(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-26
(45)【発行日】2023-08-03
(54)【発明の名称】眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム
(51)【国際特許分類】
A61B 3/113 20060101AFI20230727BHJP
G06F 3/038 20130101ALI20230727BHJP
【FI】
A61B3/113 ZDM
G06F3/038 310A
(21)【出願番号】P 2020525607
(86)(22)【出願日】2019-06-12
(86)【国際出願番号】 JP2019023226
(87)【国際公開番号】W WO2019240157
(87)【国際公開日】2019-12-19
【審査請求日】2022-05-25
(31)【優先権主張番号】P 2018111535
(32)【優先日】2018-06-12
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、関東総合通信局、研究開発委託「眼球運動からのバイオシグナル収集技術」委託研究、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】504171134
【氏名又は名称】国立大学法人 筑波大学
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100188558
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100169764
【氏名又は名称】清水 雄一郎
(72)【発明者】
【氏名】星野 聖
(72)【発明者】
【氏名】小野 那由他
【審査官】牧尾 尚能
(56)【参考文献】
【文献】国際公開第2016/195066(WO,A1)
【文献】国際公開第2013/125707(WO,A1)
【文献】特開2011-056069(JP,A)
【文献】特開2015-16290(JP,A)
【文献】米国特許出願公開第2017/0164829(US,A1)
【文献】米国特許出願公開第2017/0131768(US,A1)
【文献】特開2012-125490(JP,A)
【文献】特表2017-515182(JP,A)
【文献】米国特許出願公開第2005/0119642(US,A1)
【文献】特開平7-213511(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00- 3/18
G06F 3/038
G06V 40/18
(57)【特許請求の範囲】
【請求項1】
被験者の眼球が撮像された眼球画像を取得する取得部と、
前記取得部が取得する前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出部と、
前記眼球画像のうち、前記特徴点抽出部が抽出する前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成部と、
前記候補領域生成部が生成する複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択部と、
前記選択部が選択する前記テンプレート領域を用いて、前記取得部が取得する前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定部と、
を備える眼球運動測定装置。
【請求項2】
前記候補領域生成部は、
前記特徴点抽出部が抽出する前記特徴点のうち、前記白目領域内の血管の位置に対応する特徴点として選択された前記特徴点毎に、前記テンプレート候補領域を生成する
請求項1に記載の眼球運動測定装置。
【請求項3】
前記特徴点抽出部は、
前記白目領域内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、前記白目領域内の特徴点を抽出する
請求項1又は請求項2に記載の眼球運動測定装置。
【請求項4】
前記選択部は、
複数の前記テンプレート候補領域のうち、前記眼球画像内の互いに異なる複数の領域に対してマッチングする頻度がより少ない前記テンプレート候補領域を、前記テンプレート領域として選択する
請求項1から請求項3のいずれか一項に記載の眼球運動測定装置。
【請求項5】
前記被験者の眼球を撮像することにより前記眼球画像を生成する撮像部
を更に備える請求項1から請求項4のいずれか一項に記載の眼球運動測定装置。
【請求項6】
電磁波を前記被験者の眼球に対して照射する第1照射部と、
570ナノメートルより短い波長であって、かつ前記第1照射部が照射する電磁波の波長よりも短い波長の電磁波を前記被験者の眼球に対して照射する第2照射部と、
前記第1照射部と、前記第2照射部とのうちいずれか一方から電磁波を照射させる照射制御部と、
を更に備える請求項1から請求項5のいずれか一項に記載の眼球運動測定装置。
【請求項7】
被験者の眼球が撮像された眼球画像を取得する取得ステップと、
前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、
前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、
前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、
前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、
を有する眼球運動測定方法。
【請求項8】
コンピュータに、
被験者の眼球が撮像された眼球画像を取得する取得ステップと、
前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、
