マクロ」(ラージ・セル)カバレージ、地方カバレージ、車両における使用、並びに「スマート」グリッド及び構造を含む、多種多様な展開シナリオにおいて、上記で説明されたタイプの認可スペクトルと無認可スペクトルの両方を効率的に利用することになる。NG-RANはまた、4G/4.5Gシステム及びインフラストラクチャと統合することになり、その上、新しいLTEエンティティが使用される(たとえば、EPC(発展型パケット・コア)とNR「NGC」(次世代コア(Next Generation Core))の両方への接続性をサポートする「発展型」LTE eNB又は「eLTE eNB」。
【0031】
いくつかの態様では、例示的なリリース15 NG-RANは、さらなる機能的発展及び能力のためのベースとして、(口語的に4G又は4.5Gと呼ばれる)現存するLTE/LTE-A技術の技術及び機能を活用する。たとえば、LTEベース・ネットワークでは、起動時に、eNB(基地局)は、eNBが実行することが予想されるコマンドをもつMME(モビリティ管理エンティティ(mobility management entity))に向けてS1-AP接続を確立する。あるeNBが、複数のセルを担当することができる(言い換えれば、複数のトラッキング・エリア・コードがE-UTRANセル・グローバル識別子に対応する)。eNBがサポートするセルのアクティブ化とともに、上述のS1-AP接続を確立するためにeNBによって使用されるプロシージャは、S1セットアップ・プロシージャと呼ばれ、とりわけ、その全体が参照により本明細書に組み込まれる、「3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access Network(E-UTRAN);S1 Application Protocol(S1AP)(Release 14)」と題する3GPP TS36.413 V14.4、2017年9月、を参照されたい。
【0032】
手短に言えば、及び図3を参照すると、(gNB-CUとしても知られる)CU304が、NGコア303と通信する、NRアーキテクチャ300内の論理ノードであり、ユーザ・データの転送、セッション管理、モビリティ制御、RAN共有、及び測位など、gNB機能を含むが、他の機能は、本明細書で後でより詳細に説明される様々な「スプリット」オプションごとに、もっぱら、(gNB-DUとしても知られる)(1つ又は複数の)DU306に割り振られる。CU304は、対応するフロントホール(Fs)ユーザ・プレーン及び制御プレーン・インターフェース308、310を介して、ユーザ・データを通信し、(1つ又は複数の)DU306の動作を制御する。
【0033】
したがって、Fsインターフェース308、310を実装するために、(規格化された)F1インターフェースが採用される。それは、NG-RAN内のgNB302のgNB-CU304とgNB-DU306とを相互接続するための機構、又はE-UTRAN内のen-gNBのgNB-CUとgNB-DUとを相互接続するための機構を提供する。F1アプリケーション・プロトコル(F1AP:F1 Application Protocol)は、3GPP TS38.473において定義されているプロシージャをシグナリングすることによって、F1インターフェースの機能をサポートする。F1APは、いわゆる「基本プロシージャ」(EP:elementary procedure)からなる。EPは、gNB-CUとgNB-DUとの間の対話のユニットである。これらのEPは、別々に定義され、完全なメッセージング・シーケンスをフレキシブルな様式で構築するために使用されることが意図される。概して、制限によって別段に明記されていない限り、EPは、並列にアクティブであり得るスタンドアロン・プロシージャとして、互いに独立して発動され得る。
【0034】
そのようなアーキテクチャ300内で、gNB-DU306(又はngeNB-DU)は、単一のgNB-CU304の制御下にある。gNB-DUが始動される(電源投入を含む)とき、それは、とりわけ、たとえば、F1セットアップ要求メッセージ中の(各特定のセルの識別情報とともに)セルの数など、任意の数のパラメータを制御gNB-CUに知らせるために、(概して、LTEの上記で参照されたS1セットアップ・プロシージャにならってモデル化される)F1セットアップ・プロシージャを実行する。
【0035】
必要とされるより良いソリューション
現存する4/4.5G(たとえば、LTE/LTE-A)及びWLAN(及び他の無認可)システム、並びに上記で概説された対応するIoTソリューションによってもたらされるワイヤレス・データ・レート、ロバストネス、及びカバレージにおける大きい進歩があっても、依然として、大きな障害が存在する。
【0036】
1つのそのような問題は、ブロードバンド・ユーザが屋内使用事例から屋外使用事例に移行するシナリオに関する。たとえば、自分の構内のWi-Fi APを利用するユーザが、構内構造及び他のファクタに応じて、場合によっては30.48m(100フィート)ほどのごく限られた範囲を経験し、その後、ユーザは劣化を経験し、最終的に信号の損失を経験する。その上、Wi-Fiなどの、より短い範囲の技術と、LTEなどの、より長い範囲のブロードバンド・セルラー・システムとの間にセッション継続性がない(すなわち、ユーザは、ユーザのWi-Fiセッションを終了し、新しいLTE(3GPP)セッションを使用することを継続しなければならない)。そのような「無認可から認可への」(その逆も同様)スペクトル使用はまた、無認可システムがしばしばMNOシステムと統合するように構成されないという点で、独特の課題を提示する(たとえば、WLAN APは、相互運用性である限り3GPP eUTRAN又は他のそのような規格に準拠するように構成されない)。
【0037】
その上、上記のソリューションは、概して、統合されないか又は論理的に統一されず、また、複数のサービス・プロバイダ技術及びインフラストラクチャのサブスクリプション及び使用を必要とし得る。たとえば、ユーザ構内の無認可WLAN APは、ケーブル又はファイバー又は衛星MSOによってバックホール化され得るが、セルラー・サービスは、認可セルラー・インフラストラクチャを使用して完全に別個のMNOによって提供される。
【0038】
MNO又は他の無線アクセス・ノード又は基地局が別のプロバイダによってバックホール化される事例(たとえば、無線機とワイヤレス・コア・ネットワーク要素との間のバックホールとしてHFC/DOCSISの周りで構築されるワイヤレス・ネットワーク)では、(i)2つの異なるネットワーク、すなわち、ワイヤード及びワイヤレスを維持するための別個のCAPEX(資本的支出)及びOPEX(事業運営費)「サイロ」、並びに(ii)たとえば、DOCSIS(バックホール)プロトコルを通してワイヤレス・データ・パケットをカプセル化することの追加のオーバーヘッドによる、より低いデータ・スループット効率及びより高いレイテンシを含む、いくつかの欠点に遭遇する。5Gの上述の超低レイテンシ要件(すなわち、エンドポイント・ノード間の1ms又はそれ以下のラウンド・トリップ)のコンテキストでは、そのような、インフラストラクチャによって誘発されたレイテンシにより、これらの要件を満たすことができず、このアーキテクチャが5G適用例にとって潜在的に不適当になることがある。
【0039】
その上、そのようなインフラストラクチャ上で、ある容量ターゲット(たとえば、10Gbps)を達成するために、光ファイバーの使用増加がインフラストラクチャのいくつかの部分において必要とされる。現在のHFCネットワーク設計の下では、サービスが、ユーザにそれらの構内への同軸ケーブル「ドロップ」を介して提供され、そのような構内のグループが、より大きいアーキテクチャ内の共通のタップオフ・ポイント又はノードによってサービスされる(上記のケーブル・システムの説明を参照)。個々の構内は、各ノードからケーブリング又は他のインフラストラクチャを「タップ・オフ(tap off)」し、それらの地理的配置及び他の考慮事項に応じて、システムにおいて(トポロジー的に)最も遠い構内への十分な信号強度を維持するために、いくつかの異なる増幅ユニットの利用を必要とし得る。たとえば、ソース・ノードと構内との間でいくつの増幅器段が使用されるかの一般的な記述は、「N+i」であり、ここで、i=ソース・ノードと構内との間の増幅器段の数である。たとえば、N=0は、増幅器が使用されない状況を指し、N+3は、3つの増幅器の使用を指す。動作中のいくつかの現存するケーブル/HFCシステムでは、iの値は、地方エリアに対するサービスの場合など、7程度まで高くなり、すなわち、N+7になり得る。
【0040】
予想され得るように、そのような増幅器段の使用は、そのようなシステムによって達成可能なデータ・レート又は帯域幅(ダウンストリーム、すなわち、クライアント構内に向けて、とアップストリーム、すなわち、クライアント構内から、の両方)に対するいくつかの制限をもたらす。事実上、そのようなシステムは、増幅器の設計に一部起因して、最大帯域幅/データ・レートにおいて制限され、たとえば、それらのシステムは、一般に、主にダウンストリーム方向においてサービスを提供するように設計される(いわゆる「OOB」又は帯域外(out-of band)RFチャネルを介するはるかに低いアップストリーム帯域幅が、極めて制限されたアップストリーム通信を提供する。ケーブル・モデム又はDOCSIS準拠システムは、インターネット・サービスの場合など、拡張アップストリーム帯域幅能力のためにDOCSIS QAM(RFチャネル)を利用するが、そのような技術さえ、能力が著しく制限され、その上、ダウンストリーム対アップストリーム帯域幅の割振り、特に動的に、において、制限されたフレキシビリティを有する。
【0041】
したがって、上記で言及されたように、最も高いデータ・レートを達成するためにネットワーク全体にわたってN+0構成に至るまでを含め、光ファイバーなど、より高い帯域幅、低損失媒体との、そのような増幅器段(及びサポート同軸ケーブリング)の交換が、極めて高いターゲット・データ・レートを達成するために必要である(「ファイバー・ディープ(fiber deep)」になることと呼ばれることがある)。しかしながら、光ファイバーなどとの、文字通り数万個の増幅器及び数千マイルのケーブリングの交換は、法外に費用がかかり、何年も要することがある。
【先行技術文献】
【特許文献】
【0042】
【文献】2015年11月10日に発行された、「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,185,341号
【文献】2016年3月29日に発行された、「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,300,445号
【非特許文献】
【0043】
【文献】「3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access Network(E-UTRAN);S1 Application Protocol(S1AP)(Release 14)」と題する3GPP TS36.413 V14.4、2017年9月
【文献】「Wi-Fi Peer-to-Peer(P2P) Specification」
【文献】3GPP TS23.234 v13.1.0、「3GPP system to Wireless Local Area Network (WLAN) interworking;System description (Release 13)」
【発明の概要】
【発明が解決しようとする課題】
【0044】
したがって、とりわけ、超高データ・レート・サービス(ワイヤードとワイヤレスの両方)の最適化された配信を可能にするための、及び現存するネットワーク・インフラストラクチャを活用する、改善された装置及び方法が必要とされる。理想的には、そのような改善された装置及び方法はまた、そのようなサービスを提供しながらユーザのためのシームレスな地理的及びクロスプラットフォーム・モビリティをサポートし、IoTなどの出始めの適用例及び技術をサポートすることになる。
【課題を解決するための手段】
【0045】
本開示は、とりわけ、超高データ・レート・サービス(ワイヤードとワイヤレスの両方)の最適化された配信を提供するための、及び現存するネットワーク・インフラストラクチャを活用する、方法及び装置を提供することによって、上記の必要に対処する。
【0046】
本開示の第1の態様では、統合されたワイヤレス・データ・サービスを配信するために現存するインフラストラクチャが使用されるように、無線周波数(RF)ネットワークを動作させる方法が開示される。一実施例では、本方法は、少なくとも、現存するインフラストラクチャの通常動作帯域よりも周波数が広い周波数帯域を使用して、現存するインフラストラクチャの少なくとも一部分上でOFDM(直交周波数分割多重)波形を送信するステップであって、周波数帯域は、ユーザ周波数帯域よりも周波数が低い、ステップと、少なくとも1つの構内デバイスを介して、送信されたOFDM波形を受信するステップと、アップコンバートされた波形を形成するために、OFDM波形をユーザ周波数帯域にアップコンバートするステップと、アップコンバートされた波形を少なくとも1つのユーザ・デバイスに送信するステップとを含む。
【0047】
一変形態では、現存するインフラストラクチャは、ハイブリッド・ファイバー同軸(HFC)インフラストラクチャを備え、統合されたワイヤレス・データ・サービスは、1Gbpsを超過するレートにおけるデータ配信を備える。
【0048】
一実装形態では、現存するインフラストラクチャの通常動作帯域よりも周波数が広い周波数帯域は、総帯域幅が少なくとも1.6GHzの周波数帯域を備え、本方法は、広帯域増幅器装置を使用することなどを介して、総帯域幅が少なくとも1.6GHzの周波数帯域を2つ又はそれ以上のサブバンドに割り振るステップをさらに含む。
【0049】
別の実装形態では、割り振るステップは、1つ又は複数の現存するHFCネットワーク・ハブへの2つ又はそれ以上のサブバンドの配信をさらに含む。
【0050】
別の変形態では、OFDM波形をユーザ周波数帯域にアップコンバートするステップは、5GHzを含むが、3GHzを下回る周波数を除く、周波数帯域にアップコンバートするステップを含む。
【0051】
また別の変形態では、アップコンバートされた波形を少なくとも1つのユーザ・デバイスに送信するステップは、無認可無線周波数帯域において、少なくとも3GPP第5世代(5G)新無線(NR)準拠エア・インターフェースを使用して送信するステップを含む。
【0052】
さらなる変形態では、少なくとも、現存するインフラストラクチャの通常動作帯域よりも周波数が広い周波数帯域を使用して、現存するインフラストラクチャの少なくとも一部分上でOFDM(直交周波数分割多重)波形を送信するステップは、少なくとも同軸ケーブル上で、及び同軸ケーブルに結合された複数の増幅器段を介してOFDM波形を送信するステップを含む。
【0053】
別の態様では、ワイヤレス・ユーザ・デバイスをサポートするように構成されたネットワーク・アーキテクチャが開示される。一実施例では、本アーキテクチャは、ネットワークのワイヤライン又は光媒体上に無線周波数(RF)波形を送信するように構成された分散ノードであって、RF波形が直交周波数分割多重(OFDM)変調される、分散ノードと、第1の複数のユーザ・ノードとを含む。
【0054】
一変形態では、第1の複数のユーザ・ノードの各々が、ワイヤライン又は光媒体とデータ通信しており、受信機装置を含み、受信機装置は、送信されたOFDM変調波形を受信することと、アップコンバートされた波形を形成するために、OFDM変調波形を少なくとも1つのユーザ周波数帯域にアップコンバートすることと、アップコンバートされた波形を少なくとも1つのワイヤレス・ユーザ・デバイスに送信することとを行うように構成される。
【0055】
