(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-20
(45)【発行日】2023-07-28
(54)【発明の名称】ガスマニホールド
(51)【国際特許分類】
F23D 14/08 20060101AFI20230721BHJP
F23K 5/00 20060101ALI20230721BHJP
【FI】
F23D14/08 H
F23K5/00 301B
(21)【出願番号】P 2020047011
(22)【出願日】2020-03-17
【審査請求日】2022-10-20
(73)【特許権者】
【識別番号】000115854
【氏名又は名称】リンナイ株式会社
(74)【代理人】
【識別番号】100111970
【氏名又は名称】三林 大介
(72)【発明者】
【氏名】志知 和幸
(72)【発明者】
【氏名】片岡 邦夫
【審査官】河野 俊二
(56)【参考文献】
【文献】特開2004-271061(JP,A)
【文献】実開昭51-115651(JP,U)
【文献】実開平04-033837(JP,U)
【文献】特開2016-205730(JP,A)
【文献】特開2003-065507(JP,A)
【文献】特開2019-002594(JP,A)
【文献】特開平08-086416(JP,A)
【文献】米国特許出願公開第2011/0111354(US,A1)
【文献】米国特許第03644099(US,A)
【文献】特開平10-238719(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F23D 14/08
F23K 5/00
(57)【特許請求の範囲】
【請求項1】
燃料ガスを燃焼させる複数のバーナが複数のバーナ群にまとめられ、前記バーナ群単位で前記燃料ガスを燃焼させることで、前記燃料ガスを燃焼させる前記バーナの数を段階的に切り換えることが可能な燃焼装置に搭載されて、前記複数のバーナに前記燃料ガスを分配するガスマニホールドであって、
外部から供給された前記燃料ガスが流入する流入口と、
前記流入口から流入した前記燃料ガスが通過するメイン通路と、
前記複数のバーナ群の各々に対して設けられて、前記バーナ群内の前記バーナに供給される前記燃料ガスが前記メイン通路から流入する複数の分配室と、
前記複数のバーナの各々に対して設けられて、前記分配室に流入した前記燃料ガスを前記バーナに供給する複数のノズルと、
前記メイン通路から分岐することによって、前記メイン通路と前記複数の分配室とを接続する複数の分配通路と、
前記複数の分配通路に設けられて、前記分配通路を開閉する複数の開閉弁と
を備えるガスマニホールドにおいて、
前記流入口よりも下流側の位置で前記メイン通路から分岐して、少なくとも1つの前記分配通路が前記メイン通路から分岐する位置をバイパスした後、前記メイン通路に合流するバイパス通路が設けられている
ことを特徴とするガスマニホールド。
【請求項2】
請求項1に記載のガスマニホールドにおいて、
前記複数の分配室の中の1つは、対応する前記バーナ群に含まれる前記バーナの数が他の前記分配室よりも大きい最大分配室となっており、
前記バイパス通路は、前記最大分配室に接続された前記分配通路である最大分配通路が前記メイン通路から分岐する位置よりも上流側で、前記メイン通路に合流する
ことを特徴とするガスマニホールド。
【請求項3】
請求項2に記載のガスマニホールドにおいて、
前記複数の分配室の中の1つは、対応する前記バーナ群に含まれる前記バーナの数が他の前記分配室よりも小さい最小分配室となっており、
前記最小分配室に接続された前記分配通路である最小分配通路は、前記最大分配通路よりも上流側で前記メイン通路から分岐しており、
前記バイパス通路は、前記最小分配通路が前記メイン通路から分岐する位置よりも下流側で前記メイン通路に合流する
ことを特徴とするガスマニホールド。
【請求項4】
請求項2または請求項3に記載のガスマニホールドにおいて、
前記最大分配通路が前記メイン通路から分岐する位置は、他の複数の前記分配通路が前記メイン通路から分岐する位置に対して最端部の位置となっており、
前記バイパス通路は、前記最大分配通路が前記メイン通路から分岐する位置と、前記最大分配通路に隣接する前記分配通路が前記メイン通路から分岐する位置との間の位置で、前記メイン通路に合流する
ことを特徴とするガスマニホールド。
【請求項5】
請求項1ないし請求項4の何れか一項に記載のガスマニホールドにおいて、
前記メイン通路は、マニホールド本体に形成された通路溝部を、マニホールドカバーで覆うことによって形成されており、
複数の前記分配室は、前記マニホールド本体の前記通路溝部に隣接して形成された複数の凹部を、前記マニホールドカバーで覆うことによって形成されており、
前記マニホールドカバーと前記マニホールド本体との間にはシール部材が挟持されており、
前記シール部材は、前記マニホールド本体の前記通路溝部を覆うと共に、前記通路溝部を覆う部分には、前記通路溝部に沿った方向に位置を異ならせて第1孔および第2孔が形成されており、
前記マニホールドカバーには、前記シール部材の前記第1孔および前記第2孔で前記マニホールド本体の前記通路溝部と連通することによって前記バイパス通路を形成するバイパス溝部が形成されている
ことを特徴とするガスマニホールド。
【請求項6】
請求項5に記載のガスマニホールドにおいて、
前記メイン通路に前記燃料ガスが流入する流入口は、前記マニホールド本体から、前記マニホールドカバーに向かって開口している