前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、
前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、
前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、
を実行させるための眼球運動測定プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラムに関する。
本願は、2018年6月12日に、日本に出願された特願2018-111535号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
従来、例えばHMDを用いたVR画像による映像酔いや、3D酔いを定量化するために、眼球を撮像することによって眼球運動を計測する技術が開示されている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に示すような技術によると、撮像された眼球の画像の状況によっては眼球運動(特に、眼球回旋運動)の計測精度が低下してしまうことがあり、この場合には、安定した計測ができないという課題があった。
【課題を解決するための手段】
【0005】
本発明の一実施形態は、被験者の眼球が撮像された眼球画像を取得する取得部と、前記取得部が取得する前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出部と、前記眼球画像のうち、前記特徴点抽出部が抽出する前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成部と、前記候補領域生成部が生成する複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択部と、前記選択部が選択する前記テンプレート領域を用いて、前記取得部が取得する前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定部と、を備える眼球運動測定装置である。
【0006】
本発明の一実施形態は、上述の眼球運動測定装置において前記候補領域生成部は、前記特徴点抽出部が抽出する前記特徴点のうち、前記白目領域内の血管の位置に対応する特徴点として選択された前記特徴点毎に、前記テンプレート候補領域を生成する。
【0007】
本発明の一実施形態は、上述の眼球運動測定装置において前記特徴点抽出部は、前記白目領域内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、前記白目領域内の特徴点を抽出する。
【0008】
本発明の一実施形態は、上述の眼球運動測定装置において前記選択部は、複数の前記テンプレート候補領域のうち、前記眼球画像内の互いに異なる複数の領域に対してマッチングする頻度がより少ない前記テンプレート候補領域を、前記テンプレート領域として選択する。
【0009】
本発明の一実施形態は、上述の眼球運動測定装置において、前記被験者の眼球を撮像することにより前記眼球画像を生成する撮像部をさらに備える。
【0010】
本発明の一実施形態は、上述の眼球運動測定装置において、波長が570ナノメートルより長い電磁波を前記被験者の眼球に対して照射する第1照射部と、波長が570ナノメートルより短い電磁波を前記被験者の眼球に対して照射する第2照射部と、前記第1照射部と、前記第2照射部とのうちいずれか一方から電磁波を照射させる照射制御部と、を更に備える。
【0011】
本発明の一実施形態は、被験者の眼球が撮像された眼球画像を取得する取得ステップと、前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、を有する眼球運動測定方法である。
【0012】
本発明の一実施形態は、コンピュータに、被験者の眼球が撮像された眼球画像を取得する取得ステップと、前記取得ステップにおいて取得される前記眼球画像に含まれる白目領域内の特徴点を抽出する特徴点抽出ステップと、前記眼球画像のうち、前記特徴点抽出ステップにおいて抽出される前記特徴点の画素を含む領域であるテンプレート候補領域を、前記特徴点毎に生成する候補領域生成ステップと、前記候補領域生成ステップにおいて生成される複数の前記テンプレート候補領域のうち、前記特徴点がより多く含まれている前記テンプレート候補領域を、テンプレート領域として選択する選択ステップと、前記選択ステップにおいて選択される前記テンプレート領域を用いて、前記取得ステップにおいて取得される前記眼球画像の動きを追跡することにより、前記被験者の眼球の回旋角度を少なくとも含む眼球三次元運動を測定する測定ステップと、を実行させるための眼球運動測定プログラムである。
【発明の効果】
【0013】
本発明によれば、眼球運動の計測精度を向上させることができる眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラムを提供することができる。
【図面の簡単な説明】
【0014】
【
図1】本実施形態の眼球運動測定システムの機能構成の一例を示す図である。
【
図2】撮像角度40度、距離15mmの場合の相対位置の一例を示す図である。
【
図3】撮像角度50度、距離15mmの場合の相対位置の一例を示す図である。
【
図4】撮像角度60度、距離15mmの場合の相対位置の一例を示す図である。
【
図5】撮像角度40度、距離20mmの場合の相対位置の一例を示す図である。
【
図6】撮像角度50度、距離20mmの場合の相対位置の一例を示す図である。
【
図7】撮像角度60度、距離20mmの場合の相対位置の一例を示す図である。
【
図8】撮像角度40度、距離25mmの場合の相対位置の一例を示す図である。
【
図9】撮像角度50度、距離25mmの場合の相対位置の一例を示す図である。
【
図10】撮像角度60度、距離25mmの場合の相対位置の一例を示す図である。
【
