IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテュイティブ サージカル オペレーションズ, インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-28
(45)【発行日】2023-08-07
(54)【発明の名称】手術シーンの定量的三次元撮像
(51)【国際特許分類】
   A61B 1/00 20060101AFI20230731BHJP
   A61B 1/05 20060101ALI20230731BHJP
   G02B 23/24 20060101ALI20230731BHJP
   G02B 23/26 20060101ALI20230731BHJP
   H04N 7/18 20060101ALI20230731BHJP
   H04N 13/243 20180101ALI20230731BHJP
   H04N 13/254 20180101ALI20230731BHJP
   H04N 13/293 20180101ALI20230731BHJP
   H04N 13/344 20180101ALI20230731BHJP
【FI】
A61B1/00 522
A61B1/00 553
A61B1/05
G02B23/24 A
G02B23/24 B
G02B23/26 D
H04N7/18 M
H04N13/243
H04N13/254
H04N13/293
H04N13/344
【請求項の数】 12
【外国語出願】
(21)【出願番号】P 2019226104
(22)【出願日】2019-12-16
(62)【分割の表示】P 2017502948の分割
【原出願日】2015-03-28
(65)【公開番号】P2020054832
(43)【公開日】2020-04-09
【審査請求日】2020-01-08
【審判番号】
【審判請求日】2021-12-22
(31)【優先権主張番号】61/971,749
(32)【優先日】2014-03-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510253996
【氏名又は名称】インテュイティブ サージカル オペレーションズ, インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】パネスク,ドリン
(72)【発明者】
【氏名】ジョーンズ,ダニエル エイチ
【合議体】
【審判長】石井 哲
【審判官】▲高▼見 重雄
【審判官】樋口 宗彦
(56)【参考文献】
【文献】特開2006-305332(JP,A)
【文献】特開2000-149017(JP,A)
【文献】特開2002-171537(JP,A)
【文献】特開平6-160087(JP,A)
【文献】特表2013-515959(JP,A)
【文献】特開2006-109939(JP,A)
【文献】米国特許出願公開第2009/0088634(US,A1)
【文献】特開2010-85240(JP,A)
【文献】国際公開第2014/002849(WO,A1)
【文献】特開2000-65532(JP,A)
【文献】特表2012-529970(JP,A)
【文献】特表2011-523538(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B1/00-1/32
(57)【特許請求の範囲】
【請求項1】
内視鏡と、
前記内視鏡に隣接する視野を撮像するよう配置される、同一平面の重なり合う視野を有する、センサ平面内に位置する、少なくとも第1、第2及び第3の撮像センサを含む、画像センサアレイであって、各撮像センサは、他の撮像センサのピクセルアレイから分離されるピクセルアレイを含む、画像センサアレイと、
前記視野を照らすよう配置される光源と、
コントローラとを含み、
前記コントローラは、
前記画像センサアレイ内の前記第1、第2及び第3の撮像センサの各撮像センサのピクセルアレイから物理的世界シーンの画像を取り込
前記画像センサアレイ内の前記第1の撮像センサの前記ピクセルアレイから取り込まれる前記物理的世界シーン内の基準画像を特定し、
同じ標的物体の投影によって照らされる前記第1、第2及び第3の撮像センサの各撮像センサの前記ピクセルアレイ内のピクセルを特定するために、前記画像センサアレイ内の前記第2及び第3の撮像センサの各撮像センサの前記ピクセルアレイから取り込まれる前記物理的世界シーンの画像と前記基準画像との間のベストマッチを探し、
前記第1の撮像センサの前記ピクセルアレイ内の1つ以上の特定されるピクセルのピクセル場所と前記第2の撮像センサの前記ピクセルアレイ内の1つ以上の特定されるピクセルのピクセル場所との間の、前記センサ平面内の、オフセットを特定し、
前記第1の撮像センサの前記ピクセルアレイ内の前記1つ以上の特定されるピクセルのピクセル場所と前記第3の撮像センサの前記ピクセルアレイ内の1つ以上の特定されるピクセルのピクセル場所との間の、前記センサ平面内の、オフセットを特定し、
前記第1及び第2の撮像センサの1つ以上のピクセル場所の間の、前記センサ平面内の、前記特定されるオフセットと、前記第1及び第3の撮像センサの1つ以上のピクセル場所の間の、前記センサ平面内の、前記特定されるオフセットとに基づいて、前記センサ平面からの前記標的物体の距離を決定する、
ように構成される、
デバイス。
【請求項2】
前記光源は、周囲光のみを生成する、請求項1に記載のデバイス。
【請求項3】
前記光源は、白色光を生成する、請求項1に記載のデバイス。
【請求項4】
前記内視鏡は、第1の端部分と、該第1の端部分と反対の第2の端部分とを有する、細長い部分を含み、
前記画像センサアレイは、前記第1の端部分に隣接して配置される、
請求項1に記載のデバイス。
【請求項5】
前記内視鏡は、第1の端部分と、該第1の端部分と反対の第2の端部分とを有する細長い部分を含み、
前記画像センサアレイは、前記第1の端部分に隣接して配置され、
前記光源は、白色光を生成する、
請求項1に記載のデバイス。
【請求項6】
前記内視鏡は、第1の端部分と、該第1の端部分と反対の第2の端部分とを有する、細長い部分を含み、
前記画像センサアレイは、前記第1の端部分に隣接して配置され、
当該デバイスは、
前記第1の端部分に隣接する視野から前記第1の端部分から変位させられる前記画像センサアレイに画像を送るよう配置される、ライトパイプを更に含む、
請求項1に記載のデバイス。
【請求項7】
前記内視鏡は、第1の端部分を有する細長い部分を含み、
前記画像センサアレイは、前記第1の端部分に隣接して配置され、
前記細長い部分の前記第1の端部分の反対側の前記内視鏡の端は、機械的手術アームとの機械的連結のために構成される、
請求項1に記載のデバイス。
【請求項8】
前記内視鏡は、第1の端部分と、該第1の端部分と反対の第2の端部分とを有する、細長い部分を含み、
前記画像センサアレイは、前記第1の端部分から変位させられて配置され、
前記第2の端部分は、機械的手術アームとの機械的連結に適し、
前記第1の端部分に隣接する視野から前記第1の端部分から変位させられる前記画像センサアレイに画像を送るよう配置されるライトパイプを更に含む、
請求項1に記載のデバイス。
【請求項9】
前記第1の撮像センサの前記ピクセルアレイ内の前記ピクセル場所と前記第2の撮像センサの前記ピクセルアレイ内の前記ピクセル場所との間の、前記センサ平面内の、前記特定されるオフセットを特定すること、及び、前記第1の撮像センサの前記ピクセルアレイ内の前記ピクセル場所と前記第3の撮像センサの前記ピクセルアレイ内の前記ピクセル場所との間の、前記センサ平面内の、前記特定されるオフセットを特定することは、前記画像センサアレイの前記第1、第2及び第3の撮像センサの各撮像センサにおいて同じ標的物体の画像投影を整合させることを含む、請求項1に記載のデバイス。
【請求項10】
前記コントローラは、
同じ標的物体からの投影によって照らされる前記第1、第2及び第3の撮像センサの各撮像センサにおけるピクセルを特定するように構成され、
前記第1、第2及び第3の撮像センサの各撮像センサの前記ピクセルアレイ内の前記1つ以上のピクセルを特定することは、前記第1、第2及び第3の撮像センサの各撮像センサにおける前記同じ標的物体を整合させるために相関プロセスを用いることを含み、
前記距離を決定することは
なくとも1つの次元における前記標的物体の推定される場所を決定すること
受け入れ可能な許容差よりも多く異なる前記決定される推定される場所に応答して、画像投影の整合を精緻化するよう前記相関プロセスを繰り返すことと、を含む
請求項1に記載のデバイス。
【請求項11】
前記コントローラは、前記同じ標的物体からの投影によって照らされる前記第1、第2及び第3の撮像センサの各撮像センサ内のピクセルを特定するように構成され、
前記第1、第2及び第3の撮像センサの各撮像センサの前記ピクセルアレイ内の前記1つ以上のピクセルを特定することは、相関プロセスを用いて、前記第1、第2及び第3の撮像センサの各撮像センサにおける前記同じ標的物体の画像投影を整合させることを含み、
前記距離を決定することは、
前記特定されるオフセットの1つ以上に基づいて、前記センサ平面と概ね平行な少なくとも1つの物理的次元における前記標的物体の推定される場所を決定すること
受け入れ可能な許容差内に整合する前記決定される推定される場所に応答して、少なくとも部分的に、前記センサの平面に対して概ね平行な前記少なくとも1つの物理的次元における前記標的物体の前記決定される推定される場所に基づいて、前記センサの前記平面に対して概ね垂直な少なくとも1つの別の物理的次元において前記標的物体の推定される物理的場所を決定することと、を含む
請求項1に記載のデバイス。
【請求項12】
