(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-21
(45)【発行日】2023-07-31
(54)【発明の名称】電磁場の歪み検出
(51)【国際特許分類】
A61B 1/00 20060101AFI20230724BHJP
A61B 34/20 20160101ALI20230724BHJP
【FI】
A61B1/00 552
A61B34/20
A61B1/00 655
(21)【出願番号】P 2019571305
(86)(22)【出願日】2018-06-25
(86)【国際出願番号】 US2018039357
(87)【国際公開番号】W WO2019005699
(87)【国際公開日】2019-01-03
【審査請求日】2021-06-25
(32)【優先日】2017-06-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518083032
【氏名又は名称】オーリス ヘルス インコーポレイテッド
(74)【代理人】
【識別番号】100088605
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】バーマン,デビッド バーディック
(72)【発明者】
【氏名】ラフィ-タリ,ヘドイェ
(72)【発明者】
【氏名】ジーヴァン,プラサンス
(72)【発明者】
【氏名】ロバート,ニコラス イー.
【審査官】▲高▼木 尚哉
(56)【参考文献】
【文献】米国特許出願公開第2017/0164870(US,A1)
【文献】特表2011-502686(JP,A)
【文献】特開2017-080413(JP,A)
【文献】特表2012-514738(JP,A)
【文献】米国特許出願公開第2017/0156685(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00-1/32
A61B 34/20
(57)【特許請求の範囲】
【請求項1】
電磁場発生器と1つまたは複数の電磁センサとのそれぞれの整列を支援するシステムであって、
前記電磁場発生器によって生成される電磁場の有効体積内に位置するときに前記電磁場の検出に基づいて1つまたは複数の電磁センサ信号を生成する、患者に配置される電磁センサと、
プロセッサと、
コンピュータ実行可能な命令を記憶するメモリであって、前記命令は前記プロセッサに
前記1つまたは複数の電磁センサ信号に基づいて、前記電磁場発生器に対する前記電磁センサの位置を特定することと、
前記電磁場の前記有効体積に対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記位置に関する前記エンコードされたデータを表示装置に提供することと、
前記電磁センサが、前記有効体積内に配置されていないことを識別することと、
前記電磁場発生器の現在の位置より前記電磁センサに近い位置に前記電磁場発生器を再配置するようにユーザに指示するユーザ指示をエンコードすることと、
前記電磁場発生器を再配置するための前記エンコードされたユーザ指示を提供することと、
を実行させる、メモリと、
を有することを特徴とするシステム。
【請求項2】
前記有効体積は、(1)第1のサブ体積と(2)前記第1のサブ体積よりも大きく前記第1のサブ体積を包含する第2のサブ体積を有し、
前記メモリは、前記プロセッサに
前記電磁場発生器の前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関する前記エンコードされたデータを前記表示装置に提供することと、
を実行させるコンピュータ実行可能な命令をさらに記憶する
ことを特徴とする請求項1に記載のシステム。
【請求項3】
前記メモリは、前記プロセッサに
前記電磁センサが前記第1のサブ体積と前記第2のサブ体積の少なくとも一方のサブ体積内に位置するように前記電磁場発生器を配置するための、前記システムの前記ユーザに対するユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させるコンピュータ実行可能な命令をさらに記憶する
ことを特徴とする請求項2に記載のシステム。
【請求項4】
関心領域を囲むように前記患者に配置される少なくとも2つの追加の電磁センサをさらに有することを特徴とする請求項2に記載のシステム。
【請求項5】
前記関心領域は、前記患者の解剖学的な特徴と少なくとも部分的に重なることを特徴とする請求項4に記載のシステム。
【請求項6】
前記メモリは、前記プロセッサに
規定数の前記電磁センサが前記第1のサブ体積内に位置するように、前記電磁場発生器を配置するためのユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させるコンピュータ実行可能な命令をさらに記憶する
ことを特徴とする請求項2に記載のシステム。
【請求項7】
前記メモリは、前記プロセッサに
(1)前記電磁センサの第1の電磁センサを前記患者の胸骨中点に配置し、(2)前記電磁センサの第2の電磁センサを前記患者の左横第8肋骨に配置し、(3)前記電磁センサの第3の電磁センサを前記患者の右横第8肋骨に配置するためのユーザ指示をエンコードすることと、
前記第1から第3の電磁センサを前記患者に配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させるコンピュータ実行可能な命令をさらに記憶する
ことを特徴とする請求項4に記載のシステム。
【請求項8】
前記メモリは、前記プロセッサに
前記第2の電磁センサと前記第3の電磁センサの一方の電磁センサが前記有効体積内に配置できないという前記ユーザからの入力を受信することと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを、前記一方の電磁センサの現在位置よりも前記電磁場発生器に近い位置に再度配置するためのユーザ指示をエンコードすることと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを再度配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させるコンピュータ実行可能な命令をさらに記憶する
ことを特徴とする請求項7に記載のシステム。
【請求項9】
命令が記憶された非一時的なコンピュータ可読記憶媒体であって、前記命令が実行されると、少なくとも1つの計算装置に
1つまたは複数の電磁センサ信号に基づいて、電磁場発生器に対する電磁センサの位置を特定することであって、前記電磁センサは、前記電磁場発生器によって生成される電磁場の有効体積内に位置するときに前記電磁場の検出に基づいて前記1つまたは複数の電磁センサ信号を生成し、前記電磁センサは患者に配置される、ことと、
前記電磁場の前記有効体積に対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記位置に関する前記エンコードされたデータを表示装置に提供することと、
前記電磁センサが、前記有効体積内に配置されていないことを識別することと、
前記電磁場発生器の現在の位置より前記電磁センサに近い位置に前記電磁場発生器を再配置するようにユーザに指示するユーザ指示をエンコードすることと、
前記電磁場発生器を再配置するための前記エンコードされたユーザ指示を提供することと、
を実行させることを特徴とする非一時的なコンピュータ可読記憶媒体。
【請求項10】
前記有効体積は、(1)第1のサブ体積と(2)前記第1のサブ体積よりも大きく前記第1のサブ体積を包含する第2のサブ体積を有し、
前記非一時的なコンピュータ可読記憶媒体は、前記少なくとも1つの計算装置に
前記電磁場発生器の前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関する前記エンコードされたデータを前記表示装置に提供することと、
を実行させる命令をさらに記憶することを特徴とする請求項9に記載の非一時的なコンピュータ可読記憶媒体。
【請求項11】
前記非一時的なコンピュータ可読記憶媒体は、前記少なくとも1つの計算装置に
前記電磁センサが前記第1のサブ体積と前記第2のサブ体積の少なくとも一方のサブ体積内に位置するように前記電磁場発生器を配置するための、前記ユーザに対するユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させる命令をさらに記憶することを特徴とする請求項10に記載の非一時的なコンピュータ可読記憶媒体。
【請求項12】
前記電磁センサと少なくとも2つの追加の電磁センサとが関心領域を囲むように前記患者に配置されることを特徴とする請求項10に記載の非一時的なコンピュータ可読記憶媒体。
【請求項13】
前記関心領域は、前記患者の解剖学的な特徴と少なくとも部分的に重なることを特徴とする請求項12に記載の非一時的なコンピュータ可読記憶媒体。
【請求項14】
前記非一時的なコンピュータ可読記憶媒体は、前記少なくとも1つの計算装置に
規定数の前記電磁センサが前記第1のサブ体積内に位置するように、前記電磁場発生器を配置するためのユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させる命令をさらに記憶することを特徴とする請求項12に記載の非一時的なコンピュータ可読記憶媒体。
【請求項15】
前記非一時的なコンピュータ可読記憶媒体は、前記少なくとも1つの計算装置に、
(1)前記電磁センサの第1の電磁センサを前記患者の胸骨中点に配置し、(2)前記電磁センサの第2の電磁センサを前記患者の左横第8肋骨に配置し、(3)前記電磁センサの第3の電磁センサを前記患者の右横第8肋骨に配置するためのユーザ指示をエンコードすることと、
前記第1から第3の電磁センサを前記患者に配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させる命令をさらに記憶することを特徴とする請求項12に記載の非一時的なコンピュータ可読記憶媒体。
【請求項16】
前記
非一時的なコンピュータ可読記憶媒体は、前記少なくとも1つの計算装置に
前記第2の電磁センサと前記第3の電磁センサの一方の電磁センサが前記有効体積内に配置できないという前記ユーザからの入力を受信することと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを、前記一方の電磁センサの現在位置よりも前記電磁場発生器に近い位置に再度配置するためのユーザ指示をエンコードすることと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを再度配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
を実行させる命令をさらに記憶することを特徴とする請求項15に記載の非一時的なコンピュータ可読記憶媒体。
【請求項17】
電磁場発生器と電磁センサとの互いの整列を支援する方法であって、
1つまたは複数の電磁センサ信号に基づいて、前記電磁場発生器に対する前記電磁センサの位置を特定することであって、前記電磁センサは、前記電磁場発生器によって生成される電磁場の有効体積内に位置するときに前記電磁場の検出に基づいて前記1つまたは複数の電磁センサ信号を生成し、前記電磁センサは患者に配置される、ことと、
前記電磁場の前記有効体積に対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記位置に関する前記エンコードされたデータを表示装置に提供することと、
前記電磁センサが、前記有効体積内に配置されていないことを識別することと、
前記電磁場発生器の現在の位置より前記電磁センサに近い位置に前記電磁場発生器を再配置するようにユーザに指示するユーザ指示をエンコードすることと、
前記電磁場発生器を再配置するための前記エンコードされたユーザ指示を提供することと、
を含むことを特徴とする方法。
【請求項18】
前記有効体積は、(1)第1のサブ体積と(2)前記第1のサブ体積よりも大きく前記第1のサブ体積を包含する第2のサブ体積を有し、
前記方法は、
前記電磁場発生器の前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関するデータをエンコードすることと、
前記第1のサブ体積と前記第2のサブ体積のそれぞれに対する前記電磁センサの前記位置に関する前記エンコードされたデータを前記表示装置に提供することと、
をさらに含むことを特徴とする請求項17に記載の方法。
【請求項19】
前記電磁センサが前記第1のサブ体積と前記第2のサブ体積の少なくとも一方のサブ体積内に位置するように前記電磁場発生器を配置するための、前記ユーザに対するユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
をさらに含むことを特徴とする請求項18に記載の方法。
【請求項20】
前記電磁センサと少なくとも2つの追加の電磁センサとが関心領域を囲むように前記患者に配置されることを特徴とする請求項18に記載の方法。
【請求項21】
前記関心領域は、前記患者の解剖学的な特徴と少なくとも部分的に重なることを特徴とする請求項20に記載の方法。
【請求項22】
規定数の前記電磁センサが前記第1のサブ体積内に位置するように、前記電磁場発生器を配置するためのユーザ指示をエンコードすることと、
前記エンコードされたユーザ指示を前記表示装置に提供することと、
をさらに含むことを特徴とする請求項20に記載の方法。
【請求項23】
(1)前記電磁センサの第1の電磁センサを前記患者の胸骨中点に配置し、(2)前記電磁センサの第2の電磁センサを前記患者の左横第8肋骨に配置し、(3)前記電磁センサの第3の電磁センサを前記患者の右横第8肋骨に配置するためのユーザ指示をエンコードすることと、
前記第1から第3の電磁センサを前記患者に配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
をさらに含むことを特徴とする請求項20に記載の方法。
【請求項24】
前記第2の電磁センサと前記第3の電磁センサの一方の電磁センサが前記有効体積内に配置できないという前記ユーザからの入力を受信することと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを、前記一方の電磁センサの現在位置よりも前記電磁場発生器に近い位置に再度配置するためのユーザ指示をエンコードすることと、
前記第2の電磁センサと前記第3の電磁センサの前記一方の電磁センサを再度配置するための前記エンコードされたユーザ指示を前記表示装置に提供することと、
をさらに含むことを特徴とする請求項23に記載の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本願は、2017年6月28日出願の米国仮特許出願62/526,348号の利益を主張し、その開示全体を参照により援用する。
【技術分野】
【0002】
本件開示は、概して、ロボット対応医療システムにおける電磁(EM)場発生器の位置合わせのためのシステムおよび方法に関し、より具体的には、電磁場発生器の位置合わせのための電磁センサの位置を検出することに関する。
【背景技術】
【0003】
内視鏡検査(例えば、気管支鏡検査)などの医療手技には、診断目的または治療目的で患者の管腔ネットワーク(例えば、気道)にアクセスしたり可視化したりすることが含まれる。手術ロボットシステムは、例えば、内視鏡手技における内視鏡などの手術用道具の挿入および/または操作を制御するために用いられることがある。この手術ロボットシステムは、手技時に手術用道具の配置を制御するために使用されるマニピュレータアセンブリを有する少なくとも1つのロボットアームを備える。手術用道具は、検出される電磁場に基づいて患者の管腔ネットワーク内をナビゲートされる。
【発明の概要】
【0004】
本件開示のシステム、方法および装置には、それぞれいくつかの革新的な側面があり、いずれも本明細書に開示する所望の特徴を単独で担うものではない。
【0005】
一側面では、システムは電磁歪みを検出する。このシステムは、前記電磁場の検出に応じて第1のセットの1つまたは複数の電磁センサ信号を生成する第1の電磁センサであって、前記第1の電磁センサは患者に配置して使用される、第1の電磁センサと、プロセッサと、コンピュータ実行可能な命令を記憶するメモリであって、前記命令は前記プロセッサに第1の時に前記第1の電磁センサの位置を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、前記第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を実行させる、メモリと、を有する。
【0006】
別の側面では、命令が記憶された非一時的なコンピュータ可読記憶媒体が提供され、前記命令が実行されると、少なくとも1つの計算装置に第1の時に第1の電磁センサの位置を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することであって、前記第1の電磁センサは電磁場の検出に応じて前記第1のセットの1つまたは複数の電磁センサ信号を生成する、ことと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を実行させる。
【0007】
さらに別の側面では、電磁歪みを検出する方法が提供され、この方法は、第1の時に第1の電磁センサの位置を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することであって、前記第1の電磁センサは電磁場の検出に応じて前記第1のセットの1つまたは複数の電磁センサ信号を生成する、ことと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記第1のセットの1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を含む。
【0008】