図11】本実施形態の眼球運動測定システムの動作の一例を示す図である。
【
図12】本実施形態の眼球運動測定システムのテンプレート領域を決定する動作の一例を示す図である。
【
図13】本実施形態の眼球画像の一例を示す図である。
【
図14】本実施形態のヒストグラム平坦化処理後の白目領域の画像の一例を示す図である。
【
図15】本実施形態の特徴点の抽出結果の一例を示す図である。
【
図16】本実施形態の血管二値化細線化画像の一例を示す図である。
【
図17】本実施形態の血管対応特徴点の一例を示す図である。
【
図18】本実施形態のテンプレート候補領域の一例を示す図である。
【
図19】眼球運動測定システムの機能構成の変形例を示す図である。
【発明を実施するための形態】
【0015】
[実施形態]
以下、図面を参照して本実施形態の眼球運動測定システム1について説明する。
図1は、本実施形態の眼球運動測定システム1の機能構成の一例を示す図である。眼球運動測定システム1は、眼球運動測定装置10と、撮像装置20とを備える。
なお、この一例においては、眼球運動測定装置10と撮像装置20とが別装置として構成される場合について説明するが、これに限られない。眼球運動測定装置10と撮像装置20とは一体化された1つの装置として構成されてもよい。
まず、撮像装置20の構成について説明し、次に眼球運動測定装置10の構成について説明する。
【0016】
[撮像装置20の機能構成]
撮像装置20は、撮像部210を備える。撮像部210は、例えば動画像を撮像可能なカメラを備えている。撮像部210は、被験者SBの眼球EYを撮像することにより眼球画像IMGを生成する。
【0017】
この一例では、撮像装置20は、被験者SBの頭部に装着されるメガネ型のゴーグルとして構成される。撮像装置20は、撮像部210としての血管撮影用のカラーボードカメラを備え、眼球EYの血管像と瞳孔とを撮像する。このカラーボードカメラは、眼球EYと同じ高さで、眼球から20mm(ミリメートル)離れた位置に、正面から目尻側へ50度の方向に設置し、主に眼球EYの黒目と目尻側の白目領域EWとを画角に収めつつ撮像する。撮像部210の画面解像度は720×480[pixel]、撮像速度29.97[fps]である。
ここで、眼球EYと撮像部210との間の相対的な位置関係について説明する。
【0018】
[眼球と撮像部との間の相対的な位置関係]
図2から
図10までは、いずれも、眼球EYと撮像部210との相対位置関係の一例を示す図である。以下の説明において、被験者SBの頭部正面の方向(正面方向FA)と、眼球EYの視線軸AXの方向とが成す角を「角α」と、正面方向FAと撮像部210の撮像軸AIの方向とが成す角を「角θ」と記載する。なお、以下の説明において、角αのことを「視線角度α」とも称し、角θのことを「撮像角度θ」とも称する。また、撮像部210のレンズと眼球EYの中心との間の距離を「距離d」と記載する。
【0019】
まず、距離dが15mmである場合について説明する。
図2は、撮像角度θ11(40度)、距離d11(15mm)である場合の相対位置関係の一例を示す図である。
図2(a)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して左方向に45度回転している。すなわち、視線角度αについて、角α1=45度である。この
図2(a)において、被験者SBは顔面を正面前方に向けながら、左方向を見ている。
この場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この
図2(a)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(b)において、眼球EYの視線軸AXの方向と、正面方向FAの方向とは一致しており視線角度αは0度である。つまり、この
図2(b)において、被験者SBは正面前方を見ている。この一例の場合、撮像部210の画角には、眼球EYの白目の部分と、眼球EYの黒目の部分とのいずれもが含まれる。つまり、この
図2(b)の状態において、撮像部210は、眼球EYの白目の部分と、眼球EYの黒目の部分を撮像可能である。
図2(c)において、眼球EYの視線軸AXの方向は、正面方向FAの方向に対して右方向に45度回転している。すなわち、角α3=45度である。この
図2(c)において、被験者SBは顔面を正面前方に向けながら、右方向を見ている。この場合、撮像部210の画角には、眼球EYの白目の部分が含まれるが、眼球EYの黒目の部分は含まれない。つまり、この
図2(c)の状態において、撮像部210は、眼球EYの白目の部分を撮像可能であるが、眼球EYの黒目の部分を撮像することはできない。
なお、以下の説明において、撮像部210と眼球EYとの位置関係が
図2に示した場合と同様である部分については省略する。
【0020】
図3は、撮像角度θ12(50度)、距離d12(15mm)である場合の相対位置関係の一例を示す図である。
図3(a)の状態において、撮像部210は、白目と、黒目とをいずれも撮像可能である。
図3(b)の状態において、撮像部210は、白目と、黒目とをいずれも撮像可能である。
図3(c)の状態において、撮像部210は、白目を撮像可能であるが、黒目を撮像することはできない。
【0021】
図4は、撮像角度θ13(60度)、距離d13(15mm)である場合の相対位置関係の一例を示す図である。この
図4に示す場合も、白目及び黒目の撮像可否は、
図2、
図3を参照して説明した場合と同様である。
つまり、距離dが15mmである場合には、視線軸AXの方向によっては、白目と黒目とを同時に撮像することができない場合がある。
【0022】
次に、距離dが20mmである場合について説明する。
図5は、撮像角度θ21(40度)、距離d21(20mm)である場合の相対位置関係の一例を示す図である。
図6は、撮像角度θ22(50度)、距離d22(20mm)である場合の相対位置関係の一例を示す図である。
