(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-31
(45)【発行日】2023-08-08
(54)【発明の名称】偏心芯鞘複合短繊維
(51)【国際特許分類】
D01F 8/14 20060101AFI20230801BHJP
【FI】
D01F8/14 B
(21)【出願番号】P 2020014650
(22)【出願日】2020-01-31
【審査請求日】2022-10-14
(31)【優先権主張番号】P 2019052400
(32)【優先日】2019-03-20
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】木下 雄介
(72)【発明者】
【氏名】海法 圭司
(72)【発明者】
【氏名】松浦 知彦
(72)【発明者】
【氏名】増田 正人
(72)【発明者】
【氏名】大平 慎一
【審査官】静野 朋季
(56)【参考文献】
【文献】国際公開第2018/110523(WO,A1)
【文献】特開2016-160543(JP,A)
【文献】特開平9-105055(JP,A)
【文献】特開2004-353161(JP,A)
【文献】特開2015-175074(JP,A)
【文献】特開2008-237257(JP,A)
【文献】特開平9-296325(JP,A)
【文献】特開2009-46785(JP,A)
【文献】特開2002-339169(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D01F 8/00-8/18
D02G 1/00-3/48
D02J 1/00-13/00
(57)【特許請求の範囲】
【請求項1】
A成分及びB成分の2種のポリエステルからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、A成分を覆っているB成分の厚みの最小厚みSと繊維径Dの比S/Dが0.01~0.1であり、かつ最小厚みSより厚みが1.05倍以内の部分の繊維の周囲長が繊維全体の周囲長の1/3以上であり、熱処理前の捲縮数が8~20山/25mm、捲縮度が8~25%で、さらに、180℃における無荷重熱処理時の発現捲縮数が50山/25mm以上となる潜在捲縮能を有し、単繊維繊度が0.5~2.4dtexであることを特徴とする偏心芯鞘複合短繊維。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は偏心芯鞘複合短繊維に関する。
【背景技術】
【0002】
ポリエステルやポリアミドに代表される熱可塑性樹脂を用いた合成繊維は、強度、耐熱性、耐薬品性、ウォッシュアンドウェアー性など各種の特性に優れるため、衣料用途や産業資材用途、不織布用途に広く用いられている。
【0003】
衣料用途の中で、紡績糸を用いた織編物は、風合いや自然な外観から、ジャケット、コート、シャツ、肌着やスポーツ衣料など多岐に渡り使用されている。紡績糸は繊維長が数十ミリメートルの短繊維を数本から数十本、撚り合わせてできる糸であり、短繊維として、綿などの天然繊維、レーヨンなどの再生繊維および羊毛などの獣毛繊維を用いることで、優れた吸湿性や保温性などを特長とした織編物を得ることができる。しかしながら、それらの繊維の性質上、強度面が弱く、多量の汗や水分を吸収するとそれらを繊維内部まで取り込むため、乾きにくく、ベタツキなどの不快感を生ずるといった欠点がある。
【0004】
これらの課題を解決するため、機械的性質、化学的性質、吸水速乾性などに優れているポリエステル繊維からなる紡績糸、または、ポリエステル繊維と天然繊維や再生繊維との混紡によってなる紡績糸が用いられている。
【0005】
衣料用途における様々な要求特性を満たすため、より高機能なポリエステル繊維を含む紡績糸の開発が進められているが、近年においては衣服着用時の束縛感の抑制や動作の追従性が求められるようになり、ストレッチ性能に関する要求が高い。特に、シャツ、肌着やスポーツ衣料など細番手紡績糸(30~60番手)を用いた薄手生地においてストレッチ性能の要求が高い。一般的に、細番手紡績糸に太繊度短繊維(単繊維繊度3dtex以上)を使用すると紡績糸の糸ムラやネップに繋がり、最終的な生地の品位低下を招くため、細繊度短繊維(単繊維繊度3dtex未満)の開発が進められている。
【0006】
ストレッチ性能を得る方法として、ポリウレタン系の繊維を混用し、ストレッチ性を付与する方法がある。しかしながら、ポリウレタン系繊維はポリウレタン固有の性質として風合いが硬く、織物の風合いやドレープ性が低下するといった問題があった。さらに、ポリウレタン系繊維はポリエステル用の染料には染まり難く、ポリエステル繊維と併用したとしても、染色工程が複雑になるばかりか所望の色彩に染色することが困難であった。
【0007】
ポリウレタン系繊維を用いない方法として、サイドバイサイド複合を利用した潜在捲縮発現性繊維が種々提案されている。潜在捲縮発現性繊維とは熱処理により捲縮が発現する、あるいは熱処理前より微細な捲縮が発現する能力を有する繊維のことを言う。
【0008】
例えば、特許文献1には、粘度差のある2成分のポリマー(ポリエステル)をサイドバイサイド型に貼り合わせた複合繊維による潜在捲縮性複合繊維が提案されている。
【0009】
この潜在捲縮性複合繊維を用いれば、熱処理後に繊維が高収縮成分側に大きく湾曲することになるため、これが連続することで3次元的なスパイラル構造をとる。このため、該構造がバネのように伸び縮みすることで、織編物にストレッチ性を付与することができる。
【0010】
しかしながら、特許文献1で提案されている繊維の単繊維繊度は、1.0~1.8dtex示であるが、2種のポリマーの溶融粘度差に伴う口金紡出直後の糸曲がりが大きく、少しの口金面の汚れにより、糸切れを発生し、紡糸操業性は悪かった。特に、短繊維では生産効率、コストの観点から、数百Hから数千Hの口金での生産が必要であるため、口金紡出後のポリマー冷却工程での整流が難しく、糸曲がり部分にて糸切れが生じやすいといった課題がある。これら課題は特に細繊度になるほど顕著である。
【0011】
特許文献1では、2種のポリマーの粘度差をできるだけ小さくして糸曲がりの抑制を図っているが、十分な潜在捲縮発現性を得るためには一定の粘度差が必要であるため、糸曲がり抑制の効果は小さく、紡糸安定性の効果は小さい。そして、糸切れ部分や、糸揺れによって生じる融着部分は製糸工程の熱履歴を受け、収縮し融着繊維(正常繊維よりも太い糸、もしくは複数の糸が融着した糸)となる。融着繊維は紡績工程のフラットカードのフラット部分である程度除去できるが、すべて除去できるわけではなく、除去できなかった融着繊維は、粗紡や精紡の工程でスライバー抜けを発生させ、紡績加工性を低下させたり、紡績糸中に混入するとネップなどの欠点となり、紡績糸の品位を低下させたりする。