物理的世界シーンのビデオ画像を表示する1つ又はそれよりも多くの自動立体視三次元ディスプレイを更に含み、
前記コントローラは、前記画像センサアレイを使用して取り込まれる前記標的物体の前記決定される三次元場所に基づいて、前記1つ又はそれよりも多くの自動立体視三次元ディスプレイに、前記物理的世界シーンの前記表示されるビデオ画像の上に数値距離をオーバーレイさせる、ように構成される、
請求項1に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の参照)
この出願は、2014年3月28日に出願された「QUANTITATIVE THREE-DIMENSIONAL IMAGING OF SURGICAL SCENES」という名称の米国仮特許出願第61/971,749号の優先権の利益を主張し、その全文を参照としてここに援用する。
【0002】
本発明は、一般的には、関連付けられる画像センサを有する外科内視鏡検査システムに関し、より具体的には、手術画像中に表示される物理的構造の三次元座標を決定することに関する。
【背景技術】
【0003】
定量的三次元(Q3D)ビジョン(quantitative three-dimensional vision)は、現実世界シーンにおける標的地点の実際の物理的(x、y、z)3D座標についての数値情報をもたらす。定量的3Dビジョンを用いるならば、現実世界シーンの三次元知覚を得ることができるのみならず、そのシーンにおける物体の物理的次元及びそのシーンにおける物体間の物理的距離についての数値情報も得ることができる。過去には、飛行時間(time-of-flight)関連情報又は位相情報を用いてシーンについての3D情報を決定する幾つかのQ3Dシステムが提案された。
【0004】
飛行時間情報の使用が「CMOS-compatible three-dimensional image sensor IC」という名称の米国特許第6,323,942号に開示されており、それは、CMOS製造技法を用いて共通IC上に製造されるピクセル(画素)光感知検出器の二次元アレイ(配列)を含む、三次元撮像システムを開示している。各検出器は、物体地点から反射してその地点に集束されるピクセル検出器によって検出されるよう、システム放射パルスについての飛行時間(TOF)と正比例するクロックパルス数を蓄積する、関連付けられる高速カウンタを有する。TOFデータは、特定のピクセルから放射光パルスを反射する物体上の地点までの距離の直接的なデジタル測定値を提供する。第2の実施態様において、カウンタ及び高速クロック回路は排除され、代わりに、各ピクセル検出器は、電荷蓄積器及び電子シャッタを備える。シャッタは、光パルスが放射されるときに開き、然る後、各ピクセル検出器が電荷を関連付けられるピクセル検出器の上に向かっていく戻り光子エネルギに応じて蓄積するように、閉じる。蓄積する電荷の量は、往復TOFの直接的な測定値をもたらす。
【0005】
時間遅延情報の使用が「Apparatus and method for endoscopic 3D data collection」という名称の米国特許第8,262,559号に開示されており、それは、変調測定ビームと、観察されるべき領域に測定ビームを伝える光透過機構とを開示し、光透過機構は、観察されるべき領域からの信号ビームを少なくとも位相感応画像センサに撮像する光撮像機構に加えて、照明レンズを含む。mm範囲における深さの差に対応することがある時間遅延は、深さ及び距離情報を描写する画像の生成を可能にする位相情報をもたらす。
【0006】
仮想画像中の物体の物理的座標を決定する構造光の使用が「Endoscope」という名称の米国特許出願公開第2012/0190923号及びC. Schmalz et al.の「An endoscopic 3D scanner based on structured light」、Medical Image Analysis, 16 (2012) 1063-1072に開示されている。表面のトポグラフィを測定するために三角測量法が用いられる。異なる色スペクトルの範囲を有してよい投影光線の形態の構造光が表面に入射し、表面から反射させられる。反射させられる光線はカメラによって観察され、カメラは、反射させられる色スペクトル情報を用いてその表面の3D座標を決定するよう、較正される。より具体的には、構造光の使用は、典型的には、3D表面の上で光パターンを光らせること、及び物理的物体の輪郭に起因する光の変形パターンに基づき物理的距離を決定することを包含する。
【0007】
複数のピクセルアレイを含むイメージャアレイカメラ(imager array camera)が作られており、アレイ内の画素についてのシーン深さ情報を計算するために複数のピクセルアレイを用い得る。高解像度(HR)画像が多数の低解像度(LR)画像から生成される。基準視点が選択され、HR画像がその地点によって見られるものとして生成される。視差処理技法がエイリアジング(aliasing)の効果を利用して基準画像ピクセルに対する非基準画像についての画像対応を決定する。融合及び超解像を利用して多数のLR画像からHR画像を生成する。「Capturing and Processing Images using Monolithic camera Array with Heterogeneous Imager」という名称の米国特許第8,514,491号、「Systems and Methods for Determining Depth from multiple Views of a Scene that Include Aliasing using Hypothesized Fusion」という名称の米国特許出願公開第2013/0070060号、及びK. Venkataraman et al.のPiCam: An ultra-Thin high Performance Monolithic Camera Arrayを参照のこと。
【0008】
図1は、幾つかの実施態様に従った既知のイメージャセンサ180の詳細を示す例示的な図面である。画像センサ180は、レンズスタック182(レンズ積重ね)の光学アレイと、センサ184のアレイとを含む。アレイ内の各センサは、各次元に少なくとも2つのピクセルを有する二次元構成のピクセルを含む。各センサは、レンズスタック186を含み、レンズスタックは、レンズスタックの集束平面188内に配置される対応するピクセルの構成の上に画像を解像する別個の光学通路を創る。ピクセルは、光センサとして作用し、その多数のピクセルを備える各集束平面188は、画像センサとして作用する。その集束平面182を備える各センサは、他のセンサ及び集束平面によって占められるセンサアレイの領域と異なるセンサアレイの領域を占める。
【0009】
図2は、センサS11乃至S33を含む図1の既知のイメージャセンサアレイ180の単純化された平面図を示す例示的な図面である。イメージャセンサアレイ180は、複数のセンサS11乃至S33を含むよう半導体チップ上に製造される。S11乃至S33の各々は、複数のピクセル(例えば、0.32メガピクセル)を含み、独立した読出し制御及びピクセルデジタル化を含む周辺回路(図示せず)に連結される。幾つかの実施態様において、S11乃至S33は、図2に例示するような格子形態(グリッド形態)において配置される。他の実施態様において、センサは、非格子形態(非グリッド形態)において配置される。例えば、イメージャは、円形パターン、ジグザグパターン、又は散乱パターン、又はサブピクセル偏心(オフセット)を含む不規則パターンに配置されてよい。
【0010】
各センサピクセルは、マイクロレンズピクセルスタックを含む。図3は、図1-2のセンサの既知のマイクロレンズピクセルスタックの例示的な図面である。ピクセルスタック800は、マイクロレンズ802を含み、マイクロレンズ802は、酸化物層804の上に位置し、酸化物層804は、典型的には、酸化物層804の下にあり、カラーフィルタ806があってよく、カラーフィルタ806は、窒化物層808の上に配置され、窒化物層808は、第2の酸化物層810の上に配置され、第2の酸化物層810は、シリコン層812の上に位置し、シリコン層812は、センサ(典型的にはフォトダイオード)の活性領域814を含む。マイクロレンズ802の主要な役割は、その表面に入射する光を集めて、その光を小さな活性領域814の上に集束させることである。ピクセル孔816はマイクロレンズの広がりによって決定され、マイクロレンズは光を集めて、それを活性領域814の上に集束させる。
【0011】
上述の既知のイメージャセンサアレイアーキテクチャに関する追加的な情報は、2013年8月20日に発効した米国特許第8,514,491号、及び2013年3月21日に公表された米国特許出願公開第2013/0070060号に提供されている。
【発明の概要】
【課題を解決するための手段】
【0012】
1つの特徴において、デバイスは、内視鏡を含む。画像センサアレイが、内視鏡に隣接する視野を撮像するよう配置される。センサアレイの各センサは、他のセンサのピクセルアレイと分離されるピクセルアレイを含む。光源が視野を照らすよう配置される。
【0013】
他の特徴において、Q3D撮像の方法が提供され、当該方法では、画像センサアレイが内視鏡の先端に隣接して設けられる。内視鏡の先端は、標的物体に隣接して位置付けられる。標的物体は光源で照らされる。
【0014】
他の特徴において、Q3D撮像の方法が提供され、当該方法では、ライトパイプ入力が内視鏡の先端に近接して提供される。内視鏡の先端は、標的物体に隣接して位置付けられる。溶滴物体は光源で照らされる。光は、入力の視野内の画像をライトパイプに送り、画像センサアレイに送るために用いられ、アレイ内の各センサは、他のセンサのピクセルアレイから分離されるピクセルアレイを含む。