ことを特徴とするガスマニホールド。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料ガスを燃焼させる複数のバーナを搭載して、バーナの数を段階的に切り換えて燃料ガスを燃焼させることが可能な燃焼装置に搭載されて、複数のバーナに燃料ガスを分配するガスマニホールドに関する。
【背景技術】
【0002】
給湯システムや暖房システムなどには、燃料ガスを燃焼させる燃焼装置が搭載されている。この燃焼装置には複数のバーナが搭載されており、それらのバーナに対しては、バーナ毎に設けられたノズルから個別に燃料ガスが供給されている。また、燃料ガスを燃焼させるバーナの数を段階的に切り換えることが可能となっており、必要な火力に応じて、燃料ガスを燃焼させるバーナの数を増減させるようになっている。
【0003】
ここで、バーナには個別に設けられたノズルから燃料ガスが供給されるので、燃料ガスを燃焼させるバーナの数を段階的に切り換えるためには、燃料ガスを供給するノズルの数を段階的に切り換える必要がある。このため、複数のバーナを搭載した燃焼装置では、各バーナに燃料ガスを分配するガスマニホールドに、次のような構造が採用されている。先ず、ガスマニホールドの内部には、外部から供給された燃料ガスが通過するメイン通路が形成されており、メイン通路からは複数の分配通路が分岐すると共に、それぞれの分配通路には電磁開閉弁を介して分配室が接続されている。また、複数のバーナに燃料ガスを供給するノズルは、複数の分配室の何れかから燃料ガスの供給を受けるようになっている。
【0004】
このような構造のガスマニホールドでは、メイン通路に燃料ガスを供給すると、分配通路の電磁開閉弁が開状態となっている分配室には燃料ガスが流入して、ノズルからバーナに向かって燃料ガスが供給される。これに対して、分配通路の電磁開閉弁が閉状態の分配室には燃料ガスが流入しないので、その分配室から燃料ガスの供給を受けるノズルには燃料ガスが供給されることが無く、従って、バーナに燃料ガスが供給されることもない。このため、分配通路に設けられた電磁開閉弁の開閉状態を切り換えることによって、燃料ガスを燃焼させるバーナの数を段階的に切り換えることが可能となる。
【0005】
また、各分配室が(ノズルを介して)燃料ガスを供給するバーナの数は、分配室毎に異なる数に設定されている。この理由は、バーナに燃料ガスを供給する分配室を切り換えることによって、あるいは、バーナに燃料ガスを供給する分配室の組み合わせを変更することによって、燃料ガスを燃焼させるバーナの数を複数段階に変更することが可能となり、その結果、火力を複数段階に変更することが可能となるためである。一例として、バーナの総数が9個で、分配室の数が3つの場合について説明する。9つのバーナを3つの分配室に均等に割り振った場合には、各分配室には何れも3つのバーナが割り振られることになる。このため、燃料ガスを燃焼させるバーナの数は、燃料ガスを供給する分配室の数に応じて、3つ、6つ、9つの3段階にしか切り換えることができない。これに対して、9つのバーナを、2つ、3つ、4つのバーナに分けて、それぞれを分配室に割り振った場合には、分配室の選び方、あるいは分配室の組み合わせを変更することによって、燃料ガスを燃焼させるバーナの数を7段階に切り換えることが可能となる。
【0006】
このように、各分配室から燃料ガスを供給するバーナの数を異ならせると、分配室に供給するべき燃料ガスの流量も、分配室毎に異なった流量となる。上述した例では、燃料ガスを供給するバーナが4つの分配室には、バーナが2つの分配室に比べて、2倍の流量の燃料ガスを供給する必要が生じる。そこで、各分配室に供給すべき燃料ガスの流量に応じて、分配通路に設けられた電磁開閉弁の大きさを異ならせたり、分配通路内に異なる大きさのオリフィスを設けたりすることによって、各分配室に適切な流量の燃料ガスが供給されるようにした技術が提案されている(特許文献1、特許文献2)。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平8-086416号公報
【文献】特開2019-002594号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、近年の燃焼装置では、よりきめ細かい火力調整を可能とするために、バーナの数を切換可能な段数が増加する傾向にあり、これに伴って、各分配室に適切な流量の燃料ガスを供給することが困難になっているという問題があった。この理由は、次のようなものである。先ず、バーナの数の切換可能な段数が増加すると、ガスマニホールド内に形成される分配室の数も増加する。また、前述したように分配室から燃料ガスを供給するバーナの数は、分配室毎に異なる数に設定されるから、分配室の数が増加すると、バーナの数が最小の分配室と最大の分配室との差が大きくなり、供給すべき燃料ガスの流量の差も大きくなる。そして、この流量の差があまりに大きくなると、それぞれの分配室に適切な流量の燃料ガスを供給することが困難となるためである。
【0009】
この発明は、従来の技術が有する上述した課題を解決するためになされたものであり、内部に形成された分配室の数が多くなっても、それぞれの分配室に適切な流量の燃料ガスが供給することが可能なガスマニホールドを提供することを目的とする。
【課題を解決するための手段】
【0010】
