(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-21
(45)【発行日】2023-07-31
(54)【発明の名称】レンズ固定部および光学系におけるシリンドリカルレンズの位置合わせ方法
(51)【国際特許分類】
G02B 7/02 20210101AFI20230724BHJP
G02B 3/06 20060101ALI20230724BHJP
【FI】
G02B7/02 B
G02B3/06
G02B7/02 C
(21)【出願番号】P 2021542062
(86)(22)【出願日】2019-09-27
(86)【国際出願番号】 US2019053337
(87)【国際公開番号】W WO2020072284
(87)【国際公開日】2020-04-09
【審査請求日】2022-09-21
(32)【優先日】2018-10-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100123652
【氏名又は名称】坂野 博行
(74)【代理人】
【識別番号】100175042
【氏名又は名称】高橋 秀明
(72)【発明者】
【氏名】ダン,マイケル モーガン
(72)【発明者】
【氏名】マギエルスキ,ケヴィン ジョン
(72)【発明者】
【氏名】マクマスター,ブライアン モンロー
(72)【発明者】
【氏名】ミハロスキ,ポール フランシス
(72)【発明者】
【氏名】スポールディング,ダンカン クリストファー
【審査官】藏田 敦之
(56)【参考文献】
【文献】特開平03-274514(JP,A)
【文献】特開平04-178668(JP,A)
【文献】特開2016-151706(JP,A)
【文献】特開2004-045701(JP,A)
【文献】特開平08-234123(JP,A)
【文献】米国特許出願公開第2003/0147595(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 7/02
G02B 3/06
G02B 6/26
(57)【特許請求の範囲】
【請求項1】
レンズアセンブリの形成方法において、
シリンドリカルレンズを、相互接続面を有するレンズ固定部に調節自在に取り付ける工程と、
前記相互接続面を支持構造物の基準面と相互接続させる工程であって、前記シリンドリカルレンズは、光ビームに対して前向きおよび後向きに配置しうるものであり、前記基準面は、基準方向を画定するものである工程と、
前記前向きおよび後向きについて、前記シリンドリカルレンズによって形成された第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
前記第1および第2の線画像の相対的向きを確立する工程と、
前記第1および第2の線画像の前記確立された相対的向きを用いて、前記シリンドリカルレンズの前記基準方向に対する角ずれ量を特定する工程と、
前記シリンドリカルレンズを前記レンズ固定部に対して回転させて、前記角ずれ量を削減する工程と
を含む方法。
【請求項2】
前記相対的向きを確立する工程は、前記第1および第2の線画像を二分する線を特定する工程を含むものである、請求項1に記載の方法。
【請求項3】
前記シリンドリカルレンズは、負の光学パワーを有し、前記光ビームは、収束光ビームを含むものである、請求項1または2に記載の方法。
【請求項4】
前記シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである、請求項1または2に記載の方法。
【請求項5】
前記シリンドリカルレンズは、負の光学パワーを有するものであり、前記第1および第2の焦線を、収束光ビームを該シリンドリカルレンズを通って向けることによって形成する工程を、
更に含む、請求項1または2に記載の方法。
【請求項6】
シリンドリカルレンズが調節自在に取り付けられるレンズ固定部に対する前記シリンドリカルレンズの回転位置の測定方法において、
前記レンズ固定部を、前記シリンドリカルレンズが前向き、および、後向きに配置される各第1および第2の測定位置で基準特徴物と相互接続させる工程と、
各第1および第2の測定位置について、第1および第2の焦線を形成して、前記第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
前記第1および第2の線画像の相対的向きを確立する工程と、
前記確立された相対的向きを用いて、前記シリンドリカルレンズの前記レンズ固定部に対する回転位置を特定する工程と
を含む方法。
【請求項7】
前記第1および第2の線画像の前記相対的向きを確立する工程は、該第1および第2の線画像を二分する二分線を画定する工程を含むものである、請求項6に記載の方法。
【請求項8】
前記シリンドリカルレンズを前記レンズ固定部に対して回転させて、前記回転位置を1ミリラジアンである回転位置許容範囲内に調節する工程を、
更に含む、請求項6または7に記載の方法。
【請求項9】
前記シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである、請求項6から8のいずれか1項に記載の方法。
【請求項10】
前記シリンドリカルレンズは、負の光学パワーを有するものであり、前記第1および第2の焦線を、収束光ビームを該シリンドリカルレンズを通って向けることによって形成する工程を、
更に含む、請求項6から8のいずれか1項に記載の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本願は、2018年10月1日出願の米国仮特許出願第62/739,611号の優先権の利益を主張し、その内容は依拠され、全体として参照により本明細書に組み込まれる。
【技術分野】
【0002】
本開示は、光学要素の位置合わせに関し、特に、レンズ固定部においてシリンドリカルレンズを位置合わせしてレンズアセンブリを形成する方法、および、光学系におけるレンズアセンブリの採用方法に関する。
【背景技術】
【0003】
シリンドリカルレンズは、第1の平面で光学パワーを有し、第1の平面と直交する第2の平面で光学パワーを有さない(または、実質的に低い光学パワーを有する)屈折光学要素である。シリンドリカルレンズは、主に一方向に延伸する画像の形成に用いられることが多く、例えば、光の線である焦線が、シリンドリカルレンズの焦点で形成される。これは、第1の平面のみで(または、主に第1の平面で)作用する光学パワーが、光を直交する平面で集光または拡大するためである。シリンドリカルレンズは、非対称な光出射パターンを有する光源から発せられた光ビームを再形成するのにも用いられる。シリンドリカルレンズは、CDプレーヤーから光学系を走査する複雑な半導体検査器具までのオートフォーカスシステムでも使用される。
【0004】
シリンドリカルレンズの光学パワーは回転対称ではないので、シリンドリカルレンズを、光学アセンブリに、選択した回転(方位角)方向で、選択した回転(方位角)位置合わせ許容範囲となるように配置しなくてはならない。これは、公称で回転対称であり、回転方向が、球面レンズが位置する光学系の撮像性能に実質的に影響しない球面レンズと対照的である。
【0005】
シリンドリカルレンズを含む高精密光学系について、シリンドリカルレンズの回転向きについての許容範囲は、適切な光学性能を確実にするために非常に厳しいことがありうる。十分に長い半径の円筒面について(つまり、光学パワーが比較的弱い場合に)、レンズの向きの測定に用いられる標準的接触型測定(例えば、機械的プロービング)は、十分に正確ではない。実際、特注シリンドリカルレンズの多数の製造会社は、シリンドリカルレンズの回転方向位置合わせを、高性能光学系に関連する比較的厳しい許容範囲(例えば、5ミリラジアンまたは3ミリラジアン、若しくは、いくつかの場合には、2ミリラジアンまたは1ミリラジアン)の機械的データまで保証することが不可能である。