さらに別の側面では、電磁歪みを検出するシステムが提供され、器具の遠位端にある電磁センサであって、電磁場の検出に応じて1つまたは複数の電磁センサ信号を生成する、電磁センサと、プロセッサと、コンピュータ実行可能な命令を記憶するメモリであって、前記命令は前記プロセッサに第1の時に前記器具の前記遠位端の速度を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を実行させる、メモリと、を有する。
【0009】
さらに別の側面では、命令が記憶された非一時的なコンピュータ可読記憶媒体が提供され、前記命令が実行されると、少なくとも1つの計算装置に第1の時に前記器具の前記遠位端の速度を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することであって、前記器具は、前記器具の前記遠位端に位置する電磁センサを有し、前記電磁センサは電磁場の検出に応じて1つまたは複数の電磁センサ信号を生成する、ことと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を実行させる。
【0010】
さらに別の側面では、電磁歪みを検出する方法が提供され、この方法は、第1の時に前記器具の前記遠位端の速度を示す1つまたは複数の測定値の1つまたは複数のベースライン値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時に対応する電磁センサ信号に基づいて計算することであって、前記器具は、前記器具の前記遠位端に位置する電磁センサを有し、前記電磁センサは電磁場の検出に応じて1つまたは複数の電磁センサ信号を生成する、ことと、前記第1の時の後の期間における前記1つまたは複数の測定値の1つまたは複数の更新値を、前記1つまたは複数の電磁センサ信号のうち前記第1の時の後の前記期間に対応する電磁センサ信号に基づいて計算することと、前記1つまたは複数の更新値と前記1つまたは複数のベースライン値との差が閾値よりも大きいことを特定することと、前記差が前記閾値よりも大きいことに応じて、前記電磁場に歪みが発生したと特定することと、を含む。
【図面の簡単な説明】
【0011】
本件開示の側面について、添付の図面および表と共に以下に説明するが、例示であって開示の側面を限定するものではなく、同様の構成要素には同様の名称を付す。
【0012】
【
図1】気管支鏡検査手技の診断および/または治療用に構成されたカートベースのロボットシステムの一実施形態を示す図である。
【
図2】
図1のロボットシステムの別の側面を示す図である。
【
図3】尿管鏡検査用に構成された
図1のロボットシステムの一実施形態を示す図である。
【
図4】血管手技用に構成された
図1のロボットシステムの一実施形態を示す図である。
【
図5】気管支鏡検査手技用に構成されたテーブルベースのロボットシステムの一実施形態を示す図である。
【
図7】ロボットアームを収容するように構成されたシステムの一例を示す図である。
【
図8】尿管鏡検査用に構成されたテーブルベースのロボットシステムの一実施形態を示す図である。
【
図9】腹腔鏡検査用に構成されたテーブルベースのロボットシステムの一実施形態を示す図である。
【
図10】ピッチ調整または傾き調整された
図5~9のテーブルベースのロボットシステムの一実施形態を示す図である。
【
図11】
図5~10のテーブルベースのロボットシステムのテーブルとカラムとの間の接続機構の詳細図である。
【
図13】組になった器具駆動部を有する例示的な医療器具を示す図である。
【
図14】駆動ユニットの軸が器具の細長いシャフトの軸と平行である、器具駆動部および器具の代替の設計を示す図である。
【
図15】実施形態の一例における、
図13や14の器具の位置など、
図1~10のロボットシステム1つまたは複数の要素の位置を推定する位置決めシステムを示すブロック図である。
【
図16】開示のナビゲーションシステムおよび技術の1つまたは複数の側面を実装する操作環境の一例を示す図である。
【
図17】
図16の操作環境においてナビゲートすることが可能な管腔ネットワーク140の一例を示す図である。
【
図18】本件開示の画像生成機能および電磁感知機能を有する内視鏡の一例の遠位端を示す図である。
【
図19A】局所的な電磁歪みを示す測定値の変化を示す測定結果のグラフである。
【
図19B】局所的な電磁歪みを示す測定値の変化を示す測定結果のグラフである。
【
図19C】局所的な電磁歪みを示す測定値の変化を示す測定結果のグラフである。
【
図20】局所的な電磁歪みが発生したことを特定する手法の一例を示すフローチャートである。
【
図21】本件開示の側面による全体的な電磁歪みの検出に使用されるシステムの一実施形態を示す図である。
【
図22】全体的な電磁歪みが発生したことを特定する手法の一例を示すフローチャートである。
【
図23】患者および電磁場発生器の一方が移動したことを特定する手法の一例を示すフローチャートである。
【
図24】電磁パッチセンサ105が電磁場発生器の可動範囲内に配置された場合の一例を示す図である。
【
図25A】本件開示の側面による、電磁場発生器および/または電磁パッチセンサの設定および位置合わせの手技時における、ディスプレイによってユーザに提供可能な視覚的なフィードバックの例を示す図である。
【
図25B】本件開示の側面による、電磁場発生器および/または電磁パッチセンサの設定および位置合わせの手技時における、ディスプレイによってユーザに提供可能な視覚的なフィードバックの例を示す図である。
【
図25C】本件開示の側面による、電磁場発生器および/または電磁パッチセンサの設定および位置合わせの手技時における、ディスプレイによってユーザに提供可能な視覚的なフィードバックの例を示す図である。
【
図25D】本件開示の側面による、電磁場発生器および/または電磁パッチセンサの設定および位置合わせの手技時における、ディスプレイによってユーザに提供可能な視覚的なフィードバックの例を示す図である。
【
図26】本件開示の種々の側面を実行することが可能な電磁追跡システムの一例を示すブロック図である。
【
図27】本件開示の側面による電磁歪みを検出するための、電磁追跡システムまたはその構成要素によって実行可能な方法の一例を示すフローチャートである。
【
図28】本件開示の側面による電磁歪みを検出するための、電磁追跡システムまたはその構成要素によって実行可能な方法の別の例を示すフローチャートである。
【
図29】本件開示の側面による場発生器によって発生された電磁場内の電磁センサの配置を支援するための、電磁追跡システムまたはその構成要素によって実行可能な方法の一例を示すフローチャートである。
【
図30】本件開示の側面による患者と電磁場発生器の少なくとも一方の動きを検出するための、電磁追跡システムまたはその構成要素によって実行可能な方法の別の例を示すフローチャートである。
【発明を実施するための形態】
【0013】
本件開示の実施形態は、電磁データに依存する位置決めシステムおよび/またはナビゲーションシステムにおいてエラーを発生しうる電磁歪みの検出および/または低減を行うシステムおよび方法に関する。極端な場合では電磁データが信頼できなくなるような電磁歪みの考え得る原因は数多く存在する。本件開示の他の実施形態は、電磁場発生器を患者および/または患者に配置された1つまたは複数の電磁パッチセンサに対して位置合わせを行う方法に関する。
【0014】
ここでは、用語「約」または「およそ」は、長さ、厚さ、量、時間、または他の測定可能な値の測定値の範囲を意味する。これら測定値の範囲は、規定値のおよび規定値からの、+/-10%以下、好ましくは+/-5%以下、より好ましくは+/-1%以下、さらに好ましくは+/-0.1%以下の変化であり、これらの変化は本件開示の装置、システム、および技術において機能するために適切である限りにおいて開示に含まれるものとする。
【0015】
以下に、例示目的の図面とともに種々の実施形態について説明する。開示の技術的思想のその他多数の実装が可能であり、さまざまな利点が開示の実装と共に得られる。また、ここには、参照用および多数の節の位置がわかるように見出しが含まれている。これらの見出しは、見出しが示す技術思想の範囲を制限するものではない。それぞれの技術思想は本明細書全体にわたって適用されてよい。
【0016】
(はじめに)
本件開示の側面は、腹腔鏡検査などの低侵襲の手技や内視鏡検査などの非侵襲の手技を含む種々の医療手技を実行可能なロボット対応医療システムに組み込むことができる。内
視鏡検査の手技においては、本システムは、気管支鏡検査、尿管鏡検査、消化器病検査などを実行することができる。
【0017】
本システムは、さまざまな手技を実行できることに加えて、術者を支援する強化された画像取得や誘導など、追加の利点を提供することができる。また、本システムは、扱いにくいアームの動きや位置などに対応する必要なく、人工工学による位置から手技を行うことが可能な機能を術者に提供することができる。さらに、本システムは、システムの1つまたは複数の器具を1人のユーザで制御可能な使いやすさが向上した手技を行うことが可能な機能を術者に提供することができる。
【0018】
以下に、例示目的の図面とともに種々の実施形態について説明する。開示の技術的思想のその他多数の実装が可能であり、さまざまな利点が開示の実装と共に得られる。また、ここには、参照用および多数の節の位置がわかるように見出しが含まれている。これらの見出しは、見出しが示す技術思想の範囲を制限するものではない。それぞれの技術思想は本明細書全体にわたって適用されてよい。
【0019】
ロボット対応医療システムは、特定手技に応じてさまざまに構成することができる。
図1は、気管支鏡検査の診断手技および/または治療樹技用に配置されたカートベースのロボット対応システム10の一実施形態を示す。気管支検査時に、システム10は、気管支鏡検査用の手技に特化した気管支鏡を自然開口部のアクセスポイント(この例ではテーブルに配置された患者の口など)に操作可能な内視鏡13などの医療器具を搬送して診断用の道具および/または治療用の道具を搬送するための、1つまたは複数のロボットアーム12を有するカート11を備える。図に示すように、カート11は、当該アクセスポイントにアクセスするために、患者の上半身に近い位置に配置されている。同様に、ロボットアーム12は、当該アクセスポイントに対して気管支鏡を配置するように作動可能である。
図1に示す配置は、胃腸に関する(GI;gastro-intestinal)手技用の特別な内視鏡
である胃鏡を用いた胃腸に関する手技を行うときにも使用できる。
図2は、カートの一例である実施形態をより詳細に示す。
【0020】
引き続き
図1を参照すると、カート11が適切に位置決めされると、ロボットアーム12は操縦可能な内視鏡13を患者に、ロボットにより、手動により、またはそれらの組み合わせにより挿入することができる。図示のように、操縦可能な内視鏡13は内側リーダ部分および外部シース部分などの少なくとも2つの入れ子式部分を備えることができ、各部分は器具ドライバ28のセットから別個の器具ドライバに結合され、各器具ドライバは個々のロボットアームの遠位端に結合される。リーダ部分をシース部分と同軸に整列させることを容易にする、器具ドライバ28のこの線形配置は、1つ以上のロボットアーム12を異なる角度および/または位置に操作することによって、空間内で再配置され得る「仮想レール」29を作成する。本明細書で説明する仮想レールは破線を使用して図示され、したがって、破線はシステムのいかなる物理的構造も示さない。仮想レール29に沿った器具ドライバ28の移動は外部シース部分に対して内側リーダ部分を入れ子式にし、または内視鏡13を患者から前進または後退させる。仮想レール29の角度は、臨床用途または医師の好みに基づいて、調整、移動、および旋回されてもよい。例えば、気管支鏡検査では、図示のような仮想レール29の角度および位置が内視鏡13を患者の口内に曲げることに起因する摩擦を最小限に抑えながら、内視鏡13への医師のアクセスを提供することの折衷案を表す。
【0021】
内視鏡13は、挿入後、ロボットシステムからの正確なコマンドを使用して、対象の目的地または手術部位に到達するまで、患者の気管および肺に向けられ得る。患者の肺ネットワークを通るナビゲーションを強化し、かつ/または所望の標的に到達するために、内視鏡13を操作して、外部シース部分から内側リーダ部分を入れ子式に延ばして、関節動
作を強化し、曲げ半径を大きくすることができる。別個の器具ドライバ28の使用はまた、リーダ部分およびシース部分が、互いに独立して駆動されることを可能にする。
【0022】
例えば、内視鏡13は例えば、患者の肺内の病変または小結節などの標的に生検針を送達するように指示されてもよい。針は病理学者によって分析されるべき組織サンプルを得るために、内視鏡の長さにわたるワーキングチャネルに沿って展開され得る。病理学的結果に応じて、追加のツールが追加の生検のために、内視鏡のワーキングチャネルの下方に配置されてもよい。悪性である結節を同定した後、内視鏡13は、潜在的に癌性の組織を切除するためのツールを内視鏡的に送達し得る。いくつかの例において、診断および治療処置は、別々の手続で送達される必要があり得る。これらの状況では、内視鏡13はまた、基準を送達して、対象小結節の位置を「マーキング」するために使用され得る。他の例において、診断および治療処置は、同じ手順の間に送達され得る。
【0023】
システム10はまた、可動タワー30を含むことができ、このタワー30は、支持ケーブルを介してカート11に接続されて、カート11に対する制御、電子機器、流体工学、光学系、センサ、および/または電力のためのサポートを提供することができる。このような機能をタワー30内に配置することにより、より小さなフォームファクタのカート11が可能になり、これは、手術医師およびそのスタッフによって、より容易に調整および/または再配置され得る。さらに、カート/テーブルと支持タワー30との間の機能の分割は手術室の混乱を低減し、臨床作業の流れを改善することを容易にする。カート11を患者の近くに配置することができるが、タワー30は手技中に邪魔にならないように離れた場所に収容することができる。
【0024】
上述のロボットシステムのサポートにおいて、タワー30はコンピュータプログラム命令を、例えば、永続的磁気記憶ドライブ、ソリッドステートドライブなどの非一時的コンピュータ可読記憶媒体内に記憶するコンピュータベースの制御システムの構成要素を含むことができる。これらの命令の実行は、実行がタワー30またはカート11内で行われるかどうかにかかわらず、システム全体またはそのサブシステムを制御することができる。例えば、コンピュータシステムのプロセッサによって実行される場合、命令はロボットシステムの構成要素に、関連するキャリッジおよびアームマウントを作動させ、ロボットアームを作動させ、医療器具を制御させることができる。例えば、制御信号の受信に応答して、ロボットアームの関節内のモータは、アームを特定の姿勢に位置決めすることができる。
【0025】
タワー30はまた、内視鏡13を通して展開され得るシステムに制御された潅注および吸引能力を提供するために、ポンプ、流量計、弁制御、および/または流体アクセスを含み得る。これらの構成要素は、タワー30のコンピュータシステムを使用して制御することもできる。いくつかの実施形態では、洗浄および吸引能力が別個のケーブルを介して内視鏡13に直接送達されてもよい。
【0026】
タワー30はカート11にフィルタされ保護された電力を供給するように設計された電圧およびサージプロテクタを含むことができ、それによって、カート11内に電力変圧器および他の補助電力部品を配置することが回避され、その結果、より小さく、より可動性の高いカート11が得られる。
【0027】
タワー30はまた、ロボットシステム10全体に展開されるセンサのための支持装置を含むことができる。例えば、タワー30はロボットシステム10全体にわたって光学センサまたはカメラから受信したデータを検出し、受信し、処理するための光電子機器を含むことができる。制御システムと組み合わせて、このような光電子機器を使用して、タワー30を含むシステム全体に配置された任意の数のコンソールに表示するためのリアルタイ
ム画像を生成することができる。同様に、タワー30は配置された電磁(EM;Electromagnetic)センサから受信された信号を受信し、処理するための電子サブシステムも含む
ことができる。タワー30はまた、医療器具内または医療器具上の電磁センサによる検出のために電磁場発生器を収容し、位置決めするために使用されてもよい。
【0028】
タワー30は、システムの残りの部分で利用可能な他のコンソール、例えばカートの頂部に取り付けられたコンソールに加えて、コンソール31を含むこともできる。コンソール31は、ユーザインタフェースと、医師のオペレータのためのタッチスクリーンなどの表示画面とを含むことができる。システム10内のコンソールは一般に、ロボット制御と、内視鏡13のナビゲーションおよび位置決め情報などの手術前およびリアルタイム情報との両方を提供するように設計される。コンソール31が医師が利用できる唯一のコンソールではない場合、看護師のような第二のオペレータによって、患者の健康状態や活動状態とシステムの動作を監視し、ナビゲーションおよび位置決め情報などの手続固有のデータを提供するために使用することができる。
【0029】
タワー30は、1つまたは複数のケーブルまたは接続部(図示せず)を介してカート11および内視鏡13に連結することができる。いくつかの実施形態では、タワー30からのサポート機能が単一のケーブルを介してカート11に提供されてもよく、手術室を単純化し、混乱を解消する。他の実施形態では、特定の機能が別個のケーブル配線および接続で結合されてもよい。例えば、単一の電力ケーブルを介してカートに電力を供給することができるが、制御、光学、流体、および/またはナビゲーションのための支持体は別個のケーブルを介して提供することができる。
【0030】
図2は、
図1に示されたカートベースのロボット使用可能システムからのカートの実施形態の詳細図を提供する。カート11は全体として、細長い支持構造14(しばしば「カラム」と呼ばれる)、カート基部15、およびカラム14の上端部にコンソール16を含み、カラム14は、1つまたは複数のロボットアーム12(
