(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-24
(45)【発行日】2023-08-01
(54)【発明の名称】実装方法および画像表示装置の製造方法
(51)【国際特許分類】
G09F 9/00 20060101AFI20230725BHJP
G09F 9/33 20060101ALI20230725BHJP
H01L 33/00 20100101ALI20230725BHJP
【FI】
G09F9/00 338
G09F9/33
H01L33/00 H
H01L33/00 L
(21)【出願番号】P 2019063799
(22)【出願日】2019-03-28
【審査請求日】2022-01-28
(73)【特許権者】
【識別番号】000219314
【氏名又は名称】東レエンジニアリング株式会社
(72)【発明者】
【氏名】陣田 敏行
(72)【発明者】
【氏名】新井 義之
【審査官】村上 遼太
(56)【参考文献】
【文献】特開2018-060993(JP,A)
【文献】特開2010-251360(JP,A)
【文献】特開2019-015899(JP,A)
【文献】特開2007-034315(JP,A)
【文献】特開昭63-133700(JP,A)
【文献】国際公開第2015/146544(WO,A1)
【文献】国際公開第2014/128923(WO,A1)
【文献】特開2000-323508(JP,A)
【文献】特開2003-347524(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G09F 9/00-9/46
H01L21/52
21/58
27/32
33/00
33/48-33/64
51/50
H05B33/00-33/28
44/00
45/60
(57)【特許請求の範囲】
【請求項1】
ウエハ上に形成されてから、互いに分離した、電極を有する多数のチップ部品を、
前記電極側から
粘弾性を有する粘着層を介して保持する第1転写基板に、密着させて、転写した後に、
前記電極の反対側から粘着層を介して保持する第2転写基板に、密着させて、転写してから、
個々のチップ部品を配線基板の所定位置に対向配置した状態で、前記チップ部品に前記第2転写基板越にレーザー光を照射して、前記チップ部品を前記配線基板に転写配置して実装する実装方法であって、
前記第2転写基板内を、
実装時の許容精度に応じて範囲を定めた複数のエリアに区分けし、個々のエリアに応じ
て補正した位置情報を基に前記チップ部品を転写配置する実装方法。
【請求項2】
請求項1に記載の実装方法であって、
前記第2転写基板上のチップ部品配置を観察して得たデータを用いて、前記エリア毎の位置情報を設定する実装方法。
【請求項3】
請求項1または請求項2に記載の実装方法であって、多数のチップ部品を第1転写基板から第2転写基板に転写する際に、加圧する工程を有する実装方法。
【請求項4】
前記チップ部品としてLEDチップを、前記配線基板としてTFT基板を用い、
請求項1から請求項3の何れかに記載の実装方法を用いて画像表示装置を製造する、画像表示装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はチップ部品を転写により配線基板に実装する実装方法およびこの実装方法を用いた画像表示装置の製造方法に関する。
【背景技術】
【0002】
微細加工技術の進歩による半導体チップの微小化や、LEDの発光効率向上によるLEDチップの小型化が進んでいる。このため、半導体チップやLEDチップ等のチップ部品を、1枚のウエハ基板に、密に多数形成できるようになってきている
近年、
図6にようにウエハ基板Wに密に形成されダイシングされたチップ部品Cを、所定の間隔を開けて配線基板に再配列し、実装する用途がある。例えば、画像表示装置として注目されているマイクロLEDディスプレイ製造においては、数百万個から数千万個のLEDチップを、間隔を開けTFT基板の所定位置に実装する必要がある。
【0003】