一実装形態では、本ネットワーク・アーキテクチャは、分散ノード及び第1の複数のユーザ・ノードのうちの少なくとも1つとデータ通信している無線ノードを含み、無線ノードは、少なくとも1つのユーザ・ノードへの少なくとも補足データ通信を行うように構成される。無線ノードは、少なくとも光ファイバー媒体を介して分散ノードとデータ通信しており、無線ノードは、ワイヤレス・インターフェースを介して少なくとも1つのユーザ・ノードとデータ通信している。
【0056】
別の実装形態では、無線ノードは、少なくとも光ファイバー媒体を介して分散ノードとデータ通信しており、無線ノードは、ワイヤレス・インターフェースを介して少なくとも1つのユーザ・ノードとデータ通信している。
【0057】
さらなる実装形態では、本ネットワーク・アーキテクチャは、ネットワークの第2のワイヤライン又は光媒体上に無線周波数(RF)波形を送信するように構成された第2の分散ノードを含み、RF波形は、直交周波数分割多重(OFDM)変調され、ネットワークの第2のワイヤライン又は光媒体は、第1の複数のユーザ・ノードとは異なる第2の複数のユーザ・ノードをサービスする。本アーキテクチャは、少なくとも分散ノード、及び(i)第1の複数のユーザ・ノードのうちの少なくとも1つ、及び(ii)第2の複数のユーザ・ノードのうちの少なくとも1つとデータ通信している無線ノードをも含み、無線ノードは、第1の複数のユーザ・ノードのうちの少なくとも1つと第2の複数のユーザ・ノードのうちの少なくとも1つの両方への少なくとも補足データ通信を行うように構成される。
【0058】
特定の一実装形態では、無線ノードは、少なくとも光ファイバー媒体を介して分散ノードとデータ通信しており、無線ノードは、RFスペクトルの無認可部分を利用するワイヤレス・インターフェースを介して、第1の複数のユーザ・ノードのうちの少なくとも1つと第2の複数のユーザ・ノードのうちの少なくとも1つの両方とデータ通信している。
【0059】
別の実装形態では、本ネットワーク・アーキテクチャは、第1の複数のユーザ・ノードのうちの少なくとも1つとデータ通信している少なくとも1つのワイヤレス・ローカル・エリア・ノードであって、少なくとも1つのワイヤレス・ローカル・エリア・ノードが、ユーザ周波数帯域内にない無認可無線周波数スペクトルを介して少なくとも1つのワイヤレス・ユーザ・デバイスとワイヤレス通信するように構成された、少なくとも1つのワイヤレス・ローカル・エリア・ノードを含む。
【0060】
本ネットワーク・アーキテクチャは、分散ノードとデータ通信している少なくとも1つのワイヤレス・ローカル・エリア・ノード・コントローラであって、少なくとも1つのワイヤレス・ローカル・エリア・ノード・コントローラが、少なくとも1つのワイヤレス・ローカル・エリア・ノードと第1の複数のユーザ・ノードのうちの少なくとも1つとの間の1つ又は複数のワイヤレス・セッションのハンドオーバを実施するために分散ノードと協働するように構成された、少なくとも1つのワイヤレス・ローカル・エリア・ノード・コントローラをも含み得る。
【0061】
少なくとも1つのワイヤレス・ローカル・エリア・ノードは、たとえば、第1の無認可周波数帯域内で動作し得、第1の複数のユーザ・ノードのうちの少なくとも1つは第2の無認可周波数帯域内で動作する。たとえば、少なくとも1つのワイヤレス・ローカル・エリア・ノードは、IEEE-Std.802.11(Wi-Fi)プロトコルに従って動作し得、第1の複数のユーザ・ノードのうちの少なくとも1つは、3GPP 5G NR(第5世代、新無線)プロトコルに従って動作し得る。
【0062】
本開示の別の態様では、ハイブリッド・ファイバー/同軸ケーブル分散ネットワーク内での使用のためのコントローラ装置が、説明される。一実施例では、コントローラ装置は、無線周波数(RF)通信管理モジュールと、ネットワーク・コア・プロセスとのデータ通信のためにRF通信管理モジュールとデータ通信している第1のデータ・インターフェースと、ハイブリッド・ファイバー/同軸ケーブル分散ネットワークの第1のRF分散ノードとのデータ通信のためにRF通信管理モジュールとデータ通信している第2のデータ・インターフェースと、ハイブリッド・ファイバー/同軸ケーブル分散ネットワークの第2のRF分散ノードとのデータ通信のためにRF通信管理モジュールとデータ通信している第3のデータ・インターフェースとを含む。
【0063】
一変形態では、無線周波数(RF)通信管理モジュールは、第1のRF分散ノードと第2のRF分散ノードとのうちの少なくとも1つによって通常使用されるRF帯域の外側のRF帯域を用いた、第1のRF分散ノードと第2のRF分散ノードとのうちの少なくとも1つからのデジタル・データの少なくとも送信を可能にするためのコンピュータ化論理を含む。
【0064】
一実装形態では、無線周波数(RF)通信管理モジュールは、3GPP第5世代新無線(5G NR)gNB(gノードB)コントローラ・ユニット(CU:Controller Unit)を含み、ネットワーク・コア・プロセスとのデータ通信のための第1のデータ・インターフェースは、5GC(第5世代コア)との3GPP第5世代新無線(5G NR)Xインターフェースを含み、第2のデータ・インターフェースは、少なくともワイヤライン・データ・ベアラ媒体上で動作可能な3GPP第5世代新無線(5G NR)F1インターフェースを含み、第1のRF分散ノードは、3GPP第5世代新無線(5G NR)gNB(gノードB)分散型ユニット(DU)を含み、第3のデータ・インターフェースは、少なくとも高密度波分割多重化(DWDM:dense wave division multiplexed)光学データ・ベアラ上で動作可能な第5世代新無線(5G NR)F1インターフェースを含み、第2のRF分散ノードは、3GPP第5世代新無線(5G NR)gNB(gノードB)分散型ユニット(DU)を含む。
【0065】
一態様では、共通制御ノードを使用する異種メディアを伴うネットワークにおけるシームレス・モビリティのための方法及び装置が開示される。一実施例では、本方法は、異種メディア、たとえば、HFC及びワイヤレスを通して共通波形及びプロトコルを使用して接続された、屋内空間と屋外空間との間のシームレス・モビリティ・エクスペリエンスを提供するための、共通ネットワーク要素及びスプリットCU-DU基地局アーキテクチャの使用を含む。一変形態では、提供されるサービスは、ブロードバンド・データ、モビリティ・データ、IoT及びビデオ・ストリーミングを含む。
【0066】
別の態様では、3GPPとWi-Fiとの間のデータ・スループット性能トリガ型モビリティ(data throughput performance-triggered mobility)のための方法及び装置が提供される。一実施例では、集中型Wi-Fiコントローラが利用され、Wi-Fiコントローラと3GPPモビリティ・コントローラとの間のデータ通信を介して、屋内空間と屋外空間の両方が、協調3GPP及びWi-Fiサービス・カバレージを提供される。
【0067】
別の態様では、単一同軸ケーブルを通して複数のCPEに対する3GPP 4G LTE及び5G NR波形を送信及び受信することができる光-同軸ケーブル・トランスデューサ(optical to coaxial cable transducer)が開示される。
【0068】
別の態様では、1次リンクを通して利用可能なブロードバンド能力を補足するための方法及び装置が開示される。一実施例では、1次リンクは同軸ケーブルを含み、冗長補足リンクが提供される。一変形態では、たとえば、サービスされる構内において屋外に設置される2ポート外部アンテナにCPEを接続するための、CPE上の1つ又は複数のRFインターフェースが含まれる。この外部アンテナは、サービスされる構内の近傍に設置される屋外無線機から補足信号を受信するために使用され得る。屋外無線機は、とりわけ、1次同軸リンクからの容量を補足し、及び/又は冗長性を追加するために、屋外モビリティのために、及び/又は、「固定ワイヤレス」構成において、カバレージを提供し得る。
【0069】
別の態様では、データ・ネットワークにおいて使用するためのコンピュータ化ネットワーク装置が、開示される。一変形態では、ネットワークは、NG-RAN能力をもつHFCネットワークを含み、本装置は、少なくとも1つの拡張DU(DUe)を含む。
【0070】
別の変形態では、ネットワーク装置は、いくつかのDU/DUeを制御することができる少なくとも1つの拡張CU(CUe)を含む。
【0071】
また別の態様では、システムが開示される。一実施例では、本システムは、(i)コントローラ・エンティティと、(ii)HFCベアラを介してそれとデータ通信している1つ又は複数の分散型エンティティとを含む。一変形態では、たとえば、サービスされる構内の外部に配置され、構内CPEが専用アンテナ装置を介してアクセスすることができる、ワイヤレス・アクセス・ノードを介する、さらなる相補又は補足リンクが提供される。アクセス・ノードは、現存する同軸ケーブル又はファイバー、或いは補足ケーブル又はファイバーを介して、管理された(HFC)ネットワークにバックホール化される。
【0072】
本開示のまたさらなる態様では、デバイス・モビリティを提供するための方法が説明される。一実施例では、本方法は、HFCネットワークによってバックホール化されたワイヤレス対応CPEを介して屋内ワイヤレス・カバレージを提供するステップと、1つ又は複数の外部(たとえば、柱取り付け(pole mounted))アクセス・ノードを介して屋外ワイヤレス・カバレージを提供するステップとを含む。
【0073】
本開示の別の態様では、デバイス・モビリティを提供するための方法が説明される。一実施例では、本方法は、最初に、HFCネットワークによってバックホール化されたワイヤレス対応CPEを介して屋内/屋外構内ワイヤレス・カバレージを提供するステップと、その後、データ・セッション継続性を維持しながら、ハンドオーバを介して1つ又は複数の外部(たとえば、柱取り付け)アクセス・ノードを介して屋外ワイヤレス・カバレージを提供するステップとを含む。
【0074】
本開示のさらなる態様では、デバイスに高スピード・データ・サービスを提供するための方法が説明される。一実施例では、本方法は、HFCネットワークによってバックホール化されたワイヤレス対応CPEを介して屋内ワイヤレス・カバレージを提供するステップと、外部アンテナ装置を介してCPEと通信可能である1つ又は複数の外部(たとえば、柱取り付け)アクセス・ノードを介してその能力を補足するステップとを含む。一変形態では、外部アクセス・ノードは、同じHFCネットワークによってバックホール化される。
【0075】
別の態様では、上記の態様のうちの1つ又は複数を実装するコンピュータ化アクセス・ノードが、開示及び説明される。一実施例では、アクセス・ノードは、ユーザ・デバイス(たとえば、UE)とのデータ通信が可能なワイヤレス・インターフェースを含む。一変形態では、デバイスは、(たとえば、電柱又は電信柱上の)柱取り付けであり、たとえば、構内の外に取り付けられたアンテナ装置を介して構内CPEとインターフェースするようにさらに構成される。
【0076】
別の態様では、上記の態様のうちの1つ又は複数を実装するコンピュータ化構内デバイスが、開示及び説明される。一実施例では、デバイスは、5G NR能力を有するCPEを含み、現存する同軸ケーブル・ドロップを介してバックホール化される。一変形態では、デバイスはまた、複数のIoTワイヤレス・インターフェースを含み、外部アクセス・ノードのうちの1つ又は複数と通信する際に使用するための外部取り付けアンテナとの接続のためのプロビジョンを含む。
【0077】
別の態様では、上記の態様のうちの1つ又は複数を実装するコンピュータ化デバイスが、開示及び説明される。一実施例では、デバイスは、パーソナル又はラップトップ・コンピュータを含む。別の実施例では、デバイスは、モバイル・デバイス(たとえば、タブレット又はスマートフォン)を含む。別の実施例では、デバイスは、コンピュータ化「スマート」テレビジョン又はレンダリング・デバイスを含む。
【0078】
別の態様では、上記の態様のうちの1つ又は複数を実装する集積回路(IC:integrated circuit)デバイスが、開示及び説明される。一実施例では、ICデバイスは、SoC(システム・オン・チップ(system on Chip))デバイスとして実施される。別の実施例では、ASIC(特定用途向けIC(application specific IC))がデバイスの基礎として使用される。また別の実施例では、チップセット(すなわち、協調様式で使用される複数のIC)が開示される。また別の実施例では、デバイスは、マルチ論理ブロックFPGAデバイスを含む。
【0079】
別の態様では、上記の態様のうちの1つ又は複数を実装するコンピュータ可読記憶装置が、開示及び説明される。一実施例では、コンピュータ可読装置は、プログラム・メモリ又はEEPROMを含む。別の実施例では、本装置は、ソリッド・ステート・ドライブ(SSD:solid state drive)又は他の大容量ストレージ・デバイスを含む。別の実施例では、本装置は、USB又は他の「フラッシュ・ドライブ」又は他のそのようなポータブル・リムーバブル・ストレージ・デバイスを含む。また別の実施例では、本装置は、コンピュータ化ユーザ又はクライアント電子デバイスからリモートにあるが、それを介してアクセス可能である、「クラウド」(ネットワーク)ベース・ストレージ・デバイスを含む。また別の実施例では、本装置は、変動する近接度の複数のノードにわたって分散され、コンピュータ化ユーザ又はクライアント電子デバイスを介してアクセス可能である、「フォグ」(ネットワーク)ベース・ストレージ・デバイスを含む。
【0080】
さらなる態様では、単一同軸ケーブル・インターフェースを通して複数のCPEに対する3GPP 4G LTE及び5G NR波形を送信及び受信することができる光-同軸ケーブル・トランスデューサが開示される。
【0081】
さらなる態様では、ネットワーク・インフラストラクチャ内に拡大されたデータ・ネットワーク・サービスを導入する方法が開示される。一実施例では、ネットワークは、HFCケーブル・ネットワークを含み、本方法は、(i)高スピード・データ・サービスのための基本のバックホールとして、現存するベアラ媒体(たとえば、構内への同軸ケーブル)を利用するステップと、(ii)その後、補足帯域幅/モビリティ・サービスを構内ユーザに提供するために、現存するベアラ媒体(たとえば、セルラー基地局などの現存するワイヤレス・ノードへの同軸ケーブル又は光ファイバー)を使用するステップとを含む。別の変形態では、本方法は、(iii)その後、ネットワーク事業者のユーザ/加入者のためのさらなるユーザ・モビリティをサポートする新しい(現在、存在しない「柱取り付け」又は同様の日和見的アクセス・ノードのバックホールをサポートするために、新しい光ファイバー又は他の媒体を設置するステップをさらに含む。
【0082】
これら及び他の態様は、本明細書で提供される開示に照らして考慮されると、明らかになろう。
【図面の簡単な説明】
【0083】
図1】一般的な従来技術の管理された(たとえば、ケーブル)コンテンツ配信ネットワーク・アーキテクチャを示す機能ブロック図である。
図2】一般的な従来技術の管理された(たとえば、ケーブル)コンテンツ配信ネットワーク・アーキテクチャを示す機能ブロック図である。
図3】CUと複数のDUとを含む従来技術のgNBアーキテクチャの機能ブロック図である。
図4a】従来技術のIEEE Std.802.15.4及びBluetooth低エネルギー(BLE:Bluetooth Low Energy)ワイヤレス・インターフェースに関連する周波数帯域のグラフィカル表現の図である。
図4b】従来技術のIEEE Std.802.15.4及びWi-Fiワイヤレス・インターフェースに関連する周波数帯域のグラフィカル表現の図である。
図5】本明細書で説明される様々な特徴を備える例示的なMSOネットワーク・アーキテクチャの機能ブロック図である。
図5a】本開示による、CUeと複数のDUeとを含むgNBアーキテクチャの例示的な一実施例の機能ブロック図である。