図2には3つが示されている)の展開を支持するためのキャリッジ17(あるいは「アーム支持体」)などの1つまたは複数のキャリッジを含むことができる。キャリッジ17は、患者に対してより良好に位置決めするためにロボットアーム12の基部を調整するために垂直軸に沿って回転する個別に構成可能なアームマウントを含むことができる。キャリッジ17はまた、キャリッジ17がカラム14に沿って垂直に移動することを可能にするキャリッジインタフェース19を含む。
【0031】
キャリッジインタフェース19は、キャリッジ17の垂直方向の移動を案内するためにカラム14の両側に配置されたスロット20のようなスロットを介してカラム14に接続されている。スロット20はキャリッジをカート基部15に対して種々の垂直高さに位置決めし、保持するための垂直移動インタフェースを含む。キャリッジ17の垂直移動は、カート11が様々なテーブル高さ、患者サイズ、および医師の好みに合うようにロボットアーム12の到達範囲を調整することを可能にする。同様に、キャリッジ17上の個々に構成可能なアームマウントは、ロボットアーム12のロボットアームベース21が様々な構成で角度付けされることを可能にする。
【0032】
いくつかの実施形態では、スロット20がキャリッジ17が垂直に移動するときに、カラム14の内部チャンバおよび垂直移動インタフェース内への汚れおよび流体の進入を防止するために、スロット表面と面一であり、かつ平行であるスロットカバーで補足されてもよい。スロットカバーは、スロット20の縦上端部および底部の近くに配置されたバネスプールの対を通して展開されてもよい。カバーはキャリッジ17が垂直に上下に平行移動するときに、展開されてそれらのコイル状態から伸縮するまで、スプール内でコイル状に巻かれる。スプールのばね荷重はキャリッジ17がスプールに向かって移動するときに
カバーをスプール内に引っ込める力を提供し、一方、キャリッジ17がスプールから離れるように移動するときにも緊密な捺印を維持する。カバーは例えば、キャリッジ17が移動するときにカバーの適切な伸縮を確実にするために、キャリッジインタフェース19内の括弧を使用して、キャリッジ17に接続されてもよい。
【0033】
カラム14はユーザ入力、例えばコンソール16からの入力に応答して生成される制御信号に応答して機械的な方法でキャリッジ17を移動させるために、垂直に整列された親ねじを使用するように設計された、歯車およびモータなどの機構を内部に備えることができる。
【0034】
ロボットアーム12は一般に、一連のジョイント24によって接続された一連のリンク機構23によって分離されたロボットアーム基部21およびエンドエフェクタ22を備えることができ、各ジョイントは独立したアクチュエータを備え、各アクチュエータは独立して制御可能なモータを備える。各独立して制御可能なジョイントは、ロボットアームに利用可能な独立した自由度を表す。アーム12の各々は7つのジョイントを有し、したがって、7つの自由度を提供する。多数の関節は多数の自由度をもたらし、「冗長である」自由度を可能にする。冗長な自由度は、ロボットアーム12が異なる連結位置および関節角を使用して、空間内の特定の位置、向き、および軌道にそれぞれのエンドエフェクタ22を位置決めすることを可能にする。これにより、システムは医師が腕の関節を患者から離れた臨床的に有利な位置に移動させて、腕の衝突を回避して、より広いアクセス範囲を実現しながら、空間内の所望の位置から医療器具を位置決めしたり方向付けたりすることが可能になる。
【0035】
カート基部15は、床上のカラム14、キャリッジ17、およびアーム12の重量を釣り合わせる。したがって、カート基部15は、電子機器、モータ、電源などのより重い構成要素、ならびにカートの移動および/または固定のいずれかを可能にする構成要素を収容する。例えば、カート基部15は、手技の前にカートが部屋の周りを容易に移動することを可能にする、回転可能なホイール形状のキャスタ25を含む。適切な位置に到達した後、キャスタ25は、手続中にカート11を所定の位置に保持するためにホイールロックを使用して固定されてもよい。
【0036】
コンソール16はカラム14の垂直端部に配置されているので、ユーザ入力を受け取るためのユーザインタフェースと、医師ユーザに手術前および手術中の両方のデータを提供するための表示画面(または、例えば、タッチスクリーン26などの二重目的装置)との両方を可能にする。タッチスクリーン26上の潜在的な術前データは、術前計画、術前コンピュータ断層撮影(CT)スキャンから導出されたナビゲーションおよびマッピングデータ、および/または術前患者インタビューからの注を含むことができる。ディスプレイ上の手術中データは、器具から提供される光学情報、センサおよびセンサからの座標情報、ならびに呼吸、心拍数、および/または脈拍などの患者の活動統計を含むことができる。コンソール16は医師がキャリッジ17の反対側のカラム14の側からコンソールにアクセスすることができるように、配置され、傾斜されてもよい。この位置から、医師はカート11の背後からコンソール16を操作しながら、コンソール16、ロボットアーム12、および患者を見ることができる。図示のように、コンソール16はまた、カート11の操縦および安定化を補助するためのハンドル27を含む。
【0037】
図3は、尿管鏡検査のために配置されたロボット使用可能システム10の実施形態を示す。尿管鏡処置では、カート11が患者の尿道および尿管を横切るように設計された処置特有の内視鏡である尿管鏡32を患者の下腹部領域に送達するように配置されてもよい。尿管鏡検査では、尿管鏡32を患者の尿道と直接整列させて、領域内の繊細な解剖学的構造に対する摩擦および力を低減することが望ましい場合がある。図に示されるように、カ
ート11はロボットアーム12が患者の尿道への直接的な線形アクセスのために尿管鏡32を位置決めすることを可能にするために、テーブルの足に整列され得る。テーブルの足から、ロボットアーム12は、尿管鏡32を仮想レール33に沿って尿道を通して患者の下腹部に直接挿入することができる。
【0038】
尿道への挿入後、気管支鏡検査におけるのと同様の制御手法を使用して、尿管鏡32は診断および/または治療用途のために、膀胱、尿管、および/または腎臓内にナビゲートされ得る。例えば、尿管鏡32は、尿管鏡32のワーキングチャネルの下に配置されたレーザまたは超音波砕石装置を用いて、尿管および腎臓に向けられて、腎結石の蓄積を破壊することができる。砕石術が完了した後、得られた結石断片は、尿管鏡32の下方に配置されたバスケットを用いて除去され得る。
【0039】
図4は、血管処置のために同様に配置されたロボット使用可能システムの実施形態を示す。血管処置では、システム10がカート11が操縦可能なカテーテルなどの医療器具34を患者の脚の大腿動脈内のアクセスポイントに送ることができるように構成することができる。大腿動脈はナビゲーションのためのより大きな直径と、患者の心臓への比較的遠回りで曲がりくねった経路との両方の特徴があり、このためナビゲーションを単純化できる。尿管鏡処置におけるように、カート11は、ロボットアーム12が患者の大腿/股関節領域における大腿動脈アクセスポイントへの直接的な線形アクセスを有する仮想レール35を提供することを可能にするように、患者の脚および下腹部に向かって配置され得る。動脈内への挿入後、医療器具34は、器具ドライバ28を移動させることによって方向付けられ、挿入されてもよい。あるいは、カートが例えば、肩および手首の近くの頸動脈および上腕動脈などの代替の血管アクセスポイントに到達するために、患者の上腹部の周りに配置されてもよい。
【0040】
(B.ロボットシステム-テーブル)
ロボット対応医療システムの実施形態はまた、患者のテーブルを組み込んでもよい。テーブルを組み込むことにより、カートを取り外すことによって手術室内の資本設備の量が減少し、患者へのアクセスがより大きくなる。
図5は、気管支鏡検査手順のために配置されたそのようなロボット使用可能システムの実施形態を示す。システム36は、床の上にプラットフォーム38(「テーブル」または「ベッド」として示される)を支持するための支持構造または支柱37を含む。カートベースのシステムと同様に、システム36のロボットアーム39のエンドエフェクタは、
図5の気管支鏡40などの細長い医療器具を、器具ドライバ42の直線的な位置合わせから形成された仮想レール41を通して、またはそれに沿って操作するように設計された器具ドライバ42を備える。実際には、X線透視画像を提供するためのCアームがテーブル38の周りにエミッタおよび検出器を配置することによって、患者の上腹部領域の上に配置され得る。
【0041】
図6は、説明のため患者および医療器具を除いたシステム36の代替図を示す。図示されているように、カラム37はシステム36内にリング形状として示されている1つ以上のキャリッジ43を含むことができ、このキャリッジを基に1つ以上のロボットアーム39を構成することができる。キャリッジ43はロボットアーム39が患者に到達するように配置され得る異なる視点を提供するために、カラム37の長さに沿って延びる垂直カラムインタフェース44に沿って移動してもよい。キャリッジ43は、カラム37内に配置された機械的モータを使用してカラム37の周りを回転して、ロボットアーム39がテーブル38の複数の側、例えば患者の両側にアクセスできるようにすることができる。複数のキャリッジを有する実施形態では、キャリッジがカラム上に個別に配置されてもよく、他のキャリッジとは独立して移動および/または回転してもよい。キャリッジ43はカラム37を取り囲む必要はなく、または円形である必要もないが、図示されるようなリング形状は構造的バランスを維持しながら、カラム37の周りのキャリッジ43の回転を容易
にする。キャリッジ43の回転および移動により、システムは、内視鏡および腹腔鏡のような医療器具を患者の異なるアクセスポイントに整列させることができる。
【0042】
アーム39は、ロボットアーム39に追加の構成要素を提供するために個別に回転および/または入れ子式に延在することができる一連のジョイントを備える一組のアームマウント45を介してキャリッジに取り付けることができる。さらに、アームマウント45は、キャリッジ43が適切に回転されたときに、アームマウント45がテーブル38の同じ側(
図6に示す)、テーブル38の反対側(
図9に示す)、またはテーブル38の隣接する側(図示せず)のいずれかに配置されるように、キャリッジ43上に配置されてもよい。
【0043】
カラム37は構造的に、テーブル38を支持し、キャリッジを垂直方向に移動させるための経路を提供する。内部においては、カラム37がキャリッジの垂直移動を案内するためのリードスクリューと、リードスクリューに基づいて前記キャリッジの移動を機械化するためのモータとを備えることができる。カラム37はまた、キャリッジ43およびその上に取り付けられたロボットアーム39に電力および制御信号を伝達することができる。
【0044】
テーブル基部46は
図2に示すカート11のカート基部15と同様の機能を果たし、テーブル/ベッド38、カラム37、キャリッジ43、およびロボットアーム39をバランスさせるためのより重い構成要素を収容する。テーブル基部46はまた、手続中の安定性を提供するために、硬性キャスタを組み込んでもよい。キャスタはテーブル基部46の下端から展開されて、基部46の両側で反対方向に延在し、システム36を移動させる必要があるときに後退することができる。
【0045】
引き続き
図6を参照すると、システム36は、テーブルとタワーとの間でシステム36の機能を分割してテーブルのフォームファクタおよびバルクを低減するタワー(図示せず)を含むこともできる。上記の実施形態と同様に、タワーは、処理、計算、および制御能力、電力、流体工学、ならびに/または光学およびセンサ処理などの様々なサポート機能をテーブルに提供することができる。タワーはまた、医師のアクセスを改善し、手術室を煩雑にしないようにするために、患者から離れて配置されるように移動可能であってもよい。さらに、タワー内に部品を配置することにより、ロボットアームの潜在的な収納のためのテーブル基部内のより大きい収納スペースが実現する。タワーはまた、キーボードおよび/またはペンダントなどのユーザ入力のためのユーザインタフェースと、リアルタイム画像、ナビゲーション、および追跡情報などの術前および術中情報のための表示画面(またはタッチスクリーン)との両方を提供するコンソールを含むことができる。
【0046】
いくつかの実施形態では、テーブル基部が使用されていないときにロボットアームを収納し、格納することができる。
図7は、テーブルベースのシステムの一実施形態においてロボットアームを収容するシステム47を示す。システム47では、キャリッジ48がロボットアーム50、アームマウント51、およびキャリッジ48をベース49内に収容するために、ベース49内に垂直に移動させることができる。基地カバー52は、キャリッジ48、アームマウント51、およびアーム50を列53の近辺に展開するために移動されて開閉され、使用されていないときにそれらを保護するために閉じられてもよい。ベースカバー52は、その開口部の縁部に沿って膜54で封止されて、閉鎖時の汚れおよび流体の進入を防止することができる。
【0047】
図8は、尿管鏡検査手順のために構成されたロボット使用可能なテーブルベースのシステムの実施形態を示す。尿管鏡検査では、テーブル38が患者をカラム37およびテーブル基部46から外れた角度に位置決めするための旋回部分55を含むことができる。旋回部分55は旋回部分55の下端を支柱37から離して位置決めするために、旋回点(例え
ば、患者の頭部の下に位置する)の周りで回転または旋回してもよい。例えば、旋回部分55の旋回は、Cアーム(図示せず)がテーブル38の下のカラム(図示せず)と空間を競合することなく、患者の下腹部の上に配置されることを可能にする。キャリッジ35(図示せず)を支柱37の周りに回転させることによって、ロボットアーム39は、尿管鏡56を仮想レール57に沿って患者の鼠径部に直接挿入して尿道に到達させることができる。尿管鏡検査では、処置中に患者の脚の位置を支持し、患者の鼠径部への明確なアクセスを可能にするために、スターラップ58をテーブル38の旋回部分55に固定することもできる。
【0048】
腹腔鏡処置では、患者の腹壁の小さな切開を通して、最小侵襲性器具(1つ以上の切開のサイズに適応するように細長い形状)が患者の解剖学的構造に挿入され得る。患者の腹腔を膨張させた後、しばしば腹腔鏡と呼ばれる器具は把持、切断、切除、縫合などの手術タスクを実行するように指示されてもよく、
図9は腹腔鏡処置のために構成されたロボット使用可能なテーブルベースのシステムの実施形態を示す。
図9に示されるように、システム36のキャリッジ43はテーブル38の両側にロボットアーム39の対を位置決めするように回転され、垂直に調整され、その結果、腹腔鏡59は患者の腹腔に到達するために患者の両側の最小切開部を通過するようにアームマウント45を使用して位置決めされ得る。
【0049】
腹腔鏡処置に適応するために、ロボット使用可能テーブルシステムは、プラットフォームを所望の角度に傾斜させることもできる。
図10は、ピッチまたはチルト調整を有するロボット使用可能医療システムの実施形態を示す。
図10に示すように、システム36は、テーブル38の傾斜に適応して、テーブルの一部分を床から他の部分よりも大きな距離に位置決めすることができる。さらに、アームマウント45はアーム39がテーブル38と同じ平面関係を維持するように、傾きに合わせて回転することができる。より急勾配の角度に適応するために、カラム37は、カラム37の垂直延長部がテーブル38が床に触れたりベース46と衝突したりしないようにする入れ子式部分60を含むこともできる。
【0050】
図11は、テーブル38とカラム37との間のインタフェースの詳細を示す。ピッチ回転機構61は、欄37に対するテーブル38のピッチ角を複数の自由度で変更するように構成されてもよい。ピッチ回転機構61はカラム・テーブル・インタフェースにおける直交軸1、2の位置決めによって可能にすることができ、各軸は、電気的なピッチ角コマンドに応答して各軸が別個のモータ3、4によって作動される。一方のねじ5に沿った回転は一方の軸1における傾斜調整を可能にし、他方のねじ6に沿った回転は、他方の軸2に沿った傾斜調整を可能にする。
【0051】
例えば、ピッチ調整は下腹部手術のために、テーブルをトレンデレンブルグ位置に位置決めしようとするとき、すなわち、患者の下腹部を患者の下腹部よりも床から高い位置に位置決めしようとするとき、特に有用である。トレンデレンブルグ位置は患者の内部器官を重力によって患者の上腹部に向かってスライドさせ、腹腔鏡前立腺切除術などの下腹部手術手技を開始して実行するための最小侵襲性ツール(minimally invasive tool)のため
に腹腔の空間を空ける。
【0052】
(C.器具ドライバとインタフェース)
システムのロボットアームのエンドエフェクタは、(1)医療器具を作動させるための電気機械的手段を組み込む器具ドライバ(あるいは「器具駆動機構」または「器具装置マニピュレータ」と呼ばれる)と、(2)モータなどの任意の電気機械的構成要素を削除できる取り外し可能または取り外し可能な医療器具とを備える。この二分法は、医療処置に使用される医療器具を滅菌する必要性、およびそれらの複雑な機械的アセンブリおよび繊細な電子機器のために高価な資本設備を適切に滅菌することができないことが起因となり
うる。したがって、医療器具は医師または医師のスタッフによる個々の滅菌または廃棄のために、器具ドライバ(したがってシステム)から取り外し、取り外し、および交換されるように設計されてもよい。対照的に、器具ドライバは、交換または滅菌される必要はなく、保護のためにドレープで覆われてもよい。
【0053】