そこで、ウエハ基板W上に密に形成されたチップ部品Cを配線基板に所定の間隔を空け、高精度に実装するプロセスが種々検討されている。
【0004】
なかでも、レーザーリフトオフ法(以後LLO法と記す)については多くの検討がなされている(例えば特許文献1)。
【0005】
図7ではLLO法によりウエハ基板Wから配線基板Sにチップ部品Cを転写配置する例を示している。
図7(a)は左端のチップ部品Cにレーザー光Lを照射して、配線基板Sに転写する状態を示している。ここで、左端のチップ部品Cは配線基板Sの所定位置上部に位置合わせされている。また、
図7(a)におけるレーザー光Lの波長はチップ部品CをウエハWから剥離するのに適した範囲から選ばれる。例えば、チップ部品の素材に吸収される波長を用いれば、レーザーエネルギーにより素材が分解して生じたガスによりウエハ基板Wからチップ部品Cは剥離される。
【0006】
図7(b)は、レーザー光Lの照射によりウエハ基板Wから剥離した左端のチップ部品Cが配線基板Sに転写された状態を示している。ここで、左端のチップ部品Cは直下に転写されるため、配線基板Sの所定位置に配置される。なお、転写に伴うチップ部品の直下への移動距離dを、チップ部品Cと(チップ部品Cが有する電極である)バンプBの高さの合計より大きくしておけば、配線基板Sにチップ部品Cが転写されていてもウエハ基板Wを水平方向に移動させることは可能である。
【0007】
図7(c)は、レーザー光Lの直下に、次に転写すべきチップ部品Cと配線基板Sの所定位置を配置してから、レーザー光Lを照射している状態を示している。このレーザー照射により、先に転写配置したチップ部品Cと間隔を空けて、次のチップ部品Cが配線基板Sの所定位置に転写配置される。
【0008】
以降も、レーザー光Lの直下に転写すべきチップ部品Cと配線基板Sの所定位置(チップ部品Cを実装すべき位置)を随時配置して、チップ部品Cを転写することにより、配線基板Sへのチップ部品Cの転写配置を行なうことが出来る。
【0009】
ところが、
図7(a)から
図7(b)に示したようにチップ部品Cをウエハ基板Wから剥離するためには、チップ部品Cにはレーザー光Lによる大きなエネルギーが加わる。このため、
図7(b)に示した移動距離dの間にもチップ部品Cは加速された状態で配線基板Sに達し、レーザーエネルギーにより破損することもある。
【0010】
以上のように、ウエハ基板Wから配線基板Sへの直接転写ではチップ部品Cに加わる衝撃が大きいことから、別に転写基板を用いる転写方式が一般化している。
【先行技術文献】
【特許文献】
【0011】
【文献】特開2010-161221号公報
【文献】特願2018-061743号
【発明の概要】
【発明が解決しようとする課題】
【0012】
転写基板を用いる転写方式は、
図8(a)に示すようにウエハ基板Wのチップ部品Cに第1転写基板1を対向させてから、
図8(b)のように密着させて、レーザー光L等によりチップ部品Cを剥離して第1転写基板1に転写する。なお、第1転写基板1は、ベース基板10と、ベース基板10のチップ部品Cを保持する側に粘着層11を設けた構成となっている。ここで、チップ部品Cは第1転写基板と密着した状態で転写するため、加速されることなく、第1転写基板1の粘着層11上に転写される。
【0013】
ところで、
図8(b)に示すように、第1転写基板1ではチップ部品Cの電極であるバンプBが密着しているため、この状態から配線基板にチップ部品Cを転写しても、バンプBを配線基板の電極と接触させることはできない。すなわちチップ部品Cの電極と配線基板Sの電極を接続することが出来ない。そこで、第1転写基板1のチップ部品Cを第2転写基板2に再度転写する必要がある。
【0014】
その際、特許文献2のように、チップ部品Cの間隔を広げて第2転写基板2に転写することもあるが、ウエハ基板Wから第1転写基板1への転写と同じく、配列ピッチを変えずに転写する方法もある。配列ピッチを変えないことで、第2転写基板2上にはウエハ基板W上と同様にチップ部品Cが配置されていることから、ウエハ基板Wから配線基板にチップ部品Cを直接レーザーリフトオフするための装置構成を流用することが出来る。なお、第2転写基板2に用いる粘着層の選択により、チップ部品Cをリフトオフする際のエネルギーも制御可能であるため、ウエハ基板Wから直接転写するに比べ、チップ部品Cの破損が防げ、転写歩留まりが改善される。