【発明の概要】
【発明が解決しようとする課題】
【0006】
シリンドリカルレンズを用いた、ある種の高性能光学系について、シリンドリカルレンズの位置合わせ誤差が、そのような許容範囲を超えた場合、重大な光学性能の問題につながりうる。
【課題を解決するための手段】
【0007】
本開示の実施形態は、形成方法に関する。その方法は、シリンドリカルレンズを、相互接続面を有するレンズ固定部に調節自在に取り付ける工程と、相互接続面を支持構造物の基準面と相互接続させる工程であって、シリンドリカルレンズは、光ビームに対して前向きおよび後向きに配置しうるものであり、基準面は、基準方向を画定するものである工程と、前向きおよび後向きについて、シリンドリカルレンズによって形成された第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、第1および第2の線画像の相対的向きを確立する工程と、第1および第2の線画像の確立された相対的向きを用いて、シリンドリカルレンズの基準方向に対する角ずれ量を特定する工程と、シリンドリカルレンズをレンズ固定部に対して回転させて、角ずれ量を削減して、選択した角度位置合わせ許容範囲内にする工程とを含む。
【0008】
本開示の他の態様は、シリンドリカルレンズが調節自在に取り付けられるレンズ固定部に対するシリンドリカルレンズの回転位置の測定方法に関する。その方法は、レンズ固定部を、シリンドリカルレンズが前向き、および、後向きに配置される各第1および第2の測定位置で基準特徴物と相互接続させる工程と、各第1および第2の測定位置について、第1および第2の焦線を形成して、第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、第1および第2の線画像の相対的向きを確立する工程と、
確立された相対的向きを用いて、シリンドリカルレンズのレンズ固定部に対する回転位置を特定する工程とを含む。
【発明の効果】
【0009】
本明細書に開示の位置合わせ方法は、既存の位置合わせシステムおよび方法と比べて利点を有する。
【0010】
第1の利点は、方法が自己参照型であることで、レンズアセンブリにおいて、シリンドリカルレンズの位置合わせが一旦確立すると、次に、レンズアセンブリを、位置合わせされた構成で、光学系に直接追加しうることである。
【0011】
第2の利点は、比較的弱い、例えば、1500mm以上、または、2000mm以上、または、2500以上の焦点距離を有するシリンドリカルレンズに当てはまる。そのようなレンズは、非常に小さい面湾曲を有するので、機械的接触測定技術を用いて、十分な精度で測定を行うのが難しい。例えば、本明細書に開示のシステムおよび方法は、1ミリラジアンより優れた位置合わせを提供しうる。
【0012】
第3の利点は、測定が非接触で行われるので、シリンドリカルレンズの光学面を破損する危険がないことである。
【0013】
第4の利点は、測定は測定するシリンドリカルレンズの屈折特性に依存するので、シリンドリカルレンズがプロービング法で確かに測定しうるものより小さいサジッタを有することが問題とならないことである。
【0014】
第5の利点は、システムおよび方法は、光学アセンブリ製造会社が、シリンドリカルレンズのレンズアセンブリ上の基準特徴物に対する角度向き許容範囲を緩く特定することが可能になることである。これは、次に、光学アセンブリのコストを削減しうる。
【0015】
更なる特徴および利点を、以下の詳細な記載に示し、それは、部分的には、当業者には記載から明らかであるか、詳細な記載、請求項、および、添付の図面に示した実施形態を実施することで分かるだろう。ここまでの概略的記載、および、以下の詳細な記載の両方が例示に過ぎず、請求項の本質および特徴を理解するための概観または枠組みを提供することを意図すると理解すべきである。
【0016】
添付の図面は、更なる理解のために含められ、本明細書に組み込まれ、その一部を構成する。図面は、1つ以上の実施形態を示し、詳細な記載と共に、様々な実施形態の原理および動作を説明する役割を果たす。したがって、本開示は、以下の詳細な記載を添付の図面と共に読むことで、より完全に理解される。
【図面の簡単な説明】
【0017】
【
図1A】例示的な平凹レンズの立面図であり、シリンドリカルレンズの凹状湾曲はy-z平面におけるものである。
【
図1B】例示的な平凹レンズの側面図であり、シリンドリカルレンズの凹状湾曲はy-z平面におけるものである。
【
図1C】
図1Aと同様であり、レンズ軸(LZ)を中心に、x-y平面で測定した基準y方向に対する方位角である量φで回転したシリンドリカルレンズを示している。
【
図2】シリンドリカルレンズを動作自在に支持してレンズアセンブリを形成するのに用いられる例示的なレンズ固定部の側面図であり、更に、レンズアセンブリを形成する時にシリンドリカルレンズをレンズ固定部内で位置合わせするための機械的基準データを提供するレンズ固定部の例示的な支持構造物も示している。
【
図3A】レンズアセンブリの一部の前面図であり、レンズ固定部によって、完璧な回転方向位置合わせで、つまり、方位角回転がない状態(φ=0)で支持したシリンドリカルレンズを示している。
【
図3B】
図3Aと同様であるが、回転方向の位置ずれ(φ≠0)を有するシリンドリカルレンズを示している。
【
図4A】機械的測定データに対するレンズ固定部におけるシリンドリカルレンズの回転向き(位置)の測定に用いられる測定光学系の概略図である。
【
図4B】
図4Aと同様であり、2つの焦線の1つで第1の線画像を測定する第1の動作自在向きで、測定システムに動作自在に配置されたレンズアセンブリを示している。
【
図4C】
図4Bと同様であるが、
図4Bの前向きで用いられたのと同じ焦線で第2の線画像を測定する、第1の動作自在向きと反対の第2の動作自在向きのレンズアセンブリを示している。
【
図5A】測定光学系の画像センサによって撮像した実際の第1の線画像を示している。
【
図5B】測定光学系の画像センサによって撮像した実際の第2の線画像を示している。
【
図6A】2つの測定構成について、測定光学系の画像センサによって撮像した第1の合焦位置での第1の線画像を概略的に示し、制御部が、基準座標系のx軸に対応する二分線の形態の基準特徴物をいかに特定するかを示している。
【
図6B】
図6Aと同様であるが、2つの測定構成について、第2の合焦位置での第2の線画像を示している。
【
図7】レンズアセンブリを形成するのに用いうる例示的なレンズ固定部の前面図であり、レンズ固定部は、シリンドリカルレンズをレンズ固定部内で回転方向および平行移動方向に調節することを考慮した撓み部および調節ねじを備えて構成されている。
【
図8A】
図4Bと同様であり、レンズ固定部に対する正のシリンドリカルレンズの角度位置の
図4Aの測定光学系を用いた測定例を示している。
【
図8B】
図4Cと同様であり、レンズ固定部に対する正のシリンドリカルレンズの角度位置の
図4Aの測定光学系を用いた測定例を示している。
【
図9A】シリンドリカルレンズ要素を用いた例示的な走査光学系の概略図である。
【
図9B】レンズアセンブリが走査光学系内で位置合わせされるようにレンズアセンブリが鏡筒の支持構造物といかに相互接続されるかを示す第1の鏡筒の拡大図である。
【
図9C】レンズアセンブリが走査光学系内で位置合わせされるようにレンズアセンブリが鏡筒の支持構造物といかに相互接続されるかを示す第1の鏡筒の拡大図である。
【発明を実施するための形態】
【0018】
ここで、本開示の様々な実施形態を詳細に記載し、例を添付の図面に示している。全図を通して、同じ、または、類似の部分を称するには、可能な限り、同じ、または、類似の参照番号および符号を用いている。図面は、必ずしも縮尺どおりではなく、当業者には、本開示の主要な態様を示すために図面を簡略した場合が分かるだろう。