図7は、撮像角度θ23(60度)、距離d23(20mm)である場合の相対位置関係の一例を示す図である。
これら
図5~
図7を参照すると、撮像角度θが、撮像角度θ23(60度)である場合には、白目と黒目とを同時に撮像することができない場合がある。一方、撮像角度θが、撮像角度θ21(40度)及び撮像角度θ22(50度)である場合には、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
【0023】
次に、距離dが25mmである場合について説明する。
図8は、撮像角度θ31(40度)、距離d31(25mm)である場合の相対位置関係の一例を示す図である。
図9は、撮像角度θ32(50度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
図10は、撮像角度θ33(60度)、距離d32(25mm)である場合の相対位置関係の一例を示す図である。
これら
図8~
図10を参照すると、撮像角度θが撮像角度θ31、撮像角度θ32及び撮像角度θ33のいずれであっても、視線軸AXの方向によらず白目と黒目とを同時に撮像可能である。
【0024】
すなわち、撮像部210と眼球EYとの相対的な位置関係が変化すると、白目と黒目とが同時に撮像できる場合と撮像できない場合とが生じる。この一例では、白目と黒目とを同時に撮像するためには、距離dは大きいほうがよく、撮像角度θは小さいほうがよい。
また、撮像部210の画角内に収まる白目の面積を大きくするためには、距離dは小さいほうがよく、撮像角度θは大きいほうがよい。つまり、白目と黒目とを同時に撮像可能であり、かつ撮像部210の画角内に収まる白目の面積を大きくするためには、撮像部210と眼球EYとの相対的な位置関係が、所定の範囲内にあることが求められる。この所定の範囲の一例として、上述したように、距離dが20~25mm、撮像角度θが40度~50度であることが望ましい。また、この所定の範囲の一例として、上述したように、距離dが25mmである場合には、撮像角度θが60度であってもよい。
【0025】
[眼球運動測定装置10の機能構成]
図1に戻り、眼球運動測定装置10の機能構成について説明する。眼球運動測定装置10は、取得部110と、特徴点抽出部120と、候補領域生成部130と、選択部140と、測定部150とを備える。
【0026】
取得部110は、被験者SBの眼球EYが撮像された眼球画像IMGを取得する。
特徴点抽出部120は、取得部110が取得する眼球画像IMGに含まれる白目領域EW内の特徴点FPを抽出する。
候補領域生成部130は、眼球画像IMGのうち、特徴点抽出部120が抽出する特徴点FPの画素を含む領域であるテンプレート候補領域TCを、特徴点FP毎に生成する。
選択部140は、候補領域生成部130が生成する複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
測定部150は、選択部140が選択するテンプレート領域TPを用いて、取得部110が取得する眼球画像IMGの動きを追跡することにより、被験者SBの眼球EYの回旋角度ATを少なくとも含む眼球三次元運動を測定する。
これら各部の動作の具体例について、
図11を参照して説明する。
【0027】
[眼球運動測定システムの動作]
図11は、本実施形態の眼球運動測定システム1の動作の一例を示す図である。
(ステップS10)眼球運動測定装置10は、テンプレート領域TPを決定する。ここで、眼球運動測定装置10がテンプレート領域TPを決定する手順の詳細について、
図12を参照して説明する。
【0028】
[テンプレート画像の決定]
図12は、本実施形態の眼球運動測定システム1のテンプレート領域TPを決定する動作の一例を示す図である。
(ステップS110)取得部110は、撮像部210が撮像した眼球画像IMGを取得する。この眼球画像IMGの一例について、
図13に示す。
【0029】
図13は、本実施形態の眼球画像IMGの一例を示す図である。この一例においては、撮像部210は、被験者SBの左目の眼球EYを撮像して眼球画像IMGを生成する。この眼球画像IMGには、白目領域EWが含まれている。
【0030】
(ステップS120)特徴点抽出部120は、取得部110が取得した眼球画像IMGから白目領域EWの画像(白目画像ともいう。)を抽出する。
【0031】
(ステップS130)特徴点抽出部120は、ステップS120において抽出した白目画像に対して、ヒストグラム平坦化を行う。このヒストグラム平均化によって、特徴点抽出部120は、白目領域EWと血管像との濃淡コントラストを大きくすることにより、白目領域EWに含まれる血管の画像を強調する。
【0032】
具体的には、特徴点抽出部120は、眼球画像IMGの各画素の画素値(例えば、輝度値)について、式(1)に示す変換を行う。
【0033】
【0034】
ここで、z:変換前の輝度値、z’:変換後の輝度値、h(z):輝度値zにおける画素数、Height:入力画像の縦の大きさ、Width:入力画像の横の大きさ、である。
すなわち、特徴点抽出部120は、白目領域EW内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行う。特徴点抽出部120がヒストグラム平坦化を行った後の白目領域EWの画像の一例を
図14に示す。
図14は、本実施形態のヒストグラム平坦化処理後の白目領域EWの画像の一例を示す図である。
【0035】
(ステップS140)
図12に戻り、特徴点抽出部120は、ヒストグラム平坦化を行った白目画像に対して、従来手法(例えば、ORB;Oriented FAST and Rotated BRIEF)によって特徴点FPの抽出を行う。特徴点抽出部120が特徴点FPの抽出を行った結果の一例を
図15に示す。
【0036】