【0012】
特許文献2には、第一成分と第二成分とを含む複合繊維の繊維断面において、第二成分の重心位置は繊維の重心位置からずれている顕在捲縮性複合短繊維が提案されている。芯鞘構造であるため、吐出の際の糸曲がりは抑えられ、紡糸安定性に優れ、波形状捲縮および螺旋状捲縮を有した顕在捲縮性複合短繊維が得られている。しかしながら、捲縮数が高々16山/25mmであり、通常の潜在または顕在捲縮の発現がしない繊維でのスタッフィングボックス型クリンパーでの捲縮数と同程度である。従って、単純な偏心芯鞘複合繊維における捲縮発現では、肝心のストレッチ性能としては劣っており、満足なストレッチ性能を有した素材とは言い難い。なお、細繊度とした場合、ストレッチ性能が一層劣るという課題がある。
【0013】
特許文献3で提案されている偏心芯鞘繊維はフィラメントであるが、口金直下の糸曲がりを抑制し、良好な紡糸性が得られるため、単繊維繊度1.0dtex以下の繊維が得られ、かつ十分なストレッチ性が得られている。しかしながら、特許文献3の実施例で実際に使用されている口金ホール数は100H未満であり、口金紡出後のポリマー冷却工程での整流を実施しやすく、容易に糸揺れを抑制することができるため、糸曲がり部分での糸切れを抑制することができるが、短繊維では生産効率の観点から、数百Hから数千Hでの生産が必要であるため、かかる手法であっても、細繊度の達成は難しい。
【先行技術文献】
【特許文献】
【0014】
【文献】特開2014-148768号公報
【文献】特開2016-106188号公報
【文献】WO2018/110523号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明は、従来技術の課題を克服し、紡績性、紡績糸の品質を向上させ、十分なストレッチ性能に優れた薄手生地を得ることができる偏心芯鞘複合短繊維を提供するものである。
【課題を解決するための手段】
【0016】
本発明は、上記の目的を達成するため、A成分及びB成分の2種のポリエステルからなる複合繊維の横断面において、A成分がB成分で完全に覆われており、A成分を覆っているB成分の厚みの最小厚みSと繊維径Dの比S/Dが0.01~0.1であり、かつ最小厚みSより厚みが1.05倍以内の部分の繊維の周囲長が繊維全体の周囲長の1/3以上であり、熱処理前の捲縮数が8~20山/25mm、捲縮度が8~25%で、さらに、180℃における無荷重熱処理時の発現捲縮数が50山/25mm以上となる潜在捲縮能を有し、単繊維繊度が0.5~2.4dtexであることを特徴とする偏心芯鞘複合短繊維を採用する。
【発明の効果】
【0017】
本発明の偏心芯鞘複合短繊維を用いることで、紡績性、紡績糸の品質を向上させ、十分なストレッチ性能に優れた薄手生地を得ることができる。
【図面の簡単な説明】
【0018】
【
図1】
図1は、本発明の偏心芯鞘複合短繊維の一例であり、その繊維断面における重心位置を説明するための繊維横断面である。
【
図2】
図2は、本発明の偏心芯鞘複合短繊維における繊維径(D)と最小厚み(S)を説明するための繊維断面である。
【
図3】
図3は、本発明の偏心芯鞘複合短繊維の繊維断面におけるIFR(繊維断面におけるA成分、B成分の界面の曲率半径)を説明するための繊維断面である。
【
図4】
図4は、本発明外の偏心芯鞘複合短繊維の繊維断面の一例である。
【
図5】
図5は、最終分配プレートにおける分配配置の実施形態例である。
【発明を実施するための形態】
【0019】
以下に本発明を詳細に説明する。
【0020】
本発明の偏心芯鞘複合短繊維は、その繊維横断面が、A成分とB成分の2種のポリマーから構成されている。
【0021】
ここで言うポリマーとは、繊維形成性の熱可塑性重合体が好適に用いられ、本発明の目的に鑑み、加熱処理を施した際に収縮差を生じるポリマーの組み合わせが好適であり、組み合わせるポリマーの溶融粘度差が40Pa・s以上となる分子量または組成が異なるポリマーの組み合わせが好適である。
【0022】
本発明で言う溶融粘度とは、チップ状のポリマーを真空乾燥機によって、水分率を200ppm以下とし、歪速度を段階的に変更して測定し、測定温度を紡糸温度と同様にした場合の歪速度1216s-1における値である。複合繊維を構成するポリマーの溶融粘度が40Pa・s以上異なると言うことは、例えば、紡糸線において、溶融粘度の高いポリマー成分に応力が集中することとなる。そのため、芯鞘型断面や海島型断面の場合には、主要ポリマーに応力が集中し、優れた力学特性を発現したり、貼り合わせ型断面等の場合には、組み合わせた成分の配向により顕著な差が生まれたりすることとなり、好適な捲縮を発現させることが可能となる。
【0023】
本発明の目的を達成するために好適なポリマーとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリエチレン、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイド、およびこれらの共重合ポリマーが挙げられる。これらの分子量を変更して
図1に示すA成分に高分子量ポリマーを、またB成分に低分子量ポリマーを使用する、あるいは一方成分をホモポリマーとし、他方成分を共重合ポリマーとして使用することもできる。
【0024】
また、ポリマー組成が異なる組み合わせについても、例えば、A成分/B成分でポリブチレンテレフタレート/ポリエチレンテレフタレート、ポリトリメチレンテレフタレート/ポリエチレンテレフタレート、熱可塑性ポリウレタン/ポリエチレンテレフタレート、ポリトリメチレンテレフタレート/ポリブチレンテレフタレートなどの種々の組み合わせが挙げられる。
【0025】
特に、ポリマーとしてはポリエステル、ポリアミド、ポリエチレン、ポリプロピレンなどが好ましく用いられ、中でもポリエステルは力学特性等も兼ね備えるため、より好ましい。ここで言うポリエステルとは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートや、それらにジカルボン酸成分、ジオール成分あるいはオキシカルボン酸成分が共重合されたもの、あるいはそれらのポリエステルをブレンドしたものが挙げられる。
【0026】
上記ポリマーの中で本発明の複合短繊維における好適なポリマーの組み合わせの一例として、A成分は、エチレンテレフタレート単位を主たる構成単位とする共重合ポリエステルであり、共重合成分として2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン(BHPP)またはそのエステル形成誘導体(以下、エステル形成誘導体も含めてBHPPということがある)とイソフタル酸(IPA)を用いて改質されたポリエチレンテレフタレート系共重合ポリエステルであり、B成分は実質的にエチレンテレフタレート単位であるポリエステルであることが好ましい。本発明において、ポリエステル(A)中のBHPPの共重合割合は2~7モル%とすることが好ましい。BHPPの共重合割合が2モル%未満では、収縮特性が不十分となり、紡績糸にした場合、その伸長率、伸長回復率が小さく十分な伸縮機能が得られないことがある。一方、7モル%を越えると、ポリマーの融点低下するため、熱安定性が損なわれる傾向にある。