図12は、例示的な器具ドライバを示す。ロボットアームの遠位端に配置された器具ドライバ62は駆動シャフト64を介して医療器具に制御されたトルクを提供するために、平行軸に配置された1つ以上の駆動ユニット63を備える。各駆動ユニット63は器具と相互作用するための個々の駆動シャフト64と、モータシャフトの回転を所望のトルクに変換するためのギアヘッド65と、駆動トルクを生成するためのモータ66と、モータシャフトの速度を測定し、制御回路にフィードバックを提供するためのエンコーダ67と、制御信号を受信し、駆動ユニットを作動させるための制御回路68とを備える。各駆動ユニット63は独立して制御され、電動化されており、器具ドライバ62は、医療器具に複数(
図12に示すように4つ)の独立した駆動出力を提供することができる。動作中、制御回路68は制御信号を受信し、モータ信号をモータ66に送信し、エンコーダ67によって測定された結果のモータ速度を所望の速度と比較し、モータ信号を変調して所望のトルクを生成する。
【0054】
無菌環境を必要とする手技では、ロボットシステムが器具ドライバと医療器具との間に位置する、無菌ドレープに接続された無菌アダプタなどの駆動インタフェースを組み込むことができる。無菌アダプタの主な目的は駆動シャフトと駆動入力との間の物理的分離、したがって無菌性を維持しながら、器具ドライバの駆動シャフトから器具の駆動入力に角運動を伝達することである。したがって、例示的な無菌アダプタは、器具ドライバの駆動シャフトおよび器具上の駆動入力と嵌合されることが意図される一連の回転入力および出力を備えてもよい。滅菌アダプタに接続された滅菌ドレープは透明または半透明プラスチックなどの薄い軟性材料からなり、器具ドライバ、ロボットアーム、およびカート(カートベースのシステム内)またはテーブル(テーブルベースのシステム内)などの資本設備を覆うように設計される。ドレープの使用は滅菌を必要としない領域(すなわち、非滅菌領域)に依然として配置されている間に、患者の近くに資本設備を配置することを可能にする。滅菌ドレープの反対側では、医療器具が滅菌を必要とする領域(すなわち、滅菌野)において患者と接触することができる。
【0055】
(D.医療器具)
図13は、組になった器具ドライバを有する例示的な医療器具を示す。ロボットシステムと共に使用するように設計された他の器具と同様に、医療器具70は、細長いシャフト71(または細長い本体)および器具基部72を備える。医師による手動操作向けの設計として「器具ハンドル」とも呼ばれる器具基部72は、全体として、ロボットアーム76の遠位端で器具ドライバ75上の駆動インタフェースを通って延びる駆動出力74と嵌合するように設計された、回転可能な駆動入力73、例えば、レセプタクル、プーリ、またはスプールを備えてもよい。物理的に接続され、ラッチされ、および/または連結されると、器具基部72の嵌合された駆動入力73は器具ドライバ75内の駆動出力74と回転軸を共有し、駆動出力74から駆動入力73へのトルクの伝達が可能になる。いくつかの実施形態では、駆動出力74が駆動入力73上のレセプタクルと嵌合するように設計されたスプラインを備えてもよい。
【0056】
細長いシャフト71は例えば、内視鏡検査におけるように、解剖学的な開口またはルーメン、または、例えば、腹腔鏡検査におけるように、最小侵襲性切開のいずれかを介して送られるように設計される。細長いシャフト66は軟性(例えば、内視鏡と同様の特性を有する)または硬性(例えば、腹腔鏡と同様の特性を有する)のいずれかであり得るか、または軟性部分および硬性部分の両方のカスタマイズされた組み合わせを含み得る。腹腔
鏡検査用に設計される場合、硬性の細長いシャフトの遠位端は回転軸を有するUリンクと、器具ドライバ75の駆動出力74から受け取ったトルクに応答して駆動入力が回転するときにテンドンからの力に基づいて作動され得る、例えば、1つまたは複数の把持器などの手術用道具とから形成される接合手首を備えるエンドエフェクタに接続されてもよい。内視鏡検査用に設計される場合、可撓性の細長いシャフトの遠位端は、器具ドライバ75の駆動出力74から受け取られるトルクに基づいて関節動作および屈曲され得る、操縦可能または制御可能な屈曲部を含み得る。
【0057】
器具ドライバ75からのトルクは、シャフト71内のテンドンを使用して細長いシャフト71に伝達される。プルワイヤなどのこれらの個々のテンドンは、器具ハンドル72内の個々の駆動入力73に個々に固定することができる。ハンドル72から、テンドンは、細長いシャフト71内の1つ以上のプルルーメンに向けられ、細長いシャフト71の遠位部分に固定される。腹腔鏡検査では、これらのテンドンが手首、把持器、またはさみなどの遠位に取り付けられたエンドエフェクタに連結されてもよい。このような構成の下では、駆動入力73に及ぼされるトルクがテンドンに表面張力を伝達し、それによってエンドエフェクタを何らかの方法で作動させる。腹腔鏡検査では、テンドンは関節を軸の周りに回転させ、それによってエンドエフェクタを一指示または別の指示に移動させることができる。あるいはテンドンは細長いシャフト71の遠位端において、把持器の1つ以上の顎に接続され得、ここで、テンドンからの張力によって把持器が閉じる。
【0058】
内視鏡検査では、テンドンは接着剤、制御リング、または他の機械的固定を介して、細長いシャフト71に沿って(例えば、遠位端で)配置された屈曲または関節動作部に連結されてもよい。屈曲部の遠位端に固定して取り付けられると、駆動入力73に及ぼされるトルクがテンドンに伝達され、より柔軟性のある屈曲部(関節部または関節動作領域と呼ばれることもある)を屈曲または関節動作させる。非屈曲部に沿って、個々のテンドンを内視鏡シャフトの壁に沿って(または内側に)向ける個々のプルルーメンを螺旋状または螺旋状にして、プルワイヤの表面張力から生じる半径方向の力を釣り合わせることが効果的であり得る。スパイラルの角度および/またはそれらの間の間隔は特定の目的のために変更または設計されてもよく、スパイラルを緊密にすると荷重力下でのシャフト圧縮が小さくなり、一方、スパイラルを少なくすると荷重力下でのシャフト圧縮が大きくなるが限界曲げとなる。スペクトルの他端では、プルルーメンが細長いシャフト71の長手方向軸に平行に向けられて、所望の屈曲または関節動作可能な部分における制御された関節動作が可能となる。
【0059】
内視鏡検査では、細長いシャフト71がロボットシステム手続を補助するために、いくつかの構成要素を収容する。シャフトは、シャフト71の遠位端における手術領域に外科用ツール、潅注、および/または吸引を展開するためのワーキングチャネルを備えてもよい。シャフト71はまた、ワイヤおよび/または光ファイバを収容して、光学カメラを含み得る遠位先端の光学アセンブリへ/から信号を伝達し得る。シャフト71はまた、光ファイバを収容して、発光ダイオードなどの近位に位置する光源からシャフトの遠位端に光を運ぶことができる。
【0060】
器具70の遠位端において、遠位先端はまた、診断および/または治療、潅注、および吸引のためのツールを手術部位に送達するためのワーキングチャネルの開口部を備え得る。遠位先端はまた、内部解剖学的空間の画像を取得するために、ファイバースコープまたはデジタルカメラなどのカメラのためのポートを含んでもよい。関連して、遠位先端はまた、カメラを使用するときに解剖学的空間を照明するための光源のためのポートを含み得る。
【0061】
図13の例では駆動シャフト軸、したがって駆動入力軸は細長いシャフトの軸に直交す
る。しかしながら、この配置では、細長いシャフト71のロール機能が複雑になる。駆動入力73を静止状態に保ちながら、細長いシャフト71をその軸に沿って回転させると、テンドンが駆動入力73から延出して細長いシャフト71内のプルルーメンに入るときに、テンドンの望ましくない絡み合いが生じる。そのようなテンドンによって生じる絡み合いは、内視鏡手技時に可撓性の細長いシャフトの移動を予測することを目的とする任意の制御アルゴリズムの障害となり得る。
【0062】
図14は器具ドライバおよび器具の代替設計を示し、駆動ユニットの軸が器具の細長いシャフトの軸に平行である。図示のように、円形の器具ドライバ80は、ロボットアーム82の端部に平行に整列された駆動出力81を有する4つの駆動ユニットを備える。駆動ユニットおよびそれぞれの駆動出力81は、アセンブリ83内の駆動ユニットのうちの1つによって駆動される器具ドライバ80の回転アセンブリ83内に収容される。回転駆動ユニットによって提供されるトルクに応じて、回転アセンブリ83は、回転アセンブリ83を器具ドライバの非回転部分84に接続する円形ベアリングに沿って回転する。電気接点を介して器具ドライバ80の非回転部分84から回転アセンブリ83に電力および制御信号を伝達することができ、この信号は、ブラシ付きスリップリング接続(図示せず)による回転によって維持することができる。他の実施形態では、回転アセンブリ83が非回転部分84に一体化され、したがって他の駆動ユニットと平行ではない別個の駆動ユニットに応答することができる。回転機構83は、器具ドライバ80が器具ドライバ軸85の周りに単一のユニットとして、駆動ユニットおよびそれぞれの駆動出力81を回転させることができる。
【0063】
上記に開示した実施形態と同様に、器具86は、細長いシャフト部分88と、器具ドライバ80内の駆動出力81を受けるように構成された複数の駆動入力89(レセプタクル、プーリ、およびスプールなど)を備える器具基部87(説明のために透明な外皮と共に示されている)とを備えることができる。先に開示された実施形態とは異なり、器具シャフト88は、
図13の設計におけるように直交するのではなく、駆動入力89の軸に実質的に平行な軸を有する器具基部87の中心から延伸する。
【0064】
器具ドライバ80の回転アセンブリ83に連結されると、器具基部87および器具シャフト88を備える医療器具86は、器具ドライバ軸85の周りで回転アセンブリ83と組み合わせて回転する。器具シャフト88は器具基部87の中心に配置されているので、器具シャフト88は取り付けられたとき、器具ドライバ軸85と同軸である。したがって、回転アセンブリ83の回転は、器具シャフト88をそれ自体の前後軸の周りに回転させる。さらに、器具基部87が器具シャフト88と共に回転するとき、器具基部87の駆動入力89に接続されたテンドンは、回転中に絡み合わない。したがって、駆動出力81、駆動入力89、および器具シャフト88の軸の平行性は、任意の制御テンドンの絡み合いを発生させることなく、シャフトを回転させることができる。
【0065】
(E.ナビゲーションと制御)
従来の内視鏡検査には、X線透視法(例えば、Cアームを介して送達され得るよう)および他の形態の放射線ベースの画像化モダリティの使用が含まれ、操作者の医師に管腔内ガイダンスが提供される。一方、本件開示によって実現されるロボットシステムは、放射線に対する医師の曝露を低減し、手術室内の機器の量を低減するために、非放射線ベースのナビゲーションおよび位置決め手段を提供する。本明細書で使用されるように、用語「位置決め」は、基準座標系における物体の位置を特定および/または監視することを指すことができる。術前マッピング、コンピュータビジョン、リアルタイム電磁追跡、およびロボットコマンドデータなどの技術は放射線を用いない運用環境を達成するために、個別に、または組み合わせて使用されてもよい。放射線ベースの画像モダリティが依然として使用される他の場合には、術前マッピング、コンピュータビジョン、リアルタイム電磁追
跡、およびロボットコマンドデータは放射線ベースの画像モダリティによってのみ得られる情報を改善するために、個別に、または組み合わせて使用されてもよい。
【0066】
図15は、例示的な実施形態による、器具の位置など、ロボットシステムの1つまたは複数の要素の位置を推定する位置決めシステム90を示すブロック図である。位置決めシステム90は、1つまたは複数の命令を実行するように構成された1つまたは複数の計算装置のセットとすることができる。計算装置は、上述の1つまたは複数の構成要素内のプロセッサ(または複数のプロセッサ)およびコンピュータ可読メモリによって具現化され得る。限定ではなく例示として、計算装置は、
図1に示すタワー30内や、
図1~4に示すカート内や、
図5~10に示すベッド内などに配置されてよい。
【0067】
図15に示すように、位置決めシステム90は、入力データ91~94を処理して医療器具の遠位先端の位置データ96を生成する位置決めモジュール95を含むことができる。位置データ96は、基準系に対する器具の遠位端の位置および/または向きを表すデータまたはロジックであってもよい。基準系は、患者の解剖学的構造、または電磁場発生器(電磁場発生器については以下の説明を参照)などの既知の物体に対する基準系とすることができる。
【0068】
ここで、さまざまな入力データ91~94についてより詳細に説明する。術前マッピングは、低線量CTスキャンの収集を使用することによって達成することができる。術前CTスキャンは2次元画像を生成し、各画像は、患者の内部解剖学的構造の破断図の「スライス」を表す。集合体で分析される場合、患者の肺ネットワークなどの患者の解剖学的構造の解剖学的空洞、空間、および構造のための画像ベースのモデルが生成され得る。中心線ジオメトリのような手法は、CT画像から決定され、近似されて、術前モデルデータ91と呼ばれる患者の解剖学的構造の3次元ボリュームを展開することができる。中心線ジオメトリの使用については、米国特許第14/523,760号に記載されており、その内容の全体を本願に援用する。また、ネットワークトポロジーモデルは、CT画像から導出されてもよく、気管支鏡検査に特に適している。
【0069】
いくつかの実施形態では、器具が視覚データ92を提供するためにカメラを装備することができる。位置決めモジュール95は1つまたは複数の視覚ベースの位置追跡を可能にするために、視覚データを処理することができる。例えば、手術前モデルデータは医療器具(例えば、内視鏡または内視鏡のワーキングチャネルを通る器具の前進)のコンピュータビジョンベースの追跡を可能にするために、ビジョンデータ92と共に使用されてもよい。例えば、手術前モデルデータ91を使用して、ロボットシステムは内視鏡の予想される移動経路に基づいてモデルから予想される内視鏡画像のライブラリを生成することができ、各画像はモデル内の位置にリンクされる。手術中に、このライブラリはカメラ(例えば、内視鏡の遠位端にあるカメラ)で取得されたリアルタイム画像を画像ライブラリ内の画像と比較して位置決めを補助するために、ロボットシステムによって参照されてもよい。
【0070】
他のコンピュータビジョンベースの追跡技術は、カメラ、したがって内視鏡の動きを決定するために特徴追跡を使用する。位置決めモジュール95のいくつかの特徴は解剖学的な管腔に対応する手術前モデルデータ91内の円形の幾何学的形状を識別し、それらの幾何学的形状の変化を追跡して、どの解剖学的な管腔が選択されたかや、カメラの相対的な回転および/または移動運動を決定することができる。トポロジーマップの使用によって、視覚ベースのアルゴリズムまたは方法をさらに強化することができる。
【0071】
別のコンピュータビジョンベースの技術であるオプティカルフローはカメラの動きを推測するために、ビジョンデータ92のビデオシーケンス内の画像画素の変位および移動
を分析することができる。オプティカルフロー技法の例として、動き検出、オブジェクトセグメンテーション計算、輝度、動き補償符号化、ステレオ視差測定などが挙げられる。複数の反復にわたる複数のフレームの比較によって、カメラ(したがって、内視鏡)の移動および位置を決定することができる。
【0072】
位置決めモジュール95は、リアルタイム電磁追跡を使用して、手術前モデルによって表される患者の解剖学的構造に位置合わせすることができるグローバル座標系における内視鏡のリアルタイム位置を生成し得る。電磁追跡では医療器具(例えば、内視鏡ツール)の1つ以上の位置および向きに埋め込まれた1つ以上のセンサコイルを備える電磁センサトラッカ)は既知の位置に配置された1つ以上の静的電磁場発生器によって生成された電磁場の変動を測定する。電磁センサによって検出された位置情報は、電磁データ記憶される。電磁場発生器(または送信機)は埋め込まれたセンサが検出し得る低強度磁場を生成するために、患者の近くに配置され得る。磁界は電磁センサコイルに小さな電流をガイドし、この電流は、電磁センサと電磁界発生器との間の距離および角度を決定するために分析され得る。これらの距離および向きは、座標系内の単一の位置を患者の解剖学的構造の手術前モデル内の位置と整列させる幾何学的変換を決定するために、患者の解剖学的構造(例えば、手術前モデル)に対して手術中に「位置合わせ」されてもよい。一旦位置合わせされると、医療器具の1つ以上の位置(例えば、内視鏡の遠位先端)に埋め込まれた電磁追跡装置は、患者の解剖学的構造を通る医療器具の進歩のリアルタイムの指示を提供し得る。
【0073】
ロボットコマンドおよび運動学データ94はまた、ロボットシステムのための位置決めデータ96を提供するために、位置決めモジュール95によって使用されてもよい。関節動作コマンドから生じる装置ピッチおよびヨーは、手術前較正中に決定され得る。手術中に、これらの較正計量値は器具の位置を推定するために、既知の挿入デプス情報と組み合わせて使用されてもよい。あるいは、これらの計算がネットワーク内の医療器具の位置を推定するために、電磁、視覚、および/またはトポロジーモデリングと組み合わせて分析されてもよい。
【0074】
図15に示すように、多数の他の入力データを位置決めモジュール95によって使用することができる。例えば、
図15には示されていないが、形状感知ファイバを用いる器具は、位置決めモジュール95が器具の位置および形状を決定するために使用する形状データを提供することができる。
【0075】
位置決めモジュール95は、入力データ91~94を組み合わせて使用することができる。場合によっては、このような組み合わせは位置決めモジュール95が入力データ91~94の各々から決定された位置に信頼性重みを割り当てる確率的アプローチを使用することができる。したがって、電磁データが信頼できない場合(電磁干渉がある場合のように)、電磁データ決定される位置の信頼性は低下する可能性があり、位置決めモジュール95は、視覚データ92および/またはロボットコマンドおよび運動学データ94により依存する可能性がある。