【0015】
他の特徴において、Q3D撮像情報は、画像センサによって撮像される手術器具と画像センサによって撮像される標的物体との間の近接性を外科医に警告するために、手術中に用いられる。
【0016】
他の特徴において、標的物体の視覚的3DモデルがQ3D撮像情報を用いて創られ、3Dモデルは外科処置中に操作される。
【0017】
本開示の特徴は、添付の図面と共に読まれるときに、以下の詳細な記述から最良に理解される。業界における標準的な慣行に従って様々な構成を原寸通りに描写していないことを協調する。実際には、様々な構成の寸法は議論の明瞭性のために任意に増大させられ或いは減少させられる。加えて、本開示は様々な実施例において参照番号及び/又は参照文字を反復することがある。この反復は単純性及び明瞭性の目的のためであり、それ自体は議論する様々な実施態様及び/又は構成(configurations)の間の関係を決定しない。
【図面の簡単な説明】
【0018】
図1】既知のセンサアレイの詳細を示す例示的な図面である。
図2】多数のセンサを含む既知のイメージャセンサアレイの簡略化された平面図を示す例示的な図面である。
図3】既知のマイクロレンズピクセルスタックの例示的な図面である。
図4】幾つかの実施態様に従ったビューアを通じた手術シーンの斜視図を示す例示的な図面である。
図5】幾つかの実施態様に従った1つ又はそれよりも多くの機械的アームを用いて最小侵襲的な外科処置を行う遠隔操作手術システムの例示的なブロック図である。
図6】幾つかの実施態様に従った図5のシステムのうちの患者側システムの例示的な斜視図である。
図7A】幾つかの実施態様に従った第1の画像キャプチャシステムの例示的な図面である。
図7B】幾つかの実施態様に従った第2の画像キャプチャシステムの例示的な図面である。
図8】幾つかの実施態様に従った、図7Aの第1の画像キャプチャシステムと関連付けられる制御ブロックを示し且つ動作中のシステムを示す、例示的なブロック図である。
図9】幾つかの実施態様に従った物理的標的の定量的三次元場所を決定するプロセスを表す例示的なフロー図である。
図10】幾つかの実施態様に従った標的を組織的に選択するよう図9のモジュールに概ね対応するプロセスの特定の詳細を示す例示的なフロー図である。
図11】多数のセンサを含み、且つ、幾つかの実施態様に従った3つの例示的な物体を含む例示的な三次元物理的世界シーンを包含する視野を有するよう配置される、例示的なセンサイメージャアレイの例示的な図面である。
図12】幾つかの実施態様に従った多数のセンサ上への図11の多数の物理的物体の投影を表す例示的な図面である。
図13】幾つかの実施態様に従った現実世界シーン内からの関心の領域の選択を示す例示的な図面である。
図14】幾つかの実施態様に従った多数のセンサ内の投影画像の相対的な幾何学的偏心に関する詳細を示す例示的な図面である。
図15】幾つかの実施態様に従った関心の領域(ROI)内の割り当てられる基準センサ内の投影画像と整列するよう右にシフトさせられたROI内の特定の例示的なセンサ内の投影画像を示す例示的な図面である。
図16】幾つかの実施態様に従った多数のセンサ上への選択される標的地点の投影を示す例示的な図面である。
図17】幾つかの実施態様に従った図16の多数のセンサを含むイメージャアレイの部分及び物理的空間内の場所に配置される選択的な標的地点Tを示す例示的な図面である。
図18】幾つかの実施態様に従った図16の多数の画像センサ上への現在選択されている標的地点Tの投影の例示的な正面図である。
図19図17を参照して上述したような多数のセンサに対する現在選択されている標的の配置を示し、且つ、幾つかの実施態様に従ったセンサの各々のセンサにおける候補ピクセルについてのy方向ピクセル偏心も示す、例示的な図面である。
図20】幾つかの実施態様に従った外科処置中にQ3D情報を用いる第1のプロセスを表す例示的なフロー図である。
図21】幾つかの実施態様に従った図20のプロセスに従ってディスプレイスクリーンに表示されるメニュー選択を示す例示的な図面である。
図22A】幾つかの実施態様に従った図20のプロセスに従って使用者入力を受け取ることの特定の詳細を表す例示的な図面である。
図22B】幾つかの実施態様に従った図20のプロセスに従って使用者入力を受け取ることの特定の詳細を表す例示的な図面である。
図23】幾つかの実施態様に従った外科処置中にQ3D情報を用いる第2のプロセスを表す例示的なフロー図である。
図24】幾つかの実施態様に従った図23のプロセスに従ったディスプレイスクリーンに表示されるメニュー選択を示す例示的な図面である。
【発明を実施するための形態】
【0019】
以下の記述は、あらゆる当業者が、多数の画像センサを有する外科内視鏡検査システムであって、各画像センサは、画像センサの視野内の物理的構造の三次元座標を決定するために、他の画像センサのピクセルアレイから切り離されたピクセルアレイを含む、外科内視鏡検査システムを創り且つ使用するのを可能にするために、提示される。実施態様に対する様々な修正が、当業者に直ちに明らかであり、ここにおいて定められる包括的な原理は、発明的な主題の精神及び範囲から逸脱せずに、他の実施態様及び用途に適用されてよい。その上、後続の記述では、説明の目的のために、様々な詳細が示される。しかしながら、当業者は発明的な主題がこれらの詳細を使用せずに実施されてよいことを認識するであろう。他の場合には、不要な詳細で開示を曖昧にしないために、周知の機械構成部品、プロセス、及びデータ構造は、ブロック図の形態において示される。異なる図面において同じ品目の異なる図を表すために、同一の参照番号が用いられることがある。以下に参照される図面におけるフロー図は、プロセスを表すために用いられる。コンピュータシステムは、これらのプロセスのうちの一部を遂行するよう構成されてよい。コンピュータ実施プロセスを表すフロー図中のモジュールは、これらのモジュールを参照して記載される行為を遂行するコンピュータプログラムコードに従ったコンピュータシステムの設定(configuration)を表す。よって、発明的な主題は、図示の実施態様に限定されることは意図されず、ここにおいて開示される原理及び構成と一致する最も広い範囲が与えられるべきである。
【0020】
簡潔な概要
【0021】
幾つかの実施態様によれば、イメージャセンサアレイ(配列)を含む画像センサアレイが内視鏡と関連付けられる。この画像センサアレイは多数のセンサを含み、各センサはピクセルのアレイを含む。内視鏡の部分が人間の体腔内に挿入され、画像センサアレイの視野内の標的物体が光源を用いて照らされる。標的物体の物理的場所及び/又は次元が、アレイのうちの個々のセンサ上の物体の投影画像に基づき決定される。
【0022】
図4は、幾つかの実施態様に従ったビューア312を通じた手術シーンの斜視図を示す例示的な図面である。2つの撮像要素206R,206Lを有する視認システム(viewing system)が良好な3D視認全体像(viewing perspective)をもたらし得る。手術シーンにおける物理的構造についての物理的次元及び/又は場所情報を表す数値が手術シーン画像の上にオーバーレイされて示されている。例えば、距離数値「d_Instr_Trgt」が、器具400と標的410との間のシーン内に表示されて、示されている。
【0023】
遠隔操作医療システム
【0024】
遠隔操作は、ある距離を置いた機械の操作を指す。最小侵襲的な遠隔操作医療システムにおいて、外科医は、内視鏡に取り付けられるカメラを用いて、患者の体内の手術部位を見る。手術中に高解像度ビュー(view)をもたらすために、三次元画像が生成される。内視鏡に取り付けられ且つイメージャセンサアレイを含むカメラシステムは、定量的三次元情報に加えて、幾つかの実施態様に従った三次元画像を生成するために用い得る色及び照明データを提供する。
【0025】
図5は、幾つかの実施態様に従った1つ又はそれよりも多くの機械的アーム158を用いて最小侵襲的な外科処置を行う遠隔操作手術システム100の例示的なブロック図である。システム100の特徴は、遠隔ロボット式の自律的な動作構成(operating features)を含む。これらの機械的アームは、しばしば、器具を支持する。例えば、機械的手術アーム(例えば、中央機械的手術アーム158C)を用いて、内視鏡に関連付けられるQ3D画像センサアレイのような、立体又は三次元手術画像キャプチャデバイス101Cを支持してよい。機械的手術アーム158Cは、画像キャプチャデバイス101Cを機械的アームに機械的に固定するよう、無菌アダプタ、又は、クランプ、クリップ、ネジ、スロット/溝、又は、他の締結機構を含んでよい。逆に、画像キャプチャデバイス101Cは、機械的手術アーム158Cと確実に相互適合するよう、機械的手術アーム158Cの物理的輪郭及び/又は構造と相補的な物理的輪郭及び/又は構造を含んでよい。
【0026】
使用者又は操作者O(一般的に外科医)が、マスタ制御コンソール150で制御入力デバイスを操作することによって、患者Pに対して最小侵襲的な外科処置を行う。操作者は、立体ディスプレイデバイス164を通じて患者の体の内側の手術部位の画像のビデオフレームを見ることができ、立体ディスプレイデバイス164は、図4を参照して上述したビューア312を含む。コンソール150のコンピュータ151が、制御線159を介して遠隔操作式に制御される内視鏡検査手術器具101A-101Cの動きを命令して、(患者側カートとも呼ぶ)患者側システム152を用いて器具の動きをもたらす。
【0027】