【0027】
ポリエステル(A)中のIPAの共重合割合は5~13モル%とすることが好ましい。IPAの共重合割合が5モル%未満では、実質的に大きな捲縮が得られにくく、一方、13モル%を越えると、ポリマーの融点が低下するため、熱安定性が損なわれる傾向にある。
また、A成分の共重合ポリエステルとして、IPAの代わりにもしくはIPAと併用して5-ナトリウムイソフタル酸(5-SIPA)を共重合成分とする共重合ポリエステルも、好ましい態様として挙げることができる。
【0028】
A成分に、BHPPとIPAを用いて改質されたポリエチレンテレフタレート系共重合ポリエステル、B成分に実質的にエチレンテレフタレート単位であるポリエステルの組み合わせは、A成分/B成分でポリブチレンテレフタレート/ポリエチレンテレフタレート、ポリトリメチレンテレフタレート/ポリエチレンテレフタレートの組み合わせと比較すると、生地に加工した際に、ハリコシが良く、シャツなどの薄手生地に好適である。これは、ポリブチレンテレフタレート、およびポリトリメチレンテレフタレートはポリエチレンテレフタレートよりも剛性が低いためである。
【0029】
B成分の実質的にエチレンテレフタレート単位であるポリエステルとは、エチレンテレフタレート単位を主体とするポリエステルであり、エチレンテレフタレート単位が85モル%以上であることが好ましい。そして、上述の共重合ポリエステルより熱収縮性が低くなるようにするため、結晶性を大きく阻害する成分が含まれたものや、BHPP、IPA、およびスルホン酸塩基化合物などは含有しないことが好ましい態様である。
【0030】
一方で、ソフトで柔らかい生地が得たい場合は、A成分にポリブチレンテレフタレート、およびポリトリメチレンテレフタレートを用いることが好ましいため、要求特性によって使い分けをすると良い。
【0031】
A成分/B成分がポリトリメチレンテレフタレート/ポリエチレンテレフタレートの組み合わせは、A成分、B成分ともにポリエチレンテレフタレートの組み合わせと比較して、生地に加工した際の生地伸長率および生地伸長回復率は、優れており、ストレッチ性能に優れた生地を得ることができる。
【0032】
さらに、本発明の複合短繊維は加熱処理を施した際に収縮差を生じるポリマーの組み合わせで構成されているため熱処理時に捲縮を発現するが、ストレッチ性を有する生地を得るために、180℃における無荷重下熱処理時の発現捲縮数が50山/25mm以上となる潜在捲縮能を有することが必要である。発現捲縮数50山/25mm未満では生地としたときの伸縮性が著しく低下し、ストレッチ性の低いものとなる。発現捲縮数の上限は特にない。前記の発現捲縮数(潜在捲縮能)は、組み合わせるポリマー種やその面積比(後述)、偏心芯鞘の断面構造等を調整することにより達成することができる。
【0033】
本発明の複合短繊維におけるA成分とB成分の繊維横断面における複合面積比率については、捲縮発現から鑑みるとA成分である高収縮成分の比率を多くすることで微細なスパイラル構造を実現で、また、偏心芯鞘複合短繊維として優れた物理特性を有している必要性もあるので、両成分の比率は、A成分:B成分=70:30~30:70(面積比)の範囲が好ましく、65:35~45:55の範囲がより好ましい。
【0034】
本発明では、2種の異なるポリマーが接合してなる複合断面を有していることが必要であり、ポリマー特性が異なる2種のポリマーが実質的に分離せず接合された状態で存在し、A成分がB成分を完全に覆っている偏心芯鞘型である必要がある。
【0035】
ここで、本発明で言う偏心とは、複合短繊維断面においてA成分ポリマーの重心点位置が複合短繊維断面中心と異なっていることを指し、
図1を用いて説明する。
【0036】
図1において、水平ハッチングがB成分であり、30degハッチング(右上がり斜線)がA成分であって、複合短繊維断面におけるA成分の重心点が重心点aであり、複合短繊維断面の重心が重心点Cである。
【0037】
本発明においてはA成分の重心点aと複合短繊維断面の重心点Cが離れていることが重要であり、これにより熱処理後に繊維が高収縮成分側に大きく湾曲することになる。このため、複合繊維が繊維軸方向に湾曲し続けることにより、3次元的なスパイラル構造をとり、良好な捲縮発現することになるのである。ここで、重心位置が離れているほどより良好な捲縮が発現し、良好なストレッチ性能が得られるのである。
【0038】
本発明においては、A成分がB成分に完全に覆われていることにより、繊維や生地に摩擦や衝撃が加わっても白化現象や毛羽立ちなどが生じることがないので生地品位を保つことができる。加えて、従来の単純貼り合わせ構造では表面露出して複合繊維の欠点となる高分子量ポリマーや高弾性ポリマー等についても複合短繊維の一方成分として用いることが出来るのである。
【0039】
また、一方のA成分は他方のB成分で完全に覆われているので、例えば耐熱性や摩耗性の低いポリマー、あるいは吸湿性のポリマーなどを用いても繊維特性を良好に保持できる効果も備えることが出来る。
【0040】
本発明の複合短繊維には、A成分を覆っているB成分の最小となる厚みSと繊維径(複合繊維の直径)Dの比S/Dが0.01~0.1である必要がある。好ましくは、0.02~0.08である。この範囲であれば、耐摩耗性などに優れ、十分な捲縮発現力とストレッチ性能を得ることが出来る。
【0041】
本来それぞれのポリマーは貼り合わせ界面のみで接していることで良好なストレッチ性能を得ることが出来るのであり、高収縮成分が低収縮成分で完全に覆われているとストレッチ性能が低下する。ところが、B成分の厚みを本発明の範囲とすることで、ストレッチ性能と耐摩耗性の両特性を満足する複合短繊維とすることが可能となった。
【0042】
図2に示した繊維断面を用いて更に詳細に説明する。ここで芯鞘複合短繊維におけるB成分の最薄部が最小厚みSである。
【0043】
さらに、最小厚みSの1.05倍以内の厚みの部分の複合短繊維の全体の周囲長の1/3以上を占めていることが重要である。これは、繊維の輪郭に沿ってA成分が存在していることを意味しており、同一面積比の従来の偏心芯鞘複合繊維と比較すると、本発明が、繊維断面においてそれぞれの成分の重心位置がより離れており、微細なスパイラルを形成し、良好な捲縮を発現する。より好ましくは、最小厚みSの1.05倍以内の厚みの周囲長を繊維全体の周囲長の2/5以上とすることで捲縮斑がなく良好なストレッチ性能が得られる。