図5b】本開示による、複数のCUeと複数の対応するDUeとを含むgNBアーキテクチャの別の例示的な実施例の機能ブロック図である。
図5c】本開示による、複数の異なるコアに論理的に交差接続された複数のCUeを含むgNBアーキテクチャのまた別の例示的な実施例の機能ブロック図である。
図6a図5のHFCケーブル・プラント内の距離の関数としての、例示的なダウンストリーム(DS:downstream)データ・スループット又はレートを示す図である。
図6b図5のHFCケーブル・プラント内の距離の関数としての、例示的なアップストリーム(US:upstream)データ・スループット又はレートを示す図である。
図7】本開示による、ネットワーク・ノード装置の例示的な一般的構成を示す機能ブロック図である。
図7a】3GPP 4G及び5G能力のために構成された、本開示による、ネットワーク・ノード装置の例示的な実装形態を示す機能ブロック図である。
図8】本開示による、CPEe装置の例示的な一般的構成を示す機能ブロック図である。
図8a】3GPP 4G及び5G能力のために構成された、本開示による、CPEe装置の例示的な実装形態を示す機能ブロック図である。
図9a】本開示による、屋内拡張帯域幅能力をサポートする補足ワイヤレス・リンク・アーキテクチャの例示的な実施例を示すブロック図である。
図9b】本開示による、屋内/屋外モビリティ遷移をサポートする補足ワイヤレス・リンク・アーキテクチャの例示的な実施例を示すブロック図である。
図10】本開示による、組み合わせられたセル・カバレージを介して屋外モビリティをサポートするワイヤレス・リンク・アーキテクチャの例示的な実施例を示すブロック図である。
図11】たとえば、オフィス・ビル、企業、大学など、広い屋内空間に、高データ・レート、低レイテンシ及び高モビリティの統一されたカバレージを提供するためのアーキテクチャの一実施例を示すブロック図である。
図12】高帯域幅データ通信のための既存のネットワーク(たとえば、HFC)を利用する一般化された方法の一実施例を示す論理流れ図である。
図12a図12の一般化された方法による、コンテンツ処理及び送信の特定の一実装形態を示す論理流れ図である。
図12b図12の一般化された方法による、CPEeによるコンテンツ受信及びデジタル処理の特定の一実装形態を示す論理流れ図である。
図12c図12の一般化された方法による、CPEeによる構内のコンテンツ受信及び送信の特定の一実装形態を示す論理流れ図である。すべての図(C)著作権、2017~2019年、Charter Communications Operating、LLC。著作権所有。
【発明を実施するための形態】
【0084】
次に、同様の数字が全体を通して同様の部分を指す図面を参照する。
【0085】
本明細書で使用される「アプリケーション」(又は「アプリ」)という用語は、概して、限定はしないが、ある機能性又はテーマを実装する実行可能ソフトウェアのユニットを指す。アプリケーションのテーマは、(オンデマンド・コンテンツ管理、eコマース・トランザクション、仲買トランザクション、家の娯楽、計算器などの)任意の数の規律及び機能にわたって広く変動し、1つのアプリケーションは2つ以上のテーマを有し得る。実行可能ソフトウェアのユニットは、概して、所定の環境において稼働し、たとえば、ユニットは、JavaTV(商標)環境内で稼働するダウンロード可能なJava Xlet(商標)を含むことができる。
【0086】
本明細書で使用される「中央ユニット」又は「CU」という用語は、限定はしないが、ワイヤレス・ネットワーク・インフラストラクチャ内の集中型論理ノードを指す。たとえば、CUは、5G/NR gNB中央ユニット(gNB-CU:gNB Central Unit)として実施され得、5G/NR gNB中央ユニットは、1つ又は複数のgNB-DUの動作を制御する、gNBのRRC、SDAP及びPDCPプロトコル、又はen-gNBのRRC及びPDCPプロトコルをホストする論理ノードであり、以下で定義される1つ又は複数のDU(たとえば、gNB-DU)と接続されたF1インターフェースを終端する。
【0087】
本明細書で使用される「クライアント・デバイス」又は「ユーザ・デバイス」又は「UE」という用語は、限定はしないが、セットトップ・ボックス(たとえば、DSTB)、ゲートウェイ、モデム、パーソナル・コンピュータ(PC:personal computer)、及びデスクトップであるのか、ラップトップであるのか、又はそれ以外であるのかにかかわらず、ミニコンピュータ、並びにハンドヘルド・コンピュータ、PDA、パーソナル・メディア・デバイス(PMD:personal media device)、タブレット、「ファブレット」、スマートフォン、及び車両インフォテインメント・システム又はそれらの部分などのモバイル・デバイスを含む。
【0088】
本明細書で使用される「コンピュータ・プログラム」又は「ソフトウェア」という用語は、機能を実施する、任意のシーケンス又は人間又は機械認識可能ステップを含むように意図される。そのようなプログラムは、たとえば、C/C++、Fortran、COBOL、PASCAL、アセンブリ言語、マークアップ言語(たとえば、HTML、SGML、XML、VoXML)などを含むほぼすべてのプログラミング言語又は環境、並びに共通オブジェクト・リクエスト・ブローカー・アーキテクチャ(CORBA:Common Object Request Broker Architecture)、(J2ME、Java Beansなどを含む)Java(商標)などのオブジェクト指向環境においてレンダリングされ得る。
【0089】
本明細書で使用される「分散型ユニット」又は「DU」という用語は、限定はしないが、ワイヤレス・ネットワーク・インフラストラクチャ内の分散型論理ノードを指す。たとえば、DUは、gNB又はen-gNBのRLC、MAC及びPHYレイヤをホストする論理ノードである5G/NR gNB分散型ユニット(gNB-DU:gNB Distributed Unit)として実施され得、それの動作は、(上記で参照された)gNB-CUによって部分的に制御される。1つのgNB-DUは1つ又は複数のセルをサポートするが、所与のセルは、1つのgNB-DUのみによってサポートされる。gNB-DUは、gNB-CUと接続されたF1インターフェースを終端する。
【0090】
本明細書で使用される「DOCSIS」という用語は、たとえば、DOCSISバージョン1.0、1.1、2.0、3.0及び3.1を含むデータ・オーバー・ケーブル・サービス・インターフェース仕様の既存の又は計画された変形態のいずれかを指す。
【0091】
本明細書で使用される「ヘッドエンド」又は「バックエンド」という用語は、概して、クライアント・デバイスを使用してMSO顧客層にプログラミングを分散するか、又は高スピード・データ配信及びバックホールなどの他のサービスを提供する事業者(たとえば、MSO)によって制御されるネットワーク化されたシステムを指す。
【0092】
本明細書で使用される「インターネット(Internet)」及び「インターネット(internet)」という用語は、限定はしないが、インターネット(Internet)を含むインターネットワークを指すために互換的に使用される。他の共通の実例は、限定はしないが、外部サーバのネットワーク、(デバイスにとってローカルでないメモリ又はストレージ、概してネットワーク接続を介して任意の時間においてアクセス可能なストレージなどの)「クラウド」エンティティ、サービス・ノード、アクセス・ポイント、コントローラ・デバイス、クライアント・デバイスなどを含む。
【0093】
本明細書で使用される「IoTデバイス」という用語は、限定はしないが、1つ又は複数の基本の機能(primary function)を有し、1つ又は複数の通信プロトコルを介してデータを提供及び/又は受信するように構成された電子デバイスを指す。IoTデバイスの実例は、セキュリティ又は監視システム、アプライアンス、コンシューマー・エレクトロニクス、車両、インフラストラクチャ(たとえば、トラフィック・シグナリング・システム)、及び医療デバイス、並びにそれらに関連して使用される受信機、ハブ、プロキシ・デバイス、又はゲートウェイを含む。
【0094】
本明細書で使用される「IoTネットワーク」という用語は、限定はしないが、2つ又はそれ以上のIoTデバイス(又は1つのIoTデバイス及び1つ又は複数の非IoTデバイス)の任意の論理、物理、又はトポロジー接続又はアグリゲーションを指す。IoTネットワークの実例は、ピアツーピア(P2P:peer-to-peer)、スター、リング、ツリー、メッシュ、マスタ・スレーブ、及びコーディネータ・デバイスのトポロジーで配置された1つ又は複数のIoTデバイスのネットワークを含む。
【0095】
本明細書で使用される「LTE」という用語は、限定はしないが、適用可能なとき、LTE-U(無認可スペクトルにおけるロングターム・エボリューション(Long Term Evolution in unlicensed spectrum))、LTE-LAA(ロングターム・エボリューション、ライセンス補助アクセス(Long Term Evolution, Licensed Assisted Access))、LTE-A(LTEアドバンスト(LTE Advanced))、4G LTE、WiMAX、VoLTE(ボイス・オーバーLTE(Voice over LTE))、及び他のワイヤレス・データ規格を含む、ロングターム・エボリューション・ワイヤレス通信規格の変形態又はリリースのいずれかを指す。
【0096】
本明細書で使用される「メモリ」という用語は、限定はしないが、ROM、PROM、EEPROM、DRAM、SDRAM、DDR/2 SDRAM、EDO/FPMS、RLDRAM、SRAM、「フラッシュ」メモリ(たとえば、NAND/NOR)、3Dメモリ、及びPSRAMを含む、デジタル・データを記憶するために適応された任意のタイプの集積回路又は他のストレージ・デバイスを含む。
【0097】
本明細書で使用される「マイクロプロセッサ」及び「プロセッサ」又は「デジタル・プロセッサ」という用語は、概して、限定はしないが、デジタル信号プロセッサ(DSP:digital signal processor)、縮小命令セット・コンピュータ(RISC:reduced instruction set computer)、汎用(CISC)プロセッサ、マイクロプロセッサ、ゲート・アレイ(たとえば、FPGA)、PLD、再構成可能なコンピュータ・ファブリック(RCF:reconfigurable computer fabric)、アレイ・プロセッサ、セキュア・マイクロプロセッサ、及び特定用途向け集積回路(ASIC:application-specific integrated circuit)を含む、すべてのタイプのデジタル処理デバイスを含むように意図される。そのようなデジタル・プロセッサは、単一のユニタリーICダイ上に含まれるか、又は複数の構成要素にわたって分散され得る。
【0098】
本明細書で使用される「MSO」又は「複数システム事業者」という用語は、それらの媒体上でプログラミング及びデータを含むサービスを配信するために必要とされるインフラストラクチャを有する、ケーブル、衛星、又は地上波ネットワーク・プロバイダを指す。
【0099】
本明細書で使用される「MNO」又は「モバイル・ネットワーク事業者」という用語は、それらの媒体上で、限定はしないが、ボイス及びデータを含むサービスを配信するために必要とされるインフラストラクチャを有する、セルラー、衛星フォン、WMAN(たとえば、802.16)、又は他のネットワーク・サービス・プロバイダを指す。本明細書で使用される「MNO」という用語は、さらに、MVNO、MNVA、及びMVNEを含むものとする。
【0100】
本明細書で使用される「ネットワーク」及び「ベアラ・ネットワーク」という用語は、概して、限定はしないが、ハイブリッド・ファイバー同軸(HFC)ネットワーク、衛星ネットワーク、電話会社ネットワーク、及び(MAN、WAN、LAN、WLAN、インターネット、及びイントラネットを含む)データ・ネットワークを含む、任意のタイプの電気通信又はデータ・ネットワークを指す。そのようなネットワーク又はそれの部分は、任意の1つ又は複数の異なるトポロジー(たとえば、リング、バス、スター、ループなど)、送信媒体(たとえば、ワイヤード/RFケーブル、RFワイヤレス、ミリメートル波、光など)及び/或いは通信技術又はネットワーキング・プロトコル(たとえば、SONET、DOCSIS、IEEE Std.802.3、ATM、X.25、フレーム・リレー、3GPP、3GPP2、LTE/LTE-A/LTE-U/LTE-LAA、5GNR、WAP、SIP、UDP、FTP、RTP/RTCP、H.323など)を利用し得る。
【0101】
本明細書で使用される「5G」及び「新無線(NR)」という用語は、限定はしないが、3GPPリリース15、及び、認可であるのか無認可であるのかにかかわらず、新無線技術を対象とする、それの任意の修正、後続のリリース、或いは、補正又は補足に準拠する装置、方法又はシステムを指す。
【0102】
本明細書で使用される「QAM」という用語は、たとえば、ケーブル又は他のネットワーク上で信号を送るために使用される、変調方式を指す。そのような変調方式は、ネットワークの詳細に応じて任意のコンスタレーション・レベル(たとえば、QPSK、16QAM、64QAM、256QAMなど)を使用し得る。QAMはまた、それらの方式に従って変調される物理チャネルを指し得る。
【0103】
本明細書で使用される「サーバ」という用語は、形式にかかわらず、コンピュータ・ネットワーク上で1つ又は複数の他のデバイス又はエンティティにデータ、ファイル、アプリケーション、コンテンツ、又は他のサービスを提供するように適応された、任意のコンピュータ化構成要素、システム又はエンティティを指す。
【0104】
本明細書で使用される「ストレージ」という用語は、限定はしないが、コンピュータ・ハード・ドライブ、DVRデバイス、メモリ、RAIDデバイス又はアレイ、光媒体(たとえば、CD-ROM、レーザーディスク(登録商標)、Blu-Rayなど)、或いはコンテンツ又は他の情報を記憶することが可能な任意の他のデバイス又は媒体を指す。
【0105】
本明細書で使用される「Wi-Fi」という用語は、限定はしないが、適用可能なとき、IEEE Std.802.11、或いは802.11a/b/g/n/s/v/ac/ax、802.11-2012/2013又は802.11-2016を含む関係規格の変形態、並びに(とりわけ、その全体が参照により本明細書に組み込まれる「Wi-Fi Peer-to-Peer(P2P) Specification」)を含む)Wi-Fi Directのいずれかを指す。
【0106】
概観
例示的な一態様では、本開示は、とりわけ、既存の管理されたネットワーク(たとえば、ケーブル・ネットワーク)インフラストラクチャを活用する、拡張超高データ・レート・サービスを提供するための改善されたアーキテクチャ、方法及び装置を提供する。開示されるアーキテクチャは、コンテンツが消費され、固定ブロードバンドとモバイル・ブロードバンドとを、又は上記とIoTとを区別する必要をなくす、環境(たとえば、屋内/屋外/モビリティ)にかかわらず高度に均一なユーザ・エクスペリエンスを可能にする。
【0107】
一実施例では、ハイブリッド・ファイバー同軸(HFC)プラント・インフラストラクチャ、並びに現存する3GPP LTE及び5G NRプロトコルは、共通サービス・プロバイダを介した規格準拠超低レイテンシ及び高データ・レート・サービス(たとえば、5G NRサービス)の提供のためのベースとして使用される。一変形態では、拡大された周波数帯域(総帯域幅が約1.6GHz)がHFCインフラストラクチャの同軸部分上で使用され、これは、2つ又はそれ以上のサブバンドに割り振られる。広帯域増幅器装置は、ネットワーク内の現存するHFCネットワーク・ノード(たとえば、ハブ又は分散点)への、及び最終的に構内デバイスへのサブバンドの配信をサポートするために使用される。HFCインフラストラクチャ上でUL送信及びDL送信に帯域幅を割り振ることにおける最大効率及びフレキシビリティを可能にするために、OFDM及びTDDベース・アクセス及び変調方式が使用される。