【0019】
後述する請求項は、この詳細な記載に組み込まれ、その一部を構成する。
【0020】
図面のいくつかでデカルト座標を参照のために示しているが、方向も向きも限定することを意図しない。
【0021】
垂直、水平、上、下、上部、底部などの用語は、説明を容易にし、参照のために用いた相対的な用語であり、方向、向き、位置などを限定することを意図しない。
【0022】
「シリンドリカルレンズ」という用語は、少なくとも1つの円筒面を有し、更に、球状面または任意の他の種類の形状面も有しうるものを称し、その場合、シリンドリカルレンズは、特定の種類またはクラスのアナモルフィックレンズと考えうる。円筒面も、サドル状面を形成する面内に球面形状を有しうる。シリンドリカルレンズは、単一のレンズ要素であるか、シリンドリカルレンズを群として含む多数のレンズ要素または光学要素を含みうる。平凸状、平凹状、正のメニスカス、負のメニスカスなど、様々な種類のシリンドリカルレンズ形状を用いうる。曲面形状は、球面に限定されず、非球面でありうる。以下の記載および図面において、記載および図示を容易にするために、シリンドリカルレンズを、第1の円筒面および第2の平坦な(平)面を有する単一のレンズ要素として示している。
【0023】
「焦線」という用語を用いて、シリンドリカルレンズが平行光を合焦させる時に、シリンドリカルレンズによって形成される現実(つまり、仮想ではない)光分布を記載し、仮想焦線に対する現実焦線も同様である。
【0024】
「線画像」という用語を用いて、画像センサによって撮像し、電気的(例えば、デジタル)画像信号として具現化された焦線の画像を記載し、それは、任意で、表示部に表示される。
【0025】
「精密面」という用語を平面に用いた場合、平滑な面仕上げを有し、高いレベルの平坦性を有する面であり、精密研削機、研磨機などの精密仕上げ器具を用いて実現しうる表面を意味する。
【0026】
本明細書で用いるように頭文字を取ったUVは、「紫外線」を意味する。
【0027】
頭文字を取ったCMOSは、「相補型金属酸化膜半導体」を意味する。
【0028】
頭文字を取ったCCDは、「電荷結合素子」を意味する。
【0029】
「動作自在方向」および「動作自在向き」という用語を用いて、線画像を形成するための光ビームに対するシリンドリカルレンズの2つの概略的許容位置の1つを称する。前面および後面を有し、光源によって形成された光ビーム内に配置されたシリンドリカルレンズについて、シリンドリカルレンズが中心レンズ軸に対して略直角に配置された状態で、動作自在方向または動作自在向きは、シリンドリカルレンズの前面が光源から離れるように向く場合、または、光源に向く場合のいずれかと定義される。したがって、シリンドリカルレンズの2つの動作自在方向を、前方および後方、若しくは、前向き、および、後向きと称しうる。後述する方法において、シリンドリカルレンズの方向または向きは、光ビーム内で前向きから後向きへ裏返されるか、逆にされて、2つの測定条件を確立しうる。
【0030】
シリンドリカルレンズ
図1Aは、後述するようにレンズ固定部に固定されて、そこで位置合わせされる例示的なシリンドリカルレンズ10の概略図である。シリンドリカルレンズ10を、例として、平凹レンズとして示しており、他の種類のシリンドリカルレンズも、本明細書に開示のシステムおよび方法で用いうることが分かるだろう。例示的なシリンドリカルレンズ10は、円筒状に湾曲して湾曲がy-z平面に位置する前面12、および、平坦な(平)面である後面14を有する。シリンドリカルレンズ10は、シリンドリカルレンズの中心を通りz方向に延びる中心レンズ軸ALを有する。シリンドリカルレンズ10は、上面16および底面18を有する。シリンドリカルレンズ10は、中心レンズ軸ALで交差する垂直レンズ軸Y
Lおよび水平レンズ軸X
Lも有する。シリンドリカルレンズ10は、シリンドリカルレンズについての情報(例えば、面は「前」または「後」面である)を提供し、シリンドリカルレンズを上記レンズ固定部に配置し位置合わせするのも補助しうる1つ以上の指標19も含みうる。
【0031】
図1Bは、例示的なシリンドリカルレンズ10の側面図であり、湾曲した前面12の曲率半径RCを画定する湾曲部の中心Cを示している。通常、光の進行方向は左から右であり、湾曲部の中心Cはシリンドリカルレンズの右側なので、凹状の前面12は負の曲率半径RCを有する。
【0032】
図1Cは、
図1Aと同様であり、レンズ軸ALを中心に、x-y平面でy方向に対して測定した方位回転角度である量φで時計回りに回転したシリンドリカルレンズ10を示している。したがって、y方向は、シリンドリカルレンズの方位角の回転を測定する基準REFとしての役割を果たす。y方向(REF)と垂直レンズ軸Y
Lの間の正の方位角φは、時計回りに測定され、負の方位角φは、反時計回りに測定される。以下、方位角φを、「回転角度」または「回転位置」または「回転位置ずれ」とも称する。
【0033】
レンズ固定部
図2は、シリンドリカルレンズ10を動作自在に支持してレンズアセンブリ50を形成するのに用いられる例示的なレンズ固定部30の側面図である。例示的なレンズ固定部30は、T字状で、上部32、および、下方に向かって垂れる載置部35を含む。上部32は、略平坦で、x-z平面で向けられている。上部32は、相互接続面34を有する。後述するように、相互接続面34は他の精密面と相互接続するように用いられるので、好ましくは、精密面として形成される。
【0034】
載置部35は、上部32の相互接続面34の中心から下方に向かって垂れる。載置部35は、前面36、後面38、および、末端部40を有する。載置部35は、中心軸AAを有する開口44を含む。シリンドリカルレンズ10は、載置部35の前面36に開口44の上で、レンズ軸ALが開口中心軸AAと略同軸となるように載置される。前面36および後面38は、好ましくは、精密面として形成される。例において、固定材料52を用いて、レンズ10の後面14の一部を、載置部35の前面36に固定する。例において、固定材料52は、UV硬化性接着剤または熱硬化性接着剤などの硬化性接着剤を含みうる。例において、シリンドリカルレンズ10の回転位置は、固定材料52の硬化前は調節自在であり、固定材料の硬化後は、回転方向に調節自在ではない。他の例において、止めねじを用いて、従来から知られた技術を用いてシリンドリカルレンズ10を載置部に載置しうる。
【0035】
図2も、支持面64を備えた支持部材62を有する例示的な支持構造物60を示している。支持面64はレンズ固定部30の相互接続面34を受け付け、それと相互接続するので、好ましくは、精密面として形成される。後述するようにレンズアセンブリ50を形成する時に、支持面64は機械的基準特徴物(データ)を画定する。
図2の例において、支持面64は、x-z平面に位置し、更に、例において、x-z平面を画定する。
【0036】
図3Aは、レンズアセンブリ50の一部の前面図であり、レンズ固定部30の載置部35によって、完璧な回転方向位置合わせで、つまり、方位角回転がない状態(φ=0)で支持したシリンドリカルレンズ10を示している。この理想的位置合わせ状態で、垂直レンズ軸Y
Lは、y方向に直進し、水平レンズ軸は、x方向に直進し、尚、ここでも、支持面64はx-z平面に位置する。
【0037】
図3Bは
図3Aと同様であるが、シリンドリカルレンズのレンズ固定部30に対する角ずれ(φ≠0)を構成する方位角回転を有するシリンドリカルレンズ10を示している。
【0038】
理想的には、シリンドリカルレンズ10は、
図3Aに示したように回転方向位置合わせ誤差がない状態で、つまり、φ=0で、レンズ固定部30に固定される。より現実的には、シリンドリカルレンズ10をレンズ固定部30に、(例えば、方位角の大きさ|φ|として表された)角ずれが許容範囲T内、例えば、|φ|<Tとなるように固定することを目標とする。ここで、Tは、基準REF、または、基準座標系のy軸に対する方位角回転誤差(つまり、回転方向位置合わせ誤差)についての許容範囲である。