【0044】
さらに、繊維断面におけるA成分とB成分の界面の曲率半径IFRとして、繊維径Dを2で除した値Rとしたとき下記式1を満足することが好ましい。ここで言う曲率半径IFRとは、
図3に示したように繊維横断面において、A成分を覆っているB成分の厚みの最大厚みとなるA成分とB成分の界面の曲率に接する円(鎖線)の半径を指す。
(IFR/R)≧1・・・(式1)
これは、界面がより直線に近いことを意味している。本発明は従来の貼り合わせ型捲縮繊維の断面に近い形態でA成分とB成分の界面を直線に近い曲線とすることで、従来の偏心芯鞘複合繊維ではなし得なかった高い捲縮を発現することができるので好ましい。より好ましくは、1.2以上である。
【0045】
ここで言うA成分を覆っているB成分の厚みが最小となる最小厚みSおよび繊維径D、界面の曲率半径IFR、A成分とB成分の面積比は、以下のように求める。
【0046】
すなわち、偏心芯鞘複合短繊維をエポキシ樹脂などの包埋剤にて包埋し、この横断面を透過型電子顕微鏡(TEM)で10本以上の繊維が観察できる倍率として画像を撮影する。この際、金属染色を施すとポリマー間の染め差を利用して、A成分とB成分の接合部のコントラストを明確にすることができる。撮影された各画像から同一画像内で無作為に抽出した10本の外接円径を測定した値が本発明で言う繊維径Dに相当する。ここで、10本以上の観察が不可能の場合は、他の繊維を含めて合計で10本以上を観察すればよい。ここで言う外接円径とは、2次元的に撮影された画像から繊維軸に対して垂直方向の断面を切断面とし、この切断面に2点以上で最も多く外接する真円の径を意味する。
【0047】
また、繊維径Dを測定した画像を用いて、10本以上の繊維について、A成分を覆っているB成分の最小となる厚みを測定した値が、本発明で言う最小厚みSに相当する。さらには、これら繊維径Dと最小厚みS、曲率半径IFRについては、単位をμmとして測定し、少数第3位以下を四捨五入する。以上の操作を撮影した10画像について、測定した値およびその比(S/D)の単純な数平均値を求める。
【0048】
また、A成分とB成分の面積比は上述で撮影した画像、および画像解析ソフト三谷商事社製「WinROOF2015」を用いて、繊維全体の面積およびA成分、B成分の面積を求めた後、面積比を求める。
【0049】
本発明の複合短繊維の単繊維繊度は、0.5dtex以上2.4dtex以下である必要がある。0.5dtex未満の場合、カード通過性が悪く、カードシリンダーへの巻き付き、カードネップの発生に繋がる。繊度が太くなると紡績糸1本当たりの構成単糸本数が減少し、紡績糸の太さムラやネップが増加するが、シャツ、肌着やスポーツ衣料などに使用される薄手生地向け紡績糸(30番手~60番手)において、2.5dtex以上では、紡績糸の太さムラやネップが極端に増加する。より好ましくは0.8dtex以上1.8dtex以下であり、更に好ましくは1.0dtex以上1.5dtex以下である。
【0050】
本発明の複合短繊維は、次の製糸方法によって製造することができる。
【0051】
A成分およびB成分のポリマーを溶融し、複合溶融紡糸装置を用いて所定の質量比率で複合流とした後、孔径0.2~0.6mmの吐出孔を100~2000孔有する紡糸口金を通して、融点よりも高い紡糸温度で溶融紡糸する。紡糸温度はポリマー融点よりも+20~+60℃高い温度で設定するのが好ましい。ポリマー融点よりも+20℃以上高く設定することで、ポリマーが紡糸機配管内で固化して閉塞することを防ぐことができ、かつ高めに設定する温度を+60℃以下とすることでポリマーの過度な熱劣化を抑制することができるため好ましい。
【0052】
溶融方法としては、プレッシャーメルター法およびエクストルーダー法が挙げられ、いずれの方法でも問題はないが、均一溶融と滞留防止の観点からエクストルーダーによる溶融方法を採用することが好ましい。溶融ポリマーは配管を通り、計量された後、口金パックへと流入される。この際、熱劣化を抑えるために、配管通過時間は30分以下であることが好ましい。パックへ流入された溶融ポリマーは紡糸口金より紡出される。
【0053】
また、本発明は短繊維に関するものであるため、生産効率の観点から、通常は多ホールの口金が用いられ、100H以上のものを用いる必要がある。短繊維の価格相場を考慮すると、300H以上であることがより好ましく、600H以上であればさらに好ましい。
【0054】
一般的に、ホール数を増やすほど、紡出後の糸条を均一冷却することが困難となり、加えて、口金直下で乱流を生じ、安定紡糸が困難となる。また、2成分による偏心芯鞘複合紡糸、およびサイドバイサイド複合紡糸では、ポリマー吐出後に糸曲がりを生じるため、安定紡糸がより困難となる。しかしながら、本発明のような断面とすることで、口金吐出時の2種のポリマーの流速差のために起こる糸曲がりを抑制できるのである。すなわち、鞘成分が存在することで、ポリマー流が曲がる方向とは逆方向への力が生じる結果、口金吐出時の2種のポリマーの流速差から生じる紡糸線と垂直方向への力を抑制することができる。加えて、糸条の冷却、口金吐出面から糸条の収束位置を以下のように制御することで、口金ホール数の多い口金を用いても、安定して紡糸することが可能となる。
【0055】
糸条の冷却方法について、口金直下で急冷することが好ましく、風温が10~50℃で、冷却開始位置が口金直下0~200mmの位置に有り、冷却長が10~400mmの冷風吹き出し装置を用いて、30~120m/分で冷却することが好ましい。冷却開始位置の更に好ましい範囲は、20mm~100mmの位置であり、口金面が冷えにくく、より効果的に糸揺れを抑制できる。この冷却工程は、口金直下で生じる乱流を抑制し糸揺れを抑制すること、また、糸条を急冷することでポリマーの固化位置を上昇させ糸揺れによる糸切れを発生しにくくすることができる。本発明のような断面とすることでポリマー吐出後の糸曲がりを抑制することができたため、100H以上の口金による紡糸であっても口金直下での冷却開始が可能となり、その結果、100H以上の口金による複合繊維の製造が可能となったのである。口金直下の急冷で、同様の効果が得られる方法として、吸引開始位置が口金直下0~200mmの位置に有り、吸引長が10~400mmの吸引冷却装置を用いて、30~120m/分で吸引を行い冷却する方法でもよい。
【0056】
また、口金直下の急冷後に整流することが好ましく、風温が10~50℃で冷却長が100~700mmの冷風吹き出し冷却装置を用いて、20~90m/分で冷却し、口金直下の冷却風の風速以下の条件で冷却することが好ましい。口金直下の冷却風の風速よりも高いと糸揺れが大きくなり、糸切れ、および糸融着を発生し、安定紡糸ができなくなる場合がある。糸切れ、糸融着が多いと、紡績糸にそれらが混入し、紡績糸の品位低下を招く可能性がある。
【0057】