上述した課題を解決するために、本発明のガスマニホールドは次の構成を採用した。すなわち、
燃料ガスを燃焼させる複数のバーナが複数のバーナ群にまとめられ、前記バーナ群単位で前記燃料ガスを燃焼させることで、前記燃料ガスを燃焼させる前記バーナの数を段階的に切り換えることが可能な燃焼装置に搭載されて、前記複数のバーナに前記燃料ガスを分配するガスマニホールドであって、
外部から供給された前記燃料ガスが流入する流入口と、
前記流入口から流入した前記燃料ガスが通過するメイン通路と、
前記複数のバーナ群の各々に対して設けられて、前記バーナ群内の前記バーナに供給される前記燃料ガスが前記メイン通路から流入する複数の分配室と、
前記複数のバーナの各々に対して設けられて、前記分配室に流入した前記燃料ガスを前記バーナに供給する複数のノズルと、
前記メイン通路から分岐することによって、前記メイン通路と前記複数の分配室とを接続する複数の分配通路と、
前記複数の分配通路に設けられて、前記分配通路を開閉する複数の開閉弁と
を備えるガスマニホールドにおいて、
前記流入口よりも下流側の位置で前記メイン通路から分岐して、少なくとも1つの前記分配通路が前記メイン通路から分岐する位置をバイパスした後、前記メイン通路に合流するバイパス通路が設けられている
ことを特徴とする。
【0011】
かかる本発明のガスマニホールドにおいては、バーナに供給される燃料ガスは流入口からメイン通路に流入した後、メイン通路から分岐した分配通路を介して複数の分配室に分配され、その後、それぞれの分配室からノズルを介してバーナに供給される。また、メイン通路にはバイパス通路が設けられており、このバイパス通路は、流入口よりも下流側の位置でメイン通路から分岐して、少なくとも1つの分配通路がメイン通路から分岐する位置をバイパスした後、再びメイン通路に合流するようになっている。
【0012】
こうすれば、メイン通路から分岐する複数の分配通路の中で、バイパス通路が合流する位置よりも下流側でメイン通路から分岐する分配通路については、メイン通路に加えてバイパス通路からも燃料ガスが供給されることになる。そして、バイパス通路は少なくとも1つの分配通路をバイパスしているので、バイパス通路は、バイパスした分配通路への燃料ガスの供給に影響されることなく、安定して燃料ガスを供給することができる。その結果、複数の分配室に対して、適切な流量の燃料ガスを供給することが可能となる。
【0013】
また、上述した本発明のガスマニホールドにおいては、バイパス通路がメイン通路に合流する位置を、最大分配室(対応するバーナ群に含まれるバーナの数が他の分配室よりも大きい分配室)に接続された分配通路である最大分配通路がメイン通路から分岐する位置よりも上流側の位置としても良い。
【0014】
こうすれば、最大分配室には、メイン通路に加えてバイパス通路からも燃料ガスを供給することができるので、ガスマニホールドの内部に形成された分配室の数が多くなった場合でも、安定した流量で燃料ガスを供給することができる。また、バイパス通路がバイパスした分配通路に供給される燃料ガスについても、最大分配室への燃料ガスの供給状況による影響を受けにくくなるので、安定した流量で燃料ガスを供給することが可能となる。その結果、複数の分配室に対して、適切な流量の燃料ガスを安定して供給することが可能となる。
【0015】
上述した本発明のガスマニホールドにおいては、メイン通路から最大分配通路が分岐する位置よりも上流側であるが、最小分配通路が分岐する位置よりも下流側の位置で、バイパス通路がメイン通路に合流するようにしても良い。ここで、最小分配通路とは、最小分配室(対応するバーナ群に含まれるバーナの数が他の分配室よりも小さい分配室)に接続された分配通路である。
【0016】
こうすれば、最小分配室に供給される燃料ガスの流量が、最大分配室への燃料ガスの供給状況によって変動する事態を回避することができる。この結果、最小分配室に対しても、適切な流量の燃料ガスを安定して供給することが可能となる。
【0017】
また、上述した本発明のガスマニホールドにおいては、最大分配通路がメイン通路から分岐する位置を、他の分配通路がメイン通路から分岐する位置に対して最端部の位置としてもよい。その上で、最大分配通路がメイン通路から分岐する位置と、最大分配通路に隣接する分配通路がメイン通路から分岐する位置との間の位置で、バイパス通路がメイン通路に合流するようにしてもよい。
【0018】
こうすれば、バイパス通路を流れる燃料ガスは専ら最大分配室に供給されるので、最大分配室に対して十分な流量の燃料ガスを安定して供給することが可能となる。
【0019】
また、上述した本発明のガスマニホールドにおいては、メイン通路や、複数の分配室や、燃料ガスの流入口を、次のようにして形成しても良い。すなわち、マニホールド本体に通路溝部を形成すると共に、通路溝部に隣接する位置には複数の凹部を形成しておく。そして、シール部材を間に挟んだ状態でマニホールド本体にマニホールドカバーを取り付けることによって、マニホールドカバーで覆われた通路溝部の部分にメイン通路を形成し、マニホールドカバーで覆われた複数の凹部の部分には複数の分配室を形成する。更に、シール部材は、マニホールド本体の通路溝部を覆う形状にすると共に、通路溝部を覆う部分のシール部材には、通路溝部に沿った方向に位置を異ならせて第1孔および第2孔が形成する。そして、マニホールドカバーのシール部材に面する側には、シール部材の第1孔および第2孔で、マニホールド本体の通路溝部と連通することによってバイパス通路を形成するバイパス溝部を形成しておいても良い。