図15は、本実施形態の特徴点FPの抽出結果の一例を示す図である。特徴点抽出部120は、特徴点抽出部120は、白目領域EW内の各画素の画素値について統計処理を行うことにより、白目領域EW内の特徴点FPを抽出する。この一例では、特徴点抽出部120は、各画素に対する統計処理として、ヒストグラム平坦化を行う。
【0037】
(ステップS150)
図12に戻り、特徴点抽出部120は、ステップS120において抽出した白目画像を二値化し、さらに、二値化した画像を細線化した画像(血管二値化細線化画像BTN)を生成する。具体的には、特徴点抽出部120は、近傍領域のサイズ17×17[pixel]の輝度値においてガウシアンによる重み付けの総和からオフセット値(例えば、4)を差し引いた数値を閾値とする適応的二値化処理を行った後、細線化処理を行う。この結果、白目領域EWの画像に含まれる血管の位置PVが抽出される。
特徴点抽出部120が生成する血管二値化細線化画像BTNの一例を
図16に示す。
図16は、本実施形態の血管二値化細線化画像BTNの一例を示す図である。
【0038】
(ステップS160)
図12に戻り、特徴点抽出部120は、ステップS140において抽出した特徴点FPと、ステップS150において抽出した血管の位置PVとを重ね合わせることにより、ステップS140において抽出された特徴点FPのうち血管の周囲の特徴点(血管対応特徴点VFP)を抽出する。この特徴点抽出部120が抽出した血管対応特徴点VFPの一例を
図17に示す。
【0039】
図17は、本実施形態の血管対応特徴点VFPの一例を示す図である。すなわち、特徴点抽出部120は、特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとしての血管対応特徴点VFPを選択する。
【0040】
(ステップS170)
図12に戻り、候補領域生成部130は、ステップS140において抽出された特徴点FPのうちの、ある特徴点FPを中心とする領域(例えば、50[pixel]×50[pixel]の領域)内に、特徴点がいくつ含まれるかを、ステップS140において抽出された特徴点毎に計数する。以下の説明において、この特徴点FPを中心とする領域のことを、テンプレート候補領域TCともいう。
【0041】
すなわち、候補領域生成部130は、特徴点抽出部120が抽出する特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとして選択された特徴点(血管対応特徴点VFP)毎に、テンプレート候補領域TCを生成する。
図18を参照して、より具体的に説明する。
【0042】
図18は、本実施形態のテンプレート候補領域TCの一例を示す図である。同図(a)に示す白目領域EWには、複数の特徴点FPが抽出されている。ステップS170において、候補領域生成部130は、テンプレート候補領域TCを、特徴点FP毎に生成する。
同図(a)においては、候補領域生成部130が、複数の特徴点FPのうち、特徴点FP1についてテンプレート候補領域TC1を、特徴点FP2についてテンプレート候補領域TC2を、それぞれ生成した場合を示している。なお、同図(a)においては、他の特徴点FPについてのテンプレート候補領域TCの図示を省略している。
なお、この一例では、上述した候補領域生成部130がテンプレート候補領域TCの生成のために参照する特徴点FPとは、すべての特徴点FPのうち血管の位置PVの位置に対応する特徴点FP(すなわち、血管対応特徴点VFP)のことである。
【0043】
次に候補領域生成部130は、生成したテンプレート候補領域TCに含まれる血管対応特徴点VFPの数CNTを計数する。同図(b)に示す一例では、候補領域生成部130は、テンプレート候補領域TC1に含まれる血管対応特徴点VFPの数CNTを「7」と計数する。同様に、候補領域生成部130は、テンプレート候補領域TC2について血管対応特徴点VFPの数CNT「11」、テンプレート候補領域TC3について血管対応特徴点VFPの数CNT「23」、テンプレート候補領域TC4について血管対応特徴点VFPの数CNT「17」、テンプレート候補領域TC5について血管対応特徴点VFPの数CNT「19」…と、テンプレート候補領域TCごとに計数する。
【0044】
より具体的には、候補領域生成部130は、
図14に示した白目領域EWの画像のうち、
図17に示した血管対応特徴点VFPの画素の周囲50×50[pixel]の領域に対応する位置の領域を切り取り、切り取った領域の画像をテンプレート候補領域TCとして生成する。候補領域生成部130は、このテンプレート候補領域TCの生成を、血管対応特徴点VFP毎に繰り返す。
【0045】
(ステップS180)
図12に戻り、候補領域生成部130は、ステップS170において計数した特徴点FPの数に基づいて、テンプレート候補領域TCの順位付けを行う。
図18(c)に、候補領域生成部130が行うテンプレート候補領域TCの順位付けの一例を示す。
【0046】
(ステップS190)
図12に戻り、選択部140は、候補領域生成部130が生成する複数のテンプレート候補領域TCのうち、特徴点FP(または、血管対応特徴点VFP)がより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。つまり、選択部140は、候補領域生成部130が順位付けしたテンプレート候補領域TCのうち、上位のテンプレート候補領域TCをテンプレート領域TPとして選択する。
【0047】
ここで、白目領域EWに環境光が反射している(照り返しがある)場合、反射光によって生じた輝度勾配によっても特徴点FPとして抽出されることがある。つまり、白目領域EWに環境光が反射している場合には、白目領域EWの形態に由来する特徴ではなく、外乱に由来する特徴によって特徴点FPが抽出されてしまうことがある。選択部140は、テンプレート候補領域TCに反射光の画像が含まれている場合には、この反射光の画像が含まれているテンプレート候補領域TCをテンプレート領域TPとして選択しないように除去する。