口金吐出面から糸条の収束位置までの距離は2000mm以下であることが好ましい。口金吐出面から糸条の収束位置までの距離を2000mm以下とすることで冷却風による糸条揺れ幅を抑え、糸条の収束に至るまでの随伴気流を抑制できるため、糸切れの少ない安定した製糸性が得やすいので好ましい。紡糸工程における糸条の収束位置のより好ましい範囲は1600mm以下である。
【0058】
紡糸した未延伸糸を延伸する工程では、未延伸糸を30~300ktexに束ねて、2~5倍で蒸気下もしくは熱水中で延伸する。その後、緊張熱処理を行って、押し込み式捲縮機(クリンパー)などを用いて捲縮付与をする。
【0059】
次いで、捲縮付与後の延伸トウを乾燥し、仕上げ油剤水溶液をスプレーでトウに付与し、トウを切断して、本発明の複合短繊維を製造することができる。
【0060】
サイドバイサイド型に貼り合わせた潜在捲縮性複合繊維の場合、紡糸した未延伸糸を延伸する工程では、延伸熱により隣接する繊維と融着しやすいといった特徴があり、融着繊維の混入リスクが高まる。これは短繊維の製造プロセスで顕著に見られる課題であり、本発明の複合繊維は、この短繊維特有の課題を解決するものである。
【0061】
詳細なメカニズムは解明されていないが、本発明においてはA成分をB成分が完全に覆っている偏心芯鞘型の複合短繊維を適用することで、この融着減少は緩和され、短繊維中への融着繊維の混入が抑制できる。繊維同士の融着は、融点が低いほど融着しやすいため、A成分対比、融点の低い成分をB成分に用いた場合、融着繊維数は更に減少することが期待される。融着繊維数が減少すれば、紡績糸中への融着繊維の混入リスクを低減することができ、紡績糸の品質を向上させることができる。
【0062】
加えて、延伸前に未延伸糸を40~60℃に予熱した状態で、延伸することで、更に、この融着繊維を抑制することができる。
【0063】
本発明の複合繊維の捲縮数(熱処理前の捲縮数)は8~20山/25mm、捲縮度が8~25%である必要がある。ここで言う捲縮数、および捲縮度は、延伸トウを切断した後の数値を指す。
【0064】
捲縮数が8山/25mm未満、もしくは捲縮度が8%未満であると、カード通過性が極端に悪くなる。また、捲縮数が20山/25mmより高く、もしくは捲縮度が25%より高い場合も、カード通過性が極端に悪くなる上、カード通過後にネップが多発したり、紡績糸の太さムラが極端に増えたりして、高次加工性や紡績糸の品質を著しく低下させる。
【0065】
捲縮数のより好ましい範囲として、10~17山/25mmであり、更により好ましい範囲として、11~15山/25mmである。
【0066】
捲縮度のより好ましい範囲として、9~20%であり、さらに好ましい範囲として、10~16%である。
【0067】
本発明の捲縮数、および捲縮度を得るためには、緊張熱処理温度、緊張熱処理時間、押し込み式捲縮機に入る際のトウの温度、押し込み式捲縮機の押し込み圧、および捲縮付与後のトウの乾燥温度の設定が重要である。
【0068】
緊張熱処理は、張力を保った状態で熱セットを行い、その後、冷却水でガラス転移温度以下に冷却して分子鎖を構造固定することで、後の捲縮付与後のトウの乾燥工程での捲縮発現が抑制することができ、紡績や不織布などの高次加工工程での熱処理により高い捲縮発現能を発揮することができる。
【0069】
緊張熱処理温度として、100~190℃が好ましく、緊張熱処理時間として、3~20秒未満が好ましい。処理温度が100℃未満、もしくは処理時間が3秒未満の場合、後の捲縮後のトウの乾燥工程で、極端に捲縮発現が発現し、潜在捲縮特性が低下することがある。また、処理温度が190℃より高い、もしくは処理時間が20秒より長いと潜在捲縮特性が低下することがある。
【0070】
押し込み式捲縮機に入る際のトウの温度は、20~60℃であることが好ましい。20℃未満の場合、捲縮度が低くなり本発明の捲縮度が得られないことがあり、また、60℃より高い場合、捲縮度が高くなり本発明の捲縮度が得られないことがある。
【0071】
押し込み式捲縮機の押し込み圧は、1~3kg/cm2Gが好ましい。1kg/cm2G未満の場合、捲縮数、もしくは捲縮度が低くなり、3kg/cm2Gより高いと捲縮数、もしくは捲縮度が高くなりやすい。
【0072】
捲縮付与後のトウの乾燥温度は、50~120℃が好ましい。50℃より低いと、トウを十分に乾燥することができないことがあり、120℃より高いと乾燥工程で捲縮が発現してしまい、紡績や不織布などの高次加工工程での熱処理により、十分な捲縮発現が得られない。
【0073】
本発明の断面形状であることで、製糸工程での捲縮発現がほどよく抑制され、本発明の捲縮を比較的容易に得ることができる。詳細なメカニズムは解明されていないが、A成分を覆うB成分の厚みが薄い部分が、A成分の収縮を適度に抑制できているためと考えられる。サイドバイサイド型断面のようなA成分がむきだしの断面の場合、特に、2成分ポリマーの溶融粘度差が大きいと、製糸工程中、例えば、捲縮付与後のトウの乾燥で捲縮が発現し、延伸トウのカット後の捲縮数や、捲縮度が高くなりやすいため、製糸工程中での捲縮コントロールが比較的難しい。
【0074】
本発明の複合繊維の繊維長は、高次加工工程での工程通過性の観点から20~120mmであることが好ましく、より好ましくは30~90mmである。
【0075】
本発明の複合短繊維の切断強度は、1.5~5.0cN/dtexであることが好ましく、より好ましくは2.5~4.0cN/dtexである、切断強度が1.5より低いと、紡績工程に、糸切れや工程トラブルが生じる。また、切断強度が5.0cN/dtexより高いと、ソフト性およびピリング性に乏しくなる。
【0076】
本発明の複合短繊維の切断伸度は、10~50%であることが好ましく、より好ましくは20~40%である。切断伸度が10%未満、または50%より高いと、紡績工程で糸切れや工程トラブルが生じる。
【0077】
本発明の複合短繊維は、鞘厚みや薄皮部の周囲長を精密に制御することが好ましく、特開2011-174215号公報や特開2011-208313号公報、特開2012-136804号公報に例示される分配プレートを用いた方法が好適に用いられる。従来公知の複合口金を用いて偏心芯鞘型の断面を有する繊維を製造する場合、芯の重心位置や鞘厚みの精密な制御が非常に困難となる場合が多い。例えば、鞘厚みが薄くなり、芯成分が露出された場合には、摩擦や衝撃による布帛の白化現象や毛羽の原因となり、逆に鞘厚みが厚くなってしまった場合には、捲縮発現が低下するために、ストレッチ性能が低下するといった問題が生じる場合がある。
【0078】
このような分配プレートを用いた方法では、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置により、単糸の断面形態を制御することができる。
【0079】