【0020】
こうすれば、マニホールドカバーにバイパス溝を形成し、シール部材に第1孔および第2孔を形成することで、マニホールド本体の形状を変更することなく、簡単にバイパス通路を形成することができる。加えて、マニホールド本体には、バイパス通路を形成するためのスペースを確保する必要が無いので、マニホールド本体を簡単に設計することも可能となる。
【0021】
また、上述した本発明のガスマニホールドにおいては、マニホールド本体からマニホールドカバーに向かって開口するように、流入口を形成しても良い。
【0022】
こうすれば、流入口から流入した燃料ガスはマニホールドカバーに衝突して向きを変えた後、マニホールドカバーおよびシール部材に沿って流れることになる。従って、燃料ガスを確実にバイパス通路に導くことができるので、最大分配室に対して十分な流量の燃料ガスを供給することが可能となる。
【図面の簡単な説明】
【0023】
【
図1】燃焼装置10を備える給湯器1を例示した説明図である。
【
図2】は、本実施例のガスマニホールド100とバーナ12との位置関係を示した説明図である。
【
図3】本実施例のガスマニホールド100の分解組立図である。
【
図4】通路溝部111の側壁に形成された開口部113bの詳細な形状を示した斜視図である。
【
図5】流入口103から流入した燃料ガスがメイン通路104を経由して各分配室102a~102cに分配される様子を示した説明図である。
【
図6】本実施例のガスマニホールド100の各分配室102a~102cから燃料ガスを供給するバーナ12の数を比較した説明図である。
【
図7】本実施例のガスマニホールド100で各分配室102a~102cに適切な流量で燃料ガスを分配可能とする基本的な考え方を示した説明図である。
【
図8】本実施例のガスマニホールド100内に形成されたバイパス通路106についての説明図である。
【
図9】マニホールド本体110にバイパス溝115を形成する場合を例示した説明図である。
【発明を実施するための形態】
【0024】
図1は、燃焼装置10を備える給湯器1を例示した説明図である。給湯器1は、大まかにいうと、燃料ガスを燃焼させる燃焼装置10と、燃焼装置10で生成された高温の燃焼ガスを利用して湯を生成する熱交換器20とを組み合わせた構造となっている。熱交換器20には、上水が供給される給水通路21と、熱交換器20で生成した湯を給湯するための給湯通路22とが接続されている。給水通路21の途中には、熱交換器20に流入する上水の流量を検出する流量センサ23が搭載されている。更に、給湯通路22の端部には、給湯カラン24などが接続されている。
【0025】
燃焼装置10は、内部の空間に燃焼室が形成されている燃焼缶11と、燃焼缶11の内部に搭載された複数のバーナ12と、複数のバーナ12に燃料ガスを供給するガスマニホールド100と、燃料ガスを燃焼させるための燃焼用空気を燃焼缶11内に供給する燃焼ファン13と、バーナ12に点火する点火プラグ14と、バーナ12の炎を検知するフレームロッド15とを備えている。また、ガスマニホールド100には燃料ガスを供給するガス通路16が接続されており、ガス通路16の途中には、ガス通路16を開閉する元弁17と、元弁17よりも下流側でガスマニホールド100に供給される燃料ガスの流量を調節する比例弁18とが設けられている。
【0026】
また、
図1に示されるように、本実施例の燃焼装置10には15個のバーナ12が搭載されているが、これらのバーナ12は、バーナ12の数が異なる3つのバーナ群12a~12cにまとめられている。図示した例では、バーナ群12aには隣接する4つのバーナ12がまとめられており、バーナ群12bには隣接する2つのバーナ12がまとめられており、バーナ群12cには隣接する9つのバーナ12がまとめられている。
【0027】
ガスマニホールド100には、バーナ12に燃料ガスを供給する複数のノズル101が形成されており、個々のノズル101は予め1つのバーナ12に対応付けられると共に、そのバーナ12に燃料ガスを供給するようになっている。また、ガスマニホールド100の内部には、ガス通路16から供給された燃料ガスを複数のノズル101に燃料ガスを分配する3つの分配室102a~102cが形成されている。ここで、分配室102a~102cの数が3つとなっているのは、上述したバーナ群12a~12cの数が3つであることに対応している。分配室102aの上流には電磁開閉弁19aが搭載されており、分配室102bの上流には電磁開閉弁19bが、分配室102cの上流には電磁開閉弁19cが搭載されている。このため、電磁開閉弁19a~19cを開閉することにより、分配室102a~102cに対して個別に燃料ガスを供給することが可能となっている。尚、本実施例の電磁開閉弁19a~19cが、本発明における「開閉弁」に対応する。
【0028】
また、上述したように、個々のノズル101は予め対応付けられた固有のバーナ12に燃料ガスを供給するが、バーナ群12aに属するバーナ12に燃料ガスを供給するノズル101は、分配室102aから燃料ガスの供給を受けるようになっている。同様に、バーナ群12bに属するバーナ12に燃料ガスを供給するノズル101は、分配室102bから燃料ガスの供給を受けるようになっており、バーナ群12cに属するバーナ12に燃料ガスを供給するノズル101は、分配室102cから燃料ガスの供給を受けるようになっている。このため、電磁開閉弁19a~19cの開閉状態を切り換えることで、バーナ群12a~12cの単位で、複数のバーナ12への燃料ガスの供給を開始したり、供給を停止したりすることができる。その結果、バーナ12での燃料ガスの燃焼も、バーナ群12a~12cの単位で燃焼を開始したり、燃焼を終了したりすることが可能となる。