【0108】
5G対応構内デバイス(たとえば、CPE)は、現存する3GPPプロトコルを使用して、所与の構内における、及びそのあたりのユーザにサービスを提供するために上記のアーキテクチャ内で使用される。別の変形態では、ローカル・エリア(たとえば、「柱取り付け」)無線アクセス・ノードは、5G対応CPEと協働して、モビリティ・シナリオ中を含む、補足RFカバレージ、並びに屋内使用事例の場合の(すなわち、CPEが、構内へのHFC同軸ケーブル・ドロップのみが提供することができるものを超える追加の帯域幅を必要とするときの)CPEへの補足容量を提供するために使用され、それにより、10Gbps以上程度のデータ・レートを可能にする。
【0109】
有利には、例示的な実施例では、上記の拡張高データ・レート、高モビリティ、低レイテンシ・サービスは、(i)ユーザ・デバイス(たとえば、モバイルUE)の任意のモジュール又はカスタマイズされたアプリケーション・ソフトウェア又はプロトコルの必要、並びに(ii)新しいファイバーを敷設すること、及び/又は2つの(たとえば、MSO及びMNO)ネットワーク・インフラストラクチャを並行して維持することに関係するCAPEX/OPEXを消費する必要なしに提供される。
【0110】
その上、開示されるインフラストラクチャ内のレイテンシは、とりわけ、カプセル化と、たとえば、DOCSISベアラ及び機器(すなわち、MSOコア内のDOCSISモデム及びCMTS装置の使用を通して通常必要とされる他のネットワーク/トランスポート・プロトコルとを不要にすることによって低減される。
【0111】
また、エッジ・ヘビー・ソリューション(たとえば、フォグ・モデル)が、MSOインフラストラクチャのエッジにおける5Gプロトコル並びに高帯域幅及び拡張接続性の使用によってサポートされる。
【0112】
また、HFCを通して3GPPプロトコルを使用することは、3GPPがすでに3GPP 4G LTEの26億人以上のグローバル加入者のために開発した豊富な特徴セット、ベンダー・ダイバーシティ、及び動作信頼性に由来するブロードバンド・サービス利益を可能にする。
【0113】
改善されたアーキテクチャはまた、有利には、様々なターゲット・アプリケーション及び使用事例についての弁別されたサービス(及び、QoS/QoE)を提供することを含む、いわゆる「ネットワーク・スライシング」を容易にする。
【0114】
例示的な実施例の詳細な説明
次に、本開示の装置及び方法の例示的な実施例が、詳細に説明される。これらの例示的な実施例は、サービス・プロバイダ(たとえば、MSO)の管理されたネットワークに関連する、又はそのネットワークによって少なくとも部分的にサポートされる、前述のワイヤレス・アクセス・ノード(たとえば、gNB)のコンテキストにおいて説明されるが、他のタイプの無線アクセス技術(「RAT」)、デジタル・データ(たとえば、テキスト、画像、ゲーム、ソフトウェア・アプリケーション、ビデオ及び/又はオーディオ)を配信するように構成された他のタイプのネットワーク及びアーキテクチャが、本開示に従って使用され得る。そのような他のネットワーク又はアーキテクチャは、ブロードバンド、ナローバンド、又はそれ以外であり得、したがって、以下は、本質的に例にすぎない。
【0115】
概して、顧客又は消費者又はエンド・ユーザ又は加入者に(すなわち、規定されたサービス・エリア、ベニュー、又は他のタイプの構内で)サービスを提供するネットワークのコンテキストにおいて説明されるが、本開示は、たとえば、商業/小売、又は企業ドメイン(たとえば、ビジネス)、又は政府の使用をも含む、他のタイプの環境に容易に適応され得ることも諒解されよう。また他のアプリケーションが可能である。
【0116】
本開示の他の特徴及び利点が、以下で与えられる例示的な実施例の添付の図面及び詳細な説明を参照すると当業者によって直ちに認識されよう。
【0117】
サービス・プロバイダ・ネットワーク・アーキテクチャ
次に図5を参照すると、拡張サービス・プロバイダ・ネットワーク・アーキテクチャ500の一実施例が詳細に図示及び説明される。
【0118】
図示のように、アーキテクチャ500は、5G NRコア(5GC)503を含む、(たとえば、ネットワークのエッジ部分に近いのか、よりコアのほうにあるのかにかかわらず)MSOネットワーク内に1つ又は複数のハブ505を含む。ハブ505はWLANコントローラ・プロセス515を含み、1つ又は複数の「拡張」ノード501をサービスし、1つ又は複数の「拡張」ノード501は、各々、以下でより詳細に説明されるgNB CUe504とネットワーク無線ノード509とを含む。ノード501は、(拡張CPE又はCPEeを含む)様々なサービスされる構内513にRF波形を配信するために、N方向タップ512を含むHFCインフラストラクチャを利用する。
【0119】
また、図示のように追加の構内をサービスする4G/5G対応ネットワーク無線ノード509を含む1つ又は複数の非CUe対応ノード511が、ノード501によってサービスされる。
【0120】
図示の実施例では、ノード501、511は光ファイバーによってバックホール化されるが、これは、たとえば、高帯域幅ワイヤレスを含む他のタイプのバックホールが本開示に従って使用され得るので、例示にすぎない。
【0121】
同様に、1つ又は複数の柱取り付け無線ノード506aは、光ファイバー(又は他の媒体)を介して、MSOネットワークにバックホール化され、これらのノード506aは、とりわけ、以下でより詳細に説明されるように、屋内と屋外の両方(及びモビリティ)のシナリオのための補足容量/カバレージを提供する。
【0122】
また、Wi-Fiルータ・デバイス517は、ハブ505においてコントローラ515とともにWLANカバレージを提供するために、サービスされる構内中に存在する。集中型Wi-Fiコントローラ515はまた、Wi-Fiルータが消費者構内機器(たとえば、拡張CPE又はCPEe)と統合されるか、又はそれに接続されるかのいずれかである、3GPPアクセス技術とWi-Fiアクセス技術との間の緊密なインターワーキング及びより良いモビリティのために例示的なアーキテクチャ500において利用される。次いで、任意のユーザのための3GPPチャネルとWi-Fiチャネルとの間のモビリティは、モバイル・デバイスにおいて測定されるWi-Fi受信信号強度インジケータ(RSSI:received signal strength indicator)だけでなく、(i)ユーザに向けたWi-FiチャネルのRF品質の推定、及び/又は(ii)Wi-Fiルータの輻輳の程度に基づいてなど、最良のデータ・スループットのためにトリガされ得、Wi-Fi RSSIは、ユーザによって取得され得るサービス品質を表さないことがある。
【0123】
例示的な構成では、コントローラ(たとえば、Wi-Fiコントローラ515)は、(カバレージ/カバレージ・エリアのみとは対照的に)性能に基づいてそれにとって利用可能な最良(最適)ワイヤレス接続を選定するように構成される。一般に、今日、アクセスの好ましい方法は、それの受信信号強度に基づいて、及び/又は好ましい手段としてあらかじめ決定される(たとえば、Wi-Fiは、モバイル・ワイヤレス・ネットワークをオフロードするためのアクセスの好ましい方法として定義され得る)。しかしながら、この方法は、エンド・ユーザ・エクスペリエンスを考慮することのない、技術への盲目的な「固執(stickiness)」という欠点がある。本明細書で説明されるアーキテクチャの例示的な実施例では、Wi-Fiアクセス技術と認可/無認可3GPPアクセス技術の両方が、両方ともネットワーク事業者(たとえばMSO)によって制御されるとすれば、単にユーザのトラフィックをオフロードするためになど、アクセス方法を選好する必要がない。ユーザを所与のアクセス技術にオフロード又はステアリングするという判断は、たとえば、ユーザの知覚したレイテンシ、スループット、パケット・ロス、ジッタ、及びネットワークによって所与のレイヤ(たとえば、L1、L2又はL3)においてリアルタイムで測定されるビット/パケット/フレーム・エラー・レートなど、キー・パフォーマンス・インジケータ(KPI:Key Performance Indicator)の選択されたセットなど、他の基準に基づくことができる。たとえば、一実装形態では、ターゲットKPIしきい値がトリガされると、ユーザの切替えが、(3GPPの場合)AMF機能又はWi-Fiコントローラのいずれかによってトリガされ得る。この切替えは、次いで、代替のアクセス媒体におけるセッション確立を、ユーザをその技術に転送するためにトリガし得る。これは、コントローラが、常に、カバレージ又は信号強度のみに基づいて判断を行うにすぎないことに対して、総体的に接続を最適化することを試みていることになるので、接続されるユーザのためのQoEを最適化するのを助ける。
【0124】
このアーキテクチャはまた、構内Wi-Fiとセルラーとの間の問題になる遷移を不要にし、それにより、たとえば、セルラー・ネットワークにおける新しいセッション確立による、QoEの低減、又は中断なしに、ユーザがモバイルである間のコンテンツ消費を可能にする。これは、CUe504がWi-Fiと3GPPの両方のチャネル・ステータス、性能及び利用可能性を認識しているままであり得るように、とりわけ、Wi-Fiコントローラ515とCUe504との間の通信によって達成され得る。有利には、例示的な実施例では、上記の拡張モビリティは、すべての通信セッションが(CPEeとUEとの間であるのか、補足無線アクセス・ノードとUEとの間であるのかにかかわらず)(i)共通システムによって制御され、(ii)現存する3GPP(たとえば、4G/4.5G/5G)プロトコル及びアーキテクチャ要素を利用する、の両方であるので、ユーザ・デバイス(たとえば、モバイルUE)のモジュール又はカスタマイズされたアプリケーション・ソフトウェア又はプロトコルの必要なしに提供される。一変形態では、GPRSトンネリング・プロトコル(GTP:GPRS Tunneling Protocol)は、異種RAN技術(たとえば、3GPPとIEEE Std.802.11との)間のセッション継続性の維持のために利用される。別の変形態では、PMIP(プロキシ・モバイルIP(Proxy Mobile IP))ベース手法は、セッション維持/ハンドオーバのために利用される。またさらなる変形態では、その全体が参照により本明細書に組み込まれる、3GPP TS23.234 v13.1.0、「3GPP system to Wireless Local Area Network (WLAN) interworking;System description (Release 13)」に記載されている技法(別名「I-WLAN」)ベース手法が、これらの目的のために利用される。本開示が与えられれば当業者によって諒解されるように、上記の機構の組合せも(セッション維持/ハンドオフに関わる2つの異種技術を含む)特定のアプリケーションに応じて利用され得る。
【0125】
図5のMSOネットワーク・アーキテクチャ500は、本開示の様々な態様に従って、パケット化コンテンツ(たとえば、パケット又はフレーム構造又はプロトコル内で搬送される符号化されたデジタル・コンテンツ)の配信にとって特に有用である。オンデマンド及びブロードキャスト・コンテンツ(たとえば、ライブ・ビデオ・プログラミング)に加えて、図5のシステムは、インターネット・プロトコル(IP)及びTCPを介して(すなわち、5G無線ベアラ上で)インターネット・データ及びOTT(オーバーザトップ(over-the-top))サービスを(DUe506のエンド・ユーザを含む)エンド・ユーザに配信し得るが、他のプロトコル、及びデジタル通信技術においてよく知られているタイプのトランスポート機構が代用され得る。
【0126】
図5のアーキテクチャ500は、ワイヤライン・インターフェースとワイヤレス・インターフェースの両方の上でIPTVを用いた一貫した、シームレスなユーザ・エクスペリエンスをさらに提供する。さらに、IPパラダイムでは、ユニキャスト配信とマルチキャスト/ブロードキャストとの間の動的切替えが、たとえば、ローカル需要に基づいて使用される。たとえば、シングル・ユーザ(デバイス)がコンテンツを要求している場合、IPユニキャストが利用され得る。複数のデバイスについて(すなわち、たとえば、異なる構内など、複数の異なるIPアドレスの場合)、マルチキャストが利用され得る。この手法は、配信の効率的で敏感な切替えを提供し、他のより機器/CAPEX集約的な手法を不要にする。
【0127】
その上、アーキテクチャは、ブロードバンド・データ配信並びに「コンテンツ」(たとえば、ムービー・チャネル)の両方のために同時に使用され得、「帯域内」及びDOCSIS(及びOOB)トランスポートのための従来の別個のインフラストラクチャの大部分を不要にする。詳細には、DOCSIS(さらにFDX DOCSIS)の場合、帯域幅は、しばしばビデオQAMのために割り振られ、「スプリット」が、ダウンストリーム及びアップストリーム・データ・トラフィックのためにハード・コーディングされる。このハード・スプリットは、一般に、すべてのネットワーク要素、さらに増幅器にわたって実装される。対照的に、本明細書で開示されるアーキテクチャの例示的な構成の下で、アーキテクチャを横断する事実上すべてのトラフィックがIPベースであり、したがって、多くの場合、異なるプログラム又はデータ・ストリームのためにQAM及び周波数スプリットを割り振る必要がない。この「オールIP」手法は、すべてのアプリケーションについて、たとえば、所与の期間又は時点における各そのようなアプリケーションの需要に基づく、送信媒体上の利用可能帯域幅のフレキシブルな使用を動的に可能にする。
【0128】
いくつかの実施例では、サービス・プロバイダ・ネットワーク500はまた、本明細書で説明される例示的な配信モデルの下でのユーザへのサービスの提供の一部として、(とりわけ、そのような加入者又はアカウントに関連付けられた、特定のCUe又はDUe又はE-UTRAN eNB/フェムトセル・デバイスの相関を含む)加入者固有データ又はアカウント固有データのアグリゲーション及び/又は分析を有利に可能にする。単に一実例として、デバイス固有ID(たとえば、gNB ID、グローバルgNB識別子、NCGI、MACアドレスなど)が、特に、(i)MSOネットワークに対するユーザ/デバイス認証と、(ii)ロケーション固有又はターゲットコンテンツ又は広告の配信、或いは5G「スライシング」構成又は配信の場合など、特定の加入者能力、購買層、又は機器ロケーションに対する、サービスが提供されるエリア、構内又はベニューの態様の相関と、(iii)サブスクリプション・レベルの決定、したがって加入者特権、及び適用可能なときのいくつかのサービスへのアクセスとを可能にするか又は少なくとも容易にするように、たとえば、(1つ又は複数の)ネットワーク・ヘッド・エンド507において維持されるMSO加入者データに相互相関され得る。
【0129】
その上、特定のデバイス(たとえば、3GPP 5G NR及びWLAN対応UE、又はCPEe513及び任意の関連するアンテナ516など)についてのデバイス・プロファイルが、MSO(又はそれの自動プロキシ・プロセス)がワイヤレス又は他の能力についてそのデバイスをモデル化することができるように、MSOによって維持され得る。たとえば、1つの(補足されない)CPEe513は、X Gbpsの帯域幅能力を有するものとしてモデル化され得るが、別の構内の補足されたCPEeは、X+Y Gbpsの帯域幅能力を有するものとしてモデル化され得、したがって、後者は、前者にとって利用可能でないサービス又は「スライス」の対象となることがある。
【0130】
手短に言えば、5G技術は、以下を含むいくつかのネットワーク機能(NF:network function)を定義する。