本発明の複合短繊維は、芯成分を成すポリマー(A成分)および鞘成分を成すポリマー(B成分)の分配孔の配置により断面形態を制御することができる。具体的には、
図5に例示するように、偏心芯鞘型の複合断面における芯成分を成すポリマー(A成分)の分配孔5-(c)を囲むように、鞘成分を成すポリマー(B成分)の分配孔5-(a)、同5-(b)を配置することで、本発明で必要となる偏心芯鞘型の複合断面形成が可能であり、好ましい。
【0080】
ここで、薄皮を形成するポリマー(B成分)の分配孔5-(a)の孔数は、芯成分の完全被覆および薄皮厚みの均一化という観点から、6個以上とすることが好ましい。また、薄皮を形成する分配孔5-(a)の分配孔数や分配孔辺りのポリマーの吐出量を変更するようにアレンジすることで、複合繊維の断面において、S/Dや最小厚みの長さを制御することが可能である。
【0081】
このように、分配プレートにより断面形成されたポリマー流は、縮流され、紡糸口金の吐出孔より吐出される。このとき、吐出孔は、複合ポリマー流の流量、すなわち吐出量を再度計量する点と紡糸線上のドラフト(=引取速度/吐出線速度)を制御する目的がある。孔経および孔長は、ポリマーの粘度および吐出量を考慮して決定するのが好適である。本発明の複合短繊維を製造する際には、吐出孔径は0.1~2.0mm、L/D(吐出孔長/吐出孔径)は0.1~5.0の範囲で選択することができる。
【0082】
ここで、本発明の複合短繊維は、前述したとおりであるが、
図1の如くB成分でA成分を完全に覆っていることが好ましい。本発明のような断面とすることで、口金吐出時の2種のポリマーの流速差のため起こる、吐出線曲がり(ニーイング現象)を抑制できるのである。すなわち、鞘成分が存在することで、ポリマー流が曲がる方向とは逆方向への力が生じる結果、口金吐出時の2種のポリマーの流速差から生じる、紡糸線と垂直方向への力を、抑制することができるのである。
【0083】
また、従来の単純貼り合わせ構造(バイメタル構造)の場合では、口金吐出後の紡糸線上での細化時のそれぞれのポリマーにかかる応力バランスに差が生じ、伸長変形に斑が生じ、これが繊度斑として顕在化する場合があった。この傾向は、粘度差の大きいポリマーの組み合わせや、吐出量を絞るなどして、細繊度化する場合は非常に顕著に現れるものであるが、本発明においては、片方のポリマーで覆われていることで応力バランスが繊維断面内で均衡化して繊度斑が抑制できるのである。
【0084】
さらには、A成分に高分子量ポリマーを用い、B成分に低分子量ポリマーを用いる場合には、B成分で完全に覆われていることで高速製糸安定性に優れることも見出されている。これは、低分子量ポリマーが外側に配置されることで口金吐出後の伸長変形に高分子量ポリマーが追従しやすくなった効果である。
【0085】
これにより、細繊度糸においてもストレッチ性能向上以外の付加価値向上や製糸安定性向上のためのポリマー選択の自由度が飛躍的に上がり、生産性の向上にも寄与する。
【0086】
また、吐出線曲がりの抑制という観点においては、本発明の複合短繊維に使用するポリマーの溶融粘度差も重要となる。溶融された、複合繊維を成す2種類のポリマーは、縮流される際、2種類のポリマーの圧力損失を一致させるために、ポリマー流動方向と垂直断面において、断面積を変化させる結果、流速差を生じ、これらが重心の偏りを持って吐出されるため、吐出線曲がりを生じるのである。
【0087】
すなわち、溶融粘度の高いポリマーは、断面積が大きくなるために流速は遅く、逆に、溶融粘度の低いポリマーは断面積が小さくなるために、流速は速くなるのである。このため、使用するポリマーの溶融粘度差を小さくすることで、ポリマー間の流速差が緩和され、吐出線曲がりを抑制することができるのである。この観点を推し進めると、組み合わせるポリマーの溶融粘度差はより小さいことが好適であるが、本発明の複合短繊維では、捲縮発現等を考慮すると、組み合わせるポリマーの溶融粘度差はより大きいことが好適である。
【0088】
このようにして、吐出線曲がりが抑制されると、紡糸線上での単繊維どうしの干渉を抑制できるため、紡糸口金上での吐出孔密度の増大、すなわち口金当たりの吐出孔数を増加させることが可能となり、多糸条化による高度化や生産効率の向上を達成することができる。
【0089】
このとき、紡糸ドラフトは300倍以下とすると糸条間での物性バラツキが抑制された均質な繊維が得られ好ましい。
【0090】
本発明の複合短繊維の下記式で表される紡糸ドラフトは50~300が好ましい。
紡糸ドラフト=Vs/V0
Vs:紡糸速度(m/分)
V0:吐出線速度(m/分) 。
【0091】
紡糸ドラフトを50以上とすることで、口金孔から吐出されたポリマー流が長時間口金直下に留まることを防止し、口金面汚れを抑制することができることから、製糸性が安定する。また、紡糸ドラフトを300以下とすることで過度な紡糸張力による糸切れを抑制することが可能となり、偏心芯鞘複合短繊維を安定した製糸性で得ることができるので好ましい。より好ましくは80~250である。
【0092】
本発明の偏心芯鞘複合短繊維を用いて紡績糸とすることができるが、紡績糸を構成する他の繊維の種類は特に限定されるものではなく、ポリエステル繊維、アクリル繊維、ポリアミド繊維、レーヨン、綿、麻、ウール、絹の少なくとも1種類を用いたものが、本発明の効果を発揮できるので好ましく、また、本発明の複合短繊維のみで構成されていてもよい。特に、本発明の複合短繊維100%、本発明の複合短繊維/綿混、本発明の複合短繊維/ウール混、などが好ましい。
【0093】
本発明の複合短繊維を紡績糸にする際には、通常の紡績方法により紡績糸を製造することができる。紡績糸の番手は、シャツ、肌着、スポーツ衣料などの薄手生地によく用いられる30~60番手が好ましい。30番手未満では生地が厚くなり求める生地が得られず、60番手より高いと加工性の問題で既存の用途にはほとんど用いられない。紡績糸のヨリ係数は、2.5~4.5の範囲であることが好ましく、ヨリ係数が2.5未満では、十分な糸強力が得られない傾向があり、紡績時の糸切れや織編物にした際の強度低下を招く傾向がある。また、ヨリ係数が4.5を超えると、ヨリ戻りによるビリが発生する傾向があるほか、織編物にした際に粗硬感がある傾向となる。また、繊維同士の束縛が強く、繊維が収縮しにくくなるため、肝心なストレッチ性が得られなくなる。
【0094】
本発明の複合短繊維を用いた紡績糸による生地のストレッチ性を評価する方法として、生地伸長率と生地伸長回復率があり、伸長率が15%以上、伸長回復率が70%以上あると、生地を身にまとった際に、ストレッチ性を感じ、束縛感を感じ難い。尚、紡績糸の番手、ヨリ係数、生地構成が同一の場合、繊度が太い方が、構成本数が少なく、繊維同士の束縛が少なくなり、生地伸張率の向上は期待できるが、逆に紡績糸の品質は低下する。