患者側システム152は、1つ又はそれよりも多くの機械的アーム158を含む。典型的には、患者側システム152は、対応する位置決めセットアップアーム156によって支持される(一般的に機械的手術アーム158と呼ぶ)少なくとも3つの機械的手術アーム158A-158Cを含む。中央機械的手術アーム158Cは、カメラの視野内の画像についてのQ3D情報のキャプチャ(取込み)に適した内視鏡検査カメラ101Cを支持してよい。中央の左右にある機械的手術アーム158A及び158Bは、それぞれ、組織を操作する器具101A及び101Bを支持してよい。
【0028】
図6は、幾つかの実施態様に従った患者側システム152の例示的な斜視図である。患者側システム152は、ベース172によって支持されるカートコラム170を含む。1つ又はそれよりも多くの機械的手術アーム158が、患者側システム152の位置決め部分の一部である1つ又はそれよりも多くのセットアップアーム156にそれぞれ取り付けられる。ベース172上のほぼ中央場所に位置付けられて、カートコラム170は、釣合サブシステム及び制動サブシステムの構成部品を汚染から守る保護カバー180を含む。
【0029】
モニタアーム154を除き、各機械的手術アーム158は、器具101A-101Cを制御するために用いられる。その上、各機械的手術アーム158は、セットアップアーム156に連結され、次いで、セットアップアーム156は、本発明の1つの実施態様において、キャリッジハウジング190に連結される。1つ又はそれよりも多くの機械的手術アーム158は、それぞれ、図6に例示するように、それらのそれぞれのセットアップアーム156によって支持される。
【0030】
機械的手術アーム158A-158Dは、生の補正されていない運動学データ(kinematics data)、運動学基準(kinematics datum)、及び/又は運動学情報(kinematics information)を生成して、器具の取得及び追跡(トラッキング)を支援するよう、1つ又はそれよりも多くの変位変換器(displacement transducers)、向きセンサ、及び/又は位置センサ185をそれぞれ含んでよい。本発明の幾つかの実施態様では、器具も、変位変換器、位置センサ、及び/又は向きセンサ186を含んでよい。その上、1つ又はそれよりも多くの情報は、器具の取得及び追跡を支援するよう、マーカ189を含んでよい。
【0031】
遠隔操作医療システムについての追加的な情報は、2012年1月26日に公表された米国特許出願公開第2012/0020547号において提供されている。
【0032】
内視鏡検査イメージャシステム
【0033】
図7Aは、幾つかの実施態様に従った第1の画像キャプチャデバイス101Cの例示的な図面である。画像キャプチャデバイス101Cは、細長い部分202を含む内視鏡を含み、細長い部分202は、第1の端部分204と、第2の端部分206と、第1の端部分204の先端部分208とを含む。第1の端部分204は、人間の体腔内に挿入されるような寸法とされる。多数の画像センサ(図示せず)を含むイメージャセンサアレイ210(imager sensor array)が、第1の端部分204の先端部分208に取り付けられる。細長い部分202は、イメージャセンサ210によって物体を撮像し得るよう、先端部分208を体腔内の標的物体に十分に近く位置付けるのに十分な長さを有する。幾つかの実施態様によれば、第2の端部分206は、機械的アーム(図示せず)と確実に相互適合するよう、概ね上述のような物理的輪郭及び/又は構造(図示せず)を含んでよい。細長い部分202は、情報をイメージャセンサアレイ210と電子的に通信するよう、1つ又はそれよりも多くの電子信号経路212も含む。撮像されるべき物体を照らすために、光源214が配置される。幾つかの実施態様によれば、光源214は、例えば、非構造光(unstructured light)、白色光、色濾過光(color filtered light)、又は何らかの選択的な波長にある光であり得る。
【0034】
図7Bは、幾つかの実施態様に従った第2の画像キャプチャシステム101C’の例示的な図面である。第1の画像キャプチャシステム101Cの特徴と本質的に同じである第2の画像キャプチャシステム101C’の特徴は、同一の参照番号によって示され、再び記載されない。ロッドレンズのような、ライトパイプ入力への入力は、第1の端部分204の先端部分208に配置される。ライトパイプ本体は、ライトパイプ入力として受け取られる画像を先端部分208から物理的に移動させられたイメージャセンサアレイ210に伝えるよう、細長い部分202内に延在する。幾つかの実施態様において、イメージャセンサは、体腔内の物体の観察中にセンサアレイ210が体腔の外側に配置されるよう、先端部分208から十分に遠くに移動させられる。
【0035】
図8は、幾つかの実施態様に従った、図7Aの第1の画像キャプチャシステム101Cと関連付けられる制御ブロックを示す、並びに動作中の第1の画像キャプチャシステム101Cを示す、例示的なブロック図である。イメージャセンサアレイ210によってキャプチャされる(取り込まれる)画像は、データバス212を通じてビデオプロセッサ104に送られ、ビデオプロセッサ104は、バス105を介してコントローラ106と通信する。ビデオプロセッサ104は、カメラ制御ユニット(CCU)と、ビデオ信号検出器(VSD)板とを含んでよい。CCUは、明るさ、色スキーム、白色バランス等のような、撮像センサ210の様々な設定をプログラムし或いは制御する。VSDは、撮像センサから受け取られるビデオ信号を処理する。
【0036】
幾つかの実施態様によれば、1つの又は1つよりも多くのプロセッサを含むプロセッサシステムが、プロセッサ機能を遂行するように構成される。幾つかの実施態様において、プロセッサシステムは、ここに記載するプロセッサ機能を遂行するために協働するように構成される多数のプロセッサを含む。よって、1つ又はそれよりも多くの機能を遂行するように構成される少なくとも1つのプロセッサへの言及は、それらの機能を1つのプロセッサだけによって或いは協働する多数のプロセッサによって遂行してよい、プロセッサを含む。
【0037】
代替的に、CCU及びVSDを1つの機能ブロック内に統合し得る。1つの実施において、プロセッサ及び記憶装置(図示せず)を含むコントローラ106は、細長い部分の先端208に隣接するシーン中の地点の物理的な定量的3D座標を計算し、ビデオプロセッサ104及び3Dディスプレイドライバ109の両方を駆動させて3Dシーンを構成し、次に、3Dシーンを3Dディスプレイ110上に表示し得る。データバス107及び108は、ビデオプロセッサ104、コントローラ106、及びディスプレイドライバ109の間で、情報及び制御信号を交換する。幾つかの実施態様では、これらの要素を内視鏡202の本体の内側で画像センサアレイ210と統合し得る。代替的に、それらを内視鏡の内部に及び/又は外部に分散させ得る。内視鏡202は、標的120を含む手術シーンへの視覚化されたアクセスをもたらすために、カニューレ140を介して身体組織130を貫通するよう位置付けられて、示されている。標的120は、解剖学的標的、他の手術器具、又は患者の体の内側の手術シーンの任意の他の特徴であり得る。
【0038】
シーンの画像に加えられるQ3D情報の実施例
【0039】
図4を再び参照すると、図4は、幾つかの実施態様に従った図5のマスタ制御コンソール150のビューア312の斜視図を示す例示的な図面である。幾つかの実施態様によれば、三次元全体像(three-dimensional perspective)をもたらすために、ビューア312は、左ビューファインダ401L及び右ビューファインダ401R内のあらゆる器具400及び標的410をそれぞれ含む、手術部位の左画像400L及び右画像400Rを含む、各眼のための立体画像を含む。ビューファインダ内の画像400L及び400Rは、それぞれ、左ディスプレイデバイス402L及び右ディスプレイデバイス402Rによって提供されてよい。ディスプレイデバイス402L,402Rは、任意的に、一対の陰極線管(CRT)モニタ、液晶ディスプレイ(LCDs)、又は他の種類の画像ディスプレイデバイス(例えば、プラズマ、デジタル光投影等)であってよい。本発明の好適実施態様において、画像は、カラーCRTs又はカラーLCDsのような、一対のカラーディスプレイデバイス402L,402Rによって、着色されて提供される。既存のデバイスとの後方互換性をサポートするために、立体視ディスプレイデバイス402L及び402RがQ3Dシステムと共に用いられてよい。代替的に、Q3D撮像システムを、3Dモニタ、3DTV、又は3D効果眼鏡の使用を要求しないディスプレイのような自動立体視ディスプレイに接続し得る。
【0040】
2つの撮像要素206R,206Lを有する視認システムが、良好な3D視認全体像を提供し得る。Q3D撮像システムは、この視認全体像に手術シーン中の物理的構造についての物理的次元情報を補足する。Q3D内視鏡システムと共に用いられる立体ビューア312は、手術シーンの立体画像の上にオーバーレイされるQ3D情報を表示し得る。例えば、図4に示すように、器具400と標的410との間のQ3D距離数値「d_Instr_Trgt」を立体ビューア312内に表示し得る。
【0041】
物理的場所及び次元情報を手術シーンの3D全体像の上にオーバーレイするために用い得るビデオ立体視認システムの説明は米国特許出願公開第2012/0020547号に提供されており、段落[0043]-[0053]及び対応する図面がここに参照として明示的に援用される。
【0042】
定量的三次元物理的情報の処理
【0043】