【0039】
特定の利用例に応じた様々な例において、許容範囲Tは、5ミリラジアン、または、4ミリラジアン、または、3ミリラジアン、または、2.5ミリラジアン、または、2ミリラジアン、または、1.5ミリラジアン、または、1ミリラジアンでありうる。
【0040】
測定光学系
図4Aは、レンズアセンブリ50におけるシリンドリカルレンズ10の位置合わせを測定、つまり、レンズ固定部30におけるシリンドリカルレンズ10の方位角φ(回転位置)を測定して、|φ|<Tであるかを評価するのに用いられる測定光学系(「システム」)100の概略図である。
【0041】
システム100は、支持構造物60を含む。上記のように、支持面64は、x-z平面に位置し、機械的基準特徴物(データ)を画定する。システム100は、z方向に延び、したがって、支持面64に平行なシステムの光軸ASを有する。後述するように、システムは光112が進行する光路OPを有する。
【0042】
システム100は、光源106および光学系120を含む。光源106は、長い光ファイバ109に光学的に連結された光出射部108を含みうる。光出射部は、発光ダイオード(LED)、レーザダイオード、または、他の種類のレーザ源を含みうる。光源106は、光出射部108だけからなるものでもありうる。光源は、出射端部110を有する。例において、光源106は、出射端部110から、発散光112Dを、システムの軸ASに沿って光学系120に向かって出射する。
【0043】
光学系120は回転対称であり、例において、発散光を平行にして平行光ビーム112Cを形成し、次に、平行光から合焦された(収束)光112Fを形成するように構成される。光学系120は、従来から知られた様々な異なる構成を有しうるもので、示した例示的な構成は、軸方向に離間した第1および第2の正の屈折レンズL1、L2を含み、各々、例えば、焦点距離f1、f2を有する。焦点距離f1、f2は、同じ(f1=f2)であるか、または、図示したように異なりうる。レンズL1は、光源106の出射端部110から距離f1に、動作自在に配置される。レンズL1は、コリメートレンズを含み、レンズL2は、比較的弱い合焦レンズを含む。レンズL1、L2は、個々のレンズ要素、複合レンズ、または、多数のレンズ要素を含むレンズアセンブリでありうる。レンズL1、L2を概略的に屈折レンズ要素として示しているが、光学系は、反射レンズ要素、または、他の種類のレンズ要素、または、反射レンズ要素と屈折レンズ要素の組合せを含みうることが従来から知られている。
【0044】
シリンドリカルレンズ10が正の光学パワーを有する例において、負のシリンドリカルレンズに関して後述するのと同様に、レンズL2は、正のシリンドリカルレンズ10が光路OPに挿入された時に、2つの焦線が異なる軸位置に形成されるように平行光ビーム112Cを弱く発散された光ビームに変換する負レンズでありうる。その代わりに、
図8A、8Bに示し後述する例示的な実施形態で記載するように、レンズL2を省略して、正のシリンドリカルレンズのみが単一の焦線を形成するようにしうる。尚、
図4Aに示したシステム100の特定の実施形態において、収束光ビーム112Fが形成されて、そうではない場合の負のシリンドリカルレンズ10の仮想焦線が、現実焦線になる。概して、当業者には、システム100の構成を必要に応じて変更して、シリンドリカルレンズ10の所定の構成について現実焦線を取得しうることが分かるだろう。
【0045】
更に
図4Aを参照すると、システム100は、第2のレンズL2から距離f2に位置する画像感知面142を有する画像センサ140も含む。後述するように、画像センサ140は、画像センサの軸位置を調節して、画像感知面142を用いて画像を異なる軸位置で検出しうるように構成された移動自在ステージ144によって支持されうる。
【0046】
画像センサ140は、表示部152を含む制御部150に、動作自在に接続される。例において、画像センサ140は、CCDカメラ、CMOSセンサ、または、空間光分布(つまり、画像)を検出し、検出した光を処理のために制御部150に送られるデジタル画像信号SDに変換するのに用いられる類似のデジタル検出器を含む。例において、制御部150は、画像センサ140からのデジタル画像信号SDを処理するための非一時的コンピュータ読取り可能媒体に具現化された命令を実行し、更に、詳しく後述するような本開示の方法の態様を概して実施するように構成されたコンピュータを含む。
【0047】
図4Aは、制御部の表示部152の拡大挿入図を示している。レンズアセンブリ50のないシステム100の動作において、光源からの発散光112Dは、第1のレンズL1によって平行にされて、平行光ビーム112Cを形成する。次に、平行光ビーム112Cは、第2のレンズL2によって合焦されて、合焦または収束光112Fを形成する。合焦光ビームは、画像感知面142で、焦点FSを形成する。撮像した焦点FSのデジタル画像を、表示部152の拡大挿入図に、焦点(デジタル)画像FSIとして示している。
【0048】
図4Bは
図4Aと同様であり、レンズアセンブリ50が中に動作自在に配置され、支持構造物60によって動作自在に支持され、レンズ固定部30の相互接続面34が支持構造物の支持面64と相互接続したシステム100を示している。尚、レンズアセンブリ50は、合焦光ビーム112Fの光路OPに配置され、シリンドリカルレンズ10の前面12が画像センサ140に向いている。この時、シリンドリカルレンズ10は第1の動作自在方向または第1の動作自在向きであると称しうる。
【0049】
この構成において、シリンドリカルレンズ10は、合焦光ビーム112Fから、第1の合焦光ビーム112Hを形成し、次に、それが、第1の焦線Hを、負のパワーを有するシリンドリカルレンズ10により焦点FSが形成された位置より遠くに形成する。尚、第1の焦線Hは、略x方向(水平)に延び、シリンドリカルレンズの前面12の湾曲部は、y方向(垂直)に延びる。したがって、シリンドリカルレンズ10の垂直レンズ軸YLの(基準)y軸に対する比較的小さい角ずれについて、第1の焦線Hは、略水平にx方向に向き、完全な水平から僅かだけ傾くので、第1の焦線Hも水平焦線と称する。
【0050】
合焦光ビーム112Vの残りの部分は、シリンドリカルレンズ10の光学パワーを受けず、破線で示した通りでおり、第2または垂直焦線Vを、シリンドリカルレンズがない時に元の焦点FSが形成された位置で(
図4Aを参照)形成する。垂直焦線Vは、略y方向、つまり、水平焦線Hに直交して延び、相対的角ずれについて、完全な垂直から僅かだけ傾く。
【0051】
表示部152の拡大挿入図は、水平焦線Hを撮像した(デジタル)水平線画像HIを示しており、画像センサ140で撮像し制御部150に送ったものである。
【0052】
図4Cは、レンズアセンブリ50が裏返されてシリンドリカルレンズ10が第2の動作自在方向または向きである以外は、
図4Bと同様であり、ここでは、前面12は光源106に向いている(つまり、シリンドリカルレンズは、ここでは、「後向き」)。結果的に得られる焦線をH’、V’と表し、
図4Aの測定構成に関連するものと区別している。画像センサ140を、(例えば、移動自在ステージ144を介して)移動して、水平焦線H’が形成される軸位置の任意の変化に適応する必要がありうる。
図4Cの拡大挿入図は、撮像した第2の水平線画像HI’を示しており、
図4Bの水平線画像HIに対して回転している。
【0053】
図5A、5Bは、シリンドリカルレンズの比較的大きい角ずれ量について、画像センサ140からの実際に撮像した水平線画像HI、HI’を示している。
【0054】
図6Aは、表示部152の概略図であり、