【0076】
上記の通り、本明細書で説明するロボットシステムは、上記の技術のうちの1つまたは複数の組合せを組み込むように設計することができる。タワー、ベッドおよび/またはカートに基づくロボットシステムのコンピュータベースの制御システムはコンピュータプログラム命令を、例えば、永続的磁気記憶ドライブ、ソリッドステートドライブなどの非一時的コンピュータ可読記憶媒体内に記憶することができ、これは、実行時に、システムにセンサデータおよびユーザコマンドを受信および分析させ、システム全体の制御信号を生成させ、グローバル座標系内の器具の位置、解剖学的マップなどのナビゲーションおよび位置決めデータを表示させる。
【0077】
(2.電磁歪み-ナビゲーションおよび位置決め)
上述のように、電磁データは手術器具(例えば、操縦可能な器具)のナビゲーションおよび位置決めのために、本明細書で説明する実施形態によって使用されてもよい。電磁データ、医療器具内に配置された1つ以上の電磁センサおよび/または患者に配置された1つ以上の電磁パッチセンサによって生成されてもよい。
図16は、開示されたナビゲーションシステムおよび技術の1つまたは複数の側面を実装する例示的な運用環境100を示す。運用環境100は、患者を支持するテーブル38と、電磁センサ105(以下に説明する医療器具上に配置された電磁器具センサと区別するために「電磁パッチセンサ」とも呼ぶ)と、電磁場発生器110とを含む。特定の追加のデバイス/要素も含まれ得るが、
図16には示されていない。例えば、環境100はまた、医療器具の移動を案内するように構成されたロボットシステムと、手術ロボットシステムの動作を制御するためのコマンドセンタと、電磁コントローラとを含んでもよい。電磁コントローラは電磁パッチセンサ105から電磁センサ信号を受信するために、電磁パッチセンサ105に電気的に接続されてもよい。電磁コントローラはさらに、電磁場発生器120に接続されて、電磁場を発生させるための制御信号を電磁場発生器120に提供してもよい。しかしながら、特定の実施形態では、電磁コントローラが電磁場発生器120、カート11(
図1参照)、および/またはタワー30(
図1参照)を含む、システムの他の処理装置の1つ以上に部分的にまたは完全に組み込まれてもよい。
【0078】
上記の場合、電磁コントローラは、変化する電磁場を生成するように電磁場発生器110を制御することができる。電磁場は、実施形態に応じて、時間変化および/または空間変化する。電磁場発生器110は
図2に示すカート11と同様にカート上に配置することができ、または1つまたは複数の支持カラムを介してテーブル38のレールに取り付けることができる。他の実施形態では電磁場発生器110が例えば、
図1の手術ロボットシステム10に示されるものと同様のロボットアーム上に取り付けることができ、これは患者の周りに柔軟な設定オプションを提供する。
【0079】
電磁場発生器110は、使用時に電磁パッチセンサ105を配置することができる関連する有効体積を有することができる。例えば、電磁パッチセンサ105によって生成される電磁センサ信号は、センサが有効体積内に配置されたときに、電磁場検出(例えば、電磁歪み検出)に使用するのに十分な信頼性を有する。
【0080】
電磁空間測定システムは、電磁センサコイルが埋め込まれたり配置されたりした物体、例えば電磁パッチセンサ105や電磁器具センサ305(
図18に示し、以下に説明する)の、電磁場内における位置を決定する。電磁センサが、本明細書で説明するように制御されて変化する電磁場内に配置されると、電圧が電磁センサコイルに誘起される。この誘電電圧は、電磁空間測定システムによって、電磁センサ、さらには電磁センサを有する物体の位置および向きを計算するのに使用される。電磁場は弱い場であり、人体の組織を安全に通過することができるため、光学空間測定システムにおける照準線の制約なく、物体の位置測定が可能である。
【0081】
電磁場は電磁場生成器110の座標系に対して定義されてもよく、管腔ネットワークの3Dモデルの座標系は電磁場の座標系にマッピングされてもよい。しかしながら、電磁場は、環境100における1つ以上の電磁歪みの原因に影響され得る。例えば、電磁場発生器110の有効体積内または環境100内に強磁性材料が存在すると、電磁場が歪むことがある。この影響は、強磁性材料と電磁場の作動体積との間の距離、ならびに強磁性材料の特性に依存し得る。しかしながら、常磁性材料などの他の材料も電磁場に影響を及ぼすことがある。環境100に存在し得る電磁歪みの一般的な原因の例として、蛍光透視装置、ツール、器具、ベッド、およびテーブルが挙げられる。
【0082】
電磁場歪み源が静的である場合、電磁場歪み源の影響は、特定の用途に対しては許容できる。すなわち、静的な電磁歪み源が存在する場合、電磁場は実質的に静的であり得る。しかしながら、電磁歪み源の動きは、電磁センサ動きとして解釈される電磁センサ信号の変化を引き起こす可能性がある。したがって、このような歪みが電磁空間測定システムによって電磁センサ移動として誤って解釈されることを防止するためには、電磁場歪みを検出することが望ましい。
【0083】
図16に示すように、多数の電磁パッチセンサ105を患者の身体上(例えば、管腔ネットワーク140の領域内)に配置することができる。これらの電磁パッチセンサ105は呼吸によって引き起こされる患者の身体の変位を追跡するために、ならびに電磁場の歪みを追跡するために使用される。多数の異なる電磁パッチセンサ105はこれらの位置における異なる変位を追跡するために、身体表面上に間隔を置いて配置されてもよい。例えば、肺の周辺部は中心気道よりも呼吸に起因してより大きく運動し、図示するように、いくつかの電磁パッチセンサ105を提供することで、これらの運動の影響をより正確に分析することができる。例えば、内視鏡の遠位端は管腔ネットワーク140の異なる領域を通って移動することができ、したがって、患者がこれらの異なる領域を通って移動するときに、患者の呼吸に起因する様々なレベルの変位が生じる。
【0084】
さらに、電磁パッチセンサ105の数が増えると、生成される追加の電磁センサ信号を使用して電磁パッチセンサ105の移動のより複雑な分析を行うことができるので、電磁場歪み検出のロバスト性を高めることができる。以下により詳細に説明するように、電磁パッチセンサ105から受信される電磁センサ信号は、電磁場発生器110に対する電磁パッチセンサ105の位置および向きを決定するために使用され得る。特定の実施形態では、電磁パッチセンサ105が移動データ(例えば、3つの位置自由度(DoF)および2つの角度DoF)または6つのDoFデータ(例えば、3つの位置DoFおよび3つの角度DoF)の5つのDoFを提供する。単一の電磁パッチセンサ105のみが存在する場合、電磁パッチセンサ105の動きから電磁歪みを区別することは難しい。しかしながら、追加の電磁パッチセンサ105があると、電磁パッチセンサ105間の相対距離などの追加の計量値を計算することができる。電磁パッチセンサ105間の相対距離は実質的に固定されている(例えば、電磁パッチセンサ105は患者の身体上に固定され、相対距離は呼吸または患者からの取り外しの場合にのみ変化する)ので、患者の呼吸と一致しない相対距離の変更は電磁歪みによるものとして識別され得る。
【0085】
図17は、
図16の運用環境100においてナビゲートすることができる例示的な管腔ネットワーク140を示す。管腔ネットワーク140は、患者の気道150の分岐構造と、診断および/または治療のために本明細書で説明するようにアクセスすることができる小結節155とを含む。図示のように、小結節155は、気道150の周辺部に位置する。内視鏡115は第1の直径を有し、したがって、その遠位端は、小結節155の周りのより小さい直径の気道を通って位置決めされることができない。したがって、操縦可能なカテーテル145は、内視鏡115の作業チャネルから小結節155までの残りの距離だけ延びる。操縦可能なカテーテル145は器具、例えば、生検針、細胞診ブラシ、および/または組織サンプリング鉗子が小結節155の目標組織部位に通され得る管腔を有し得る。そのような実施形態では、内視鏡115の遠位端および操縦可能なカテーテル145の遠位端の両方に、気道150内でのそれらの位置を追跡するための電磁器具センサを設けることができる。他の実施形態では、内視鏡115の全体的な直径が操縦可能なカテーテル145なしで周辺部に到達するのに十分に小さくてもよく、または操縦不能なカテーテルを通して医療器具を展開するために周辺部に近づくのに十分に小さくてもよい(例えば、2.5~3cm以内)。内視鏡115を通して展開される医療器具は電磁器具センサを装備することができ、以下に説明する位置フィルタリングおよび安全モードナビゲーシ
ョン技術を、そのような医療器具に適用することができる。
【0086】
いくつかの実施形態では、本明細書で説明する3次元管腔ネットワークモデルの2次元表示、または3次元モデルの断面は
図17に示すものと類似する。ナビゲーションの安全ゾーンおよび/またはナビゲーションの経路情報は、その表示に重ねて表示することができる。
【0087】
図18は、例えば
図1の内視鏡13のような、本明細書に記載されるような画像および電磁感知能力を有する例示的な内視鏡の遠位端300を示す。しかしながら、本開示の側面は、
図3の尿管鏡32、
図9の腹腔鏡59等のような他の操縦可能な器具の使用に関連する。
図18において、内視鏡の遠位端300は、撮像装置315と、照明源310と、電磁器具センサを形成する電磁センサコイル305の端部とを含む。遠位端300は、生検針、細胞診ブラシ、および鉗子などの手術器具が内視鏡シャフトに沿って挿入され、内視鏡先端付近の領域へのアクセスを可能にする内視鏡のワーキングチャネル320への開口部をさらに含む。
【0088】
遠位端300に配置された電磁コイル305は解剖学的システム内に配置されている間に内視鏡の遠位端300の位置および向きを検出するために、電磁追跡システムと共に使用されてもよい。いくつかの実施形態では、コイル305が異なる軸に沿った電磁場に対する感度を提供するように角度を付けられてもよく、開示されたナビゲーションシステムに、完全な6つのDoF(3つの位置DoFと3つの角度DoF)を測定する機能を与える。他の実施形態では単一のコイルのみが、その軸が内視鏡の内視鏡シャフトに沿って配向された状態で、遠位端300上または遠位端300内に配置されてもよい。このようなシステムの回転対称性のため、このシステムはその軸の周りの回転を感知しないため、このような実施形態では、5自由度しか検出することができない。
【0089】
(A.局所的な歪み)
局所的な電磁歪みの検出の一例を、内視鏡のナビゲーションおよび位置決めを含む本開示の実施形態を参照しながら説明する。しかしながら、本開示の側面は、任意の種類の手術器具、例えば、胃鏡、腹腔鏡などのナビゲーションおよび位置決めに関する電磁歪みの検出にも関連する。本明細書で使用されるように、局所的な電磁歪みは、一般に、器具に隣接して、または器具内に位置する歪み源によって引き起こされる電磁歪みを指す。
【0090】
局所的な電磁歪み源の一例として、放射状気管支内超音波(REBUS;Radial Endobronchial Ultrasound)プローブを挙げる。REBUSプローブを使用して、傍気管支構
造の360°画像を提供し、プローブからの構造の可視化を可能にすることができる。REBUSプローブは、器具上に設けられた電磁センサに影響しうる局所的な電磁歪みを発生させる可能性がある部品を含む。例えば、REBUSプローブは導電性ヘッド内にトランスデューサを備えることができ、トランスデューサは、トルクコイルに連結される。REBUSプローブはまた、流体で満たされた閉鎖カテーテルを備えることもできる。これらのそれぞれの部品は、REBUSプローブの近くの電磁場に歪みを引き起こすことがあり、REBUSプローブが器具内のワーキングチャネルを通って移動する際に、器具上の電磁センサに局所的な電磁歪みを引き起こすことがある。
【0091】
上述のように、生検針、細胞診ブラシ、および鉗子などの手術器具を内視鏡のワーキングチャネル320に挿通させて、手術器具が内視鏡の先端付近の領域にアクセスできるようにすることができる。これらの手術器具は、材料から形成されてもよく、または手術器具が動かされるときに電磁場を歪ませる構成要素を含んでもよい。典型的には内視鏡が手術器具がワーキングチャネルを通過するか、または内視鏡先端に隣接する領域内でナビゲートされる間、実質的に静止している(例えば、医師であるユーザは、手術器具を移動さ
せながら同時に内視鏡をナビゲートしない)。
【0092】
電磁器具センサは、電磁場発生器110によって生成された電磁場の検出に応答して、1つ以上の電磁センサ信号を生成するように構成されてもよい。電磁場の歪みは、電磁センサ信号に基づいて、内視鏡の遠位端300に配置された電磁器具センサ(例えば、電磁センサコイル305)によって検出可能であってもよい。電磁器具センサは内視鏡チップのナビゲーションおよび位置決めのために使用されるので、電磁器具センサによって検出される電磁場の変化は、電磁空間測定システムによって内視鏡チップの移動として認識される。しかしながら、内視鏡は典型的には手術器具の移動中に静止しているので、電磁器具センサによって検出される電磁場の変化は内視鏡が静止していることが知られている場合には内視鏡の移動ではなく、電磁場の歪みを示すと判定され得る。
【0093】
手術ロボットシステムが内視鏡が静止していると特定することができる方法には、種々の方法がある。例えば、内視鏡の位置および移動はユーザによって制御されてもよく、したがって、システムが内視鏡を再配置、制御、または他の方法でナビゲートするためのコマンドデータを能動的に受信していない場合、システムは内視鏡が静止していると判定することができる。システムは、内視鏡が静止しているかどうかを確認するために、追加のナビゲーションおよび制御データを使用することができる。例えば、視覚データ92およびロボットコマンドおよび運動学データ94を分析することで、内視鏡が静止していることを特定することができる。
【0094】
システムは、電磁器具センサによって生成された電磁センサ信号に基づいて局所的な電磁歪みを検出することができる。例えば、システムは、器具の遠位端の位置および/または移動に関連する1つまたは複数の計量値の1つまたは複数の基準値を計算することができる。ベースライン値は、電磁器具センサによって生成された第1の時(時間)に対応する電磁センサ信号に基づいて、第1の時に計算されてもよい。一実施形態では、第1の時は、内視鏡を患者に挿入する前であってもよい(例えば、ベースライン計量値は術前計量値であってもよい)。一例では、基準計量値が計算される第1の時は、手術手技のために環境100が設定された後である。例えば、カート11、タワー30、ロボットアーム12、電磁場発生器110、およびCアームのうちの1つ以上は、手術の準備において最初に配置され得る。カート11、タワー30、ロボットアーム12、電磁場発生器110、およびCアームのうちの1つまたは複数の移動は電磁場発生器110によって生成される電磁場に影響を及ぼす可能性があるので、環境100内で様々な機器を配置した後に、1つまたは複数のベースライン計量値を測定することができ、これにより機器のさらなる移動を最小限に抑えることができ、ひいては、これらの機器の移動に起因して導入される電磁場への歪みを最小限に抑えることができる。
【0095】
しかしながら、他の実施形態では、ベースライン計量値が手術前以外の様々な時点で計算および/または更新されてもよい。例えば、測定された電磁場に対するCアームの移動および/または再配置の影響を低減するために、Cアームの移動後のベースライン計量値を計算および/または更新することが望ましい場合がある。別の実施形態では、ベースライン計量値が手術手技の開始に応答して自動的に計算されてもよい。ベースライン計量値は比較的短い期間(例えば、数秒)で計算することができるので、内視鏡が患者導入器を介して患者に挿入されるときに計算されるとき、ベースライン計量値(複数可)は十分に正確な値となる。
【0096】
電磁センサ信号に基づいてシステムによって計算され得る多数の異なる計量値があり、それぞれの値は、局所的な電磁歪みを検出するために使用され得る。計算可能な計量値の例として、器具の遠位端300の線速度、器具の遠位端300の角速度、および指標値の変化が挙げられる。
図19A~Cは、局所的な電磁歪みを示す計量値の変化を示すこれら
の計量値のグラフを提供する。特に、
図19Aは指標値の計量値の変化を示し、
図19Bは線形速度計量値を示し、
図19Cは、角速度計量値を示す。
【0097】
特定の実施態様では、システムが指標値Ind、器具の遠位端300の位置ベクトルP、および器具の遠位端300の角度方向ベクトルQのうちの1つまたは複数を計算することができる。これらの値は、器具のナビゲーションおよび位置決めにおいてシステムによって使用されてもよい。いくつかの実装形態では、指標値Ind、位置ベクトルPおよび角度位置ベクトルQの値はコイル305から受信された電磁センサ信号に基づいて生成された5DoF計量値(例えば、3つの位置DoFおよび2つの角度DoF)に基づいて計算される。指標値Indは、位置ベクトルPおよび角度方向ベクトルQの計量値の品質を表す値であってもよい。したがって、指標値Indは、システムによって閾値と比較されて、位置ベクトルPおよび角度方位ベクトルQの計量値がナビゲーションおよび位置決めに使用されるのに十分に正確であるかどうかを判定することができる。特定の実施形態では、指標値Indがコイル305から受信された5DoF計量値と剛体としての内視鏡先端のモデルとの間の適合度(GOF)アルゴリズムを使用して計算されてもよい。
【0098】
図19A~19Cの各グラフは、手術器具(例えば、鉗子)が内視鏡を通過するときに決定され得る一定の測定基準を示す。これらのグラフは、内視鏡を静止させたまま、鉗子を内視鏡に5回通した場合と同じ事象を基に作成した。
【0099】
具体的には、