【0029】
以上のような給湯器1では、給湯器1の使用者が給湯通路22に設けられた給湯カラン24などを開くと、給水通路21から熱交換器20に上水が供給される。そして、流量センサ23によって、上水の流れが所定の流量以上になったことが検知されると、バーナ12での燃焼が開始される。この時、必要な火力に応じて、比例弁18の開度が制御されると共に、電磁開閉弁19a~19cの開閉状態が切り換えられる。その結果、燃料ガスを燃焼させるバーナ12の数を、多段階に切り換えることが可能となる。また、燃焼によって生じた高温の燃焼ガスは、燃焼装置10の上方に設けられた熱交換器20を通過し、この時、熱交換器20内を通過する上水と熱交換することによって湯が生成されて、給湯通路22を経由して給湯カラン24から流出する。また、熱交換して低温となった燃焼ガスは、熱交換器20の上方に設けられた排気口2から、給湯器1の外部に排出される。
【0030】
図2は、本実施例のガスマニホールド100とバーナ12との位置関係を示した説明図である。尚、前述したように、本実施例の給湯器1には15個のバーナ12が搭載されているが、図示が煩雑となることを避けるため、
図2では1つのバーナ12を表示し、他の14個のバーナ12については図示を省略している。
【0031】
バーナ12は、板金部材を組み合わせて形成されており、バーナ12の側部には、燃料ガスが流入する2つのガス流入口12oが上下2段に設けられている。それぞれのガス流入口12oに向かって燃料ガスを噴射すると、燃料ガスが周囲の空気を巻き込みながらガス流入口12oからバーナ12内に流入する。そして、バーナ12内で燃料ガスと空気とが混合して混合ガスを生成した後、バーナ12の上部に形成された複数の炎口12fから流出する。この混合ガスに点火プラグ14(
図1参照)を用いて点火することによって、バーナ12の燃焼が開始される。
【0032】
このように、本実施例のバーナ12には、上下2段にガス流入口12oが形成されていることに対応して、本実施例のガスマニホールド100には、複数のノズル101が上下2列に形成されている。そして、上下に並んだ一組のノズル101から、バーナ12の上下のガス流入口12oに向かって燃料ガスが噴射されるようになっている。前述したように本実施例の給湯器1には15個のバーナ12が搭載されており、各バーナ12に対して上下一組のノズル101が形成されているから、ガスマニホールド100には全部で30個(=15×2)のノズル101が形成されていることになる。また、前述したように、15個のバーナ12は、3つのバーナ群12a~12cにまとめられているから、各バーナ12に燃料ガスを供給する30個のノズル101も、バーナ群12aのバーナ12に燃料ガスを供給するノズル群101aと、バーナ群12bのバーナ12に燃料ガスを供給するノズル群101bと、バーナ群12cのバーナ12に燃料ガスを供給するノズル群101cとに分けて考えることができる。
【0033】
図2に示されるように、複数のノズル101の下方には、3つの電磁開閉弁19a~19cが取り付けられており、それらの電磁開閉弁19a~19cの下方には、ガス通路16が接続されて燃料ガスが流入する流入口103が形成されている。ガスマニホールド100の内部の構造については後述するが、流入口103に燃料ガスを供給した状態で、電磁開閉弁19aを開弁すると、ノズル群101aのノズル101からバーナ群12aのバーナ12に向かって燃料ガスが供給される。同様に、電磁開閉弁19bを開弁すると、ノズル群101bのノズル101からバーナ群12bのバーナ12に向かって燃料ガスが供給され、電磁開閉弁19cを開弁すると、ノズル群101cのノズル101からバーナ群12cのバーナ12に燃料ガスが供給される。
【0034】
図3は、本実施例のガスマニホールド100の分解組立図である。図示されるように、ガスマニホールド100は、ダイカスト製あるいは鋳造製のマニホールド本体110に、ゴムなどの圧縮性材料で形成されたシール部材120を挟んで、板金製のマニホールドカバー130が、複数の取付ネジ140を用いて取り付けられた構造となっている。尚、本実施例では、マニホールドカバー130が板金製であるものとしているが、ダイカスト製や鋳造製などとしても良い。
【0035】
図示されるように、マニホールド本体110には、3つの凹部112a~112cが並んで形成されており、凹部112a~112cの下方に隣接する位置には通路溝部111が形成されている。そして、マニホールド本体110にシール部材120を介してマニホールドカバー130を組み付けると、凹部112aの部分がマニホールドカバー130で覆われることによって分配室102a(
図1参照)が形成される。また、凹部112bの部分には分配室102b(
図1参照)が形成され、凹部112cの部分には分配室102c(
図1参照)が形成される。
図3中で、凹部112aの下に(102a)と表示されているのは、マニホールドカバー130を取り付けると凹部112aが分配室102aになることを表している。同様に、