1.アクセス及びモビリティ管理機能(AMF:Access and Mobility Management function)。NASシグナリングの終了と、NAS完全性保護及びサイファ化と、登録及び接続及びモビリティ管理と、アクセス認証及び許可と、セキュリティ・コンテキスト管理とを提供する。AMFは、従来の発展型パケット・コア(EPC)のMME機能性の部分に類似する機能を有する。
2.アプリケーション機能(AF:Application Function)。トラフィック・ルーティングに対するアプリケーション影響、NEFにアクセスすること、ポリシー制御のためのポリシー・フレームワークとの対話を管理する。NR AFは、EPCにおけるAFに相当する。
3.認証サーバ機能(AUSF:Authentication Server Function)。認証サーバ機能性を提供する。AUSFは、EPCからのHSSの部分と同様である。
4.ネットワーク露出機能(NEF:Network Exposure function)。能力及びイベントの露出、外部アプリケーションから3GPPネットワークへの情報のセキュアな提供、内部/外部情報の変換を管理する。NEFは、EPCと比較してまったく新しいエンティティである。
5.ネットワーク・スライス選択機能(NSSF:Network Slice Selection Function)。UEをサービスするためのネットワーク・スライス・インスタンスの選択、可能にされるNSSAIを決定すること、UEをサービスするために使用されるべきAMFセットを決定することを提供する。NSSFは、EPCと比較してまったく新しいエンティティである。
6.NFリポジトリ機能(NRF:NF Repository function)。サービス発見機能をサポートし、NFプロファイルと利用可能なNFインスタンスとを維持する。NRFは、EPCと比較してまったく新しいエンティティである。
7.ポリシー制御機能(PCF:Policy Control Function)。統一されたポリシー・フレームワークを提供し、CP機能に対するポリシー・ルールと、UDRにおけるポリシー判断のためのアクセス・サブスクリプション情報とを提供する。PCFは、EPCからのPCRF機能性の部分を有する。
8.セッション管理機能(SMF:Session Management function)。セッション管理(セッション確立、修正、解放)、UEのためのIPアドレス割振り及び管理、DHCP機能、セッション管理に関係するNASシグナリングの終了、DLデータ通知、適切なトラフィック・ルーティングのためのUPFについてのトラフィック・ステアリング構成を提供する。SMFは、EPCからのMME及びPGW機能性の部分を含む。
9.統一データ管理(UDM:Unified Data Management)。認証及び鍵一致(AKA:Authentication and Key Agreement)証明の生成、ユーザ識別ハンドリング、アクセス許可、サブスクリプション管理をサポートする。これは、EPCからのHSS機能性の部分を備える。
10.ユーザ・プレーン機能(UPF:User plane function)。UPFは、パケット・ルーティング及びフォワーディング、パケット検査、QoSハンドリングを提供し、また、データ・ネットワーク(DN:Data Network)への相互接続の外部PDUセッション・ポイントとして働く。UPFはまた、RAT内モビリティとRAT間モビリティとのためのアンカー・ポイントとして働き得る。UPFは、EPCからの従来のSGW及びPGW機能性の一部を含む。
【0131】
5G NRアーキテクチャ内では、制御プレーン(CP:control plane)機能性及びユーザ・プレーン(UP:user plane)機能性は、コア・ネットワーク又はNGC(次世代コア)内で分割される。たとえば、上記の5G UPFはUPデータ処理をサポートするが、他のノードはCP機能をサポートする。この分割された手法は、有利には、とりわけ、CP機能とUP機能との独立したスケーリングを可能にする。さらに、ネットワーク・スライスは、たとえば、たとえばWLANと3GPP NRとの間のセッション・ハンドオーバ及びCPEeへの補足リンクに関して本明細書で説明されるサービスなど、異なるサービスをサポートするために調整され得る。
【0132】
上記で説明されたNFに加えて、NG-RANアーキテクチャでは、UEの識別子、及び他のネットワーク・エンティティについての識別子を含む、いくつかの異なる識別子が使用され、本明細書で説明される様々なエンティティに割り当てられ得る。詳細には、
- AMF識別子(AMF ID:AMF Identifier)は、AMF(アクセス及びモビリティ管理機能)を識別するために使用され、
- NRセル・グローバル識別子(NCGI:NR Cell Global Identifier)は、NRセルをグローバルに識別するために使用され、セルが属するPLMN識別情報とセルのNRセル識別情報(NCI:NR Cell Identity)とから構築され、
- gNB識別子(gNB ID:gNB Identifier)は、PLMN内のgNBを識別するために使用され、それのセルのNCI内に含まれ、
- gNBをグローバルに識別するために使用され、gNBが属するPLMN識別情報とgNB IDとから構築される、グローバルgNB ID、
- トラッキング・エリアを識別するために使用され、トラッキング・エリアが属するPLMN識別情報とトラッキング・エリアのTAC(トラッキング・エリア・コード(Tracking Area Code))とから構築される、トラッキング・エリア識別情報(TAI:Tracking Area identity)、
- ネットワーク・スライスを識別するために使用される、シングル・ネットワーク・スライス選択支援情報(S-NSSAI:Single Network Slice Selection Assistance information)。
したがって、どんなデータがMSO又はそれの顧客にとって有用であるかに応じて、上記の様々な部分は、特定のgNB「クライアント」、又は、MSOネットワークによってバックホール化されるそれらの構成要素に関連付けられ、記憶され得る。
【0133】
分散型gNBアーキテクチャ
図5のコンテキストでは、本明細書で説明されるDUeは、拡張CPE(CPEe)513及び無線ノード506a(たとえば、柱取り付け外部デバイス)に対して任意の数の形式及び機能を仮定し得る。概して、「DU」及び「CU」が3GPP規格化特徴及び機能を指すことを認識すると、これらの特徴及び機能は、図5のアーキテクチャ500においてサポートされる限り、無数のやり方及び/又はロケーションで実装され得る。その上、(本明細書でCUe及びDUeと呼ばれる)これらの構成要素の拡張及び/又は延長、並びに本開示によって提供されるそれらの機能は、同様に、アーキテクチャ500全体にわたる様々なノード及びロケーションにおいて分散され得、図示されたロケーション及び配置は例示的なものにすぎない。
【0134】
したがって、次に図5a~図5cを参照すると、本開示による分散型(CUe/DUe)gNBアーキテクチャの様々な実施例が説明される。図5aに示されているように、第1のアーキテクチャ520が、拡張CU(CUe)524と複数の拡張DU(DUe)526とを有するgNB522を含む。本明細書で後でより詳細に説明されるように、これらの拡張エンティティは、自律的にであるのか、(gNBが通信するNGコア523又はその構成要素などの)別の論理エンティティの制御下であるのかにかかわらず、プロセス間シグナリング及び高データ・レート、低レイテンシ・サービス、並びに統一されたモビリティ及びIoTサービスを可能にすることを可能にされる。
【0135】
図5a中の個々のDUe526は、介在する物理通信インターフェース528と論理インターフェース410とを介してデータ及びメッセージングをCUe524と通信する。前に説明されたように、そのようなインターフェースは、ユーザ・プレーンと制御プレーンとを含み、F1APなどの規定されたプロトコルにおいて実施され得る。各DUe及びCUeの動作は、本明細書で後でより詳細に説明されるが、本実施例では、1つのCUe524が1つ又は複数のDUe526に関連付けられるが、所与のDUeが単一のCUeに関連付けられるにすぎないことに留意されたい。同様に、単一のCUe524は、MSOによって動作させられるものなど、単一のNGコア523と通信可能である。各NGコア523は、それに関連付けられた(たとえば、図5に示されているタイプ504の)複数のgNB522を有し得る。
【0136】
図5bのアーキテクチャ540では、2つ又はそれ以上のgNB522a~nは、たとえば、Xnインターフェース527を介して互いと通信可能であり、したがって、少なくともCUe間データ転送及び通信を行うことができる。別個のNGコア523a~nが、ネットワークの制御プレーン及びユーザ・プレーン(並びに他の)機能のために使用される。
【0137】
図5cのアーキテクチャ560では、2つ又はそれ以上のgNB522a~nは、たとえば、Xnインターフェース527を介して互いと通信可能であり、したがって、少なくともCUe間データ転送及び通信を行うことができる。その上、別個のNGコア523a~nは、1つのコアが、別のコアのインフラストラクチャを利用/制御することができ、その逆も同様であるように、1つ又は複数の他のNGコアのgNB522に論理的に「交差接続」される。これは、「デイジー・チェーン」様式におけるものであり得る(すなわち、1つのgNBは、それ自体以外の1つの他のNGコアと通信可能であり、そのNGコアは、さらに、それ自体以外の1つの追加のgNB522と通信可能であり、以下同様である)か、又はgNB522及びNGコア523は、複数のコア523が複数のgNB又は複数の異なるエンティティ(たとえば、サービス・プロバイダ)と通信している「メッシュ」トポロジーを形成し得る。本開示が与えられれば、また他のトポロジーが、当業者によって認識されるであろう。この交差接続手法は、とりわけ、2つのMSO間の、又はMNOとMSOとの間のインフラストラクチャの共有を有利に可能にし、これは、たとえば、異なるサービス・プロバイダの場合など、RANインフラストラクチャの複数のセットをサポートすることが可能でないことがある高密度展開環境において特に有用である。
【0138】
図5図5cに示されているように、ユニタリーgNB-CUeエンティティ又はデバイス504、524に関して主に説明されたが、本開示は、決してそのようなアーキテクチャに限定されないことも諒解されよう。たとえば、本明細書で説明される技法が、分散又はディスアグリゲート又は分散CUeエンティティの一部として実装され得(たとえば、CUeのユーザ・プレーン機能及び制御プレーン機能がCUe-C(制御)及びCUe-U(ユーザ)などの2つ又はそれ以上のエンティティにわたってディスアグリゲート又は分散されたもの)、及び/又は他の機能的分割が採用される。
【0139】
eNB又はフェムトセル(すなわち、E-UTRAN LTE/LTE-AノードB又は基地局)及びgNBの異種アーキテクチャが、図5図5cのアーキテクチャに従って利用され得ることにも留意されたい。たとえば、(以下の図7図7aに関してより詳細に説明される、サポートするノードの動作に加えて)所与のDUeは、(i)DUe(すなわち、5G NR PHYノード)としてのみ働き、E-UTRANマクロセルの外部で動作するか、又は(ii)eNB又はフェムトセルと物理的にコロケートされ、eNBマクロセル・カバレージ・エリアの一部分内のNRカバレージを提供するか、又は(iii)eNB又はフェムトセルと物理的にコロケートされないが、依然としてマクロセル・カバレージ・エリア内のNRカバレージを提供し得る。
【0140】
5G NRモデルによれば、(1つ又は複数の)DUe526は、機能的スプリット・オプションに応じて、gNB機能の変動するサブセットを各々含み得る論理ノードを備える。DUe動作は、CUe524によって(及び最終的にNGコア523によっていくつかの機能のために)制御される。本開示におけるDUeとCUeとの間のスプリット・オプションは、たとえば、
- オプション1(RRC/PCDPスプリット)
- オプション2(PDCP/RLCスプリット)
- オプション3(イントラRLCスプリット)
- オプション4(RLC-MACスプリット)
- オプション5(イントラMACスプリット)
- オプション6(MAC-PHYスプリット)
- オプション7(イントラPHYスプリット)
- オプション8(PHY-RFスプリット)
を含み得る。
【0141】
オプション1(RRC/PDCPスプリット)の下で、RRC(無線リソース制御(radio resource control))はCUe524中にあるが、PDCP(パケット・データ・コンバージェンス・プロトコル(packet data convergence protocol))、RLC(無線リンク制御(radio link control))、MAC、物理レイヤ(PHY:physical layer)及びRFは、DUe中に保持され、それにより、分散型ユニット中のユーザ・プレーン全体を維持する。
【0142】
オプション2(PDCP/RLCスプリット)の下で、(i)RRC、PDCPがCUe中に維持されるが、RLC、MAC、物理レイヤ及びRFが(1つ又は複数の)DU526中にあり、(ii)RRC、PDCPが(スプリットされたユーザ・プレーン・スタック及び制御プレーン・スタックをもつ)CUe中にあり、RLC、MAC、物理レイヤ及びRFがDUe526中にあるという2つの可能な変形態がある。
【0143】
オプション3(イントラRLCスプリット)の下で、2つのスプリット、(i)ARQに基づくスプリット、及び(ii)TX RLCとRX RLCとに基づくスプリットが可能である。
【0144】
オプション4(RLC-MACスプリット)の下で、RRC、PDCP、及びRLCはCUe524中に維持されるが、MAC、物理レイヤ、及びRFはDUe中に維持される。
【0145】
オプション5(イントラMACスプリット)の下で、RF、物理レイヤ、及びMACレイヤの下側部分(低いMAC)は、DUe526中にあるが、MACレイヤの上側部分(高いMAC)、RLC及びPDCPはCUe524中にある。
【0146】
オプション6(MAC-PHYスプリット)の下で、MAC及び上位レイヤはCUe中にあるが、PHYレイヤ及びRFは、DUe526中にある。CUeとDUeとの間のインターフェースは、データ、構成、及びスケジューリング関係情報(たとえば、変調及びコーディング方式、すなわちMCS、レイヤ・マッピング、ビームフォーミング及びアンテナ構成、無線及びリソース・ブロック割振りなど)、並びに測定値を搬送する。
【0147】
オプション7(イントラPHYスプリット)の下で、UL(アップリンク)及びDLダウンリンク)についての異なるサブオプションが、独立して行われ得る。たとえば、ULでは、FFT(高速フーリエ変換(Fast Fourier Transform))及びCP除去がDUe526中に存在し得るが、残りの機能はCUe524中に存在する。DLでは、iFFT及びCP追加がDUe526中に存在し得るが、PHYの残りはCUe524中に存在する。
【0148】
最後に、オプション8(PHY-RFスプリット)の下で、RFとPHYレイヤとは、とりわけ、すべてのプロトコル・レイヤ・レベルにおけるプロセスの集中を可能にするために分離され、RANの高度の協調を生じ得る。これは、CoMP、MIMO、負荷分散、及びモビリティなど、機能の最適化されたサポートを可能にする。
【0149】