【0095】
なお、伸長率の測定方法は、まず本発明の複合短繊維で番手45S(単糸)、ヨリ係数3.5の紡績糸を作製し、ヨコ糸として織物に使用し、タテ糸にはポリエステル(東レ(株)製、品種名:T403-1.45T×38mm)と綿花を混綿した番手45S、ヨリ係数3.5の紡績糸を使用する。タテ糸密度110本/インチ(2.54cm)、ヨコ密度76本/インチ(2.54cm)で、エアジェット織機を用いて1/3ツイル織物を作製し、織物を無荷重下にて130℃の湿熱雰囲気下で10分熱処理を施し、ヨコ糸が長手方向となるように30cm×5cmにカットしサンプルとし、3枚のサンプルを切り出す。次いで、自動記録装置付き定速伸張形引張試験機(INSTRON製:MODEL5566)を用い、つかみ間隔を20cmとし、5cm×1mの大きさの質量と同等の初荷重をかけ、つかみに固定する。この時のつかみ間隔をL0とする。引張速度20cm/分で14.7N(1.5kg)まで伸ばし、その時のつかみ間隔(L1)をはかり、次の式により伸長率(%)を求め、3枚の平均値で表す。
生地伸長率(%)={(L1-L0)/L0}×100
L0:初荷重下のつかみ間隔(mm)
L1:14.7N(1.5kg)まで伸ばした時のつかみ間隔(mm)。
【0096】
伸長回復率の測定方法は、伸長率測定同様に無荷重下で130℃の湿熱雰囲気下で10分熱処理を施した織物をヨコ糸が長手方向になるように30cm×5cmの大きさにカットし3枚サンプルとして切り出す。引張試験機を用いつかみ間隔20cmとし、5cm×1mの大きさの試料の質量と同等の初荷重をかけつかみに固定する。引張速度20cm/分にて先に求めた伸長率の80%まで伸ばして(L3)、1分間放置した後、同じ速度で元の位置まで戻し3分間放置する。これらの操作を10回繰り返した後、再び同じ速さで初荷重条件まで引き延ばし、その時の残留伸び(L4)を測り次の式により伸長回復率を求め、3枚の平均値で表す。
伸長回復率(%)={(L3-L4)/L3}×100
L3:生地伸長率の80%の長さ(mm)
L4:10回繰り返し伸長後の残留伸びの長さ(mm)。
【0097】
本発明の複合短繊維を用いた紡績糸は、シャツ、肌着、スポーツ衣料などの薄手生地用途に好適であるが、パンツやスーツなどの厚手生地用途としても使用可能であり、十分なストレッチ性を得ることができる。
【実施例】
【0098】
<評価方法>
<ポリマーの溶融粘度>
チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s-1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
【0099】
<製糸安定性>
各実施例について8時間の紡糸を行い、紡糸糸切れ回数から相対評価し、4段階評価した。
◎(極めて良好) :糸切れ回数0回~1回
○(良好) :糸切れ回数2回~5回
Δ(やや不良) :糸切れ回数6回~10回
×(不良) :糸切れ回数11回以上。
【0100】
<繊度、繊維長>
JIS L1015(2010年)に示される方法によって、繊度、及び繊維長を測定した。
【0101】
<熱処理前の捲縮数(山/25mm)、捲縮度(%)>
JIS-L1015(2010年)の方法に従い、測定した。
【0102】
<発現捲縮数(山/25mm)>
発現捲縮数は、短繊維を無加重下で180℃の温度で5分間乾熱処理した後に、光学顕微鏡(キーエンス製、VHX-900F)を用いて、単糸1本を倍率100倍で観測した。観測結果を光学顕微鏡のスケール計測機能を用いて、200μm当たりの捲縮数をカウントした後、25mm当たりの捲縮数に換算した。この操作を、10回繰り返し、この平均値を発現捲縮数として算出した。
【0103】
<切断強度(cN/dtex)および切断伸度(%)>
JIS-L1015(2010年)の方法に従い、測定した。
【0104】
<紡績糸品質>
測定すべき短繊維100%で番手45S(単糸)、ヨリ係数3.5の紡績糸を作製し、1000mの紡績糸を糸欠点検知機(USTER社(スイス)Evenese Tester(Tester5))で糸ムラやネップの数を測定し、相対評価した。
◎(極めて良好) :100個未満
○(良好) :100個以上、200個未満
Δ(やや不良) :200個以上~500個未満
×(不良) :500個以上。
【0105】
<生地伸張率>
測定すべき短繊維で番手45S(単糸)、ヨリ係数3.5の紡績糸を作製し、ヨコ糸として織物に使用し、タテ糸にはポリエステル(東レ(株)製、品種名:T403-1.45T×38mm)と綿花を混綿した番手45S、ヨリ係数3.5の紡績糸を使用する。タテ糸密度110本/インチ(2.54cm)、ヨコ密度76本/インチ(2.54cm)で、エアジェット織機を用いて1/3ツイル織物を作製し、織物を無荷重下にて130℃の湿熱雰囲気下で10分熱処理を施し、ヨコ糸が長手方向となるように30cm×5cmにカットしサンプルとし、3枚のサンプルを切り出す。次いで、自動記録装置付き定速伸張形引張試験機(INSTRON製:MODEL5566)を用い、つかみ間隔を20cmとし、5cm×1mの大きさの質量と同等の初荷重をかけ、つかみに固定する。この時のつかみ間隔をL0とする。引張速度20cm/分で14.7N(1.5kg)まで伸ばし、その時のつかみ間隔(L1)をはかり、次の式により伸長率(%)を求め、3枚の平均値で表す。
生地伸長率(%)={(L1-L0)/L0}×100
L0:初荷重下のつかみ間隔(mm)
L1:14.7N(1.5kg)まで伸ばした時のつかみ間隔(mm)。
【0106】
<生地伸長回復率>
伸長率測定同様に無荷重下で130℃の湿熱雰囲気下で10分熱処理を施した織物をヨコ糸が長手方向になるように30cm×5cmの大きさにカットし3枚サンプルとして切り出す。引張試験機を用いつかみ間隔20cmとし、5cm×1mの大きさの試料の質量と同等の初荷重をかけつかみに固定する。引張速度20cm/分にて先に求めた伸長率の80%まで伸ばして(L3)、1分間放置した後、同じ速度で元の位置まで戻し3分間放置する。これらの操作を10回繰り返した後、再び同じ速さで初荷重条件まで引き延ばし、その時の残留伸び(L4)を測り次の式により伸長回復率を求め、3枚の平均値で表す。
伸長回復率(%)={(L3-L4)/L3}×100
L3:生地伸長率の80%の長さ(mm)
L4:10回繰り返し伸長後の残留伸びの長さ(mm)。
【0107】
<生地のハリコシ感>
測定すべき短繊維100%で番手45S(単糸)、ヨリ係数3.5の紡績糸を作製し、タテ糸およびヨコ糸として織物に使用し、タテ糸密度110本/インチ(2.54cm)、ヨコ密度76本/インチ(2.54cm)で、エアジェット織機を用いて平織物を得た。作製した織物を20cm×20cmにカットし、サンプルを10人の被験者に触ってもらい、次の基準に従って点数評価を行った後に平均点を算出し、平均点に応じてA~Dにランク付けした。