【0015】
そこで、第1転写基板1からチップ部品Cの配列を変えずに第2転写基板2に転写する方法として、第1転写基板1の粘着層11に熱硬化して粘着性を失うものを用いれば、第2転写基板2に容易に転写することが出来る。すなわち、ベース基板20の表面上に粘着層21を配した第2転写基板2を
図9(a)のように対向配置した状態から、
図9(b)のようにチップ部品Cに粘着層21が密着した状態で加熱加圧ヘッド3により粘着層11を加熱硬化させてから、加熱加圧ヘッド3が第1転写基板1を保持した状態で上昇すれば、チップ部品Cを第2転写基板2に転写することが出来る。なお、第2転写基板2の粘着層21は、粘着層11を硬化させる温度では硬化せず熱劣化もしない耐熱性を有するとともに、特定の波長の光により粘着力が低減するものである。このため、ベース基板20がこの波長を透過させる特性を有しつつ、この波長によりチップ部品Cと粘着層21の界面にガスが発生するものであれば、
図10(a)のように特定の波長のレーザー光Lにより、チップ部品Cを配線基板S上に、
図10(b)のように転写することが出来る。
【0016】
そこで、
図11(a)に示すような第2転写基板2に配置されたチップ部品Cを、アライメントマークP2を用いて位置合わせして、配線基板Sの所定位置に順次転写して実装を行なったところ、
図6(a)に示すウエハ基板WでアライメントマークPWを用いて位置合わせする場合に比べて位置ズレが発生しやすいことが判った。しかも位置ズレ量が一定しないことから、数百万個のLEDチップを、間隔を開けTFT基板の所定位置に実装するような用途への適用が困難となっていた。この問題は、
図12のような、所定ピッチ間隔のチップ部品Cに同時にレーザー光Lを照射する場合においても顕著である。
【0017】
本発明は、上記問題に鑑みてなされたものであり、ウエハ基板上に多数形成されたチップ部品を、転写基板を介して配線基板の所定位置に転写して実装するのに際して、位置ズレの発生を抑制した実装方法およびこの実装方法を用いた画像表示装置の製造方法を提供するものである。
【課題を解決するための手段】
【0018】
上記課題を解決するために、請求項1に記載の発明は、ウエハ上に形成されてから、互いに分離した、電極を有する多数のチップ部品を、
前記電極側から粘弾性を有する粘着層を介して保持する第1転写基板に、密着させて、転写した後に、前記電極の反対側から粘着層を介して保持する第2転写基板に、密着させて、転写してから、個々のチップ部品を配線基板の所定位置に対向配置した状態で、前記チップ部品に前記第2転写基板越にレーザー光を照射して、前記チップ部品を前記配線基板に転写配置して実装する実装方法であって、
前記第2転写基板内を、実装時の許容精度に応じて範囲を定めた複数のエリアに区分けし、個々のエリアに応じて補正した位置情報を基に前記チップ部品を転写配置する実装方法である。
【0019】
請求項2に記載の発明は、請求項1に記載の実装方法であって、
前記第2転写基板上のチップ部品配置を観察して得たデータを用いて、前記エリア毎の位置情報を設定する実装方法である。
【0020】
請求項3に記載の発明は、請求項1または請求項2に記載の実装方法であって、多数のチップ部品を第1転写基板から第2転写基板に転写する際に、加圧する工程を有する実装方法である。
【0021】
請求項4に記載の発明は、前記チップ部品としてLEDチップを、前記配線基板としてTFT基板を用い、請求項1から請求項3の何れかに記載の実装方法を用いて画像表示装置を製造する、画像表示装置の製造方法である。
【発明の効果】
【0022】
本発明の実装方法により、ウエハ基板上に多数形成されたチップ部品を、転写基板を介して配線基板の所定位置に転写して実装するのに際して、転写基板内に配置位置に係らず位置ズレの発生を抑制する実装が可能であり、この実装方法を用いることで高品質な画像表示装置の製造が可能になる。