概して、上記のスプリット・オプションは、スケーラブルでコスト効果的なソリューション、並びに、たとえば、性能特徴、負荷管理、及びリアルタイム性能最適化のための協調を可能にするフレキシブル・ハードウェア実装形態を可能にすることが意図される。その上、構成可能な機能的スプリットは、様々な使用事例及び動作シナリオへの動的適応を可能にする。そのようなオプションをどのように/いつ実装すべきかを決定することにおいて考慮されるファクタは、(i)与えられたサービスのためのQoS要件(たとえば、5G RAN要件をサポートするための低レイテンシ、高スループット)、(ii)(RAN協調に影響を及ぼし得る)所与の地理的エリアごとのユーザ密度及び負荷需要についての要件のサポート、(iii)異なる性能レベルをもつトランスポート及びバックホール・ネットワークの利用可能性、(iv)アプリケーション・タイプ(たとえば、リアルタイム又は非リアル・タイム)、(v)無線ネットワーク・レベルにおける特徴要件(たとえば、キャリア・アグリゲーション)を含むことができる。
【0150】
上記の様々なスプリット・オプションにおいて参照される「DU」機能性は、それ自体、ノード509(図7及び図7aを参照)及び/又はCPEe513のRF段など、DUe及びそれのダウンストリーム構成要素にわたってスプリットされ得ることにも留意されたい。したがって、本開示は、一般にDUe内に見つけられる機能性の一部がノード/CPEeに分散され得る実施例を企図する。
【0151】
また、ユーザ・プレーン・データ/トラフィックがルーティングされ、CUeから離れて配信され得ることをさらに認識されよう。(上記で説明された)一実装形態では、CUeは、RRC(制御プレーン)とPDCP(ユーザ・プレーン)の両方をホストするが、単に一代替実施例として、CUe-CPエンティティ(すなわち、CUe-制御プレーン)がRRC関係機能のみをホストし、CUe-UP(CUe-ユーザ・プレーン)がPDCP/SDAP(ユーザ・プレーン)機能のみをホストするように構成された、いわゆる「ディスアグリゲート」CUeが利用され得る。CUe-CP及びCUe-UPエンティティは、一変形態では、E1データ・インターフェースを介してデータ及びプロセス間通信をインターフェースすることができるが、通信のための他の手法が使用され得る。
【0152】
CUe-CP及びCUe-UPは、1つのサービス・プロバイダ又はネットワーク事業者が、CUe-UP上の認識/制御を維持し、別のサービス・プロバイダ又はネットワーク事業者がCUe-CP上の認識/制御を維持し、それら2つのサービス・プロバイダの動作が、1つ又は複数の規定された動作或いはサービス・ポリシー又はルールに従って協調させられるなど、異なるエンティティによって制御及び/又は動作させられ得ることも諒解されよう。
【0153】
再び図5を参照すると、DUe509の例示的な実施例は、((1つ又は複数の)ダウンストリーム無線チェーンとともにストランド取り付け又は埋込みDUeであり、後者は、ノードのPHY機能性の少なくとも部分(たとえば、アナログ・フロント・エンド、DAC/ADCなど)を含む1つ又は複数の部分的な又は完全なRRH(リモート・ラジオ・ヘッド(remote radio head))を含み得る。諒解され得るように、各DUe/ノードのロケーション及び構成は、人口密度、(たとえば、地方エリアにおける)利用可能な電力サービス、他の近接して位置するか又はコロケートされた無線機器の存在、地理的特徴などの動作要件に適するように改変され得る。
【0154】
以下で図7図7aに関して説明されるように、図5の実施例におけるノード509は、800MHz公称帯域幅の複数のOFDMベース送信機受信機チェーンを含むが、この構成は例にすぎない。動作中、ノードは、割り振られた帯域(たとえば、最高約1.6GHz)において送信される波形を生成するが、所望される場合、OFDM信号は、事実上、通常のケーブル・システム動作の場合など、800MHz未満の帯域において搬送される信号と並行して動作させられ得ることが諒解されよう。
【0155】
図5に示されているように、一実装形態では、各ノード(及びしたがってDUe)は、F1インターフェースを介してそれのサービングCUeと通信しており、CUeとコロケートされるか又はコロケートされないかのいずれかであり得る。たとえば、複数の構内(たとえば、示されている住宅顧客)が、上述のOFDM波形と現存するHFCプラントとを介してノード/DUeによってサービスされ得るように、ノード/DUeが、N方向タップ点512の前になど、現存するHFCトポロジー内の分散ノードに近接したMSO HFCインフラストラクチャ内に配置され得る。いくつかの実施例では、各ノード/DUe509、526は、1つ又は複数のベニュー又は居住地(たとえば、商業、企業、学術の目的のための建築物、部屋、又は広場、及び/或いはワイヤレス・アクセスに好適な任意の他の空間)をサービスするように、ネットワークのエッジにより近く位置する。たとえば、図5のコンテキストでは、ノードは、(各々、本明細書の他の場所で説明される)CPEe又は外部アクセス・ノードをも備え得る。各無線ノード506aは、それのカバレージ又はそれのRAT(たとえば、4G及び/又は5G NR)のための接続性範囲内のワイヤレス・ネットワーク・カバレージを提供するように構成される。たとえば、ベニューは、駐車場にいるものを含む見込み顧客が、とりわけ、見込み顧客のNR又はLTE対応車両、或いはそれの事業者のパーソナル・デバイスを介して、接続するための、ベニューの入口内に設置されたワイヤレスNRモデム(無線ノード)を有し得る。
【0156】
特に、DUe/ノード509、526の異なるクラスが利用され得る。たとえば、推定上の「クラスA」LTE eNBは最高X dbmで送信し得るが、「クラスB」LTE eNBは最高Y dbm(Y>X)で送信することができ、したがって、平均エリアは広く変動し得る。実際問題として、クラスAデバイスは、数百フィート程度の動作範囲(working range)を有し得るが、クラスBデバイスは、数千フィート以上にわたって動作し得、伝搬及び動作範囲が、RF又は他の干渉物の存在、ベニュー/エリアの物理的トポロジー、受信機のエネルギー検出又は感度などを含む、いくつかのファクタによって決められる。同様に、異なるタイプのNR対応ノード/DUe509、526が、単独であるのか、又はWLANなどの他のワイヤレスPHYとともにであるのかにかかわらず、これらのファクタに応じて使用され得る。
【0157】
信号減衰及び帯域幅
図6a及び図6bは、図5のHFCケーブル・プラント内の距離の関数としての、例示的なダウンストリーム(DS)及びアップストリーム(US)データ・スループット又はレートを示す。図示のように、10Gbps程度の総(DSとUSとを組み合わせた)帯域幅が、(本出願の譲受人によって行われるコンピュータ化シミュレーションに基づいて)2100フィート(640m)におけるノード+2において、及び1475フィート(450m)におけるノード+1において達成可能である。前述の10Gbpsの1つの例示的なスプリットは、非対称、たとえば、8Gbps DL/2Gbps ULであるが、これは、本明細書の他の場所で説明されるように、たとえば、TDD変動を使用して動的に変動させられ得る。
【0158】
特に、図5のアーキテクチャ500によって利用される、上記(たとえば、図1及び図2を参照)で説明された現存するHFCアーキテクチャの部分は、本質的にそれらの媒体及びアーキテクチャ(すなわち、エッジに向かう同軸ケーブルを伴う光ファイバー・トランスポート・リング)によって制限されず、同軸ケーブルは、ケーブル・システムにおいて一般に使用されるサブ1GHzよりも著しく高い周波数において、ただし減衰の著しい増加という代価で、動作することができる。知られているように、一般的な同軸ケーブルにおける減衰(A)の理論計算についての式は、導体による減衰+誘電体媒体による減衰を含む。
【数1】

ここで、
=総ライン抵抗オーム/304.8メートル(1000フィート)
【数2】

p=誘電体の電力ファクタ(power factor)
F=メガヘルツ(MHz)単位の周波数
【0159】
したがって、減衰は周波数の増加とともに増加し、したがって、動作帯域の上側周波数限界に対する実際的抑制がある。しかしながら、これらの抑制は、たとえば、最高2GHzの範囲では法外でなく、ここで、好適なケーブル及び増幅器製造及び設計を用いた場合、そのような同軸ケーブルは、過度の減衰なしにRF信号を適切に搬送することができる。特に、ほぼ800MHz幅の一般的なケーブルRF帯域の倍増(すなわち、1.6GHz幅への倍増)が、より高い周波数において過度の減衰を被ることなしに、極めて可能である。
【0160】
上記で説明された減衰は、とりわけ、同軸導体長さの関数であり、したがって、より高いレベルの「MHzごとの」減衰が、ケーブルのより短いランについて許容可能であり得ることも諒解されよう。言い方を変えれば、ケーブルのより短いランによってサービスされるノードは、より離れたノードと比較して、(たとえば、上述の例示的な1.6GHz帯域の上端にある)RFスペクトルのより上端の部分をより良く利用することが可能であり、後者は、より大きい又は不釣り合いな増幅を必要とし得る。したがって、本開示は、総ケーブル媒体ラン長さ又は同様のものの関数としての周波数スペクトル使用の選択的マッピングの使用を企図する。
【0161】
送信媒体性能の別のファクタは、(電磁又は無線周波数信号、光ファイバーにおける光パルス或いは銅線上の電圧の変化の)波面が送信媒体上で伝搬するスピードと、真空における光のスピード(c、約3E08m/s)との比として定義される、波伝搬スピード又は伝搬の速度(VoP:velocity of propagation)としても知られる速度ファクタ(VF:velocity factor)である。光信号の場合、速度ファクタは屈折率の逆数である。真空における無線周波数信号のスピードは光のスピードであり、したがって、真空における電波の速度ファクタは1、又は100%である。電気ケーブルでは、速度ファクタは、主に、(1つ又は複数の)電流搬送導体を絶縁するために使用される材料に依存する。速度ファクタは、同軸、CAT-5/6ケーブル、及び光ファイバーなどの通信媒体の重要な特性である。データ・ケーブル及びファイバーは、一般に、ほぼ0.40から0.8の間の(真空における光のスピードの40%から80%の)VFを有する。
【0162】
LTE(UL/DL)における達成可能なラウンドトリップ・レイテンシは、2ms程度であるが(「高速」ULアクセスの場合。スケジューリング要求及び個々のスケジューリング許可の必要をなくし、それによる、リリース15に従う、レイテンシの最小化、及びより短いTTI)、5G NRの場合の達成可能なラウンドトリップ・レイテンシは、送信時間間隔周波数(たとえば、60kHz)に応じて1ms以下程度である。
【0163】
特に、4G/4.5Gのトランスポート・レイテンシのかなりの部分が、サポートするインフラストラクチャのネットワーク・コア部分とトランスポート(すなわち、非エッジ)部分とに関する。
【0164】
したがって、公称0.7VF及び1msラウンドトリップ・レイテンシ要件を仮定すると、100km程度の推定上のサービス距離が可能であり、他の処理又はトランスポート・レイテンシがないことを仮定すると、以下のとおりである。
0.5E-03s(対称US/DSを仮定する)×(0.7×3E08m/s)×1km/1000m
=1.05E02km
【0165】
ネットワーク・ノード及びDUe装置
図7及び図7aは、本開示による、ネットワーク無線周波数ノード装置509の例示的な構成を示す。上記で参照されたように、これらのノード509は、とりわけ、現存するHFC(及び光)インフラストラクチャ、並びにCUe504などの他の4G/5G構成要素との最も効率的な統合を容易にするように、(i)MSOの物理的にセキュアな空間などにおいて、他のMSO機器とコロケートされること、(ii)「ストランド」又は柱取り付け、(iii)表面取り付け、及び(iv)埋め込まれることを含む、任意の数のフォーム・ファクタをとることができる。
【0166】
図示のように、図7では、例示的なノード509は、一実施例では、概して、HFCネットワークDWDMシステム(図2を参照)に対する光インターフェース702、並びにHFC分散ネットワーク(すなわち、同軸)に対する「サウスバウンド」RFインターフェース704を含む。光インターフェース702は、介在する光ファイバーを介してDWDM信号を受信するために、SFPコネクタ・ケージ706と通信する。また、選択されたオプション・スプリットに基づいて、前に説明されたように5G DU機能性を提供するための5G NR DUe506が含まれる。MIMO/無線ユニット(RU:radio unit)段708は、図示のようにIF(中間周波数(intermediate frequency))段710による送信された波形のアップコンバージョンより前に、ベースバンドにおいて動作する。以下で説明されるように、例示的な実施例では、複数の並列段が、3GPP技術内のMIMO技術によってもたらされる複数の並列データ・ストリームを利用するために使用される。また、ダイプレクサ段714及びインピーダンス整合段716より前に、チルト段712が利用される。詳細には、一実装形態では、この「チルト」段は、媒体(たとえば、同軸ケーブル)によって搬送される異なる周波数にわたる非線形性を補償するために使用される。たとえば、より高い周波数は、媒体上で進むとき、同じ媒体上で同じ距離を進む、より低い周波数と比較して、単位距離ごとのより高い損失を有し得る。高帯域幅信号(たとえば、50~1650MHz)が同軸ライン上で送信されるとき、周波数帯域幅全体にわたる高帯域幅信号の損失は線形でなく、(たとえば、ローパス・フィルタに似た)減衰曲線における傾斜(又は「チルト」)及び/又は屈曲又は「ニー(knee)」などの形状アーティファクトを含み得る。そのような非線形損失は、ノード・デバイスのRF段上の1つ又は複数のチルト補償装置712の使用によって、媒体上での最適性能を達成するために補償され得る。
【0167】
いくつかの実施例では、図7aに関して以下でより詳細に説明されるように、同期信号生成器718も使用される。
【0168】
図7aの例示的な実装形態では、4G gNB DUe707と5G gNB DUe506の両方も、それぞれ、4G通信及び5G通信のためにRFチェーンをサポートするために含まれる。以下でより詳細に説明されるように、スペクトルの5G部分は2つの帯域(上側及び下側)に分割されるが、4G部分は、異なる周波数範囲内で上側帯域と下側帯域とに分割される。例示的な実装形態では、OFDM変調が、時間ドメインにおいて複数のキャリアを生成するために適用される。たとえば、とりわけ、本明細書で説明されるノード509の様々な実施例で有用な例示的なリプログラマブルOFDMベース・スペクトル生成装置について、各々が、その全体が参照により本明細書に組み込まれる、同一出願人が所有する、同時係属の、2015年11月10日に発行された、「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,185,341号、及び2016年3月29日に発行された、同じく「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,300,445号を参照されたい。
【0169】
例示的な実施例では、ノード509によって生じた5G及びLTE OFDMキャリアは、利用可能なHFCベアラ帯域幅の1650MHzを利用し、この帯域幅は、たとえば、動作条件、サービスされる「N+0」加入者対サービスされる「N+i」加入者の比、及び他のパラメータに応じて、2つ又はそれ以上のサブバンドに区分される。一変形態では、各ノードは、それのアップストリーム・ノードからのRF電力を利用して、電力を導出し、さらに(同じ周波数においてであるのか、異なる周波数においてであるのかにかかわらず)RF信号を、広帯域増幅器を含むダウンストリーム・ノード及びデバイスに伝搬する。
【0170】
本実施例は、主に、TDD(時分割複信(time division duplex))時間多重とともに、OFDMベースPHY(たとえば、時間ドメインにおける複数のキャリアとともにIFFT及びFFTプロセスを使用するもの)のコンテキストにおいて説明されるが、たとえば、限定はしないが、FDD(周波数分割複信(frequency division duplexing))、直接シーケンス、又は他のスペクトル拡散、及びFDMA(たとえば、SC-FDMA又はNB FDMA)を含む、他のPHY/多元接続方式が、本開示の様々な態様に従って利用され得ることが諒解されよう。