図4A、4Cのシステム100の各構成について撮像した2つの第2の線画像HI、HI’を示している。シリンドリカルレンズ10が完璧に位置合わせされた、つまり、方位角回転を有さず、φ=0であるレンズアセンブリ50において、焦線H、H’は、同じ向きを有し、つまり、同一直線上であり、x方向に延びる。線画像HI、HI’の相対的な傾きは、シリンドリカルレンズ10の回転方向の位置ずれφによって生じる。2つの第1の線画像H、H’を二分する二分線BLを、破線として示している。二分線BLは、制御部150によって特定され、基準座標系のx軸に対応する。したがって、二分線BLは、2つの水平線画像HI、HI’の相対的向き、したがって、方位回転角度φ、つまり、シリンドリカルレンズ10の回転方向の位置ずれを確立するための便宜的基準としての役割を果たす。例において、制御部150は、2つの線画像HI、HI’(または、VI、VI’)の相対的向きを確立するために二分線BLを特に計算する必要はない。
【0055】
方位角回転φの量が選択した許容範囲内の場合、例えば、UV硬化性接着剤52をシリンドリカルレンズを通してUV光54で照射することによって(
図2を参照)、止めねじなどで固定することによって、シリンドリカルレンズがレンズ固定部30に対して回転しないように、シリンドリカルレンズ10の位置を固定しうる。
【0056】
方位角回転φの量が選択した許容範囲を超えている場合、次に、シリンドリカルレンズ10の回転位置を調節して、選択した許容範囲内になるようにしてから、位置を固定する。例示的なシリンドリカルレンズ10の相対的位置の調節方法を、次に記載する。
【0057】
尚、代わりに、レンズアセンブリ50の2つの動作自在向きについて、移動自在ステージ44を用いて画像センサ40の軸位置を調節することによって、垂直焦線V、V’を撮像しうる。次に、
図6Bに示すように、対応する垂直線画像VI、VI’を用いて、シリンドリカルレンズ10の角度位置合わせを測定し調節する。この場合、二分線BLはy方向に延び、基準としての役割を果たす。次に、方位角回転φを、この二分線BLに対して測定する。
【0058】
尚、
図6A、6Bの方位回転角度φの寸法を非常に誇張して示している。典型的な回転誤差φは、裸眼では比較的見つけ難い10ミリラジアン以下程度である。したがって、本開示の態様は、制御部150に、線画像HI、HI’(または、VI、VI’)の相対的向きの確立に用いられる計算を行わせることを含む。上記のように、これは、二分線BLを特定することによって行いうる。
【0059】
線画像HI、HI’(または、VI、VI’)の相対的向きを確立する工程は、制御部が最初に最も高い適合度を所定の線画像の対(例えば、水平線画像HI、HI’または垂直線画像VI、VI’のいずれか)に与え、次に、数値的に最も適合する線画像を用いる工程を含みうる。制御部は、最も適合する画像を用いて、二分線も特定しうる。次に、制御部は、線画像の相対的向きが確立すると、回転方向位置ずれを特定する。
【0060】
例において、水平線画像HI、HI’および垂直線画像VI、VI’の両方を測定して、線画像の各対について角ずれ量を測定しうる。次に、2つの測定結果を平均して、角ずれの平均測定値を取得しうる。
【0061】
例示的な調節自在レンズ固定部およびレンズアセンブリ
図7は、レンズアセンブリ50を形成し、シリンドリカルレンズの位置を調節するのに用いうる例示的なレンズ固定部30の前面図である。レンズ固定部30の載置部35は、解放内部410を画定する上部402、両側部404、および、湾曲した底部405を有する枠部400によって画定される。解放内部410は、上部領域412および底部領域414を有する。載置部35は、解放内部410内に吊るされた支持部材420を含む。支持部材420は、解放内部410の上部領域412に位置する上部422、および、解放内部の底部領域414に位置する底部474を含む。
【0062】
支持部材420は、解放内部410の上部領域412で、枠部400の上部402から下方に垂れて上部422に接続する2つの角度を成した支持撓み部450によって吊るされる。上部支持部材422は、両側部424および底部426を有する。
【0063】
支持部材420の底部474は、解放内部410の底部領域414で、上部422の底部426から下方に垂れる2つの支持撓み部480によって吊るされる。底部474は、両側部476を有し、載置部35の開口44を含む。中心開口44の上に支持されてレンズアセンブリ50を形成する例示的なシリンドリカルレンズ10を示している。破線は、角度を成した支持撓み部450が底部474に向かって延伸した場合、開口44の開口軸AAで交差するように、いかに構成されるかを示している。
【0064】
調節自在レンズ固定部30は、更に、第1および第2の調節ねじ500を含む。第1の調節ねじ500は、枠部400の1つの側部404によって支持され、近端部502および遠端部504を有するシャフト501を含む。シャフト501の少なくとも一部は、ねじ山を有し、側部404のねじ山を有する孔406と係合する。シャフト501の一部は、対応する角度を成した支持撓み部450の孔(不図示)も通って、遠端部504が第1の支持部材420の対応する側部424に接触する。近端部502は、枠部400を僅かに超えて延伸するか、枠部と同じ高さで、第1の調節ねじ500を回すのに用いうる。弾性部材508を、枠部400の側部404と、第1の調節ねじ500と反対側の支持部材420の上部422の側部424の間に配置して、第1の支持部材に安定復元力を提供する。
【0065】
載置固定部30は、第2の調節ねじ500も含み、それも、枠部400の側部404によって支持されて、遠端部504が支持部材420の底部474の側部476に接触する。第2の調節ねじ500のシャフト501は、対応する垂直支持撓み部480の孔(不図示)を通る。弾性部材508を、枠部400の側部404と、第2の調節ねじ500と反対側の底部474の側部476の間に配置して、第2の支持部材に安定復元力を提供する。
【0066】
角度を成した支持撓み部450は、第1の調節ねじ500が水平に上部422を押圧した時の底部474の開口軸AAを中心とした回転を考慮している。垂直支持撓み部480は、第2の調節ねじ500が水平に底部を押圧した時の底部474の平行移動を考慮している。第1および第2の調節ねじ500に細かいねじ山を備えることは、小さい(精密な)回転方向(方位角)調節を第1の調節ねじを用いて行い、小さい(精密な)横方向の調節を第2の調節ねじを用いて行うことを考慮している。例において、第1および第2の調節ねじの回転量を、各々、シリンドリカルレンズ10の角回転量および横方向の平行移動量に較正する。更に、例において、レンズアセンブリ50がシステム100内に位置する間、シリンドリカルレンズ10の調節をリアルタイムで行いうる。従来から知られる他の種類および構成のレンズ固定部30を、シリンドリカルレンズの位置の調節に効果的に用いうるものであり、
図7に示した上記例示的なレンズ固定部は、限定するものではない例として提供している。
【0067】
正のシリンドリカルレンズの角度位置の測定例
図8A、8Bは
図4B、4Cと同様であり、正のシリンドリカルレンズ10の角度位置を測定する例示的な実施形態を示している。本実施形態において、光学系120は、コリメートレンズL1のみを含み、平行光ビーム112Cを形成する。
図8Aにおいて、正のシリンドリカルレンズは、「前向き」動作自在向きで、第1の水平焦線Hを形成する合焦光ビーム112Hを形成する。
図8Aの拡大挿入図は、第1の水平線画像HIを示している。本実施形態において、正のシリンドリカルレンズが平行光ビーム112Cに挿入されるので、直交方向の垂直焦線Vはない。代わりの実施形態は、
図4Aに示したように、弱く収束するビームを用いる。
【0068】