【図面の簡単な説明】
【0023】
【
図1】本発明の実施形態に係る実装方法において、(a)第2転写基板上のチップ部品配置とアライメントマークを説明する図であり、(b)第2転写基板内をエリア分けした一例を示す図である。
【
図2】本発明の実施形態に係る実装方法において、エリア分けしたエリア別の位置合わせ時の補正量の関係を一覧表とした例である。
【
図3】本発明の実施形態に係る実装方法において、第2転写基板内をエリア分けする別例を示す図である。
【
図4】本発明の実施形態に係る実装方法において、第2転写基板内のチップ部品配置を観察する状態を示す図である。
【
図5】本発明の実施形態に係る実装方法において、第2転写基板内のチップ部品配置の設計位置と実測位置の関係を説明する図である。
【
図6】ウエハ基板上のチップ部品とアライメントマークについて説明するための上面図であり、(b)断面図である。
【
図7】ウエハ基板から配線基板にチップ部品を直接転写する工程を説明するもので、(a)ウエハ基板からチップ部品を剥離する工程、(b)配線基板にチップ部品が転写された状態(c)ウエハ基板から次のチップ部品を剥離する工程、(d)配線基板に次のチップ部品が転写された状態、を示す図である。
【
図8】チップ部品の転写工程を説明するものであり、(a)ウエハ基板と第1転写基板が対向した状態を示す図であり、(b)ウエハ基板からチップ部品を第1転写基板に転写する工程を示す図であり、(c)チップ部品が第1転写基板に転写された状態を示すものである。
【
図9】チップ部品の転写工程を説明するものであり、(a)第1転写基板と第2転写基板が対向した状態を示す図であり、(b)第1転写基板からチップ部品を第2転写基板に転写する工程を示す図であり、(c)チップ部品が第2転写基板に転写された状態を示すものである。
【
図10】第2転写基板から配線基板にチップ部品をレーザーリフトオフで転写する工程を説明するもので、(a)チップ部品を剥離する工程、(b)配線基板にチップ部品が転写された状態を示す図である。
【
図11】第2転写基板上のチップ部品とアライメントマークについて説明するための上面図であり、(b)断面図である。
【
図12】第2転写基板から配線基板に複数のチップ部品をレーザーリフトオフで同時に転写する工程を説明するもので、(a)チップ部品を剥離する工程、(b)配線基板にチップ部品が転写された状態を示す図である。
【
図13】第1転写基板からチップ部品を第2転写基板に加熱および加圧して転写する工程について説明するもので、(a)第1転写基板のチップ部品が第2転写基板に密着した状態を示し、(b)第1転写基板の粘着層に加圧力が印加された状態を示す図である。
【発明を実施するための形態】
【0024】
位置ズレの原因を探求したところ、
図9(b)に示した第1転写基板1からチップ部品Cを第2転写基板2に転写する際の加圧が影響していることが判った。すなわち、
図13(a)に示すような第1転写基板1のチップ部品Cと第2転写基板2が接触してから、チップ部品Cを第2転写基板側に押す加圧力によって、粘弾性を有する粘着層11および粘着層21が変形して、
図13(b)のように、チップ部品Cに横方向の力が加わることが起因している。特に、粘着層11は、ウエハ基板Wからレーザーリフトオフによりチップ部品Cが転写される際のエネルギーを緩和させるための柔軟性と厚みを有しているため、加圧により変形しやすい条件を有している。
【0025】
ところで、チップ部品Cに加わる力は、
図11(a)に示す第2転写基板2に転写されるチップ部品Cにおいて、第2転写基板2の中央付近では、面内全方向でバランスしてほとんどゼロであるが、周辺部に近づくほど一方向の比率が強まる傾向となる。
【0026】
このことから、第2転写基板2に転写されたチップ部品Cの位置ズレを、第2転写基板2上の配置位置によって把握して、チップ部品毎に位置ズレ補正を設定することも可能である。ただし、隣接するチップ部品Cでの位置ズレ量の差は僅かで、この僅かな差も含めた細かな設定で補正を行なっても、実装精度に殆ど影響を及ぼさない。