【0171】
手短に言えば、消費者構内機器(CPEe)513中の単一受信機チップセットと、MSOがそれらの加入者の構内にもたらす同軸ケーブル、又はより低コストの単入力単出力(SISO:single input single output)分散型アンテナ・システム(DAS:distributed antenna system)のために設置された単一同軸ケーブルなど、単一同軸フィーダ上での3GPP 5G NR波形とを使用して、高いスループットを達成するために、チップセットによってアグリゲートされ得る総キャリア帯域幅は、ある値、たとえば、800MHzに限定され、これは、3GPP 5G NR規格によってサポートされるスペクトル効率を前提として1つのデータ・ストリームのみを使用して、10Gbit/sなどの高いスループットに達するためには不十分である。
【0172】
3GPP 5G NR規格は、複数のアンテナ要素が使用されるとき、無線チャネルがもたらす空間ダイバーシティを活用するために、同じRF帯域幅のための多入力多出力(MIMO:multiple input multiple output)チャネルの一部として複数の独立した並列データ・ストリームの送信をサポートするので、まさに第1世代の3GPP 5Gチップセットは、そのような並列MIMOデータ・ストリームをサポートすることになる。しかしながら、単一ケーブル上でこれらの並列ストリームを送信する試みは、概して、すべてのストリームが、同じRF帯域幅を占有し、それらの間の空間ダイバーシティの不足のために互いに干渉するであろうことから、逆効果であろう。
【0173】
したがって、本明細書で開示される様々な実施例(図7及び図7a)は、3GPP 5G NRによってサポートされる並列MIMOデータ・ストリームを活用し、並列MIMOデータ・ストリームは、単一同軸フィーダに注入される前に、トランシーバ・ノードにおいて周波数がシフトされ、したがって、3GPP 5G NRチップセットが並列データ・ストリームでサポートすることになる最大総キャリア帯域幅を達成するために、(所望される場合、CPEe及び/又は補足柱取り付け無線アクセス・ノードにおいて利用され得る、空間ダイバーシティの代わりに)周波数ダイバーシティが活用される。
【0174】
また、より高い周波数が、より低い周波数よりも同軸送信媒体上ではるかに減衰するので、一変形態では、中間周波数(IF)が媒体上で送信され、その後、RFキャリア周波数へのブロック・コンバージョンが、消費者構内機器(CPEe)513において、そのCPEeにおける3GPP 5G NRチップセットとの3GPP帯域準拠相互運用性のために採用される。このようにして、トポロジーにおける早期のコンバージョンによって通常ならば受けるであろう減衰は、有利に回避される。
【0175】
トランシーバ・ノードによって同軸フィーダ704に注入されるIFキャリアは、方向性結合器及び電力分割器又はタップを使用して共通バスとしてフィーダを共有する複数のCPEe513によって受信され得る。ノード509からCPEe513へのポイント・ツー・マルチポイント(PtMP:Point-to-Multipoint)ダウンストリーム送信が、たとえば、周波数が分離された異なる3GPP 5G NR物理リソース・ブロック(PRB:physical resource block)上での異なるCPEeについてのペイロードをスケジュールすることによって、達成され得る。
【0176】
例示的な実施例では、同軸ケーブル・ベアラにおける大部分の帯域幅は、ダウンストリーム(DS)5G NR通信とアップストリーム(US)5G NR通信との間で切り替えるために、時分割複信(TDD)様式で使用される。複数のCPEe513からトランシーバ・ノードへのアップストリーム通信が、さらに/代替的に別個のPRB上で同時に行われ得る(周波数分離)。
【0177】
一変形態(図7aを参照)では、(より低い周波数はケーブル上での減衰がより少ないので)より低いスペクトルの小さい部分が、20MHz帯域幅の最高2つの並列ストリームを伴う3GPP 4G LTE MIMOキャリアに割り振られ、合計40MHzとなる。これは、3GPPリリース15が、5G NRがそれにより4G LTEキャリアと連携して動作しなければならない非スタンドアロン(NSA:Non-Standalone)モードでの5G NRをサポートするにすぎないので実施される。並列5Gストリームの場合とまさに同様に、2つの並列LTE MIMOストリームは、互いに干渉しないように周波数がオフセットされるべきであり、例示的な実施例では、TDDモードで動作するように構成される。
【0178】
これとは別に、5G NRは適応TDDデューティ・サイクルをサポートし、それにより、ダウンストリーム送信とアップストリーム送信とのために割り振られる時間の比率は、送信するネットワーク要素、すなわち、ノード、及び同軸バスをそのノードと共有するすべてのCPEe513の総セットからのトラフィックについての純需要に適応され得る。4G LTEは、そのような適応デューティ・サイクルをサポートしない。5Gデューティ・サイクルと4Gデューティ・サイクルとが異なる、起こり得るシナリオにおいて受信機ブロッキングを防ぐために、すべてのアクティブ・ネットワーク要素、すなわち、トランシーバ・ノード、インライン増幅器、及び4Gキャリアと5GキャリアとのためのCPEe513において、互いに干渉しない又は受信機ブロッキングを引き起こさないように、高除去フィルタ・コンバイナ(high-rejection filter combiner)714が使用される。図7aの例示的なダイプレクサでは、4Gと5Gの両方は、異なるデューティ・サイクルを可能にするために高除去フィルタによって対処される。
【0179】
一変形態では、同軸ケーブル上のより低いスペクトルの別の小さい部分が、2つのデジタル同期チャネル、すなわち5Gのためのデジタル同期チャネルと4Gのためのデジタル同期チャネルとの送信のためにダウンストリームにおいて一方向通信を採用し、2つのデジタル同期チャネルは、トランシーバ・ノード509の信号生成器718から、複数のインライン増幅器及び同軸バスを共有していることがあるCPEe513への上述の「小さい部分」内の1つのQPSKアナログ同期チャネル上にI-Q多重化される。これらの同期チャネルは、PRBのコヒーレント受信を助け、一変形態では、ネットワーク要素に、トランシーバ・ノード509によって設定されたTDDデューティ・サイクルに従ってダウンストリーム通信モードとアップストリーム通信モードとの間で切り替えるように指令する。例示的な構成では、5Gストリームと4Gストリームとが、異なるアップストリーム-ダウンストリーム比又はデューティ・サイクルを有し得るので、2つのデジタル同期チャネルが必要とされる。より低い周波数はケーブル上での減衰がより少ないので、同期チャネルは、一実装形態では、それが、あらゆるダウンストリーム・ネットワーク要素及びCPEeに達するようにケーブル上でスペクトルの下側部分上で送信される。一変形態では、アナログ信号が2ビットで変調され、ここで、一方のビットは4G信号のためのデューティ・サイクルに従って切り替わり、他方のビットは5G信号のデューティ・サイクルに従って切り替わるが、他の手法が利用され得る。
【0180】
トランシーバ・ノード509とノースバウンド・ネットワーク要素との間の接続性は、MSO DWDMプラントへの光ファイバー・リンク702を用いて達成される。トランシーバ・ノード509にフィードする(feed)ために必要とされるファイバー・チャネルの数を最小限に抑えるために、及びそれをファイバー・ストランドのペアに制限するために、一実施例では、(上記で説明された)3GPP 5G NR F1インターフェースは、F1インターフェースの低いオーバーヘッドを活用するためにファイバー・ペア上で実現される。3GPP 5G NR分散ユニット(DUe)機能性は、前に説明されたようにトランシーバ・ノード509に組み込まれ、これは、F1インターフェースが、中央ユニット(CU/CUe)とDU/DUeとの間に画定され、ここで、図示の実施例では、CUeとDUeとが、一緒に3GPP 5G NR基地局又はgNB(図5a~図5cを参照)を構成するからである。
【0181】
また、バックホールを4Gデータ経路と5Gデータ経路とに分割するために、図7aの実施例ではイーサネット・スイッチ705が光インターフェースにおいて設けられる(たとえば、受信されたアップストリーム4G信号とアップストリーム5G信号とは、それぞれ、スイッチ705に基づいて別様にルーティングされる)。
【0182】
例示的なノード509は、本開示の日付現在、DOCSISネットワーク要素によって使用されるHFC上の擬似矩形波低電圧電力供給技術(quasi-square wave low voltage power supply technology)の内部使用に適応するための電力コンバータ719をも含む。ノード509は、一変形態では、HFC出力ポート704を通して入力ポート701上で受信された擬似矩形波低電圧電力を、たとえば、HFCインフラストラクチャ上のノードのダウンストリームに設置され得る増幅器など、他のアクティブ・ネットワーク要素に受け渡すようにさらに構成される。
【0183】
いくつかの現存するソリューションと比較して、図5及び図7図7aの図示の実施例が、CPEe513にフィードするためにHFC対ツイスト・ペアを使用し、HFCは、ツイスト・ペアよりも低い損失及び広い帯域幅を有利に提供し、ツイスト・ペアは、5Gスループットをより遠い距離まで提供し、設置された同軸ケーブルの大きい既存のベースを活用するために利用されることに留意されたい。その上、上記のアーキテクチャは、一実装形態では、トランシーバ・ノードにおいて単一のインターフェースに接続する共通同軸バスにアタッチする(attach)ために方向性結合器及び電力分割器又はタップを使用して、複数のCPEe513をサービスするように構成される。(外部Wi-Fiアクセス・ポイント及び統合Wi-Fiルータをサービスするのに必要な)上述のイーサネット・サービスは、他の実装形態では、既存のソリューションとは対照的に、拡大された能力を提供するためにさらに追加される。
【0184】
CPEe装置
図8は、本開示によるCPEe装置513の例示的な構成を示す。図示のように、CPEe513は、概して、HFC分散ネットワーク(すなわち、構内における同軸ドロップ)へのRF入力インターフェース816。概して、前に説明されたノード509の送信機/受信機と対称の送信機/受信機アーキテクチャが使用され、すなわち、インピーダンス整合回路要素、ダイプレクサ、同期回路、チルトなどが、CPEe RFフロント・エンドの一部として使用される。ブロック・コンバータ810は、以下でより詳細に説明される、構内ドメインに対する同軸ケーブル・ドメイン帯域(ここで、50~850及び850~1650MHz)に及びそれからコンバートするために使用される。
【0185】
例示的なCPEe513は、CPEe内のUEの3GPP機能性を実装するための5G UEプロセス808と、3GPP(たとえば、5G/LTE)リピータ・モジュール809とをも含み、3GPPリピータ・モジュール809は、(1つ又は複数の)ユーザRF帯域内の屋内/構内カバレージのための1つ又は複数のアンテナ要素810を含む。したがって、示されているCPEe513は、事実上、(1つ又は複数の)ユーザ帯域内で動作する構内のユーザ・デバイスのための基地局として機能することができる。
【0186】
また、Wi-Fi APなどの構内WLANインフラストラクチャとのデータ交換をサポートするために、UEモジュール808と、内部10GbEスイッチ819)をもつ(随意の)WLANルータ517との間でインターフェースする10GbE WLANポート818が含まれる。
【0187】
また、外部アンテナ516接続(たとえば、図5に関して前に説明されたように補足データ・リンクの提供のために使用される(1つ又は複数の)屋上アンテナ要素)、ワイヤレス高帯域幅バックホール、又は他の機能のためのいくつかの外部ポート812、814が、図8の構成に示されている。
【0188】
図8aの例示的な実装形態では、4G gNBブロック・コンバータ832と5G gNBブロック・コンバータ830の両方が、それぞれ、4G通信及び5G通信のためのRFチェーンをサポートするために(すなわち、2GHz帯域においてなど、CPEe内の4G/5Gインターフェース及びモデムの関連するRF周波数への、受信されたIF帯域信号のコンバージョンのために含まれる。ブロック・コンバータはまた、前に説明されたように同軸入力816を介して関連するIF帯域を介した分散ノード509とのアップストリーム通信を可能にする。
【0189】
特に、CPEe513は、4Gキャリア及び5Gキャリアが異なる周波数帯域上にあり得るので、4Gキャリア及び5Gキャリアのために別々にIFキャリア周波数とRFキャリア周波数との間のブロック・コンバージョンを適用する。CPEeは、一実装形態では、5G NR及び4G LTE対応ユーザ機器(UE)チップセット816を含む。2つの技術は、3GPP 5G NRの第1のリリースが、4Gと5Gとが非スタンドアロン(NSA)構成の一部として連携して動作することを必要とするので、この実施例ではサポートされる。
【0190】
(5Gと組み合わせられた4Gにおけるより低い周波数を示す)図8aの例示的な構成では、(図8のより一般化された手法とは対照的に)フィルタ・コンバイナが使用されることに留意されたい。
【0191】
また、図8aの特定の実装形態がRF-IFブロック・コンバータ830のうちの1つのみに関して前に説明されたように「チルト」補償を利用することに留意されたい。これは、不相応により高い周波数(すなわち、本実施例では最高1650MHz)において、言及される周波数帯域において動作させられる同軸ケーブルなどのいくつかの場合に)、そのような補償の必要が起こることに起因する。しかしながら、特定のアプリケーションに応じて、異なる補償構成が本開示に従って使用され得ることが諒解されよう。たとえば、一変形態では、上側帯域ブロック・コンバータ830は、より粒度の細かい周波数帯域に対して割り振られ、したがって、チルト/補償は、利用される周波数帯域の狭い領域において(たとえば、4つの%G RF-IFブロック・コンバータのうちの1つ又は2つ上で)のみ適用され得る。同様に、異なるタイプのチルト/補償が、異種様式で各ブロック・コンバータ(又はそれのサブセット)に適用され得る。また、本開示が与えられれば、上記の様々な異なる組合せが、当業者によって諒解されよう。
【0192】
RF周波数へのブロック・コンバージョンは、信号を3GPP帯域準拠にし、CPEe513におけるUEチップセットと相互運用可能にする。次いで、RFキャリアはまた、4G及び5Gのための含まれるリピータ809を通した増幅に適用でき、リピータ809は、CPEeに接続された着脱可能な外部アンテナ810を通して、RFキャリアを一般に屋内に放射することができる。スマートフォンなどのモバイル・デバイス、セルラー・モデムをもつタブレット、及びIoTデバイスは、次いで、4G及び5Gサービスのために放射信号からサービスすることができる(以下の図9a及び図9bの説明を参照)。
【0193】
UEチップセット816及びリピータ809は、それぞれのTDDキャリアのダウンストリーム・モードとアップストリーム・モードとの間で切り替えるために、別個のデジタルI/Q同期信号、すなわち、4GのためのデジタルI/Q同期信号及び5GのためのデジタルI/Q同期信号を受信し、これは、それらが、異なるダウンストリーム-アップストリーム比又はデューティ・サイクルを有する可能性があるからである。これらの2つのデジタル同期信号は、ポート816を介してCPEe513にフィードする同軸ケーブル上で、より下位のスペクトルから受信されたI-Q変調されたアナログQPSK信号から受信される。