図3中で、凹部112bの下に(102b)と表示されているのは、凹部112bが分配室102bになることを表しており、凹部112cの下に(102c)と表示されているのは、凹部112cが分配室102cになることを表している。更に、マニホールド本体110にシール部材120およびマニホールドカバー130を取り付けると、マニホールド本体110の通路溝部111が形成された部分にメイン通路104が形成される。
図3中で、通路溝部111の下に(104)と表示されているのは、通路溝部111がメイン通路104になることを表している。
【0036】
また、凹部112aの下部(通路溝部111に隣接する位置)には、
図2に示した電磁開閉弁19aの弁口114aが形成されており、弁口114aの奥側には電磁開閉弁19aの弁室が形成されている。同様に、凹部112bの下部には、電磁開閉弁19b(
図2参照)の弁口114bが形成されており、凹部112cの下部には、電磁開閉弁19c(
図2参照)の弁口114cが形成されている。そして、弁口114bの奥側には電磁開閉弁19bの弁室が形成されており、弁口114cの奥側には電磁開閉弁19cの弁室が形成されている。
【0037】
更に、これらの電磁開閉弁19a~19cの弁室は、それぞれの側部が通路溝部111の側壁に開口することによって、開口部を形成している。
図3に示した開口部113bは、電磁開閉弁19bの弁室が通路溝部111の側壁に形成した開口部である。また、
図3中の開口部113cは、電磁開閉弁19cの弁室が通路溝部111の側壁に形成した開口部である。更に、
図3では隠れた位置にあるが、電磁開閉弁19aの弁室も通路溝部111の側壁に開口部113aを形成している。
【0038】
図4は、通路溝部111の側壁に形成された開口部113bを、
図3中の矢印Pの方向から見ることによって、開口部113bの詳細な形状を示した斜視図である。開口部113aや、開口部113cについても同様な形状であるため、開口部113bで代表させることとして図示は省略する。
図4中で、開口部113bの下方に(113a、113c)と表示しているのは、開口部113bが、これらを代表していることを表している。
【0039】
図4に示されるように、開口部113bは、通路溝部111の側壁111aに開口しており、側壁111aの中でも通路溝部111の底部111bに近い位置に開口している。また、開口部113bの奥側には、電磁開閉弁19b(
図2参照)の弁室19bcが形成されており、弁室19bc内には電磁開閉弁19bの弁体19bvが収納されている。そして、弁体19bvは、電磁開閉弁19bのバネ19bsによって弁口114bに付勢されている。尚、
図4中で、弁口114bの下方に(114a、114c)と表示しているのは、弁口114bが弁口114aや弁口114cを代表していることを表している。また、
図4中で、弁室19bcの下方に(19ac、19cc)と表示しているのは、弁室19bcが弁室19acや弁室19ccを代表していることを表しており、弁体19bvの下方に(19av、19cv)と表示しているのは、弁体19bvが弁体19avや弁体19cvを代表していることを表している。更に、バネ19bsの下方に(19as、19cs)と表示しているのは、バネ19bsがバネ19asやバネ19csを代表していることを表している。
【0040】
このように、通路溝部111は、開口部113aから弁室19acおよび弁口114aを介して、凹部112a(
図3参照)に繋がっている。従って、
図2に示した電磁開閉弁19aを開弁させると、通路溝部111と凹部112aとを接続する通路が形成されることになる。通路溝部111から凹部112aに繋がる通路が、本発明における「分配通路」に対応する。同様に、電磁開閉弁19bを開弁させると通路溝部111と凹部112b(
図3参照)とを接続する通路が形成され、電磁開閉弁19cを開弁させると通路溝部111と凹部112c(
図3参照)とを接続する通路が形成される。通路溝部111から凹部112bに繋がる通路や、通路溝部111から凹部112cに繋がる通路も、本発明における「分配通路」に対応する。
【0041】
図5は、流入口103からガスマニホールド100内に流入した燃料ガスが、メイン通路104を経由して各分配室102a~102cに分配される様子を示した説明図である。
図5では、メイン通路104を通過する燃料ガスの流れが分かり易いように、マニホールド本体110とシール部材120との間でガスマニホールド100を分割した状態で表示されている。このため、通路溝部111の部分がメイン通路104に対応し、凹部112a~112cの部分が分配室102a~102cに対応している。
図5中に太い一点鎖線の矢印で示したように、燃料ガスは流入口103から通路溝部111に流入した後、通路溝部111内を通過する。そして、
図4を用いて前述したように、開口部113a~113cから弁室19ac~19cc内、および弁口114a~114cを通って、凹部112a~112c(従って、分配室102a~102c)に分配される。
【0042】
ここで、
図1あるいは
図2を用いて前述したように、分配室102aからは4つのバーナ12に燃料ガスを供給しており、分配室102bからは2つのバーナ12に燃料ガスを供給し、分配室102cからは9つのバーナ12に燃料ガスを供給している。各バーナ12が燃焼させる燃料ガスの最大流量に違いは無いから、燃料ガスを供給するバーナ12の数が多くなる程、その分配室102a~102cに供給するべき燃料ガスの流量は大きくなる。従って、