図9は、幾つかの実施態様に従った物理的標的の定量的三次元場所を決定するプロセスを表すフロー図である。プロセスは図8の実施態様のQ3Dシステム101Cを参照して記載される。モジュール401は、撮像シーンSijからビデオデータを取得するようコントローラ106を構成する。画像センサアレイ210は視野全体を「撮像」するが、異なるセンサ及び異なるセンサ内の異なるピクセルが視野内の異なる物体地点からの画像投影によって照らされてよいことが理解されるであろう。ビデオデータは、例えば、色及び光強度データを含んでよい。各センサの各ピクセルは、その上に投影される画像の色及び強度を示す1つ又はそれよりも多くの信号を提供してよい。モジュール402は、物理的世界ビュー(physical world view)内の選択的な関心の領域から標的を組織的に選択するようコントローラを構成する。モジュール403は、初期(x0,よ、z0)セットを用いて標的3D座標(x、y、z)の計算を開始するようコントローラを構成する。次に、アルゴリズムが、標的を見る全てのシーンSijからの画像多様性データを用いることによって、一貫性(consistency)について座標を確認する。座標計算は、受け入れ可能な精度に達するまで、ステップ404で精緻化される。決定モジュール404は、目下計算されている物理的場所が十分に正確であるか否かを決定するようコントローラを構成する。目下計算されている場所が十分に正確でないという決定に応答して、制御はモジュール403に戻り、異なる可能な物理的場所を試す。目下計算されている場所が十分に正確であるという決定に応答して、モジュール405は、関心の領域全体がスキャン(走査)されたか否かを決定するようコントローラを構成する。関心の領域全体がスキャンされていないという決定に応答して、制御はモジュール402に戻り、異なる標的が選択される。関心の領域全体がスキャンされたという決定に応答して、制御はモジュール406に流れ、関心の撮像モジュールの三次元モデルを組み立てるようコントローラを構成する。標的の構造の物理的位置を示す三次元情報に基づく標的の3D画像の組立ては、当業者に既知であり、ここにおいて記載される必要はない。モジュール407は、更なる検討及び操作のために多数の標的について決定される物理的位置情報を用いて開発される3Dモデルを格納するようコントローラを構成する。例えば、3Dモデルは、移植片(インプラント)を患者の器官の特定の寸法の大きさに作ることのような外科用途のために、後に用いられ得る。更に異なる実施例では、新しい手術器具101がロボットシステム152に装着されるときに、3Dモデルを呼び戻して、新しい器具を従前の手術シーンと関係付けるために、それをモニタ110上に表示することが必要なことがある。モジュール408は、定量的3Dビューを表示するために多数の標的について決定される物理的位置情報を用いるようコントローラを構成する。Q3Dビューの実施例は、図4に示す距離値「d_Instr_Trgt」である。
【0044】
図10は、幾つかの実施態様に従った図9のモジュール402に概ね対応するプロセスの特定の詳細を示す例示的なフロー図である。モジュール402.1は、センサアレイ210中の全てのセンサから物理的世界シーンの画像をキャプチャするようコントローラを構成する。モジュール402.2は、キャプチャしたシーン内から関心の領域を特定するようコントローラを構成する。モジュール402.3は、同じ標的の投影によって照らされる異なるセンサ内のピクセル場所を特定するために、関心の領域内のシーン画像の間にあるようなベストマッチ(best match)を探すようコントローラを構成する。後に説明するように、最良のマッチング(best matching)は、シフトされる画像と基準画像との間の二次元相互相関関数が最大になるまで個々の画像をセンサSijからシフトさせることによって達成されてよいが、これに限定されない。基準画像は、例えば、センサS11から受け取られるシーン画像であってよい。モジュール402.4は、同じ標的からの投影によって照らされる候補ピクセルを特定するようコントローラを構成する。モジュール402.5は、選択される標的についての2つ又はそれよりも多くのピクセル座標(N,N)を計算して、候補ピクセルが同じ標的からの投影によって照らされているか否かを決定するよう、コントローラを構成する。決定モジュール402.6は、計算される2Dピクセル座標値が、候補ピクセルが同じ標的からの投影によって照らされていることを示すか否かを決定する。多数のセンサSijで同じシーンを見ることによってもたらされる画像多様性は、様々な個々の画像Sij内の特定の標的と関連付けられる(N,N)を正しく特定する役割を演じる。例えば、幾つかの実施態様において、3つのセンサ、S11,S12,S13のみが用いられる簡略化されたシナリオを想定すると、2Dピクセル座標[(Nx11,Ny11)、(Nx12,Ny12)、(Nx13,Ny13)]の三つ揃いが、[S11,S12,S13]上への同じ標的の投影に対応しないならば、(y方向における投影シフトの推定である)量
【数1】
及び
【数2】
は、異なる値を生む。後に提示する方程式によれば、
【数3】
及び
【数4】
は、ピクセル座標(Nx11,Ny11)、(Nx12,Ny12)、(Nx13,Ny13)が同じ標的の投影から来るならば、同じでなければならない。
【数5】
【0045】
【数6】
及び
【数7】
が略等しくないならば、制御はモジュール402.4に戻り、センサ平面Sij上への標的投影のための最良の候補を精緻化する。既述のように、上記はアルゴリズムの簡略化された実施であるに過ぎない。一般的には、図10のモジュール402.6に示すように、
【数8】

【数9】
との間の差の平均(norm)は、モジュール402がその反復を完了するために、受け入れ可能な許容差(tolerance)ε未満でなければならない。類似の制約が、x軸についての対応する推定、
【数10】
及び
【数11】
について満足させられなければならない。計算される2Dピクセル座標値(N,N)が、候補ピクセルが同じ標的からの投影によって照らされていることを示すという決定に応答して、制御はモジュール403に進む。
【0046】
各ピクセルは世界シーンから色及び強度情報を直接的にキャプチャすることが理解されるであろう。その上、上記プロセスによれば、各ピクセルは、ピクセル上に投影される世界ビュー内の物理的物体の(x,y,z)座標と関連付けられる。よって、色情報、照明強度情報、及び物理的場所情報、即ち、色及び照明を投影した物理的物体の場所を、持続性コンピュータ可読記憶装置内のピクセルと関連付け得る。以下の表1は、この関連を例示する。
【0047】
表1
【表1】
【0048】
Q3D情報決定の実施例
【0049】
投影マッチングの実施例
【0050】
図11は、幾つかの実施態様に従った3つの例示的な物体を含む例示的な三次元物理的世界シーンを包含する視野を有するように配置される多数のセンサS11-S33を含む例示的なセンサイメージャアレイ210の例示的な図面である。アレイ中の各センサは、各次元に少なくとも2つのピクセルを有するピクセルの二次元配列を含む。各センサは、レンズスタック(レンズ積重ね)を含み、レンズスタックは、レンズスタックの集束平面内に配置されるピクセルの対応する配列上に画像を解像する別個の光学通路を創る。各ピクセルは、光センサとして作用し、その多数のピクセルを備える各集束平面は、画像センサとして作用する。その集束平面を備える各センサS11-S33は、他のセンサ及び集束平面によって占められるセンサアレイの領域と異なるセンサアレイの領域を占める。適切な既知の画像センサアレイは、上述の米国特許第8,514,491号及び米国特許出願公開第2013/0070060号に開示されている。
【0051】
幾つかの実施態様によれば、センサは、N及びN、x方向及びy方向におけるそれらのピクセル総数によって、並びに視野角度θ及びθによって特徴付けられる。幾つかの実施態様において、x軸及びy軸についてのセンサ特性は、同じであることが予期される。しかしながら、代替的な実施態様において、センサは、非対称的なx軸及びy軸特性を有する。同様に、幾つかの実施態様において、全てのセンサは、同じピクセル総数及び同じ視野角度を有する。センサは、上手く制御された方法においてアレイ210に亘って分散させられる。例えば、センサは、図示の二次元格子上でδ距離だけ離れてよい。センサ配置ピッチδは、そのような格子に亘って対称的又は非対称的であってよい。
【0052】
図11に示す実施態様において、センサは、センサS11-S13が頂列を占め、センサS2123が中央列を占め、センサS3133が底列を占める、長方形格子において配置される。各センサは、N行のピクセルと、N列のピクセルとを含む。光源によって生成される、破線によって示す光線が、三角形の第1の物体、球形の第2の物体、及び長方形の第3の物体から、イメージャアレイの各センサに反射させられる。例示的な目的のために、頂行中のセンサS11,S12,S13への光線のみが示されている。光源は、例えば、非構造的白色光又は周囲光であってよい。代替的に、光源は、赤外のような、選択的な波長で光を提供してよく、或いは、例えば、選択的な色又は色の範囲をもたらすよう濾過され或いは分割されてよい。光線は物体の各々からセンサS21-S33に同様に反射させられることが理解されるであろう。しかしながら、説明を単純化するために、これらの他の光線は示されていない。
【0053】
モジュール401及び402.1によれば、アレイのセンサは、世界ビューから別個に画像をキャプチャし、そして、モジュール402.1によれば。図12は、幾つかの実施態様に従ったセンサSij(S11,S12のみを示している)上への図11の3つの物体の投影を表す例示的な図面である。当業者は、そのセンサに入射する視野内の物体から反射させられる光線が、その視野内にある物体の画像を投影することを理解するであろう。より具体的には、イメージャアレイの多数の異なる画像センサに入射する視野内の物体から反射させられる光線は、三次元から二次元への物体の多数の透視投影、即ち、反射光線を受け取る各センサ内の異なる投影を生成する。具体的には、物体の投影の相対的な場所は、S11からS13に進行するときに、左から右にシフトさせられる。入射光線によって照らされる画像センサピクセルは、入射光に応答して電気信号を生成する。従って、各画像センサのために、その画像センサ内の画像投影の形状及び場所を示す反射光線に応答して、あるパターンの電気信号がそのピクセルによって生成される。