【0194】
述べられたように、例示的な実装形態では、OFDM変調が、分散ノード509において時間ドメインにおける複数のキャリアを生成するために適用され、したがって、IF信号を復調するためにCPEeにおいて、(とりわけ、FFTを介した)復調が使用される。たとえば、とりわけ、本明細書で説明されるCPEe513の様々な実施例で有用な例示的なリプログラマブルOFDMベース受信機/復調装置について、各々が、その全体が参照により本明細書に組み込まれる、同一出願人が所有する、同時係属の、2015年11月10日に発行された、「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,185,341号、及び2016年3月29日に発行された、同じく「Digital domain content processing and distribution apparatus and methods」と題する米国特許第9,300,445号を参照されたい。
【0195】
図8の実施例と同様に、サービスされる構内のLAN使用のためのものを含む、図8aのデバイスにおけるWLANルータ517の動作をサポートするために、10Gbeイーサネット・ポートも提供される。
【0196】
さらに、1次同軸ケーブル・リンクを通して利用可能な容量を越えてブロードバンド容量をブーストし、(中小企業、企業、教育機関などにとって重要であり得る)より高い信頼性のための冗長接続を追加するために、図8aのCPEe上の2つの追加のRFインターフェースが、CPEeを、屋外に、たとえば、中小企業、集合住宅ユニット(MDU:multi-dwelling unit)又は高層の企業の屋根上に設置される2ポート外部アンテナ516(図9aを参照)に接続するために含まれる。この外部アンテナは、消費者構内の近傍に設置される屋外無線機から補足信号を受信するために使用され得る。屋外無線機は、屋外モビリティのためにカバレージを提供するという主目的を有し得るが、それらからの信号は、さらに/代替的に、本明細書の他の場所で説明されるように、1次同軸リンクからの容量を補足し、冗長性を追加するために、固定ワイヤレス様式で使用され得ることが諒解されよう。
【0197】
補足リンク及びモビリティ拡張
アーキテクチャ500のさらなる実施例では、補足又は相補データ・リンク902が、図9aに示されているように、追加のデータ容量(及び機器又は他の障害の場合の1次リンクへの冗長性)を提供するために利用される。この構成では、21Gbps程度のデータ・レートが、本出願の譲受人によるコンピュータ・モデリング、たとえば、17Gbps DS及び4Gbps USに基づいて達成され得る。補足リンクは、一変形態では、柱取り付け又は他の外部無線アクセス・ノード506aと、(一実施例では、追加されたアンテナ能力516をもつCPEe513を含む、構内トランシーバとの間の5G NRワイヤレス・インターフェースを含む。本コンテキストで使用される「柱取り付け」及び「外部」という用語は、限定はしないが、たとえば、CPEeの補足アンテナ516(たとえば、屋上又は屋外アンテナ)との接続又はデータ接続性を確立することができる、任意の取り付け配置又はロケーションを指す。そのような取り付けは、屋外であるか、又は大きい構造(たとえば、スポーツ・スタジアム、大きい建築物集合体内であり得、いくつかの実装形態では、一時的又は半永続的であり得るにすぎない。
【0198】
図9bは、本開示による、モバイル・ユーザ・デバイスの「シームレス」モビリティをサポートする補足リンク902の使用を含む、ネットワーク・アーキテクチャ920の例示的な実施例を示す。
【0199】
有利には、図9bに示されているように、アーキテクチャ500の例示的な実施例における、HFC及びワイヤレス上での共通波形及びプロトコルの使用は、本明細書の他の場所で説明されるように、基地局が中央ユニット(CUe)と分散ユニット(DUe)とにスプリットされるという条件で、集中型認証、許可、及びアカウンティング(AAA:authentication, authorization, and accounting)機能、パケット・ゲートウェイ及びモビリティ・コントローラ(MME)、並びにサービス・エリア内の屋内及び屋外エリアのための共通基地局など、共通ネットワーク要素の使用を可能にする。そのようなスプリット基地局アーキテクチャが、同様に3GPP 4G/4.5G LTE/Aに移植され得ることが予想される。
【0200】
図9bに示されているように、ネットワーク要素の共通化は、一部には、高いシグナリング容量とデータ・スループット容量とをもつマクロ・ネットワークグレード・ネットワーク要素が、サービスされる構内の屋内空間と屋外空間とを制御することから、その両方の空間の間のシームレス・モビリティ・エクスペリエンスを有利に可能にする。フォン及びIoTモデムなどのデバイスによるこれらの空間の間のモビリティは、多くの場合、図9b中で破線によって、及び概して図5に示されるように、モビリティが、共通中央ユニット(CUe504)に接続された分散ユニット(DUe506)間に制約されるので、「ノースバウンド」ネットワーク要素に向かう最小量のシグナリングをトリガする。
【0201】
その上、前に説明されたように、3GPPとWi-Fiとの間のデータ・スループット性能トリガ型モビリティが、屋内空間と屋外空間の両方をサービスする3GPPモビリティ・コントローラに接続された集中型Wi-Fiコントローラを使用して、Wi-Fiコントローラ515と協働するWi-Fiアクセス・ポイントを用いて提供される。
【0202】
別の実施例では、車両内使用シナリオを含む、ユーザ/加入者への屋外モビリティを提供するために、1つ又は複数の外部(外の)モビリティ・ノード・デバイスが利用される。図10に示されているように、「組み合わせられた」セル・カバレージは、システムの統一された共通アーキテクチャに起因して大きく、WLAN AP下にあるのか、(一実施例では、図5に示されている柱取り付けデバイス506a、及び/又はセルラー基地局サイトにおいてコロケートされたものなどの他のデバイスを含み得る)4G/5G外部アクセス・ノード下にあるのかにかかわらず、車両が、MSOによってサービスされる組み合わせられたセル・カバレージ・エリア中にとどまる間、MSOからMNOへの(又はその逆の)ハンドオーバが必要とされない。詳細には、共通事業者(たとえば、MSO)及びインフラストラクチャによって、複数のモビリティ・アクセス・ノードが組み合わせられて、(たとえば、セル・エッジにおける)より高いスループットとより大きいカバレージの両方のために単一のセルを形成し、それにより、さらに、ハンドオーバを低減し得る。
【0203】
一変形態では、モビリティ・アクセス・ノードは、概して同等の能力を有する、CPEe513の強化されたバージョンである。たとえば、一実装形態では、外部アクセス・ノードは、そのアクセス・ノードが、必要に応じて追加の容量のために柱取り付けデバイス506aと通信することができるように、MSOネットワークに対するバックホール(ファイバー又はHFC)、並びに補足リンク・アンテナの両方を含む。
【0204】
別の実装形態では、モビリティ・アクセス・ノードは、それらのバックホール(のみ)として柱取り付けデバイスを使用する。
【0205】
また、WLANノードは、QoSの提供を伴うことを含む、モビリティ・アクセス・ノードを通してバックホール化され得る。
【0206】
示されている共通MSOコア及びRANアーキテクチャは、MSOが、柱取り付又は他の構成DUeを使用して選択的にカバレージを補足することを可能にすることも諒解されよう。たとえば、新しい家又は近隣が構築された場合、MSOは、カバレージの所望のレベルを提供するために決定されたロケーションにおいて、1つ又は複数のそのようなDUeデバイスを単に追加することができ、これは、MNOベース・セルラー・カバレージとは対照的であり、新しい基地局の設置は、(i)MSOによって直接制御されないか、又は他のMSOサービスと統合され得ず、(ii)はるかにより労働及び資本集約的である。
【0207】
本開示が与えられれば、また他の組合せ及び修正が、当業者によって諒解されよう。
【0208】
DAS(分散型アンテナ・システム)アーキテクチャ
本開示の別の態様では、たとえば、オフィス・ビル、企業、大学など、広い屋内空間に、高データ・レート、低レイテンシ及び高モビリティの統一されたカバレージを提供するためのアーキテクチャが開示される。図11に示されているように、このアーキテクチャの一実装形態は、HFCインフラストラクチャを介して企業などの内部に1つ又は複数のCPEe513を供給するために、上記のハブ505及び(図5に示されているアクセス・ノード509及びCUe504を含む)CUeノード501を利用する。CPEeは、その場合、たとえば、図示のような構造内のカバレージを提供する屋内(又は屋内/屋外)DAS1102に接続される。CPEe513はまた、4G/5G能力をもつローカル柱取り付けアクセス・ノードなどを介して、構造/企業に提供される帯域幅、並びに屋内/屋外モビリティを補足するために、前に説明された補足アンテナ能力を利用し得る。
【0209】
方法
次に、図12図12cを参照すると、たとえば、本明細書の図5のネットワーク・インフラストラクチャを動作させる方法が、図示及び説明される。
【0210】
図12は、高帯域幅データ通信のための既存のネットワーク(たとえば、HFC)を利用する一般化された方法1200の一実施例を示す論理流れ図である。図示のように、方法は、最初に、ステップ1202によれば、受信側デバイス又はノード(たとえば、要求側CPEe513又はそれと通信しているUE)に送信されるべきコンテンツ(たとえば、デジタル的にレンダリングされた媒体又は他のデータなど)を識別するステップを含む。
【0211】
次に、ステップ1204によれば、送信ノード509が、識別されたコンテンツ・データ「を含んでいる」波形を生成する。以下で説明されるように、一実施例では、これは、OFDM波形の生成と、コンテンツ・データを搬送するための時間周波数リソース(たとえば、PRB)のスケジューリングとを含む。
【0212】
ステップ1206によれば、波形は、ネットワーク・インフラストラクチャ(たとえば、同軸ケーブル及び/又はDWDM光媒体)を介して1つ又は複数の受信側ノードに送信される。そのような送信が、たとえば1つ又は複数のN方向タップ(図5)、光ノード、リピータなど)を含む、1つ又は複数の中間ノードを介した中継又は送信を含み得ることが諒解されよう。
【0213】
ステップ1208によれば、送信された波形は、受信側ノード(たとえば、一事例ではCPEe513)において受信される。
【0214】
波形は、次いで、ステップ1212によれば、周波数が(たとえば、指定されたユーザ周波数帯域にアップコンバートされ、ステップ1214によれば、たとえば、消費又は要求側UEによる使用のために、ローカル(たとえば、構内RAN又は分散媒体)を介して送信される。
【0215】
図12aは、図12の一般化された方法による、コンテンツ処理及び送信方法1220の特定の一実装形態を示す論理流れ図である。詳細には、図示のように、方法1220は、最初に、ステップ1222によれば、コンテンツ・データの直並列コンバージョンを実施するステップを含む。次に、並列化されたデータは、それのリソースにマッピングされ(ステップ1224)、周波数ドメイン信号を時間ドメインにコンバートするために、IFFT又は他のそのような変換動作が実施される(ステップ1226)。次いで、変換された(時間ドメイン)データは、たとえば、同軸ケーブル・プラントなどのRFインターフェース上での送信のために、再び直列化され(ステップ1228)、アナログ・ドメインにコンバートされる(ステップ1230)。例示的な実施例では、プラント上の上側帯域(たとえば、850~1650MHz)が使用されるが、他の周波数帯域(及び、実際は、スペクトルの様々な部分中の複数の異なる周波数帯域)がこの目的で使用され得ることが諒解されよう。
【0216】
図12bは、図12の一般化された方法による、CPEeによるコンテンツ受信及びデジタル処理方法1240の特定の一実装形態を示す論理流れ図である。この方法1240では、CPEe513は、送信された波形(方法1220のステップ1232を参照)を受信し、ステップ1242によれば、ターゲット周波数(たとえば、ユーザ帯域)へのアナログ・ドメイン・アップコンバージョンを実施する。
【0217】
ステップ1244によれば、アップコンバートされた信号は、CPEeの同期回路を介して、復元されたI/Q信号を介して同期され、アップコンバートされた信号は、たとえば、CPEe513のチップセット816(図8aを参照)による使用のために、デジタル・ドメインにコンバートされる。チップセット内で、デジタル・ドメイン信号は処理され、とりわけ、直並列コンバージョン、周波数ドメインへのデータのFFT変換(ステップ1250)、物理リソースのデマッピング(ステップ1252)、並直列コンバージョン(ステップ1254)、及び、最終的に、たとえば、10GbEスイッチ、Wi-Fiルータなどへの、デジタル(ベースバンド)データの分散(ステップ1256)を含む。
【0218】
図12cは、図12の一般化された方法による、CPEeによる構内のコンテンツ受信及び送信の特定の一実装形態を示す論理流れ図である。詳細には、図12cに示されているように、方法1260は、上記で説明された方法1240の場合のようなデジタル・ドメインへのコンバージョンではなく、方法1240の場合のようなユーザ帯域へのアップコンバージョン(ステップ1262)を含み、アップコンバートされたアナログ・ドメイン信号は同期され(ステップ1264)、リピータ・モジュールの(1つ又は複数の)アンテナを介したアップコンバートされた波形の送信のために、1つ又は複数のリピータ・ポートに提供される(図8aを参照)。
【0219】
例示的な実装形態では、限定はしないが、(i)3GPPベースCA(キャリア・アグリゲーション)、又は(ii)追加のMIMO(空間ダイバーシティ)レイヤの使用を含む、任意の数の方式に従って、補足リンク追加が行われ得る。
【0220】
本開示のいくつかの態様が、方法のステップの特定のシーケンスに関して説明されたが、これらの説明は、本開示のより広い方法を示すにすぎず、特定のアプリケーションによって必要とされるように修正され得ることを認識されよう。いくつかのステップは、いくつかの状況では、不要又は随意にされ得る。さらに、いくつかのステップ又は機能性が、開示される実施例に追加され得るか、又は2つ又はそれ以上のステップの実施の順序が置換され得る。すべてのそのような変形形態は、本明細書で開示され、請求される、本開示内に包含されると見なされる。
【0221】
上記の詳細な説明は、様々な実施例に適用される本開示の新規の特徴を示し、説明し、指摘したが、示されたデバイス又はプロセスの形態及び詳細における様々な省略、代用、及び変更が、本開示から逸脱することなく当業者によって行われ得ることが理解されよう。この説明は、決して、限定するものではなく、むしろ、本開示の一般的な原理を示すものとしてとられるべきである。本開示の範囲は、特許請求の範囲を参照して決定されるべきである。
【0222】
本明細書で説明される様々な方法及び装置のいくつかのステップ及び態様は、人間によって実施され得るが、開示される態様及び個々の方法及び装置は、概して、コンピュータ化/コンピュータ実装されることがさらに諒解されよう。コンピュータ化された装置及び方法は、限定はしないが、商業的実行可能性、実用性、さらには実現可能性を含む、任意の数の理由で、これらの態様を十分に実装するために必要である(すなわち、いくつかのステップ/プロセスは、単に、人間によって、実行可能な様式で実施され得ない)。
図1
図2
図3
図4a
図4b
図5
図5a
図5b
図5c
図6a
図6b
図7
図7a
図8
図8a
図9a
図9b
図10
図11
図12
図12a
図12b
図12c