【0027】
そこで、位置ズレ量が所定の範囲内となるエリアに分け、エリア内のチップ部品Cに対しては同様な位置補正を行なうという手法を第2転写基板2のチップ部品Cと配線基板Sとの位置合わせに採用し、配線基板Sの所定位置にチップ部品Cを転写配置して実装するのが本発明の実装方法である。
【0028】
例えば、X方向(Y方向)の位置ズレ量ΔX(ΔY)が「δX(δY)±1μm以内」となるエリアのチップ部品Cに対して、X方向(Y方向)に「-δX(―δY)」の位置補正を行なえば、同エリア内のX方向(Y方向)位置ズレ量を「±1μm以内」に押えることが可能である。
【0029】
このため、位置ズレ量(ΔX、ΔY)が、エリアAn(nは1,2、・・)で(δXn±1μm以内、δYn±1μm以内)となるようなエリア分けを行なえば、エリアAn
内のチップ部品Cに対して(-δXn、―δYn)の補正で、各エリア内の位置ズレ量を(±1μm以内、±1μm以内)とすることができる。すなわち、全てのエリアAnは、共通の精度エリアとして区分けされていると言える。
【0030】
以下、
図1および
図2を用いて本発明の一実施形態について説明する。
図1(a)はチップ部品Cが転写された第2転写基板2の上面図であり、第2転写基板2を構成する粘着層21に多数のチップ部品Cが保持されている。ここで、第2転写基板2に設けられた第2転写板アライメントマークP2によって第2転写基板2上の面内座標系が設定され、各チップ部品Cの座標位置も定まる。
【0031】
図2は、番号付けしたチップ部品Cの設計位置と実測位置(実際の配置位置)および補正量を一覧表化したものである。ここで、設計位置とは、ウエハW上にチップ部品Cを形成する際の配置である。
図1(b)は、
図2に示したエリア分けを第2転写基板2上に示したものである。
【0032】
図2では、位置ズレ量をX方向、Y方向ともに±1μm以内としたエリア分けを行なっているが、エリア分けはこれに限定されるものではなく許容精度が大きな用途に関しては、例えば±2μm以内としてもよい。この場合、1エリアの範囲は大きくなる。一方、高精度が必要なものについては、エリア分けを細かくする必要が生じる。
【0033】
なお、
図1(b)においてエリア分けを格子状に行なっているが、これに限定されるものではなく、
図3のようなエリア分けであってもよい。
【0034】
ところで、
図2の一覧表で示した各チップ部品Cの実測位置は、
図4のように第2転写基板2の上側から撮像手段5を用いて測定することが可能である。この測定位置を設計位置の関係を示したのが
図5であり、チップ部品Cの実測位置を同チップ部品の設計位置ICと比較することによって位置ズレ量が求まる。
【0035】
ここで、チップ部品Cの実測位置を求めるに際して、撮像手段5を備えた装置が必要となるが、ウエハ基板W段階での検査(各チップ部品Cの性能検査)に用いるカメラを流用しても良い。また、チップ部品Cをウエハ基板Wから第2転写基板2に至る各工程が安定している場合においては、第2転写基板2内のエリア分けおよび各エリア毎の補正量に大きな違いが生じないことから、各チップ部品の位置測定の頻度を減らすことも可能である。
【0036】
以上のように、本発明の実装方法により、多数のチップ部品を配線基板上に高精度に転写実装することが可能である。したがって、配線基板としてTFT基板を用い、チップ部品としてLEDチップを用いるような画像表示装置の製造方法として本発明は好適であり、数百万個のLEDを所定位置に配した高品質の画像表示装置の製造方法として極めて適したものである。
【符号の説明】
【0037】
1 第1転写基板
2 第2転写基板
3 加熱加圧ヘッド
5 撮像手段
10 ベース基板
11 粘着層(熱硬化性)
20 ベース基板
21 粘着層(光硬化性)
B バンプ(チップ部品の電極)
C チップ部品
IC チップ部品設計位置
L レーザー光
P2 第2転写板アライメントマーク
PW ウエハ基板アライメントマーク
S 配線基板
W ウエハ基板