【0048】
より具体的には、選択部140は、白目領域EWの輝度値ヒストグラムを作成し、作成したヒストグラムの累積度数について、上位から所定範囲(例えば、10%まで)の輝度値を調べる。選択部140は、テンプレート候補領域TC内に、上述した所定範囲内の輝度値の領域が25[pixel]以上含まれている場合には、テンプレート候補領域TCに環境光による照り返しが存在していると判定する。
【0049】
(ステップS200)選択部140は、誤マッチングを起こしやすいテンプレート候補領域TCを除去する。具体的には、選択部140は、複数のテンプレート候補領域TCのうち、眼球画像IMG内の互いに異なる複数の領域に対してマッチングする頻度がより少ないテンプレート候補領域TCを、テンプレート領域TPとして選択する。
【0050】
例えば、白目領域EW内において、直線に近い形状の血管の画像が存在する場合には、その血管の画像を含み、かつその血管の端点の画像を含まない領域が、テンプレート候補領域TCとして生成される場合がある。このようなテンプレート候補領域TCの場合、白目領域EW内の他の領域においても画像の類似度が大きくなることがある。この場合、テンプレート候補領域TCが、本来マッチングする領域以外の領域においてもマッチングしてしまう、すなわち誤マッチングしてしまうことがある。
そこで、選択部140は、白目領域EWにおいてテンプレート候補領域TCによるテンプレートマッチングを行なった結果、類似度が70%を超えた回数を算出する。なお、この類似度の計算には後述する正規化相互相関係数を用いてもよい。
【0051】
選択部140による探索領域内(例えば、白目領域EW内)には、テンプレート候補領域TCである領域も存在する。このため、選択部140による類似度が70%を超えた回数の算出において、少なくとも1回は類似度が70%を超え、また上下左右に1[pixel]ずらした場合においても、多くの場合には類似度が70%を超える。すなわち、選択部140による回数の算出において、類似度が70%を超える回数が5回までは通常発生しうる。しかし、それ以上の回数で類似度が70%を超える場合は、誤マッチングを引き起こしているものと推定される。このため、選択部140は、類似度が70%を超える回数が所定回数(例えば、5回)を超える場合には、当該テンプレート候補領域TCを、誤マッチングを起こしやすいテンプレート候補領域TCであると判定して、テンプレート領域TPの選択から除外する。
【0052】
(ステップS210)選択部140は、ステップS190及びステップS200において除外されたテンプレート候補領域TCを除いたテンプレート候補領域TCから、テンプレート領域TPを選択する。すなわち、選択部140は、テンプレート領域TPを決定する。
【0053】
図11に戻り、眼球運動測定システム1の動作についての説明を続ける。
(ステップS20)取得部110は、眼球画像IMGを取得する。
【0054】
[瞳孔中心座標の算出(楕円フィッティング)]
(ステップS30)測定部150は、取得部110が取得した眼球画像IMGに基づいて、既知の手順によって瞳孔中心座標を算出する。具体的には、測定部150は、眼球画像IMGに対して二値化及びラベリング処理を施すことによって、眼球画像IMGに含まれる瞳孔画像の領域を抽出する。測定部150は、抽出した瞳孔画像から、瞳孔の輪郭を抽出し、輪郭の凸包を取得する。測定部150は、凸包によって得られた点群に対して、例えば最小二乗法を用いて楕円フィッティングを行うことにより、瞳孔の中心座標を算出する。
なお、瞳孔の中心座標の算出について、楕円フィッティングを用いることは一例であり、測定部150は、種々の手順によって瞳孔の中心座標を算出してよい。
【0055】
[回旋角度の算出]
測定部150は、上述したテンプレート領域TPによって、白目領域EW内の血管画像を追跡する。具体的には、測定部150は、取得部110が取得する眼球画像IMGのテンプレート領域TPに相当する領域に対して適応的二値化を行い、血管の位置PVを示す血管画像を抽出する。測定部150は、適応的二値化処理後の眼球画像IMGに対してラべリング処理を行うことにより、眼球画像IMGの中で最も面積の大きい領域を選択する。この測定部150が行うテンプレートマッチングにおける類似度の計算には、正規化相互相関係数を用いる。正規化相互相関係数のR(x,y)は、式(2)~式(4)によって示される。
【0056】
【0057】
【0058】
【0059】
ただし、x,y:参照する画素のxy座標、w:テンプレート画像の縦の大きさ、h:テンプレート画像の横の大きさ、I:探索画像での輝度値、T:テンプレート画像の輝度値、R:類似度計算結果、(x^’=0,1…w-1,y^’=0,1,…h-1)である。
【0060】
上述したテンプレートマッチングにおいて、R(x,y)が最も大きな値をとる(x,y)は,上述したテンプレート領域TPの左上隅に対応する座標である。血管の位置PV(血管像の座標)はテンプレート画像の中心と定めている。この場合、テンプレートマッチングによって得られる座標は(x+w/2,y+h/2)である。
【0061】
[回旋角度の算出]
測定部150は、テンプレート領域TPによるテンプレートマッチングの結果に基づいて、回旋角度を算出する。測定部150は、テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiと、当該iフレーム目からtフレーム後の角度θ(i+t)との差から眼球回旋角度を算出する。
一例として、測定部150は、処理の簡易化のために眼球が球体ということを考慮せず、単純に平面での角度計算と同様に2点の(x,y)座標から逆三角関数を用いて角度を求めてもよい。なお、瞳孔の中心の座標に対する、テンプレート領域TPの中心の座標から計算される角度θiは,次式で表される。
【0062】
【0063】