【0054】
モジュール402.2によれば、関心の領域が世界シーンから選択される。図13は、シーン内からの関心の領域の選択を示す例示的な図面である。この実施例において、三角形の第1の物体、球形の第2の物体、及び長方形の第3の物体は、全て、選択される関心の領域内にある。このステップは、操作者からの入力を受け入れることによって達成されることができ、或いは、それは指定の方法においてソフトウェアによって或いは操作者入力及び自動ソフトウェア制御選択の組み合わせによって設定されるコンピュータを用いて自動的に行われることができる。例えば、幾つかの実施態様において、世界シーンは人間の解剖学的構造の内腔を示してよく、物体は内部の身体器官又は手術器具又はそれらの部分であってよい。外科医は内腔内から実時間の視覚的な像(imagery)を受け取ってよく、彼女の視野内に人間の解剖学的構造及び体腔内に突出する手術器具の部分の組織領域を有してよい。外科医は、そのための場所情報が、例えば、テレストレーション(telestration)のようなビデオマーカのような既知の技法を通じて決定されるべき、視野内の物体を特定してよい。そのような操作者要求に替えて或いはそれに加えて、エッジ検出アルゴリズムのような自動処理を用いて関心の領域(ROI)を特定し得る。
【0055】
モジュール402.3によれば、同じ標的の投影によって照らされる異なるセンサ内のピクセル場所を特定するために、ベストマッチが関心の領域内のシーン画像の間にあるように決定される。図14は、幾つかの実施態様に従ったセンサS11,S12,S13内の投影画像の相対的な幾何学的偏心(オフセット)についての追加的な詳細を示す例示的な図面である。幾つかの実施態様によれば、センサS13からの画像が基準画像であると考えられ、選択されるROI内の物体の投影は、センサS13内のそれらの場所に対してセンサS12内の量σ23ピクセルだけ右に偏心させられている。選択されるROI内の物体の投影は、センサS13内のそれらの場所に対して量σ13ピクセルだけ右に偏心させられている。
【0056】
図15は、幾つかの実施態様に従ってROI内のセンサS13内の投影画像と整列するよう右にシフトさせられたROI内のセンサS11及びS12内の投影画像を示す例示的な図面である。現在の実施例において、センサS13は、基準センサとして作用するように設計されている。整列(アライメント)及び幾何学的寸法を決定することにおける使用のために他のセンサを選択し得ることが理解されるであろう。選択されるROI内の物体の投影は、指定されるセンサ、例えば、センサS13内に特定され、他のセンサ内の、例えば、センサS11及びS12内の投影は、それらが指定されるセンサ内の投影と整列するまで、シフトさせられる。このようにして、選択されるROI内の物体の対応する投影を、指定されるセンサ内の投影の場所に対するそれらの偏心と共に、他のセンサ内で特定し得る。
【0057】
具体的には、例えば、3つの実施例の物体の投影は、センサS12内で量σ23ピクセルだけ右にシフトさせられ、3つの実施例の物体の投影は、センサS13内で量σ13ピクセルだけ右にシフトさせられる。この例示的な実施例では、説明を単純化するために、投影はy方向のみにおいて偏心させられ、x方向において偏心させられていないと推定されているが、同じ原理がセンサ間にあるようなx方向投影偏心にも当て嵌まる。その上、この実施例は線形偏心を示すが、当業者は、例えば、異なるセンサ内に相対的な偏心を有する投影と整列させるよう、回転のような他の転換を適用し得る。
【0058】
幾つかの実施態様によれば、例えば、二次元(2D)相互相関技法又は主成分分析(PCA)を用いて、S13内のROI内の投影をS12内のROI内の投影と整列させ且つS13内のROI内の投影をS11内のROI内の投影と整列させ得る。一般的に、意図は、基準として指定されるセンサからの画像に対するセンサSijからの画像を最良に整合(マッチ)させ或いは整列させることである。より具体的には、最高の相関係数が達成されるまで、S12内のROI内の投影画像はシフトさせられ、S13内の投影画像と相互相関させられる。同様に、最高の相関係数が達成されるまで、S11内のROI内の投影画像はシフトさせられ、S13内のROI内の投影画像と相互相関させられる。よって、S13内のROIの投影とS12内のROIの投影との間の偏心を決定することによって並びにS13内のROIの投影とS11内のROIの投影との間の偏心を決定することによって、センサS11及びS12内のROIの投影の場所を特定するために、ROIの投影の整列が用いられる。
【0059】
候補ピクセル選択及び精緻化の実施例
【0060】
モジュール402.4によれば、候補ピクセルが異なるセンサ内で特定され、それらは、ベストマッチプロセスに従って、同じ標的からの投影によって照らされる。ROI内の物体の投影がセンサS11,S12,S13の各々の内でひとたび特定されると、ROI内の個々の標的地点の物理的(x,y,z)投影をイメージャアレイに対して決定し得る。幾つかの実施態様によれば、ROI内の多数の標的地点の各々について、標的地点からの投影によって照らされる多数のセンサの各々の内の1つ又はそれよりも多くのピクセルが特定される。各々のそのような標的地点について、少なくとも部分的に、標的地点からの投影によって照らされるように決定される異なるセンサ内に配置されるピクセル中の幾何学的関係に基づき、物理的(x,y,z)標的地点場所が決定される。
【0061】
ROIを組織的に横断することによって(例えば、特定の段階サイズで右から左に並びにある段階サイズで上から下に)一連の標的地点を自動的に選択し得ること並びに各々の選択される地点について物理的(x,y,z)標的位置場所を決定し得ることが理解されるであろう。S11及びS12はS13と最良に整合(マッチ)させられるので、横断はシフトされる関心の領域の内側で行われる。標的を選択することは、標的の投影によって照らされるセンサS11,S12,S13の各々の内でピクセルを特定することを含む。よって、S11,S12,S13の各々の内の候補ピクセルは、選択される標的地点の投影によって照らされるものであるとして特定される。
【0062】
換言すれば、標的地点Tを選択するために、ピクセルが、標的地点Tの投影によって照らされるセンサS11,S12,S13の各々の内に選択される。標的Tの(x,y,z)物理的場所は、その選択の瞬間に知られていないことが理解されるであろう。その上、上述の整列プロセスの不正確性は、各センサ内のどのピクセルが選択される標的Tの投影によって照らされるかの決定における不正確性を招き得ることが理解されるであろう。よって、図17、18及び19を参照して説明するように、現在選択されている標的Tの投影によって照らされるS11,S12,S13の各々の内のピクセルについての決定の精度について、更なる決定が行われる。
【0063】
上の実施例を続けて、三角形の第1の物体が現在選択されている標的地点であると推定する。図16は、幾つかの実施態様に従ったセンサS11,S12,S13の上への選択される三角形の標的地点の投影を示す例示的な図面である。これらの投影から、標的Tについての2Dピクセル座標、[(Nx11,Ny11),(Nx12,Ny12),(Nx13,Ny13)]が決定される。単純化のために、図16は、y軸ピクセル座標のみを示している。これらの2Dピクセル座標を用いて、式(402.5-1)及び(402.5-2)が適用され、
【数12】
及び
【数13】
がモジュール402.5の部分として計算される。402.6の部分、平均(norm)
【数14】
が計算され、受け入れ可能な許容差εと比較される。同様に、x軸ピクセル座標及び場所推定が計算され、受け入れ可能な許容差に対して比較される。モジュール402.6の条件が満足させられるならば、プロセスはモジュール403に進む。さもなければ、それはモジュール402.4に戻り、標的候補を更に精緻化する。
【0064】
図17を参照すると、センサS11,S12,S13と、物理的空間内の場所(x,y,z)に配置される選択される三角形の第1の物体標的地点Tとを含む、イメージャアレイの部分が示されている。イメージャアレイ内のセンサは、それらの間に既知の間隔、δijを有する。S11とS12との間の物理的位置間隔はδ12であり、S12とS13との間の物理的位置間隔はδ23である。他の実施態様において、全てのセンサSijの間のこれらの間隔は、同一であり、δ、構造的仕様(constructional specification)と等しい。センサSijは、既知の視野角度θも有する。
【0065】
上で説明したように、幾つかの実施態様において、各センサは、長方形パターンの行列において配置されるピクセルを備える2D撮像要素として構成される。代替的に、ピクセルを、例えば、円形パターン、ジグザグパターン、或いは分散パターンにおいて、或いはサブピクセル偏心(sub-pixel offsets)を含む不規則パターンにおいて配置し得る。これらの要素の角度及びピクセル特性は同一であってよく、或いは、代替的に、センサ毎に異なってよい。しかしながら、これらの特性は知られていることが推定される。説明を単純化するために、センサは同一であると推定されるが、それらは異なってよい。