図8Bは、裏返したレンズアセンブリ50を示しており、ここでは、正のシリンドリカルレンズ10は、第2の水平焦線H’を形成する後向き動作自在向きである。
図8Bの拡大挿入図は、第2の水平線画像HI’を示している。
【0069】
第1および第2の水平線画像H、H’を取得すると、二分線BLを任意で確立し、角ずれの測定、および、正のシリンドリカルレンズを選択した位置合わせ許容範囲T内にする方法が、上記のように行われる。
【0070】
位置合わせされたレンズアセンブリを用いる例示的な光学系
シリンドリカルレンズ10をレンズ固定部30と位置合わせすると、結果的に位置合わせされたレンズアセンブリ50を、シリンドリカルレンズを用いる光学系に加えうる。光学系は、支持構造物60と同様の支持構造物を含み、位置合わせされた構成で、つまり、更なる位置合わせ測定および調節を行う必要なく、シリンドリカルレンズが光学系に配置されるようにする。
【0071】
図9Aは、例示的な光学系として、上記のように載置固定部30と位置合わせされたシリンドリカルレンズ10を有するレンズアセンブリ50を採用しうるF-θ走査システム(「走査システム」)200の概略図である。走査システム200は、光軸AO、光源210、コリメートレンズ220、シリンドリカルレンズ10、鏡面232を有する回転走査ミラー230、並びに、負レンズ252および正レンズ254を含み、それらの一方または両方がアナモルフィックでありうるものとして示したF-θレンズ250を含む。光軸AOと交差するように回転する鏡面232は、光軸を曲げるように作用し、更に、回転自在ミラーが回転すると、光軸を移動(走査)する。像面IPに位置する処理対象物260も示している。
図8Aの走査システム200の種類の例は、米国特許第5,031,979号、米国特許第5,270,850号、および、米国特許第5,329,399号の各明細書に詳細に記載されており、それらは、参照により本明細書に組み込まれる。
【0072】
光源210は、発散光を出射し、それは、コリメートレンズ220によって平行にされる。シリンドリカルレンズ10を用いて、線画像を、回転走査ミラー230の表面で形成し、線画像は、y-z平面で狭く、x-z平面で長いものである。破線部分は、直交するy-z平面でのイメージングを表している。光は、鏡面232から反射され、光を像面IPで焦点FSまで合焦するF-θレンズ250によって受光される。シリンドリカルレンズ10を用いて、鏡面232で線画像を形成する利点は、回転走査ミラー230の製造および位置合わせが不完全なことによる鏡面232での位置ずれによって生じる画像ずれを補正することである。結果的に、走査中に像面IPで望ましい走査経路に亘って焦点FSを走査する傾き不変効果が得られる。
【0073】
走査システムを、コリメートレンズ220およびシリンドリカルレンズ10を支持する第1の鏡筒300A、並びに、F-θレンズ250の負レンズ252および正レンズ254を支持する第2の鏡筒300Bを含むものとして示している。
【0074】
図9Bは、コリメートレンズ220およびシリンドリカルレンズ10を支持する第1の鏡筒300Aの拡大図である。鏡筒300Aはコリメートレンズ220のレンズ載置部310、および、位置合わせされたシリンドリカルレンズ10を含むレンズアセンブリ50を受け付けて支持する支持構造物360を含む。支持構造物360は、好ましくは精密面である支持面364を備えた支持部材362を有する。支持面364は、基準特徴物を機械的データの形態で画定する。
図9Cに示すように、支持部材362は、レンズ固定部30の相互接続面34が支持部材の支持面364と相互接続するように構成される。これにより、レンズアセンブリ50を鏡筒300A内で位置合わせし、例えば、シリンドリカルレンズ軸ALは、走査システムの光軸AOと位置合わせされ、更に、垂直および水平レンズ軸Y
L、X
Lは、光学系200の光学系基準座標系のy軸およびx軸と位置合わせされる。
【0075】
例において、支持構造物360の支持面364は、測定光学系100で用いた支持構造物60の支持面64と同じ、または、略同じ構成を有する。例において、支持構造物は、載置部35の遠端部40を固定する支持部材364を含みうる。
【0076】
レンズアセンブリ50が、
図9Cに示したような支持構造物360を用いて、鏡筒300A内で動作自在に支持された場合、支持部材362は、シリンドリカルレンズ10が走査システム200に位置合わせされた状態で、つまり、走査システム300の対応するy軸(または、他の基準特徴物)に対して方位角回転許容範囲T内で確実に配置されるようにする。この位置合わせにより、焦線LFを鏡面232で適切に形成するのを確実にし、次にそれは、走査した焦点FSを像面IPで適切に形成するのを確実にする。
【0077】
記載した態様1は、
レンズアセンブリの形成方法であり、それは、
シリンドリカルレンズを、相互接続面を有するレンズ固定部に調節自在に取り付ける工程と、
相互接続面を支持構造物の基準面と相互接続させる工程であって、シリンドリカルレンズは、光ビームに対して前向きおよび後向きに配置しうるものであり、基準面は、基準方向を画定するものである工程と、
前向きおよび後向きについて、シリンドリカルレンズによって形成された第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
第1および第2の線画像の相対的向きを確立する工程と、
第1および第2の線画像の確立された相対的向きを用いて、シリンドリカルレンズの基準方向に対する角ずれ量を特定する工程と、
シリンドリカルレンズをレンズ固定部に対して回転させて、角ずれ量を削減する工程とを含む。
【0078】
記載した態様2は、
態様1の方法であり、相対的向きを確立する工程は、第1および第2の線画像を二分する線を特定する工程を含むものである。
【0079】
記載した態様3は、
態様1または2の方法であり、回転させる工程の後に、
シリンドリカルレンズをレンズ固定部に固定して、シリンドリカルレンズがレンズ固定部に対して回転できないようにする工程を、更に含む。
【0080】
記載した態様4は、
態様3の方法であり、シリンドリカルレンズは、硬化性接着剤を用いて、レンズ固定部に調節自在に取り付けられるものであり、固定する工程は、硬化性接着剤を硬化させる工程を含むものである。
【0081】
記載した態様5は、
態様4の方法であり、硬化性接着剤は、紫外線(UV)硬化性であり、接着剤を硬化させる工程は、UV硬化性接着剤をUV光で照射する工程を含むものである。
【0082】
記載した態様6は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、負の光学パワーを有し、光ビームは、収束光ビームを含むものである。
【0083】
記載した態様7は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、平面を有するものである。
【0084】
記載した態様8は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、単一のシリンドリカルレンズ要素からなるものである。
【0085】
記載した態様9は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、少なくとも2つの曲面を含むものである。
【0086】
記載した態様10は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである。
【0087】
記載した態様11は、
態様1から5のいずれか1つの方法シリンドリカルレンズは、第1の平面に位置する第1の曲面を有するものであり、シリンドリカルレンズの角ずれがない場合には、第1および第2の焦線は、第1の平面に直交する第2の平面に位置するものである。
【0088】