図6に示したように、バーナ12の数が最も小さい分配室102bと、バーナ12の数が最も大きい分配室102cとを比べると、供給するべき燃料ガスの流量には約4.5倍(=9/2)もの違いが生じることになる。尚、以下では、バーナ12の数が最も大きい分配室(ここでは分配室102c)を「最大分配室」と称し、バーナ12の数が最も小さい分配室102(ここでは分配室102b)を「最小分配室」と称することにする。
【0043】
図4を用いて前述したように、メイン通路104と各分配室102a~102cとは、開口部113a~113c、弁室19ac~19cc、弁口114a~114cを介して接続されており、しかも、弁室19ac~19cc内には、電磁開閉弁19a~19cの弁体19av~19cvやバネ19as~19csなどが収納されている。従って、弁口114a~114cを大きくし、あるいは電磁開閉弁19a~19cを大きくした場合でも、ある程度の通路抵抗が生じることは避けられない。このため、最大分配室(ここでは分配室102c)と最小分配室(ここでは分配室102b)とで、供給するべき燃料ガスの流量に約4.5倍もの違いが存在していると、最大分配室に十分な燃料ガスを供給することが困難となり、その結果、各分配室102a~102cに適切な流量で燃料ガスを分配することが困難となる。そこで、各分配室102a~102cに適切な流量で燃料ガスを分配するために、本実施例のガスマニホールド100には、以下のような独特な構造が採用されている。
【0044】
図7は、本実施例のガスマニホールド100で各分配室102a~102cに適切な流量で燃料ガスを分配可能とする基本的な考え方を示した説明図である。上述したように燃料ガスは、流入口103からメイン通路104に流入した後、メイン通路104から各分配室102a~102cに流入する。尚、
図7中に示した分配通路105aは、
図4を用いて前述したメイン通路104から分配室102aまでの通路(すなわち、開口部113aから弁室19acを経由して弁口114aまでの通路)を表している。同様に、分配通路105bは、メイン通路104から分配室102bまでの通路(開口部113bから弁室19bcを経由して弁口114bまでの通路)を表しており、分配通路105cは、メイン通路104から分配室102cまでの通路(開口部113cから弁室19ccを経由して弁口114cまでの通路)を表している。また、分配通路105cは、最大分配室である分配室102cに接続されているから、分配通路105cを「最大分配通路」と称することがある。同様に、分配通路105bは、最小分配室である分配室102bに接続されているから、分配通路105bを「最小分配通路」と称することがある。
【0045】
メイン通路104を流れる燃料ガスは、
図7中に太い一点鎖線の矢印で示したように、初めに分配通路105aを介して分配室102aに分配され、次に分配通路105bを介して分配室102bに分配されて、残りが分配通路105cを介して分配室102cに分配される。従って、分配通路105aや分配通路105bに供給する燃料ガスの流量が大きくなると、分配室102cに供給する燃料ガスが足りなくなる虞がある。こうした事態を回避するために、弁口114cや電磁開閉弁19cを大きくするなどして分配通路105cの通路抵抗を減少させようとしても、通路抵抗を減少させる程度には限界がある。そこで、分配通路105aや分配通路105bの通路抵抗を増加させる必要が生じるが、分配通路105aや分配通路105bの通路抵抗を増加させると、今度は、分配室102aや分配室102bに供給する燃料ガスが足りなくなる虞がある。
【0046】
そこで、本実施例のガスマニホールド100では、
図7に示すように、メイン通路104と並行してバイパス通路106を設けることにより、最大分配室である分配室102cに対しては、バイパス通路106からも燃料ガスが供給されるようになっている。
図7に例示したバイパス通路106は、メイン通路104から分岐する位置が、流入口103の直ぐ下流側(すなわち、分配通路105aが分岐する位置よりも上流側)となっており、メイン通路104に合流する位置が、分配通路105cが分岐する位置のすぐ上流側(すなわち、分配通路105bが分岐する位置の下流側)となっている。このため、
図7中に太い破線の矢印で示したように、最大分配室である分配室102cに対しては、メイン通路104に加えて、バイパス通路106からも燃料ガスを供給することができる。その結果、分配通路105aや分配通路105bの通路抵抗を増加させなくても、分配室102cに十分な流量の燃料ガスを供給することが可能となる。
【0047】
また、バイパス通路106は、メイン通路104から分配通路105aや分配通路105bが分岐する位置をバイパスしているので、バイパス通路106を流れる燃料ガスの流量は、分配室102aや分配室102bに供給される燃料ガスの流量にはほとんど影響を受けることが無い。このため、分配室102aや分配室102bへの燃料ガスの供給状況に影響されることなく、安定した流量で、分配室102c(最大分配通路)に燃料ガスを供給することが可能となる。
【0048】
尚、