図19AがHz(例えば、1/s)で測定される指標値の計量値ΔInd
の変化を示す。鉗子が内視鏡を通過した5つの事象は、指標値計量値ΔIndの変化が指標値の計量値ΔIndの変化におけるノイズよりも有意に高いレベルまで増加する場合に発生している。指標値の計量値の変化は、以下の式を使用して指標値の時間変化として計算することができる。
【数1】
【0100】
ここで、ΔIndは指標値の計量値の変化であり、Indは指標値、tiは電流時間(
例えば、指標値がサンプリングおよび/または決定される時間)、ti-1は以前の時間を
表す。
【0101】
同様に、
図19Bは、mm/sで測定される線速度の計量値vを示す。ここで、鉗子の動きのそれぞれ事象は、ベースラインの線速度値におけるノイズよりも大きい線速度値として確認できる。線速度の計量値は、以下の式を使用して、内視鏡の位置の時間変化として計算することができる。
【数2】
【0102】
ここで、vは線速度の計量値であり、ベクトルPは器具の遠位端300の位置である。
【0103】
最後に、
図19Cは、rad/sで測定される角速度の計量値ωを示す。角速度の計量値は、以下の式を使用して、内視鏡の向きの時間変化として計算することができる。
【数3】
【0104】
ここで、ωは角速度の計量値であり、ベクトルQは器具の遠位端300の角配向である。
【0105】
図19A~19Cに示すように、計算されたそれぞれの計量値が、5つの内視鏡の動きのそれぞれの事象における、ベースライン値(例えば、ベースライン値が0に設定される場合)からの偏差を示す。適切な閾値を選択することによって、ベースラインからの偏差を検出することができる。
【0106】
計量値のベースライン値が計算された後、システムは、第1の時の後の期間に対応する1つまたは複数の電磁センサ信号からの電磁センサ信号に基づいて、第1の時の後の期間内に1つまたは複数の計量値の1つまたは複数の更新値を周期的に計算することができる。例えば、システムは局所的な電磁歪みが発生しているかどうかを判定するために、計量値の更新値を周期的に計算することができる。システムが機器が静止していると判定した場合、1つまたは複数の計量値の変化は、局所的な電磁歪みを示す。
【0107】
したがって、システムは、1つまたは複数の更新値と1つまたは複数のベースライン値との間の差が閾値よりも大きいかどうかを判定することができる。異なる閾値は、計算される計量値の各々に対して設定されてもよい。差が閾値よりも大きい場合、システムは、電磁場が歪んでいると判定することができる。
【0108】
図20は、局所的な電磁歪みが発生したことを決定する例示的な方法を示すフローチャートを提供する。該ブロック2001から開始する。ブロック2005で、システムは、デバウンス期間が有効であるかどうかを判定する。本明細書で使用されるように、デバウンス期間は一般に、電磁歪みが発生したと判定され得る周波数を制限する所定の期間を指し得る。例えば、いくつかの実装形態では、デバウンス期間が有効である間、システムは電磁歪みが発生したかどうかを判定するために、新しい計量値を計算せず、かつ/または計量値を評価しない。システムは電磁歪みがデバウンス期間全体にわたって効果的に発生したと判定し、デバウンス期間が満了した後に電磁歪みが発生したかどうかの判定を再開することができる。デバウンス期間が有効であることを示すために、システムにデータとして記憶されたデバウンスフラグを使用することができる。デバウンス期間は、電磁歪みにフラグを立てることができる頻度を定義する間隔として設定することができる。例えば、デバウンス期間が有効である間は、電磁歪みの新たな発生が設定されなくてもよい。
【0109】
デバウンス期間が有効である場合、方法2000はブロック2030に進み、局所的な電磁歪みが発生したと判定される。デバウンス期間が有効でない場合、方法2000は、システムがいくつかの計量値を計算するブロック2010に続く。一例では、システムが線速度の計量値、角速度の計量値、および指標値の計量値の変化を計算する。ブロック2015において、システムは、各計量値の標準偏差を決定することを含む、ある時間窓にわたって記憶された計算された計量値を分析する。ブロック2020で、システムは、分析された計量値が局所的な電磁歪みを示すかどうかを判定する。これは、各計量値を対応する閾値と比較すること、および標準偏差を対応する閾値と比較することを含むことができる。場合によっては、システムが局所的な歪み事象の発生をある基準と経時的に比較することによって、偽陽性の発生を制限しようと試みることができる。例えば、一実施形態では所与の時間窓内の定足数(quorum)またはいくつかの数の比較が局所的な電磁歪みを
示す場合、システムは計量値が局所的な電磁歪みを示すと判定することができる。そのよ
うなアプローチは単に1つのアプローチであり、他の実施形態は、計量値がいくつかの連続した比較を示すときに局所的な電磁歪みが発生したと判定するなど、任意の適切なアプローチを使用することができることを理解されたい。
【0110】
ブロック2025で、計量値が局所的な電磁歪みを示すと判定することに応答して、システムは、デバウンスフラグを有効にすることなどによって、デバウンス期間を有効にする。ブロック2030で、システムは、局所的な電磁歪みが発生したと判定し、これには、電磁歪みフラグおよび/または局所的な電磁歪みフラグを設定することが含まれる。このプロセスは、ブロック2035で終了する。システムは、局所的な電磁歪みの検出に応答して、他州のアクションを実行することができる。その例示的な応答について以下に説明する。
【0111】
(B.全体的な歪み)
電磁歪みの考えられる別の原因として、全体的な電磁歪みが挙げられる。本明細書で用いるように、全体的な電磁歪みは一般に電磁歪みと称され、環境100内に位置するが、器具の遠位端の直近にはない発生源によって引き起こされる。例えば、ある手術手技は、患者の隣にCアームを配置することを含む、X線透視撮像を使用して実行される。
図5にX線透視手技のための例示的な設定を示し、Cアームは、エミッタと検出器が患者の両側に位置するように配置される。Cアームは、手術手技のための初期位置として、前後(AP;anteroposterior)位置に配置されてもよい。
【0112】
蛍光透視法の技術的要件に起因して、Cアームは、典型的には電磁場発生器110によって生成される電磁場に歪みを引き起こし得る多数の構成要素を含む。例えば、エミッタによるX線の生成は、X線の生成の副産物として電磁場を生成および/または影響を及ぼす部品を必要とすることがある。しかしながら、Cアームは同じ位置に留まるが、Cアームによって引き起こされる電磁場の歪みは比較的静的であり得る。すなわち、Cアームによって引き起こされる電磁場の歪みは電磁センサパッチセンサ105および電磁器具センサ305)によって測定される電磁場を歪ませ得るが、電磁空間測定システムは電磁場が安定している場合は、依然として器具を有効にナビゲートしたり位置決めしたりすることができる。しかしながら、ナビゲーションおよび/または位置決め時にCアームの位置が移動すると、電磁場が動的に歪み、電磁空間測定システムによって計算される器具の位置および/または向きが器具の実際の位置および向きからずれることがある。したがって、電磁空間測定システムが全体的な電磁歪みの事象に対処することができるよう、そのような全体的な電磁歪みの事象を検出することが望ましい。全体的な電磁歪み源の例としてCアームを挙げたが、他の全体的な電磁歪み源も検出することができる。全体的な電磁歪みの原因となり得る他のものとしては、導電性材料および磁性材料、ならびに任意の電磁場源が挙げられる。
【0113】
図21は、本件開示の側面による、全体的な電磁歪みを検出するために使用することができるシステムの実施形態を示す。
図21の実施形態は、電磁場発生器110と、電磁場発生器110の有効体積内に配置された3つの電磁パッチセンサ105とを含む。上述のように、電磁パッチセンサ110は患者の呼吸を検出するために使用されてもよく、患者の呼吸は患者に配置された電磁器具センサを介して器具のナビゲーションおよび位置決めを補正するために使用されてもよい。さらに、パッチセンサ105は全体的な電磁歪みを検出するために使用されてもよく、これについては以下でより詳細に説明する。
【0114】
図21の実施形態では、パッチセンサ105が3つのパッチセンサP0、P1、P2を含む。しかしながら、他の実施形態は、より多くのまたはより少ないパッチセンサ105を含むことができる。電磁空間測定システムがより多くのパッチセンサ105を含む場合、システムは全体的な電磁歪みを追跡するためのより多くの計量値を計算することができ
、これによって歪み追跡のロバスト性が向上する。
【0115】
それぞれの電磁パッチセンサ105は、患者に配置されると、電磁場の検出に応答して1つ以上の電磁センサ信号を生成する。コイル305と同様に、電磁空間測定システムは、電磁パッチセンサ105から受信した電磁センサ信号に基づいて5DoF計量値を生成することができる。少なくとも2つの電磁パッチセンサ105が利用可能である場合、システムは、相対位置の計量値および相対角度の計量値を計算することができる。さらに、少なくとも3つの電磁パッチセンサ105が利用可能である場合、システムは、パッチ面積の計量値およびパッチ空間の6DoFの計量値を計算することができる。
【0116】
電磁パッチセンサは、患者の体内上のさまざまな位置に取り付けられる。したがって、相対距離、相対角度、パッチ空間、およびパッチ領域の計量値は比較的安定しており、ユーザの呼吸のみに基づいて変化し得る。ユーザの呼吸を追跡することによって、システムは、呼吸に起因する計算された計量値の変化を取り除くことができる。したがって、呼吸変動が計量値からフィルタリングされると、任意の残りの変化は、全体的な電磁歪みに起因するといえる。
【0117】
相対位置計量値は2つの電磁パッチセンサ(例えば、P1およびP2)間の相対位置を表すことができる。電磁パッチセンサP1およびP2の相対位置計量値は、以下の式を使用して計算することができる。
【数4】
【0118】
ここで、dP1P2relは相対位置の計量値であり、P1x、P2xは電磁パッチセンサP1、P2のそれぞれのX座標、P1y、P2yは電磁パッチセンサP1、P2のそれぞれのY座標、P1z、P2zは電磁パッチセンサP1、P2のそれぞれのZ座標である。
【0119】
相対角度の計量値は2つの電磁パッチセンサ(例えば、P1およびP2)のZ軸間の相対角度であってもよい。相対角度の計量値は、以下の式を使用して計算することができる。
【数5】
【0120】
ここで、θrelは相対角度の計量値であり、P1Rzは電磁パッチセンサP1のZ軸であり、P2Rzは電磁パッチセンサP2のZ軸である。
【0121】
パッチ面積計量値は電磁パッチセンサによって生成された面積とすることができ、以下の式を使用して計算することができる。
【数6】
【0122】
面積をパッチ面積計量値とすると、式(4)に従って相対位置が算出され、sは以下の式を用いて算出することができる。
【数7】
【0123】
パッチ空間の6DoFの計量値は、電磁パッチセンサによって生成された空間の6DoFの位置および向きであってもよく、以下の式を使用して計算することができる。
【数8】
【数9】
【数10】
【0124】
ここで、P0は電磁場発生器110空間における電磁パッチセンサP0の位置であり、原点として使用され、P1は電磁場発生器110空間における電磁パッチセンサP1の位置であり、P2は、電磁場発生器110空間における電磁パッチセンサP2の位置である。式(8)~(10)によって計算されるパッチ空間の計量値のX
axis、Y
axis、およびZ
axisの例を
図21に示す。
【0125】
計量値のベースライン値が計算された後、システムは、第1の時の後の期間に対応する1つまたは複数の電磁センサ信号からの電磁センサ信号に基づいて、第1の時の後の期間中に1つまたは複数の計量値の1つまたは複数の更新値を周期的に計算することができる。例えば、システムは全体的な電磁歪みが発生しているかどうかを判定するために、計量値の更新値を周期的に計算することができる。計量値の変化は患者の呼吸によってのみ影響されるので、計量値の更新値のうちの1つ以上と1つ以上の計量値のベースライン値との間の差が閾値よりも大きい場合、システムは全体的な電磁歪みが発生したと判定することができる。さらに、特定の実施形態では、計算された計量値から呼吸をフィルタすることができ、計量値における任意の残りの変化は電磁場における歪みによって引き起こされると判定することができる。
【0126】
したがって、システムは、1つまたは複数の更新値と1つまたは複数のベースライン値との間の差が閾値よりも大きいかどうかを判定することができる。異なる閾値は、計算されるそれぞれの計量値に対して設定されてもよい。差が閾値よりも大きい場合、システムは、電磁場が歪んでいると判定することができる。
【0127】
図22は、全体的な電磁歪みが発生したことを決定する例示的な方法を示すフローチャートを示す。方法2200は、ブロック2201から開始する。ブロック2205において、システムは、計算された計量値の各々についてベースライン計量値を決定する。これは、メモリから計量値のベースライン値を検索すること、または電磁パッチセンサ105から受信した電磁センサ信号に基づいてベースライン計量値を計算することを含むことができる。ブロック2210において、システムは、ベースライン計量値品質が閾値品質よ
りも大きいかどうかを判定する。ベースライン・計量値品質が閾値品質よりも大きくない場合、方法2200は終了し、より良好な品質のベースラインの計量値を収集することを試みることによって、方法2200を繰り返すことができる。
【0128】
ベースラインの計量値品質が閾値品質よりも大きい場合、方法2200はブロック2215に進み、システムはいくつかの計量値を計算する。一例では、システムが相対距離の計量値、相対角度、計量値、6DoFのパッチ空間の計量値、およびパッチ領域の計量値を計算する。ブロック2220において、システムは、各計量値の標準偏差を決定することを含む、ある時間窓にわたって記憶された計算された計量値を分析する。ブロック2225で、システムは、分析された計量値が全体的な電磁歪みを示すかどうかを判定する。これは、各計量値を対応する閾値と比較すること、および標準偏差を対応する閾値と比較することを含む。比較の定足数が全体的な電磁歪みを示す場合、システムは、計量値が全体的な電磁歪みを示すと判定することができる。
【0129】
ブロック2230で、計量値が全体的な電磁歪みを示すと判定することに応答して、システムは、電磁歪みフラグおよび/または全体的な電磁歪みフラグを設定することを含み得る全体的な電磁歪みが発生したと判定する。この方法はブロック2235で終了する。システムは、全体的な電磁歪みの検出に応答して、いくつかの動作を実行することができることを理解されたい。いくつかの例示的な応答について、以下に説明する。
【0130】
(C.動き検出)
電磁データ基づく器具のナビゲーションおよび位置決めは、患者および電磁場発生器110のうちの1つ以上が移動される場合に、悪影響を受け得る。一般に、電磁場発生器110または患者の移動には2つのシナリオがある。第1のシナリオは、電磁場発生器110または患者を新しい位置に移動させることである。第2のシナリオは、電磁場発生器110または患者が衝撃力を受け(例えば、衝突され)、所定の位置で一時的な振動を受けた後に衝撃力を受ける前とほぼ同じ位置に戻ることである。患者または電磁場検出器110のいずれかの動きは、器具の動き、局所的な電磁歪み、および/または全体的な電磁歪みとして誤って認識され得るため、電磁場発生器110または患者の動きを検出することが望ましい。
【0131】
患者上の電磁パッチセンサ105間の相対距離は比較的安定しているので、電磁場発生器110または患者の移動によって、電磁パッチセンサ105の各々と電磁場発生器110との間の計算された絶対距離に変化が生じる。また、このような移動によって、電磁パッチセンサ105と電磁場発生器110との間の計算された絶対角度に変化が生じる。
【0132】
少なくとも1つの電磁パッチセンサ105が利用可能である場合、システムは、絶対位置の計量値および絶対角度の計量値を計算することができる。さらに、少なくとも3つの電磁パッチセンサ105が利用可能である場合、システムは式(8)~(10)を用いて説明したように、パッチ空間の6DoFの計量値を使用することができる。少なくとも1つの計量値の追加の例としては、磁界発生器に対する各電磁センサの絶対位置と、磁界発生器に対する電磁センサの絶対位置の二乗の和の根と、磁界発生器に対する各電磁センサの絶対角度と、磁界発生器に対する電磁センサの絶対角度の二乗和平方根と、電磁センサ生成される空間の位置および向きとが挙げられる。
【0133】
絶対位置の計量値は、電磁パッチセンサ105のいずれか1つと電磁場発生器110との間の絶対距離を表すことができる。絶対位置の計量値は、以下の式を使用して計算することができる。
【数11】
【0134】
ここで、Dabsは絶対位置の計量値であり、PxはX軸における電磁場発生器110に対する電磁パッチセンサ105の位置であり、PyはY軸における電磁場発生器110に対する電磁パッチセンサ105の位置であり、Pzは、Z軸における電磁場発生器110に対する電磁パッチセンサ105の位置である。
【0135】
絶対角度計量値は、電磁パッチセンサ105のうちの所与の1つと電磁場発生器110との間の絶対角度を表すことができる。絶対角度計量値は、以下の式を使用して計算することができる。
【数12】
【0136】
ここで、θabsは絶対角度の計量値であり、PRzは電磁パッチセンサP1のZ軸であり、FGRzは電磁場発生器110のZ軸である。
【0137】
電磁場発生器110および/または患者の動きは一時的であるので、電磁空間測定システムは、患者および/または電磁場発生器110が動いている期間を決定するように構成されてもよい。
【0138】