記載した態様12は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、第1の平面に位置する第1の曲面を有するものであり、シリンドリカルレンズの角ずれがない場合には、第1および第2の焦線は、第1の平面と平行な第2の平面に位置するものである。
【0089】
記載した態様13は、
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、|R|>1500mmである曲率半径Rを有する曲面を有するものである。
【0090】
記載した態様14は、
態様1から13のいずれか1つの方法であり、レンズ固定部を光学系の第2の支持構造物と相互接続させることによって、レンズアセンブリを、光学系に挿入する工程を、更に含む。
【0091】
記載した態様15は、
態様14の方法であり、相互接続させる工程は、相互接続面を、第2の支持構造物の第2の基準面と接触させる工程を含むものである。
【0092】
記載した態様16は
態様1から5のいずれか1つの方法であり、シリンドリカルレンズは、負の光学パワーを有するものであり、第1および第2の焦線を、収束光ビームをシリンドリカルレンズを通って向けることによって形成する工程を、更に含む。
【0093】
記載した態様17は、
態様1から16のいずれか1つの方法であり、レンズ固定部は、撓み部を有する載置部を含むものであり、シリンドリカルレンズを回転させる工程は、撓み部を移動することによって行われるものである。
【0094】
記載した態様18は、
態様17の方法であり、撓み部は、支持部材に接続されたものであり、撓み部を移動する工程は、撓み部を支持部材に対して調節ねじを用いて押圧することによって行われるものである。
【0095】
記載した態様19は、
態様1から18のいずれか1つの方法であり、回転させる工程は、角ずれ量を、1ミリラジアン未満である角度位置合わせ許容範囲内まで削減するものである。
【0096】
記載した態様20は、
シリンドリカルレンズが調節自在に取り付けられるレンズ固定部に対するシリンドリカルレンズの回転位置の測定方法であり、それは、
レンズ固定部を、シリンドリカルレンズが前向き、および、後向きに配置される各第1および第2の測定位置で基準特徴物と相互接続させる工程と、
各第1および第2の測定位置について、第1および第2の焦線を形成して、第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
第1および第2の線画像の相対的向きを確立する工程と、
確立された相対的向きを用いて、シリンドリカルレンズのレンズ固定部に対する回転位置を特定する工程とを含む。
【0097】
記載した態様21は、
態様20の方法であり、第1および第2の線画像の相対的向きを確立する工程は、第1および第2の線画像を二分する二分線を画定する工程を含むものである。
【0098】
記載した態様22は、
態様20または21の方法であり、シリンドリカルレンズをレンズ固定部に対して回転させて、回転位置を回転位置許容範囲内に調節する工程を、更に含む。
【0099】
記載した態様23は、
態様22の方法であり、回転位置許容範囲は、1ミリラジアンである。
【0100】
記載した態様24は、
態様22または23の方法であり、回転させる工程の後に、シリンドリカルレンズをレンズ固定部に固定して、シリンドリカルレンズをレンズ固定部に対して回転不可能にする工程を、更に含む。
【0101】
記載した態様25は、
態様24の方法であり、シリンドリカルレンズは、硬化性接着剤を用いて、固定部に調節自在に取り付けられるものであり、固定する工程は、硬化性接着剤を硬化させる工程を含むものである。
【0102】
記載した態様26は、
態様20から25のいずれか1つの方法であり、レンズ固定部は、撓み部を有する載置部を含むものであり、シリンドリカルレンズを回転させる工程は、撓み部を移動させることによって行われるものである。
【0103】
記載した態様27は、
態様26の方法であり、撓み部は、支持部材に接続されるものであり、撓み部を移動させる工程は、撓み部を支持部材に対して調節ねじを用いて押圧することによって行われるものである。
【0104】
記載した態様28は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、平面を有するものである。
【0105】
記載した態様29は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、単一のシリンドリカルレンズ要素からなるものである。
【0106】
記載した態様30は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、少なくとも2つの曲面を含むものである。
【0107】
記載した態様31は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである。
【0108】
記載した態様32は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、|R|>1500mmである曲率半径R有する曲面を有するものである。
【0109】
記載した態様33は、
態様20から27のいずれか1つの方法であり、シリンドリカルレンズは、負の光学パワーを有するものであり、第1および第2の焦線を、収束光ビームをシリンドリカルレンズを通って向けることによって形成する工程を、更に含む。
【0110】
記載した態様34は、
態様20から33のいずれか1つの方法であり、基準特徴物は、支持構造物の支持面を含むものである。
【0111】
記載した態様35は、
態様20から34のいずれか1つの方法であり、レンズ固定部を光学系の第2の支持構造物と相互接続させることによって、レンズアセンブリを、光学系に挿入する工程を、更に含む。
【0112】
記載した態様36は、
態様35の方法であり、相互接続させる工程は、レンズ固定部の相互接続面を第2の支持構造物の基準面と接触させる工程を含むものである。
【0113】
当業者であれば、添付の請求項によって画定した本開示の精神および範囲を逸脱することなく、本明細書に記載したような本開示の好適な実施形態に、様々な変更が可能なことが明らかだろう。したがって、本開示は、変更および変形も、添付の請求項および等価物の範囲である限りは網羅するものである。
【0114】
以下、本発明の好ましい実施形態を項分け記載する。
【0115】
実施形態1
レンズアセンブリの形成方法において、
シリンドリカルレンズを、相互接続面を有するレンズ固定部に調節自在に取り付ける工程と、
前記相互接続面を支持構造物の基準面と相互接続させる工程であって、前記シリンドリカルレンズは、光ビームに対して前向きおよび後向きに配置しうるものであり、前記基準面は、基準方向を画定するものである工程と、
前記前向きおよび後向きについて、前記シリンドリカルレンズによって形成された第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
前記第1および第2の線画像の相対的向きを確立する工程と、
前記第1および第2の線画像の前記確立された相対的向きを用いて、前記シリンドリカルレンズの前記基準方向に対する角ずれ量を特定する工程と、
前記シリンドリカルレンズを前記レンズ固定部に対して回転させて、前記角ずれ量を削減する工程と
を含む方法。
【0116】
実施形態2
前記相対的向きを確立する工程は、前記第1および第2の線画像を二分する線を特定する工程を含むものである、実施形態1に記載の方法。
【0117】
実施形態3
前記回転させる工程の後に、
前記シリンドリカルレンズを前記レンズ固定部に固定して、該シリンドリカルレンズが該レンズ固定部に対して回転できないようにする工程を、
更に含む、実施形態1または2に記載の方法。