図7に示した例では、バイパス通路106は、最大分配通路(ここでは分配通路105c)以外の全ての分配通路(ここでは分配通路105aおよび分配通路105b)をバイパスするものとして説明した。しかし、バイパス通路106は、最大分配通路以外の分配通路の中の、一部の分配通路(ここでは分配通路105aまたは分配通路105bの何れか)をバイパスするものであっても良い。例えば、バイパス通路106がメイン通路104から分岐する位置を、他の分配通路(例えば分配通路105a)が分岐した位置の下流側としても良い。あるいは、バイパス通路106がメイン通路104に合流する位置を、他の分配通路(例えば分配通路105b)が分岐する位置の上流側としても良い。更には、最大分配通路(ここでは分配通路105c)をメイン通路104の最も下流側から分岐させるのではなく、最大分配通路よりも下流側の位置で他の分配通路をメイン通路104から分岐させるようにしても良い。これらの場合でも、バイパス通路106がバイパスする分配通路が存在していれば、その(あるいはそれらの)分配通路から分配室に供給される燃料ガスの影響を受けることなく、分配室102c(最大分配室)に燃料ガスを供給することができるので、十分な流量の燃料ガスを安定して供給することが可能となる。
【0049】
図8は、本実施例のガスマニホールド100内に形成されたバイパス通路106についての説明図である。
図8では、マニホールドカバー130とシール部材120との間でガスマニホールド100を分割した状態で表示されている。図示されるように、シール部材120は、マニホールド本体110に形成された通路溝部111(図中では破線で表示)を覆う形状となっている。そして、シール部材120が通路溝部111を覆う部分には、通路溝部111の上流側(流入口103に近い側)の位置に第1孔121が形成され、通路溝部111の下流側(分配通路105cが分岐する位置に近い側)の位置に、第2孔122が形成されている。更に、マニホールドカバー130には、シール部材120の第1孔121に対応する位置から、第2孔122に対応する位置までの間で、シール部材120に面する側が溝状の凹形状に形成されることによって、バイパス溝131が形成されている。
【0050】
このため、マニホールド本体110に対して、シール部材120を間に挟んでマニホールドカバー130を取り付けると、通路溝部111がシール部材120で覆われてメイン通路104が形成されると共に、マニホールドカバー130のバイパス溝131とシール部材120との間の空間にも通路が形成される。そして、この通路は、シール部材120の第1孔121を介してメイン通路104の上流側と連通し、第2孔122を介してメイン通路104の下流側と連通することから、バイパス通路106となっている。このため、前述したように流入口103からメイン通路104に燃料ガスを供給すると(
図5参照)、その燃料ガスの一部はバイパス通路106を通って分配室102c(最大分配室)に供給されることになる。
図8中に太い破線で示した矢印は、バイパス通路106を通って燃料ガスが流れる様子を表している。
【0051】
このように、本実施例のガスマニホールド100では、マニホールドカバー130とシール部材120との間にバイパス通路106が形成されており、最大分配室である分配室102cに対しては、メイン通路104に加えてバイパス通路106からも燃料ガスを供給することができる。このため、
図7を用いて前述したメカニズムによって、各分配室102a~102cに対して、適切な流量で燃料ガスを供給することが可能となる。
【0052】
また、本実施例では、マニホールドカバー130とシール部材120との間にバイパス通路106を形成することができるので、マニホールド本体110にバイパス通路106を形成するスペースを確保する必要が無い。このため、マニホールド本体110の設計が容易になるという利点も得ることができる。
【0053】
尚、上述したように本実施例のガスマニホールド100では、マニホールドカバー130とシール部材120との間にバイパス通路106を形成しているが、バイパス通路106は、必ずしもマニホールドカバー130とシール部材120との間に形成する必要はない。例えば、
図9に例示したように、マニホールド本体110に、通路溝部111に並行するバイパス溝115を設けておき、マニホールド本体110にマニホールドカバー130を取り付けることによって、通路溝部111の部分にメイン通路104を形成し、バイパス溝115の部分にバイパス通路106を形成するようにしても良い。
【0054】
以上、本実施例のガスマニホールド100について説明したが、本発明は上記の実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
【符号の説明】
【0055】
1…給湯器、 2…排気口、 10…燃焼装置、 11…燃焼缶、
12…バーナ、 12a~c…バーナ群、 12f…炎口、
12o…ガス流入口、 13…燃焼ファン、 14…点火プラグ、
15…フレームロッド、 16…ガス通路、 17…元弁、
18…比例弁、 19a~c…電磁開閉弁、 19ac~cc…弁室、
19as~cs…バネ、 19av~cv…弁体、 20…熱交換器、
21…給水通路、 22…給湯通路、 23…流量センサ、
24…給湯カラン、 100…ガスマニホールド、 101…ノズル、
101a~c…ノズル群、 102a~c…分配室、 103…流入口、
104…メイン通路、 105a~c…分配通路、 106…バイパス通路、
110…マニホールド本体、 111…通路溝部、 111a…側壁、
111b…底部、 112a~c…凹部、 113a~c…開口部、
114a~c…弁口、 115…バイパス溝、 120…シール部材、
121…第1孔、 122…第2孔、 130…マニホールドカバー、
131…バイパス溝、 140…取付ネジ。