ここで、(x_vessel,y_vessel):血管像の座標、(x_pupil,y_pupil):瞳孔中心の座標である。
テンプレート領域TPの決定に用いられたiフレーム目の画像から求められる角度θiを眼球回旋角度0[deg]と定める。測定部150は、Tフレーム後のテンプレートマッチングによって得られた血管像の座標(x+w/2,y+h/2)から求められるθ(i+t)との差から回旋角度を計算する。
【0064】
なお、測定部150は、上述したテンプレートマッチングにおいて、瞳孔中心を回転中心として予め回転させたテンプレート領域TPを用いて、テンプレートマッチングを行ってもよい。
【0065】
[変形例]
図19は、眼球運動測定システム1の機能構成の変形例を示す図である。
本変形例の眼球運動測定システム1aは、眼球運動測定装置10aが、照射制御部160を、撮像装置20aが第1照射部220と第2照射部230とを備える点において、上述した眼球運動測定システム1と異なる。
【0066】
照射制御部160は、第1照射部220と、第2照射部230とのうちいずれか一方から電磁波を照射させる。
第1照射部220は、電磁波を被験者SBの眼球EYに対して照射する。この第1照射部220から照射される電磁波は、例えば、緑色光、黄色光、赤色光などの波長領域の可視光線、又は更に波長が長い赤外線などである。一例としては、第1照射部220は、495ナノメートルより長い波長の電磁波を被験者SBの眼球EYに対して照射する。一例として、第1照射部220は、赤色LED(light emitting diode)を備えており、赤色光を照射する。
第2照射部230は、570ナノメートルより短い波長であって、かつ第1照射部220が照射する電磁波の波長よりも短い波長の電磁波を被験者SBの眼球EYに対して照射する。この第2照射部230から照射される電磁波は、例えば、緑色光、青色光、紫色光などの波長領域の可視光線、又は更に波長が短い紫外線などである。一例として、第1照射部220が、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する場合には、第2照射部230は、495ナノメートルよりも短い波長の電磁波、例えば、450ナノメートルの波長の電磁波(例えば、青色光)を照射する。また、他の一例として、第1照射部220が、570ナノメートルの波長の電磁波(例えば、黄色光)を照射する場合には、第2照射部230は、570ナノメートルよりも短い波長の電磁波、例えば、495ナノメートルの波長の電磁波(例えば、緑色光)を照射する。一例として、第2照射部230は、青色LEDを備えており、青色光を照射する。
【0067】
[交互照明]
ここで、照射制御部160は、第1照射部220と、第2照射部230とのうちいずれか一方から電磁波を照射させる。第1照射部220は、赤色光(又はより波長の長い電磁波)を照射する。第2照射部230は、青色光(又はより波長の短い電磁波)を照射する。長波長の電磁波が照射された眼球EYの画像は、眼球EYの瞳孔が描出されやすい。短波長の電磁波が照射された眼球EYの画像は、眼球EYの白目領域EWの血管が描出されやすい。
照射制御部160は、測定部150が眼球EYの瞳孔の座標を算出する場合には、赤色光を照射し、測定部150が眼球EYの血管の座標を算出する場合には、青色光を照射する。例えば、照射制御部160は、照射する波長の切り替え周期を、撮像部210の撮像フレーム周期の半分の周期にする。
また、上述の場合、測定部150は、眼球画像IMGの全体の輝度値の平均値が所定値(例えば、256階調の場合において200)以上の場合には、瞳孔中心の検出を行い、所定値未満の場合には、血管の位置PVの追跡を行う。また、照射制御部160は、いずれの波長の電磁波を照射しているのかを示す信号を、撮像部210、取得部110、又は測定部150に対して出力して、照射波長と撮像された眼球画像IMGとを同期させてもよい。
【0068】
[実施形態のまとめ]
以上説明したように、本実施形態の眼球運動測定システム1は、テンプレート領域TPを用いて、眼球画像IMGの動きを追跡することにより眼球三次元運動を測定する。この眼球運動測定システム1は、複数のテンプレート候補領域TCのうち、特徴点FPがより多く含まれているテンプレート候補領域TCを、テンプレート領域TPとして選択する。
ここで、特徴点FPがより多く含まれているテンプレート候補領域TCは、特徴点FPがより少ないテンプレート候補領域TCに比べてテンプレートマッチング性能が高い。
このように構成することにより、眼球運動測定システム1は、眼球画像IMGの動きの追跡性能を向上させることができる。すなわち、本実施形態の眼球運動測定システム1によれば、眼球運動の計測精度を向上させることができる。
【0069】
また、本実施形態の眼球運動測定システム1は、抽出される特徴点FPのうち、白目領域EW内の血管の位置PVに対応する特徴点FPとして選択された特徴点(すなわち、血管対応特徴点VFP)毎に、テンプレート候補領域TCを生成する。ここで、白目領域EWから抽出される特徴点FPには、眼球EYの血管の画像に由来するものと、血管以外の要素(例えば、瞼、まつ毛、埃など)の画像に由来しているものとがある。眼球EYの血管は、眼球EYに対してその位置が変化しないため、眼球EYの動きをよく表す。一方、血管以外の要素は、眼球EYに対してその位置が変動することがあるため、眼球EYの動きを必ずしも表さない。したがって、眼球EYの動きの追跡性能を向上させるためには、血管以外の要素の画像を含む領域をテンプレート領域TPとすることよりも、血管の画像を含む領域をテンプレート領域TPとするほうが好ましい。つまり、血管以外の要素の画像を含む領域は、テンプレート領域TPとして用いた場合、眼球EYの動きの追跡性能が相対的に低い。
眼球運動測定システム1は、血管の位置PVに対応する領域をテンプレート候補領域TCの生成対象とすることにより、眼球EYの動きの追跡性能を向上させることができる。