【0066】
単純性のために、全てのセンサSijがNxNピクセルを有すると推定しよう。センサS11から距離zで、センサのNピクセル幅は、FOVによって示されるS11のy次元視野に拡張する。同様に、センサS12から距離zで、センサ12のy次元視野はFOVによって示されている。また、センサS13から距離zで、S13のy次元視野はFOVによって示されている。長さFOV,FOV,FOVは、互いに重なり合い、センサS11,S12,S13が、幾らかの(未知の)距離zに物理的に位置する標的Tの三方向サンプリング多様性(three-way sampling diversity)を達成することを示す。もちろん、この実施例において想定されるように、センサが同一に作られるならば、長さFOV,FOV,FOVも、同一である。3つの長さFOV,FOV,FOVは、全て、同じ大きさを有し、それらがイメージャアレイから同じ(不明の)z距離にある点において同一平面上にあるが、例示の目的のために、それらはそれらが恰も互いに隣接して重なり合うように描かれていることが理解されるであろう。
【0067】
図18を参照すると、画像センサS11,S12,S13上への現在選択されている標的地点Tの投影の例示的な正面図が示されている。単純性のために、センサはNxNピクセルサイズの幾何学的に長方形のピクセルアレイを含むことが想定される。標的T投影のx座標は全て等しいことも想定される。換言すれば、S11,S12,S13上への標的Tの投影のために、nx1=nx2=nx3であることが想定される。説明を単純化するために、幾何学的な視野角度θは、垂直的にθ=θであるので、水平的に同じである。当業者は、上記推定のうちの何れかが変わる場合に標的Tのx,y,z物理的座標を計算するために以下に提示するプロセスをどのように修正するかを知るであろう。
【0068】
標的Tの画像は、画像センサS11の平面内の幾何学的座標(nx1,ny1)でセンサS11内の物理的地点に投影される。より具体的には、センサS11上への標的Tの投影は、原点から取られると、y軸に沿ってny1ピクセルに配置され、x軸に沿ってnx1ピクセルに配置される。標的Tの画像は、画像センサS12の平面内の幾何学的座標(nx2,ny2)でセンサS12内の物理的地点に投影される。標的Tの画像は、画像センサS13の平面内の幾何学的座標(nx3,ny3)でセンサS13内の物理的地点に投影される。各センサ内のピクセル場所(nxi,nyi)がセンサのために提供される原点(0,0)基準座標に対して決定されることが理解されるであろう。図17又は図19に示すように、座標(x,y,z)の世界系(global system)は、標的を参照するために定められ且つ用いられる。例えば、そのような座標系の原点は、センサS11の幾何学的中心に配置されてよいが、それに限定されない。
【0069】
図16及び図18の両方を参照すると、標的の投影のyピクセル距離は各センサにおいて異なることを見ることができる。現在選択されている標的Tの投影は、S11において原点のny1ピクセル左に配置されている。選択される標的Tの投影は、S12において原点のny2ピクセル左に配置されている。選択される標的Tの投影は、S13において原点のny3ピクセル左に配置されている。上述のように、説明を単純化するために、標的の投影は全ての3つのセンサにおいて原点から同じxピクセル距離に向けられていると想定される。
【0070】
図19を参照すると、図17を参照して上述したようなセンサS11,S12,S13に対する現在選択されている標的Tの配置が示されており、センサの各々における候補ピクセルについてのy方向偏心も示している。図19の図面は、選択される標的Tの(x,y,z)物理的座標を決定するための解析フレームワーク及び物理的構造を表している。イメージャアレイ平面からの(不明の)距離zで、各センサのためのy方向視野は、FOVとして記される長さに亘って延びる。この長さ、FOVは、幾つかの実施態様において、Nピクセルである、センサの最大ピクセル幅に対応する。センサがx方向及びy方向において対称的である視野を有するという動作推定(working assumption)を考慮すれば、その長さもx軸に沿って垂直にFOVである。
【0071】
候補ピクセル選択が、少なくとも部分的に、選択される標的の物理的場所の決定における不正確性を招き得る不確実性のレベルを有し得る相関プロセスに基づいて行われることを思い起こして頂きたい。よって、幾つかの実施態様に従った標的投影候補選択の正確性の更なる確認が、以下のように行われる。
【0072】
標的の物理的(x,y)場所を決定すること及び標的投影候補選択の正確性を確認することの実施例
【0073】
モジュール402.5によれば、候補ピクセルが同じ標的からの投影によって実際に照らされるか否かを決定するために、2つ又はそれよりも多くの二次元(N,N)座標値が、選択される標的のために計算される。上で議論した推定及び3D座標系の原点をセンサS11の中心に配置することに基づき、イメージャアレイ及び図19中の実施例において現在選択されている標的Tは、以下の関係を有し、
【数15】
ここで、
Nは、撮像センサのピクセル寸法であり、
x1は、x方向におけるS11平面の原点からのピクセルの数において表わされる標的地点Tの位置であり、
y1は、y方向におけるS11平面の原点からのピクセルの数において表わされる標的地点Tの位置であり、
x2は、x方向におけるS12平面の原点からのピクセルの数において表現される標的地点Tの位置であり、
y2は、y方向におけるS12平面の原点からのピクセルの数において表現される標的地点Tの位置であり、
θは、視野の角度である。
【0074】
その上、センサS11及びS13を用いて同じ算数を行うならば、並びに、S11とS13との間の分離が2δであると仮定すると、以下が得られ、
【数16】
ここで、
x3は、x方向におけるS13平面の原点からのピクセルの数において表現される標的地点Tの位置であり、
y3は、y方向におけるS13平面の原点からのピクセルの数において表現される標的地点Tの位置である。
【0075】
よって、選択される標的Tの物理的x座標の決定を式(3)又は(6)に基づき決定し得る。選択される標的Tの物理的y座標の決定を式(2)又は(5)に基づき決定し得る。選択される標的Tの物理的z座標の決定を方程式(1)又は(4)に基づき決定し得る。
【0076】
より一般的には、モジュール402.6によれば、計算される2D座標値が、候補ピクセルが同じ標的からの投影によって照らされていることを示すか否かについて、決定が行われる。各座標についての2つの公式(formulation)を通じて、標的Tの物理的(x,y,z)座標のより確実な決定を得ることができる。例えば、標的Tについてのy座標を両方の公式(2)及び(5)を用いて決定し得る。2つの公式を用いて計算される結果として得られるy座標値が、ある程度の受け入れ可能な許容差値(tolerance value)、εよりも多い値だけ異なるならば、整合(マッチング)プロセスが異なるセンサ内の投影の間の偏心を十分な精度で解消し損ず、その結果、候補ピクセルが同じ標的Tからの投影を受けないという意味において、候補ピクセルが対応しないという、決定を行い得る。y計算が整合し損なう事態においては、各々が選択される標的Tに対応する、センサ内の候補ピクセルの改良された選択を行う試みにおいて、整合プロセスの他の繰返しが行われてよい。計算されるy値が等しい可能性は低いことが理解されるであろう。何故ならば、異なるセンサ上への異なる透視投影は、例えば、視差効果の故に異なり得るからである。従って、受け入れ可能な許容差値は、意図される用途に従って指定される。手術撮像用途のために、0.1~0.3mmの間のεが、典型的には、受け入れ可能なQ3D精度をもたらす。当業者は、この発明の精神から逸脱せずに、異なる受け入れ可能な許容差レベルを定めてよい。
【0077】
x軸及びy軸の周りの推定されるセンサ対称性を考慮すれば、当業者は、(2)及び(5)における公式と類似の公式を用いるが、nyiの代わりにnxiを用いて、標的Tのx座標について同種の決定を行い得ることを理解するであろう。公式(3)及び(6)を402.5及び402.6の部分において用い得ない。何故ならば、それらはz座標の知識を必要とするからである。しかしながら、モジュール402.5及び402.6の本質は、センサS11,S12,S13の平面上の正しい標的投影を決定することである。この目的のためには、x軸及びy軸のために調節された公式(2)及び(5)で十分である。完全なセットの座標(x,y,z)は、以下に記載するように、モジュール403及び404の計算される部分である。
【0078】
標的の物理的z場所を決定する実施例
【0079】
図19に例示するように、モジュール403及び404によれば、計算プロセスを開始するために、z座標、zについての初期的な推定が用いられる。この初期値は、医療用途に従って自動的に定められる。医療用途は、視覚化されるべき意図される世界ビューを定める。初期値zは、内視鏡に最も近い視野のエッジ(縁)で開始する。図8を参照すると、手術内視鏡を包含するQ3D用途のために、zは、例えば、Q3D内視鏡202の遠位端208から1~5mm外れ得る。そのような初期的な推定は、一般的には、この用途のために十分である。何故ならば、Q3D内視鏡にそのように近接近して存する組織又は手術器具を有する可能性は低いからである。次に、値zを公式(3)及び(6)に差し込む。標的のx座標が特異であることを考慮するならば、zが真実であり、標的のz座標が正しいならば、公式(3)及び(6)は同一の値又は受け入れ可能なレベルの許容差内の略等しい値、εを生む。
【数17】
【0080】