したがって、電磁追跡システムは、電磁パッチセンサによって生成された電磁センサ信号に基づいて、患者および/または電磁場発生器110の動きを検出することができる。例えば、システムは、1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値のベースライン値を計算することができる。少なくとも1つの計量値のベースライン値は、第1の時に対応し得る。一実施形態では第1の時が内視鏡を患者に挿入する前であってもよい(例えば、ベースライン計量値は術前計量値であってもよい)。しかしながら、動き検出のために、ベースライン値は計量値のための最近の安定した値であってもよい(例えば、計量値への変更は、ある期間の間、閾値未満である)。
【0139】
電磁追跡システムは、1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値の更新値を計算することができる。少なくとも1つの計量値の更新値は、第1の時の後の第2の時に対応し得る。次いで、システムは、計量値の更新値を計量値のベースライン値と比較することができる。更新値と計量値のベースライン値との間の差が閾値よりも大きい場合、システムは第1の時および第2の時を含む期間内に、患者および場発生器のうちの少なくとも1つが移動したと判定することができる。
【0140】
システムが、患者および電磁場発生器110のうちの1つが移動したと判定すると、システムは患者または電磁場発生器110のうちの1つがその姿勢を変化させた(例えば、新しい位置に移動した)かどうかを決定し得る。例えば、患者および磁場発生器のうちの少なくとも1つが移動したと判定することに応じて、システムは、第2の時に続いて、第3の時における電磁センサ位置決めの変化の周波数に対応する1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値の周波数値を計算することができる。次に、システムは、周波数値を閾値周波数値と比較することができる。周波数値が閾値周波数値よりも大きい場合、システムは、患者および磁場発生器のうちの少なくとも1つの姿勢が変化させたと判定することができる。
【0141】
また、電磁追跡システムは、患者および電磁場発生器110のうちの1つが衝撃力を受け、初期状態に戻るかどうかを判定することができる。例えば、システムは、患者および磁場発生器のうちの少なくとも1つが移動したと判定することに応じて、1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値の後続の値を計算することができる。少なくとも1つの計量値の後続の値は、第2の時の後の第3の時における電磁センサ位置決めに対応することができる。次に、システムは後続の値がベースライン値の誤差閾値内にあることに応じて、場発生器が衝撃力を受け、衝撃力を受けた後に初期状態に戻ったと判定することができる。
【0142】
後続の値を計算するための第3の時を選択する前に、システムは、少なくとも1つの計量値の間隔値が第3の時より前の時間間隔の間安定化したと判定し、少なくとも1つの計量値の間隔値が安定化したと判定することに応じて、第3の時を選択することができる。したがって、システムは患者または電磁場発生器110が新しい姿勢に移動したか、またはその初期姿勢に落ち着いたかを判定する前に、患者または電磁場発生器110が最終姿勢に落ち着いたことを判定することができる。
【0143】
一実施態様では、システムが時間間隔内の少なくとも1つの計量値の最大値および最小値に基づいて、患者または電磁場発生器110の姿勢が安定したと判定することができる。例えば、システムは時間間隔内の少なくとも1つの計量値の最大値および最小値を計算し、少なくとも1つの計量値の最大値と最小値との間の差を計算し、少なくとも1つの計量値の最大値と最小値との間の差が閾値差未満であることに応じて、少なくとも1つの計量値の間隔値が時間間隔の間安定したことを決定することができる。少なくとも1つの計量値に対する変更が閾値差分値未満であると判定された場合、システムは計量値の変更がノイズによるものであり、患者または電磁場発生器110の振動によるものではないと判定することができる。
【0144】
別の例では、システムが患者および磁場発生器のうちの少なくとも1つが移動したと判定することに応じて、1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値の後続の値を計算することができる。少なくとも1つの計量値の後続の値は、第2の時の後の第3の時における電磁センサ位置決めに対応することができる。次いで、システムは、後続の値がベースライン値の誤差閾値の外側にあることに応答して、患者および磁場発生器のうちの少なくとも1つがその姿勢を変化させたことを判定することができる。例えば、上述したように、計量値は、1つ以上の電磁パッチセンサ105の絶対位置または絶対角度であってもよい。絶対差または絶対角度のベースライン値が変更し、新しい値で安定している場合、これは、患者および電磁場発生器110のうちの少なくとも1つが移動し、新しい位置で安定していることを示す。
【0145】
図23は、患者および電磁場発生器のうちの1つが移動したことを決定する例示的な方法を示すフローチャートを示す。該ブロック2301から開始する。ブロック2305において、システムは、計算されたそれぞれの計量値についてベースライン計量値を決定する。これは、記憶から計量値のベースライン値を検索すること、または電磁パッチセンサ105から受信した電磁センサ信号に基づいてベースライン計量値を計算することを含む。ブロック2310において、システムは、ベースラインの計量値品質が閾値品質よりも大きいかどうかを判定する。ベースラインの計量値品質が閾値品質よりも大きくない場合、方法2300は終了し、より良好な品質のベースラインの計量値を収集することを試みることによって、方法2300を繰り返すことができる。
【0146】
ベースラインの計量値品質が閾値品質よりも大きい場合、方法2230はブロック2315に進み、システムはいくつかの計量値を計算する。一例では、システムが絶対差分の計量値、絶対角度の計量値、および6DoFのパッチ空間の計量値を計算する。ブロック
2320において、システムは、各計量値の標準偏差を決定することを含む、ある時間窓にわたって記憶された計算された計量値を分析する。ブロック2325において、システムは、分析された計量値が患者および電磁場発生器のうちの少なくとも1つが動いていること、あるいは患者および電磁場発生器のうちの少なくとも1つが衝撃力を受けたことを判定する。これには、各計量値を対応する閾値と比較すること、および標準偏差を対応する閾値と比較することが含まれる。定足数または何らかの閾値の比較結果が、患者および電磁場発生器のうちの少なくとも1つが移動していることを示す場合、方法はブロック2330に進む。定足数または何らかの閾値の比較結果が、患者および電磁場発生器のうちの少なくとも1つが衝撃力を受けたことを示す場合、方法2300はブロック2335に進む。
【0147】
ブロック2330で、計量値が患者および電磁場発生器のうちの少なくとも1つが移動されていることを示すと判定することに応じて、システムは、電磁歪みフラグおよび/または移動フラグを設定することができる。ブロック2330において、計量値が患者および電磁場発生器のうちの少なくとも1つが衝撃力を受けたと判定すると、システムは、電磁歪みフラグおよび/または衝撃力フラグを設定する。この方法はブロック2235で終了する。システムは、電磁場発生器の動きを検出したことに応じて、多数のアクションを行うことができる。いくつかの例示的な応答について、以下に説明する。
【0148】
(D.電磁歪みの検出に対する応答)
電磁追跡システムは、電磁歪みの検出に応じて、多数の手法のうち1つまたは複数を実行することができる。実行される特定の手法は、検出される電磁歪みの種類(例えば、局所的または全体的な電磁歪み、移動による歪みなど)、電磁歪みの大きさ、電磁歪みの位置などのうちの1つまたは複数によって変わる。
【0149】
一実施形態では、システムが、器具のナビゲーションおよび/または位置決めにおいて電磁データに対する重みを使用することを抑制あるいは制限することができる。電磁データの使用を抑制する場合は、システムによって実行されるナビゲーションおよび/またはローカライゼーションは、電磁歪みの発生時に他の種類のデータを用いることができる。具体的には、一実施形態では、システムが電磁歪みフラグが設定されたことを検出すると、電磁歪みフラグが設定された結果として、電磁位置ベースのアルゴリズムに対応する信頼値(または任意の他の適切な重み付け)を下げることによって、電磁センサ信号に基づいて器具の遠位端の位置を決定するために与えられる重みの使用を抑制あるいは制限する。種々の位置アルゴリズムに対する信頼値や重みの使用については、2016年9月16日に出願された米国特許出願第15/268,238号に記載されており、その内容全体は本明細書に援用される。
【0150】
いくつかの実施形態では電磁場が歪んでいると判定することに応答して、システムは歪みの量を計算することができる。電磁場歪みの量は、計算された計量値のうちの1つまたは複数の変化に比例する。この実施形態では、システムが第2の時に計算された1つまたは複数の更新値と、第2の時の前の第1の時に計算された1つまたは複数のベースライン値とに基づいて、電磁場内の歪みの量を計算することができる。システムは歪みの量の指示をエンコードし、エンコードされたデータを表示するように構成されたディスプレイに歪みの量のエンコードされた指示を提供することができる。これにより、分野歪み量をユーザに通知することができる。次いで、ユーザは、手術中に電磁データナビゲーションを使用するかどうかを決定することができる。
【0151】
特定の実施形態では、システムが歪みの量を使用して、ナビゲーションおよび/または位置決め方法で使用される電磁データの重みを変更することができる。システムは、電磁歪みが増加するにつれて、医療器具の遠位先端のための位置データ96を生成するときに
、電磁データにより低い重みを割り当てることができる。
【0152】
また、システムは、電磁場の歪みが閾値歪み値よりも大きい領域を決定することができる。例えば、相対距離の計量値は、電磁パッチセンサのうちの1つを取り囲む領域に電磁歪みが発生していることを判定するために使用されてもよい。すなわち、電磁パッチセンサP1と電磁パッチセンサP0およびP2の各々との間の相対距離が閾値を超えて変化したが、電磁パッチセンサP0およびP2間の相対距離が実質的に変化していない場合は、システムは、電磁パッチセンサP1に近い領域内の電磁場が歪んでいると判定することができる。
【0153】
電磁パッチセンサ105のうちの1つのセンサの近傍の電磁場が歪んでいると判定されたことに応じて、システムは識別された電磁パッチセンサ105から受信された電磁データに適用される重みを調整(例えば、低減)することができる。システムはまた、電磁場歪みが発生している領域をユーザに提示することができる。また、ユーザは、目標の位置が歪みが生じている領域内にあるかどうかに基づいて、電磁データを使用してナビゲーションを継続するかどうかを決定することができる。あるいは、システムは、電磁歪みの領域に対する器具の現在位置に基づいて、ナビゲーションのために電磁データを使用し続けるかどうかを自動的に決定してもよい。
【0154】
特定の実施形態では、システムはまた、患者の管腔ネットワークを表すモデルにアクセスし、(1)1つまたは複数のベースライン値および(2)1つまたは複数の更新値のうちの少なくとも1つに基づいて、電磁場の座標系とモデルの座標系との間のマッピングを計算することができる。システムはさらに、電磁場が歪んでいると判定することに応答してマッピングを計算する際に、1つまたは複数の更新値を使用することを抑制することができる。
【0155】
(E.位置合わせ)
ナビゲーションおよび/または位置決めのために電磁データを使用する手術手技を行う前に、患者を電磁場発生器110と位置合わせすることが望ましい。より正確には、電磁場発生器110を、手術手技が行われる患者の解剖学的特徴と整列させることが望ましい。そのような位置合わせ手順を実行することの1つの利点は、電磁場発生器110が電磁センサ磁場をより正確に測定することができる有効体積を有することができることである。すなわち、電磁センサ複数が有効体積の外側にある場合、電磁センサによって生成される電磁センサ信号が、ナビゲーションおよび/または位置決め、呼吸追跡、および/または電磁歪み検出には、十分に信頼性がない可能性がある。
【0156】
上記の通り、複数の電磁パッチセンサ105は、関心領域を取り囲む、または少なくとも部分的に重なる所定の位置で患者に配置されてもよい。関心領域は、外科的処置が行われる患者の解剖学的特徴であってもよい。解剖学的特徴の一例として、管腔ネットワーク140などの管腔ネットワークが挙げられる。電磁追跡システムは電磁パッチセンサ105が電磁場発生器110の有効体積内にあるように、電磁パッチセンサ105を患者のどこに配置するか、および電磁場発生器110をどこに配置するかについて、ユーザに指針を提供することができる。電磁パッチセンサ105が適切に位置決めされると、有効体積内での電磁パッチセンサの位置決めによって、患者の関心領域と電磁場発生器110との位置合わせが保証される。
【0157】
電磁場発生器110を患者と位置合わせするための例示的な手順を、気管支鏡検査手技に関連して説明する。ただし、この手技は、電磁データナビゲーションおよび/または位置決めに使用される、任意の種類のロボット支援手術手技向けに変更されてもよい。
【0158】
最初に、ユーザは、1つまたは複数の電磁パッチセンサ105を患者上に配置することができる。気管支鏡検査の場合、ユーザは電磁パッチセンサ105を、関心領域(例えば、患者の肺)を囲むように、または少なくとも部分的に重なるように配置する。システムが3つの電磁パッチセンサ105を有する場合、ユーザは第1の電磁パッチセンサを患者の胸骨中央に配置し、第2の電磁パッチセンサを患者の左横第8肋骨に配置し、第3の電磁パッチセンサを患者の右横第8肋骨に配置することができる。電磁パッチセンサ105の上述の配置は単に例示的なものであり、電磁パッチセンサ105は、関心領域に重なる他の位置に配置されてもよい。
【0159】
図24は、電磁パッチセンサ105が電磁場発生器の有効体積内に配置される例を示す。電磁場発生器110および電磁パッチセンサ105は、電磁パッチセンサ105が電磁場発生器110に対する電磁パッチセンサ105の位置を示す信号を生成するように、互いに対して位置合わせすることができる。この位置合わせには、少なくともいくつかの電磁パッチセンサ105が電磁場発生器110の有効体積内に配置されるように、場発生器105、電磁パッチセンサ105、および/またはテーブルのうちの1つまたは複数をユーザが配置することが含まれる。特定の実施形態では、電磁パッチセンサ105が配置された後、ユーザは電磁パッチセンサ105が電磁場発生器110の有効体積400内に配置されるように、電磁場発生器110を位置決めすることができる。
図24は上方から見たときの有効体積400を示しているが、有効体積400は電磁パッチセンサ105が位置合わせ中に配置される3次元体積を画定することができる。
【0160】
ユーザは、電磁場発生器110を、ベッドレールに取り付けるなど、ホルダに取り付けることができる。電磁追跡システムによって提供される指針を使用して、ユーザはすべての電磁パッチセンサ105が有効体積400内に配置されるように、電磁場発生器110を回転させることができる。ディスプレイを介して(例えば、タッチスクリーン26を介して)フィードバックを提供するために、電磁追跡システムは、電磁パッチセンサ105によって生成される1つまたは複数の電磁パッチセンサ信号に基づいて、電磁場発生器110に対する電磁パッチセンサ105の位置を特定することができる。システムは、電磁場の有効体積に対する電磁パッチセンサ105の位置の表現をエンコードすることができる。電磁パッチセンサ105の位置の表現のエンコードは、有効体積の表現に対して電磁パッチセンサ105の相対位置が表示される画像(またはビデオを形成するための一連の画像)を生成することを含むことができる。このエンコードには、画像がディスプレイによってデコードされて表示されるように、画像またはビデオコーデックを使用して画像(またはビデオ)をエンコードすることがさらに含まれてよい。システムは、エンコードされたデータを表示するディスプレイに位置のエンコードされた表現を提供することができる。
【0161】
ユーザは電磁パッチセンサ105が有効体積内に配置されるように、電磁場発生器110を回転させる際にディスプレイによって提供される視覚フィードバックを使用することができる。電磁パッチセンサ105が電磁場発生器110と回転的に整列されると、ユーザは電磁パッチセンサ105が視覚的に表示された有効体積によって規定される電磁場発生器110から所定の距離内にあるように、場発生器を電磁パッチセンサ105により近くに位置決めすることができる。
図24を参照すると、有効体積は、好ましいサブ体積405、許容可能なサブ体積410、およびリスクのあるサブ体積415を定義することができる複数のサブ体積を含むことができる。電磁場の強度は、電磁場発生器110からより離れたところで減衰することがあるので、電磁パッチセンサ105を、リスクのある415のサブ体積よりも好ましいサブ体積405または許容可能なサブ体積410内に配置することが望ましいことがある。
【0162】
図25A~
図25Dは、本件開示の側面による医療手技のための電磁場発生器および/または電磁パッチセンサの設定および位置合わせ手技時にディスプレイによってユーザに
提供される視覚フィードバックの例を示す。具体的には、
図25Aは、電磁場発生器2501(例えば、
図16の電磁場発生器110)を設定するための命令2505と、1つまたは複数の患者センサ2507(例えば、1つまたは複数の電磁パッチセンサ)を設定するための命令2510とを含む例示的なビュー2500を含む。ビュー2500の図に示すように、命令2505には、電磁場発生器2501をタワー2503(例えば、