また、眼球運動測定システム1は、血管の位置PVに対応しない領域(すなわち眼球EYの動きの追跡性能が相対的に低い領域)をテンプレート候補領域TCの生成対象から除外することにより、テンプレート候補領域TCの候補数を低減することができる。つまり、眼球運動測定システム1によれば、テンプレート領域TPの選択のための演算量を低減することができる。
すなわち、上述のように構成された眼球運動測定システム1によれば、眼球EYの動きの追跡性能の向上と、演算量の低減とを両立させることができる。
【0070】
また、本実施形態の眼球運動測定システム1は、白目領域EW内の各画素の画素値について少なくともヒストグラム平坦化を含む統計処理を行うことにより、白目領域EW内の特徴点FPを抽出する。ここで、眼球EYの白目の画像において、地色(白色)の面積が相対的に大きく、特徴点FPの抽出対象である血管の色(赤色~暗赤色~黒色)の面積が相対的に小さい。また、眼球EYの白目の画像において、血管の色は彩度が低く画像全体としてのコントラストが低い(弱い)場合がある。
したがって、仮に白目領域EWの画像を単純に二値化した場合には、血管の画像が抽出されにくい場合がある。このため、従来は、眼球EYに青色光などを照射することによって画像のコントラストを高める手法が用いられる場合があった。
一方、本実施形態の眼球運動測定システム1によれば、白目領域EW内の各画素の画素値についてヒストグラム平坦化を行うため、白目領域EWについて、地色と血管の色とを峻別しやすくすることができる。つまり、眼球運動測定システム1によれば、血管の位置PVの抽出性能を向上させることができるため、眼球EYの動きの追跡性能を向上させることができる。
【0071】
また、本実施形態の眼球運動測定システム1は、複数のテンプレート候補領域TCのうち、眼球画像IMG内の互いに異なる複数の領域に対してマッチングする頻度がより少ないテンプレート候補領域TCを、テンプレート領域TPとして選択する。
ここで、テンプレート候補領域TCには、眼球EYの動きの追跡性能が相対的に高いものと低いものとがある。例えば、あるテンプレート候補領域TCについて、テンプレート候補領域TCが白目領域EW内の複数の領域に対してマッチングする場合がある。このようなテンプレート候補領域TCの場合、眼球EYの動きを追従する際に複数の領域のうちいずれの領域にマッチングするのかが確定しないため、眼球EYの動きの追従性能が低い。また、テンプレート候補領域TCが、白目領域EW内の単一の領域に対してマッチングし、白目領域EW内の他の領域に対してマッチングしない場合には、眼球EYの動きの追従性能が高い。つまり、テンプレート候補領域TCがマッチングする領域の数が少ないほうが、眼球EYの動きの追従性能が高い。
一方で、テンプレート候補領域TCが、白目領域EW内のある領域に対してマッチングする場合には、当該領域の周囲の領域にもマッチングする場合がある。したがって、仮にテンプレート領域TPの選択条件を、単一の領域のみに対してマッチングするテンプレート候補領域TCに限ってしまうと、テンプレート候補領域TCの選択肢が少なくなり追跡性能が低下するおそれがある。
本実施形態の眼球運動測定システム1は、複数の領域に対してマッチングする頻度に基づいてテンプレート領域TPを選択する。例えば、眼球運動測定システム1は、マッチングする頻度が2以上であり所定値以下(例えば、5以下)であるテンプレート候補領域TCを、テンプレート領域TPとして選択する。このように構成することにより、眼球運動測定システム1は、テンプレート候補領域TCの選択肢の数が少なくなることを抑止して、眼球EYの動きの追従性能を向上させることができる。
【0072】
また、本実施形態の眼球運動測定システム1は、撮像部210を備える。眼球運動測定システム1は、撮像部210を備える撮像装置20と眼球運動測定装置10とを一体化することにより、撮像装置20と眼球運動測定装置10とを接続するための有線又は無線による通信機能を簡素化することができる。
【0073】
また、眼球運動測定システム1は、第1照射部220と、第2照射部230と、照射制御部160とを備える。第1照射部220は、長波長の電磁波(例えば、緑色光、黄色光、赤色光や赤外線)を眼球EYに照射する。ここで、長波長の電磁波が照射された眼球EYが撮像部210に撮像された場合、撮像部210が生成する画像において、眼球EYの瞳孔の描出性能が向上する。また、第2照射部230は、短波長の電磁波(例えば、青色光や紫外線)を眼球EYに照射する。ここで、短波長の電磁波が照射された眼球EYが撮像部210に撮像された場合、撮像部210が生成する画像において、眼球EYの白目領域EWの血管の描出性能が向上する。一方で、長波長の電磁波と短波長の電磁波とが同時に眼球EYに照射されると、眼球EYの瞳孔と、眼球EYの白目領域EWの血管とのうち、いずれか(又は両方)の描出性能が向上できない場合がある。
本実施形態の眼球運動測定システム1は、照射制御部160が、長波長の電磁波と短波長の電磁波とを排他的に照射させるため、眼球EYの瞳孔の描出性能と、眼球EYの白目領域EWの血管の描出性能との両方を向上させることができる。
【0074】
以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
【0075】
なお、上述の各装置は内部にコンピュータを有している。そして、上述した各装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
【0076】
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【符号の説明】
【0077】
1…眼球運動測定システム10…眼球運動測定装置、110…取得部、120…特徴点
抽出部、130…候補領域生成部、140…選択部、150…測定部、160…照射制御
部、20…撮像装置、210…撮像部、220…第1照射部、230…第2照射部