(3)及び(6)が受け入れ可能な許容差εの外側にあるならば、繰返しが続き、zについての新しい推定、zを試す。幾つかの実施態様によれば、新しい推定は自動的に定められる。例えば、z=z+Δであり、ここで、Δは、繰返しステップの大きさである。一般的には、kth反復Z=zk-1+Δである。繰返しプロセスは、条件(7)を満足するときに停止する。より小さなΔは、正しい標的座標を決定することにおける精度の増大をもたらすが、プロセスを完了するのにより多くの計算時間、故に、待ち時間(latency)の増大を必要とする。待ち時間の増大は、手術器具動作と執刀医によるその視覚化との間の遅延を招くことがある。換言すれば、外科医はシステムが彼の命令の裏で遅れているものとして知覚する。20~30cmの不可算の手術視認空間のために、0.1~0.3mmのΔが十分なことがある。もちろん、当業者は、繰返しプロセスを完了するのに必要とされる計算に対してΔの大きさを均衡させることを知っている。
【0081】
上記説明は提示の理由のために単純化されており、従って、それは3つのセンサS11,S12,S13のみを含んだ。一般的には、より多くのセンサを用いて、Q3D座標計算の精度を増大させ得るが、繰返しの総数も減少させ得る。例えば、3つよりも多くのセンサ、好ましくは、3×3センサアレイが用いられるならば、最急勾配(steepest gradient)のような方法を用いて、モジュール402.5及び403によって行われる推定誤差の方向を変え得る。3D誤差勾配表面の局所的な極限に向かう進行に整合(マッチ)するよう、繰返しステップの大きさ及び方向を調節し得る。
【0082】
Q3D情報を用いた内視鏡検査手術の誘導
【0083】
図20は、幾つかの実施態様に従った外科処置中にQ3D情報を用いる第1のプロセス2000を表す例示的なフロー図である。コンピュータプログラムコードは、プロセス2000を遂行するようコンピュータ151を構成する。モジュール2002は、使用者入力を受信して、ビューア312を覗くときに、外科医の視野内の少なくとも2つの物体を選択するよう、コンピュータを構成する。モジュール2004は、使用者選択の受信に応答してコンピュータコンソールにメニューを表示するようコンピュータを構成する。決定モジュール2006は、距離を表示するために、メニューへの使用者入力が受信されたか否かを決定するよう、コンピュータを構成する。使用者入力を受信して距離を表示したという決定に応答して、モジュール2008は、外科医の視野内のビデオ画像中に数値距離を表示するようコンピュータを構成する。決定モジュール2010は、距離表示を選択するために使用者入力の受信についての指定の時間間隔を待ち、「タイムアウト」間隔内に使用者入力を受信しないことに応答して、決定モジュール2006の動作を終了させるよう、コンピュータを構成する。
【0084】
決定モジュール2012は、近接警報限界を入力するためにメニューへの使用者入力が受信されたか否かを決定するよう、コンピュータを構成する。近接閾(proximity threshold)を入力するために使用者入力が入力されたという決定に応答して、モジュール2014は、Q3D情報を用いて、外科医の視野内の2つ又はそれよりも多くの物体の間の近接性をモニタリング(監視)するよう、コンピュータを構成する。決定モジュール2016は、近接閾を超えたか否かを決定する。近接閾を超えたという決定に応答して、モジュール2018は、警報をアクティブ化させるようコンピュータを構成する。警報は、音、点滅する光のような視覚的キュー、又は衝突を避ける器具動作の係止(ロッキング)を含んでよい。近接閾を超えなかったという決定に応答して、制御はモニタリングモジュール2014に戻る。決定モジュール2020は、近接閾を入力する使用者入力の受信についての指定の時間間隔を待ち、「タイムアウト」間隔内に使用者入力がなかったことに応答して決定モジュール2012の動作を終了させるよう、コンピュータを構成する。
【0085】
図21は、幾つかの実施態様に従った図20のプロセスに従ったディスプレイスクリーン2102上に表示されるメニュー選択を示す例示的な図面である。ディスプレイスクリーン2102は、コンピュータ151と関連付けられる視認モニタを含む。代替的に、ディスプレイスクリーン2102は、ビューア312の撮像要素206R,206Lの領域を含んでよい。使用者入力に応答して、モジュール2004は、第1のメニュー項目「距離を表示する」2106及び第2のメニュー項目「近接警報を設定する」2108を含む、メニューを表示させる。「距離を教示する」というメニュー項目2106を選択する使用者入力に応答して、モジュール2008は、2つ又はそれよりも多くの物体の間のQ3D距離の表示をもたらす。図4を再び参照すると、モジュール2008を用いて表示された器具400と標的との間のQ3D距離「d_Instr_Trgt」の表示が示されている。「近接警報を設定する」というメニュー項目2108を選択する使用者入力に応答して、「距離を入力する」というUI入力2110が表示され、それは使用者が近接距離閾値(proximity distance threshold value)、例えば、「xxxxミリメートル」を入力し得るフィールドを含む。代替的な実施態様(図示せず)において、初期設定近接閾が全ての器具のために前もって設定されてよく、使用者は、例えば、図21のメニューを用いて近接閾を変更してよい。代替的な実施態様において、使用者は、閾値(threshold value)を入力するよりもむしろ初期設定閾値(default threshold value)を選択することを選び得る。幾つかの実施態様において、使用者は、距離を表示すること及び近接警報を設定することの両方を選択し得る。
【0086】
図22A-22Bは、幾つかの実施態様に従った使用者入力を受信することの特定の詳細を表す例示的な図面である。図22Aは、テレストレーションのようなビデオマーカツールを用いて或いは図4の制御入力デバイス160を操作する外科医コンソールを用いて創り得る、体組織のような、標的410L,410Rの例示的な第1の強調2202L,2202R(highlighting)を示している。図22Bは、ビデオマーカツールを用いて創り得る、器具先端400L,400Rの例示的な第2の強調2206L,2206Rを示している。手術中、幾つかの実施態様によれば、使用者は、第1の強調2202L,220Rを創る。次に、使用者は、ビデオマーカツールを用いて、器具先端400L,400Rの第2の強調を創る。品目が強調される順番は重要でないことが理解されるであろう。次に、使用者は、セレクタ(図示せず)を作動させて(例えば、入力キーを押して)、選択を入力する。モジュール2002は、受信する使用者入力を、標的画像410L,410R及び器具画像400L,400Rの選択として解釈する。
【0087】
図23は、幾つかの実施態様に従った外科処置中にQ3D情報を用いる第2のプロセス2300を表す例示的なフロー図である。コンピュータプログラムコードは、プロセス2300を遂行するようコンピュータ151を構成する。モジュール2302は、使用者入力を受け取って、ビューア312を覗くときに外科医の視野内の物体を選択するよう、コンピュータを構成する。例えば、図22Aを再び参照すると、使用者入力は、ビデオマーカツールを用いて器具先端400L,400Rの第2の強調2206L,2206Rを創るようために受信されるよう、示されている。使用者入力(図示せず)は、セレクタ(図示せず)を作動させて(例えば、入力キーを押して)、器具先端400L,400Rの画像の選択を入力するために、受信される。
【0088】
図23をもう一度戻ると、使用者選択の受信に応答して、モジュール2304は、コンピュータコンソールにメニューを表示するようコンピュータを構成する。決定モジュール2306は、選択される物体の画像を回転させるために、メニューへの使用者入力が受信されたか否かを決定するよう、コンピュータを構成する。画像を回転させる使用者入力が受信されたという決定に応答して、モジュール2308は、画像を回転させて物体の異なる三次元全体像を示すよう、コンピュータを構成する。決定モジュール2310は、画像を回転させる使用者入力の受信のための指定の時間間隔を待って、「タイムアウト」間隔内に使用者入力がないことに応答して決定モジュール2306の動作を終了させるよう、コンピュータを構成する。
【0089】
図24は、幾つかの実施態様に従った図23のプロセスに従ったディスプレイスクリーン2402に表示されるメニュー選択を示す例示的な図面である。ディスプレイスクリーン2402は、コンピュータ151と関連付けられる視認モニタを含む。代替的に、ディスプレイスクリーン2402は、ビューア312の撮像要素206R,206Lの領域を含んでよい。受信される使用者入力に応答して、モジュール2304は、第3のメニュー項目「左に回転させる」2406及び第4のメニュー項目「右に回転させる」2408を含む、メニュー2404の表示をもたらす。第3の又は第4のメニュー項目2406,2408のうちの一方又は他方を選択する使用者入力に応答して、モジュール2308は、図9のモジュール407に従って創られ且つ格納される3Dモデルの領域をもたらす。回転の量は数度、例えば、30度未満に限定されてよいことが理解されるであろう。何故ならば、センサイメージャアレイ210は、限定的な全体的視野を有するからである。
【0090】
本発明に従った実施態様の前述の記述及び図面は、本発明の原理の例示であるに過ぎない。従って、当業者は付属の請求項において定められる本発明の精神及び範囲から逸脱せずに実施態様に対する様々な修正を行い得ることが理解されるであろう。
図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22A
図22B
図23
図24