図1の可動タワー30)に差し込むことが含まれてよい。また、命令2510には、患者センサ2507をタワー2503に差し込むことが含まれてよい。命令の他に、ビュー2500は、電磁場発生器2501および患者センサ2507をタワー2503に差し込むことができるタワー2503内の位置のグラフィック表現を含むことができる。
図25Aの例に示すように、命令2505、2510はグラフィック/図の要素やテキスト要素の両方を含むことができるが、他の例では、命令をグラフィック/図の要素およびテキスト構成要素のうちの1つとしてもよく、(グラフィックおよび/またはテキスト要素に加えて、またはその代わりに)音声による命令が含まれてもよい。
【0163】
図25Bに示すビュー2515では、手技において、次に、患者上に患者センサ2507を配置するための命令2520および2525が表示される。図示の例では、患者センサ2507が「M」とマークされた第1のセンサ、「L」とマークされた第2のセンサ、および「R」とマークされた第3のセンサを含むことができ、ビュー2515に含まれる命令2520は「M」とマークされた患者センサを例えば患者の胸骨切痕に配置するための命令2520と、「L」と「R」とマークされた患者センサを例えば患者の左右の第8肋骨に位置する中間補助線に沿って配置するための命令2525とを含むことができる。ビュー2515は、患者センサ2507を基準身体2521上に配置するためのおおよその位置を示す、付随して表示される説明をさらに含むことができる。
【0164】
図25Cでは、ビュー2530が電磁場発生器2501を、例えば、患者の身体に対して目標部位と同じ側の中央胸部に隣接して配置するようユーザに指示する命令2535を含むことができる。ビュー2530には、患者を示す基準身体2521に対して電磁場発生器2501を配置すべき位置に関する説明を含めることができる。図の例においては、電磁場発生器2501の有効体積2540の表示がさらに含まれてもよい。
【0165】
図25Dは例えば、電磁場発生器2501の有効体積2540に対する、患者センサ2507の位置に関するリアルタイム情報又はフィードバックを含むビュー2545を示す。
図25Dのビュー2545は、
図24を参照しながら説明した例の1つの実装である。システムは「M」、「L」および「R」とマークされた患者センサの各々の位置を決定し、有効体積2540の上面
図2541および有効体積2540の側面
図2543に対するセンサの位置を表示することができる。ビュー2545において、「M」とマークされたセンサは(上面
図2541および側面
図2543の両方から見て)有効体積2540内の好ましいサブ体積内に位置することができ、一方、「R」とマークされたセンサは有効体積2540内の許容可能なサブ体積内に位置することができる。「L」とマークされたセンサは有効体積240の上面
図2541の外側に位置し、表示すべき作業ボリューム2540の側面
図2543から離れすぎているため、「L」および/または「R」とマークされたセンサを再配置する必要性を示すことができる。このようにして、ユーザは、フィードバックとしてビュー2545内の情報を基に、センサ「L」が有効体積2540内の少なくとも許容可能なサブ体積内に位置するように、センサ「L」の位置を調整することができる。
【0166】
少なくとも1つの実施態様では、システムが磁場発生器の第1および第2のサブ体積のそれぞれに対する電磁パッチセンサ105の位置の表現をエンコードすることができる。第2のサブ体積は第1のサブ体積よりも大きく、第1のサブ体積を包囲し、したがって、少なくとも1つの実施形態では、第2のサブ体積がリスクのある415のサブ体積とすることができる。システムは第1および第2のサブ体積のそれぞれに対する電磁パッチセンサ105の位置のエンコード表現をディスプレイに提供することができ、その結果、ユーザは、電磁場発生器110を移動させることによって、電磁パッチセンサ105を第1のサブ体積内に再配置することができる。
【0167】
他の実装形態では、第1および第2のサブ体積が好ましいサブ体積405および許容可能なサブ体積410に対応することができる。これらの実施形態では、システムが、電磁パッチセンサ105が第1および第2のサブ体積のうちの少なくとも1つのサブ体積内に配置されるように電磁場発生器110を位置決めするユーザ命令をエンコードして、エンコードしたユーザ命令をディスプレイに提供することができる。
【0168】
ユーザはすべての電磁パッチセンサ105が有効体積内に入るまで、電磁場発生器110の回転を繰り返し、電磁場発生器110の距離を調整することができる。その後、ユーザは、手術に備えて電磁場発生器110の位置をロックすることができる。
【0169】
いくつかの実施形態では、電磁パッチセンサ105のすべてを有効体積内に配置することは不可能な場合がある。例えば、電磁場発生器110は、関心領域が広い患者のための電磁パッチセンサ105のすべてを包含するのに十分な大きさの有効体積を生成できないことがある。このような実施形態では、システムは、規定数の電磁センサが第1の有効体積内に配置されるように場発生器を位置決めするユーザ命令をエンコードして、エンコードした命令をディスプレイに提供することができる。例えば、3つの電磁パッチセンサ105が使用される場合、システムは少なくとも2つの電磁パッチセンサ105が有効体積内に配置されるように、ユーザへの命令をエンコードすることができる。
【0170】
一実施形態では、システムが(1)電磁センサの第1のセンサを患者の胸骨中央上に、(2)電磁センサの第2のセンサを患者の左横第8肋骨上に、(3)電磁センサの第3のセンサを患者の左横第8肋骨上に配置するユーザ命令をエンコードすることができる。したがって、電磁場生成110の位置決めの前に、システムは、電磁パッチセンサ105を配置するための指示をユーザに提供することができる。システムは、患者上の第1~第3の電磁センサを配置するエンコードされたユーザ命令をディスプレイに提供することができる。
【0171】
別の実施形態では、システムが例えばタッチスクリーン26を介して、第2および第3の電磁センサを有効体積に配置することができないという入力をユーザから受診するように構成することができる。この入力に応じて、システムは、第2および第3の電磁センサのいずれかをその現在位置のよりも磁場発生器に近い位置に再配置するユーザ命令をエンコードすることができる。例えば、この命令は、第2の電磁パッチセンサを患者の左横第6肋骨上に再配置する命令をエンコードすることである。システムは、第2および第3の電磁センサを再配置するエンコードされたユーザ命令をディスプレイに提供することができる。
【0172】
磁場発生器を患者の解剖学的構造と位置合わせするための技術的特徴に関連する上述のシステムのいくつかの実施形態は、多くの利点を有する。例えば、磁界発生器の配置および位置合わせに関するフィードバックをユーザに提供することにより、システムの設定を単純化することができる。このように単純化された設定により、システムが適切な位置合わせを行っているかどうかの判断に伴うユーザの負荷を軽減することができる。また、位置合わせのフィードバックにより、より正確な読み取りがもたらされ、その結果、ナビゲーションおよび/または位置決めシステムにより好適な入力を提供することができる。
【0173】
(E.電磁追跡システムおよびフローチャート例)
図26は、本件開示の様々な側面を実現する電磁追跡システムの一例を示すブロック図を示す。電磁追跡システム2600は、1つまたは複数の電磁センサ2603、プロセッ
サ2610、およびメモリ2615を有する。1つまたは複数の電磁センサ2603は、パッチセンサ105および/または電磁器具センサ305として実現されてもよい。電磁追跡システム2600は、タワー30、コンソール16、電磁場発生器110、および/または環境100内の任意の他の構成要素のうちの1つ以上に組み込まれてもよい。さらに、電磁追跡システム2600は、
図20~24または
図27、28を参照しながら説明した方法および/または手法の1つまたは複数を実行するように構成されてもよい。
【0174】
図27は、本開示の態様による、EM歪みを検出するための、電磁追跡システム2600またはその構成要素によって動作可能な例示的な方法を示すフローチャートである。例えば、
図27に示す方法2700のステップは、電磁追跡システム2600のプロセッサ2610によって実行することができる。ここでは、方法2700は、電磁追跡システム2600のプロセッサ2610によって実行されるものとして説明する。
【0175】
方法2700は、ブロック2701から開始する。ブロック2705において、プロセッサ2610は、第1の時における第1の電磁センサ位置を示す1つまたは複数の計量値の1つまたは複数のベースライン値を計算する。1つまたは複数のベースライン値の計算は、第1の時に対応する1つまたは複数の電磁センサ信号の第1のセットから受信された電磁センサ信号に基づく。さらに、第1の電磁センサは、電磁場の検出に応じて、第1のセットの1つまたは複数の電磁センサ信号を生成する。ブロック2710において、プロセッサ2610は、第1の時の後の期間内に1つまたは複数の計量値の1つまたは複数の更新値を計算する。1つまたは複数の更新値の計算は、第1の時の後の期間に対応する第1のセットの1つまたは複数の電磁センサ信号に基づく。
【0176】
ブロック2715において、プロセッサ2610は、1つまたは複数の更新値と1つまたは複数のベースライン値との間の差が閾値よりも大きいことについて判定する。ブロック2720において、プロセッサ2610は、この差が閾値よりも大きいことから、電磁場に歪みが生じていると判定する。方法2700はブロック2725で終了する。
【0177】
図28は、本開示の側面による、電磁歪みを検出するための、EM追跡システム2600またはその構成要素によって動作可能な別の例示的な方法を示すフローチャートである。例えば、
図28に示す方法2800のステップは、電磁追跡システム2600のプロセッサ2610によって実行することができる。ここでは、方法2800は、電磁追跡システム2600のプロセッサ2610によって実行されるものとして説明する。
【0178】
方法2800は、ブロック2801から開始する。ブロック2805において、プロセッサ2610は、第1の期間における器具の遠位端の速度を示す1つ以上の計量値の1つ以上のベースライン値を計算する。1つ以上のベースライン値の計算は、第1の時に対応する1つ以上の電磁センサ信号から受信された電磁センサ信号に基づいてもよい。器具は、器具の遠位端に配置された電磁センサを有してもよい。電磁センサは、電磁場の検出に応じて、1つ以上の電磁センサ信号を生成してもよい。
【0179】
ブロック2810において、プロセッサ2610は、第1の時の後の期間内に1つまたは複数の計量値の1つまたは複数の更新値を計算する。1つまたは複数の更新値の計算は、第1の時の後の期間に対応する1つまたは複数の電磁センサ信号に基づく。ブロック2815において、プロセッサ2610は、1つまたは複数の更新値と1つまたは複数のベースライン値との間の差が閾値よりも大きいことについて判定する。ブロック2820において、プロセッサ2610は、差が閾値よりも大きいことから、電磁場に歪みが生じていると判定する。方法2800はブロック2825で終了する。
【0180】
図29は、本件開示の側面による、磁場発生器によって生成された電磁場内での電磁セ
ンサ位置決めを容易にするための、電磁追跡システム2600またはその構成要素によって動作可能なさらに別の例示的な方法を示すフローチャートである。例えば、
図29に示す方法2900のステップは、電磁追跡システム2600のプロセッサ2610によって実行することができる。ここでは、方法2900は、電磁追跡システム2600のプロセッサ2610によって実行されるものとして説明する。
【0181】
方法2900は、ブロック2901から開始する。1つまたは複数の電磁センサ信号に基づいて、磁界発生器に対する電磁センサの位置を特定する。電磁センサは、電磁場の有効体積内に配置されたときに、電磁場の検出に基づいて1つまたは複数の電磁センサ信号を生成してもよい。さらに、電磁センサは、患者に配置して使用するように構成することができる。ブロック2910において、プロセッサ2610は、電磁場の有効体積に対する電磁センサの位置の表現を暗号化する。ブロック2915において、プロセッサ2610は、暗号化されたデータを表示するディスプレイに、暗号化された位置の表現を提供する。方法2900はブロック2920で終了する。
【0182】
図30は、本件開示の側面による、患者または電磁場発生器のうちの少なくとも1つの動きを検出するための、電磁追跡システム2600またはその構成要素によって動作可能なさらに別の例示的な方法を示すフローチャートである。例えば、
図30に示される方法3000のステップは、電磁追跡システム2600のプロセッサ2610によって実行することができる。ここでは、方法3000は、電磁追跡システム2600のプロセッサ2610によって実行されるものとして説明する。
【0183】
方法3000は、ブロック3001から開始する。ブロック3005において、プロセッサ2610は、電磁センサから生成された1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値のベースライン値を計算する。少なくとも1つの計量値のベースライン値は、第1の時における電磁センサ位置決めに対応する。電磁センサは、電磁場の検出に応じて1つ以上の電磁センサ信号を生成してもよい。電磁センサ、患者に配置して使用するように構成することができる。ブロック3010において、プロセッサ2610は、1つまたは複数の電磁センサ信号に基づいて、少なくとも1つの計量値の更新値を計算する。少なくとも1つの計量値の更新値は、第2の時における電磁センサの位置決めに対応する。ブロック3015において、プロセッサ2610は、ベースライン値および更新値に基づいて、患者および場発生器のうちの少なくとも1つが、第1の時および第2の時を含む期間内に移動したと判定する。方法3000はブロック3020で終了する。
【0184】
(システムの実装および用語)
本明細書に開示される実施形態は、電磁歪みを検出するためのシステム、方法、および装置を提供する。
【0185】
本明細書で使用される用語「結合する」、「結合する」、「結合される」、または単語対の他の変更は間接接続または直接接続のいずれかを示すことができ、例えば、第1の構成要素が第2の構成要素に「結合される」場合、第1の構成要素は、別の構成要素を介して第2の構成要素に間接的に接続されるか、または第2の構成要素に直接接続されることができることに留意されたい。
【0186】
本明細書で説明する特徴類似度計算、位置推定、およびロボット動作作動機能は、プロセッサ可読媒体またはコンピュータ可読媒体上に1つまたは複数の命令として格納することができる。用語「コンピュータ可読媒体」は、コンピュータまたはプロセッサによってアクセスされ得る任意の利用可能な媒体を指す。限定ではなく例として、そのような媒体は、RAM(ランダムアクセスメモリ)、ROM(リードオンリメモリ)、EEPROM(
電気的消去可能プログラマブルリードオンリメモリ)、フラッシュメモリ、CD-ROM
(コンパクトディスクリードオンリ)または他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは命令またはデータ構造の様式で所望のプログラムコードを格納するために使用され得、コンピュータによってアクセスされ得る任意の他の媒体を備えることができる。コンピュータ可読媒体は、有形かつ非一時的であり得ることに留意されたい。本明細書で使用されるように、用語「コード」は、計算装置またはプロセッサによって実行可能なソフトウェア、命令、コード、またはデータを指すことができる。
【0187】
本明細書で開示される方法は、説明される方法を達成するための1つまたは複数のステップまたはアクションを備える。方法のステップおよび/またはアクションは、代替形態の範囲から逸脱することなく、互いに交換することができる。言い換えれば、ステップまたはアクションの特定の命令が説明されている方法の適切な動作のために必要とされない限り、特定のステップおよび/またはアクションの命令および/または使用は、代替の範囲から逸脱することなく修正され得る。
【0188】
本明細書で使用される場合、用語「複数」は2つ以上を意味する。例えば、複数の構成要素は2つ以上の構成要素を示す。用語「特定すること」が多種多様なアクションを包含し、したがって、「特定すること」は計算すること、計算すること、処理すること、導出すること、調査すること、参照すること(例えば、表、データベース、または別のデータ構造を参照すること)、確認することなどを含むことができ、「特定すること」は受信すること(例えば、情報を受信すること)、アクセスすること(例えば、メモリ内のデータにアクセスすること)などを含むことができる。また、「特定すること」は、解決すること、選択すること、選ぶこと、確立することなどを含むことができる。
【0189】
「に基づく」という語句は特に断らない限り、「のみに基づく」という意味ではない。言い換えれば、「に基づく」という語句は、「のみに基づく」および「少なくともに基づく」の両方を表す。
【0190】
開示された実施形態の上記の説明は、当業者が本開示を実現または使用することを可能にするために提供される。これらの実装に対する様々な修正は当業者には容易に明らかであり、本明細書で定義される一般的な原理は、本開示の範囲から逸脱することなく、他の実装に適用することができる。例えば、当業者は、工具構成要素を固定、取り付け、連結、または係合する等価な方法、特定の作動運動を生成するための等価な機構、および電気エネルギーを送達するための等価な機構などの、いくつかの対応する代替的および等価な構造的詳細を採用することができることが理解されるのであろう。したがって、本開示は、本明細書に示される実装に限定されることを意図するものではなく、本明細書に開示される原理および新規な特徴と一致する最も広い範囲を与えられるべきである。