【0118】
実施形態4
前記シリンドリカルレンズは、硬化性接着剤を用いて、前記レンズ固定部に調節自在に取り付けられるものであり、前記固定する工程は、前記硬化性接着剤を硬化させる工程を含むものである、実施形態3に記載の方法。
【0119】
実施形態5
前記硬化性接着剤は、紫外線(UV)硬化性であり、該接着剤を硬化させる工程は、該UV硬化性接着剤をUV光で照射する工程を含むものである、実施形態4に記載の方法。
【0120】
実施形態6
前記シリンドリカルレンズは、負の光学パワーを有し、前記光ビームは、収束光ビームを含むものである、実施形態1から5のいずれか1つに記載の方法。
【0121】
実施形態7
前記シリンドリカルレンズは、平面を有するものである、実施形態1から5のいずれか1つに記載の方法。
【0122】
実施形態8
前記シリンドリカルレンズは、単一のシリンドリカルレンズ要素からなるものである、実施形態1から5のいずれか1つに記載の方法。
【0123】
実施形態9
前記シリンドリカルレンズは、少なくとも2つの曲面を含むものである、実施形態1から5のいずれか1つに記載の方法。
【0124】
実施形態10
前記シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである、実施形態1から5のいずれか1つに記載の方法。
【0125】
実施形態11
前記シリンドリカルレンズは、第1の平面に位置する第1の曲面を有するものであり、該シリンドリカルレンズの角ずれがない場合には、前記第1および第2の焦線は、前記第1の平面に直交する第2の平面に位置するものである、実施形態1から5のいずれか1つに記載の方法。
【0126】
実施形態12
前記シリンドリカルレンズは、第1の平面に位置する第1の曲面を有するものであり、該シリンドリカルレンズの角ずれがない場合には、前記第1および第2の焦線は、前記第1の平面と平行な第2の平面に位置するものである、実施形態1から5のいずれか1つに記載の方法。
【0127】
実施形態13
前記シリンドリカルレンズは、|R|>1500mmである曲率半径Rを有する曲面を有するものである、実施形態1から5のいずれか1つに記載の方法。
【0128】
実施形態14
前記レンズ固定部を光学系の第2の支持構造物と相互接続させることによって、前記レンズアセンブリを、前記光学系に挿入する工程を、
更に含む、実施形態1から13のいずれか1つに記載の方法。
【0129】
実施形態15
前記相互接続させる工程は、前記相互接続面を、前記第2の支持構造物の第2の基準面と接触させる工程を含むものである、実施形態14に記載の方法。
【0130】
実施形態16
前記シリンドリカルレンズは、負の光学パワーを有するものであり、前記第1および第2の焦線を、収束光ビームを該シリンドリカルレンズを通って向けることによって形成する工程を、
更に含む、実施形態1から5のいずれか1つに記載の方法。
【0131】
実施形態17
前記レンズ固定部は、撓み部を有する載置部を含むものであり、前記シリンドリカルレンズを回転させる工程は、前記撓み部を移動することによって行われるものである、実施形態1から16のいずれか1つに記載の方法。
【0132】
実施形態18
前記撓み部は、支持部材に接続されたものであり、該撓み部を移動する工程は、該撓み部を前記支持部材に対して調節ねじを用いて押圧することによって行われるものである、実施形態17に記載の方法。
【0133】
実施形態19
前記回転させる工程は、前記角ずれ量を、1ミリラジアン未満である角度位置合わせ許容範囲内まで削減するものである、実施形態1から18のいずれか1つに記載の方法。
【0134】
実施形態20
シリンドリカルレンズが調節自在に取り付けられるレンズ固定部に対する前記シリンドリカルレンズの回転位置の測定方法において、
前記レンズ固定部を、前記シリンドリカルレンズが前向き、および、後向きに配置される各第1および第2の測定位置で基準特徴物と相互接続させる工程と、
各第1および第2の測定位置について、第1および第2の焦線を形成して、前記第1および第2の焦線の各々の第1および第2の線画像を撮像する工程と、
前記第1および第2の線画像の相対的向きを確立する工程と、
前記確立された相対的向きを用いて、前記シリンドリカルレンズの前記レンズ固定部に対する回転位置を特定する工程と
を含む方法。
【0135】
実施形態21
前記第1および第2の線画像の前記相対的向きを確立する工程は、該第1および第2の線画像を二分する二分線を画定する工程を含むものである、実施形態20に記載の方法。
【0136】
実施形態22
前記シリンドリカルレンズを前記レンズ固定部に対して回転させて、前記回転位置を回転位置許容範囲内に調節する工程を、
更に含む、実施形態20または21に記載の方法。
【0137】
実施形態23
前記回転位置許容範囲は、1ミリラジアンである、実施形態22に記載の方法。
【0138】
実施形態24
前記回転させる工程の後に、前記シリンドリカルレンズを前記レンズ固定部に固定して、該シリンドリカルレンズを該レンズ固定部に対して回転不可能にする工程を、
更に含む、実施形態22または23に記載の方法。
【0139】
実施形態25
前記シリンドリカルレンズは、硬化性接着剤を用いて、前記固定部に調節自在に取り付けられるものであり、前記固定する工程は、該硬化性接着剤を硬化させる工程を含むものである、実施形態24に記載の方法。
【0140】
実施形態26
前記レンズ固定部は、撓み部を有する載置部を含むものであり、前記シリンドリカルレンズを回転させる工程は、前記撓み部を移動させることによって行われるものである、実施形態20から25のいずれか1つに記載の方法。
【0141】
実施形態27
前記撓み部は、支持部材に接続されるものであり、前記撓み部を移動させる工程は、該撓み部を前記支持部材に対して調節ねじを用いて押圧することによって行われるものである、実施形態26に記載の方法。
【0142】
実施形態28
前記シリンドリカルレンズは、平面を有するものである、実施形態20から27のいずれか1つに記載の方法。
【0143】
実施形態29
前記シリンドリカルレンズは、単一のシリンドリカルレンズ要素からなるものである、実施形態20から27のいずれか1つに記載の方法。
【0144】
実施形態30
前記シリンドリカルレンズは、少なくとも2つの曲面を含むものである、実施形態20から27のいずれか1つに記載の方法。
【0145】
実施形態31
前記シリンドリカルレンズは、第1の円筒面、並びに、第2の球面または非球面を含むものである、実施形態20から27のいずれか1つに記載の方法。
【0146】
実施形態32
前記シリンドリカルレンズは、|R|>1500mmである曲率半径R有する曲面を有するものである、実施形態20から27のいずれか1つに記載の方法。
【0147】
実施形態33
前記シリンドリカルレンズは、負の光学パワーを有するものであり、前記第1および第2の焦線を、収束光ビームを該シリンドリカルレンズを通って向けることによって形成する工程を、
更に含む、実施形態20から27のいずれか1つに記載の方法。
【0148】
実施形態34
前記基準特徴物は、支持構造物の支持面を含むものである、実施形態20から33のいずれか1つに記載の方法。
【0149】
実施形態35
前記レンズ固定部を光学系の第2の支持構造物と相互接続させることによって、前記レンズアセンブリを、前記光学系に挿入する工程を、
更に含む、実施形態20から34のいずれか1つに記載の方法。
【0150】
実施形態36
前記相互接続させる工程は、前記レンズ固定部の相互接続面を前記第2の支持構造物の基準面と接触させる工程を含むものである、実施形態35に記載の方法。
【符号の説明】
【0151】
10 シリンドリカルレンズ
30 レンズ固定部
35 載置部
44 開口
50 レンズアセンブリ
60 支持構造物
152 表示部