【0108】
(評価点数)
3点:ハリコシ感がある
2点:ハリコシ感が少しある
1点:ハリコシ感がない
(平均点による評価)
A:3.0~2.6点
B:2.5~2.1点
C:2.0~1.6点
D:1.5~1.0点。
【0109】
<生地のソフト感>
測定すべき短繊維100%で番手45S(単糸)、ヨリ係数3.5の紡績糸を作製し、タテ糸およびヨコ糸として織物に使用し、タテ糸密度110本/インチ(2.54cm)、ヨコ密度76本/インチ(2.54cm)で、エアジェット織機を用いて平織物を得た。作製した織物を20cm×20cmにカットし、サンプルを10人の被験者に触ってもらい、次の基準に従って点数評価を行った後に平均点を算出し、平均点に応じてA~Dにランク付けした。
【0110】
(評価点数)
4点:非常にソフト感がある
3点:ソフト感がある
2点:ソフト感が少しある
1点:ソフト感がない
(平均点による評価)
S:4.0~3.3点
A:3.2~2.6点
B:2.5~2.1点
C:2.0~1.6点
D:1.5~1.0点。
【0111】
[実施例1]
A成分のポリマーとして、IPA7.0mol%とBHPP4.0mol%を共重合したポリエチレンテレフタレート(溶融粘度:110Pa・s)、B成分のポリマーとして、ポリエチレンテレフタレート(溶融粘度:70Pa・s)とし、A成分のポリマーとB成分のポリマーをいずれもエクストルーダーを用いてそれぞれ280℃で溶融後、ポンプによる計量を行い、290℃を溶融温度として、温度を保持したまま口金に流入させた。A成分とB成分の面積比は50/50とし、口金孔数600の偏心芯鞘複合繊維用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、B成分のポリマー中にA成分のポリマーが包含された偏心芯鞘複合形態を形成し、口金から吐出した。なお、実施例1の紡糸においては、
図1に示す偏心芯鞘複合繊維が得られるような分配板方式の口金を用いた。紡糸された糸条を1300m/分の速度で引き取りながら、冷却した。糸条の冷却は、紡糸口金から20mmの位置より、風温20℃、風速70m/分、冷却長30mmの冷風吹き出し装置により冷却後、その後、風温20℃、風速40m/分、冷却長600mmの冷風吹出し冷却装置により冷却した。糸条の冷却後、工程油剤を0.1質量%付与し、フリーローラーを経て収束0.1%ガイドで他の紡糸錘20本合糸し、未延伸糸を得た。尚、口金吐出面から糸条の収束位置までの距離1600mmとした。その後、20本の未延伸糸を引き揃えながら、90℃の温度の温水に導き、延伸倍率2.8倍で延伸した延伸糸を、160℃の加熱ローラーで、5秒間緊張熱処理してクリンパーへ導き、延伸トウの温度が30℃、トウの押し込み圧を1.5kg/cm
2Gで機械捲縮を付与して、捲縮数10山/25mm、捲縮度11%の捲縮トウを得た。得られた捲縮トウを80℃で乾燥後、仕上げ油剤を0.2重量%付与し、回転式のカッターにより繊維長38mmに切断し、単繊維繊度1.3dtex、強度4.0cN/dtex、伸度32%、捲縮数12山/25mm、捲縮度14%のポリエステル短繊維を得た。得られたポリエステル短繊維を前述の方法で評価した。
【0112】
得られた偏心芯鞘複合短繊維を用いて行った評価結果を表2に示す。繊維断面におけるS/Dは0.02であり、最小厚み部分が繊維円周上の45%を占めていた。該偏心芯鞘複合短繊維の紡績性、紡績糸の品質は良好で、ストレッチ性能指標である伸縮伸長率が24%であり、ハリコシのある生地を得ることができた。
【0113】
[実施例2~5]
実施例2~5はA成分のポリマーおよびB成分のポリマーの組み合わせを変更した。実施例2については、トウの乾燥温度を70℃で、実施例4については、トウの乾燥温度を50℃に変更した。これは、乾燥温度が高いと捲縮が発現し、捲縮数及び捲縮度が高くなり、紡績糸の品質が悪化傾向になるため、紡績糸の品質を考慮して乾燥温度を変更した。その他は実施例1と同様にして、偏心芯鞘複合短繊維を得た。
【0114】
[比較例1~3]
表1の通り、比較例1~3は特開平09-157941号公報に記載の口金を用いたサイドバイサイド型に貼り合わされた複合繊維とし(比較例2、3は成分Bも変更)、比較例2、3のトウの乾燥温度は70℃で行った。それ以外は、実施例1と同様にした。得られた短繊維は、製糸安定性に劣っており、糸切れ、糸融着部分が多く混入した。また、サイドバイサイド型に貼り合わせた潜在捲縮性複合繊維の場合、紡糸した未延伸糸を延伸する工程では、延伸熱により隣接する繊維と融着しやすいといった特徴があり、その融着繊維が混入した。これら、糸切れ、融着部分の影響により、紡績糸の品質は悪化した。
【0115】
[実施例6~8]
実施例6~8は単繊維繊度を変更し、更に実施例8については、トウの乾燥温度を50℃に変更した。その他は実施例1と同様にして、偏心芯鞘複合短繊維を得た。
【0116】
[比較例4、5]
比較例4、5は単繊維繊度を変更し、その他は実施例1と同様にして、偏心芯鞘複合短繊維を得た。比較例4で得られた短繊維は、製糸安定性が悪く、その影響で紡績糸品質は悪化した。比較例5は製糸安定性の面で問題なかったが、単繊維繊度が太いことが影響し、紡績糸品質は悪化した。
【0117】
[実施例9~14]
実施例8~10はS/Dの大きさ、実施例11~13は複合比率を、表1の通り変更した以外は、実施例1と同様にして、偏心芯鞘複合短繊維を得た。
【0118】
[比較例6~7]
比較例6は複合形態が
図4となる(ただし、薄皮が存在し、芯成分の露出は無い)ようにし、比較例7は従来の芯鞘複合口金を用いて同心芯鞘繊維にして、それ以外はそれぞれ実施例1と同様にした。
【0119】
[実施例15~17]
実施例15は、トウの乾燥温度は80℃で行った。実施例16は、トウの乾燥温度は90℃で行った。実施例17は、トウの押し込み圧を1.0kg/cm2Gで機械捲縮を付与して、捲縮数8山/25mm、捲縮度8%の捲縮トウを得、トウの乾燥温度を60℃で行った。その他は、実施例2と同様にした。
【0120】
[比較例8、9]
比較例8は、トウの乾燥温度は100℃で行った。比較例9は、トウの押し込み圧を0.7kg/cm2Gで機械捲縮を付与して、捲縮数5山/25mm、捲縮度5%の捲縮トウを得、トウの乾燥温度を55℃で行った。その他は、実施例2と同様にした。比較例8で得られた短繊維は、捲縮数、捲縮度が高いため、紡績糸品質は悪く、トウの乾燥工程で捲縮が発現しているため、実施例2よりは、伸張率は劣る結果となった。比較例9で得られた短繊維は、捲縮数、捲縮度が低いかったため、カード通過性が悪く、紡績糸の品位が低下した。
【0121】
【0122】
【0123】
【0124】
【符号の説明】
【0125】
a:複合繊維断面におけるA成分の重心点
C:複合繊維断面の重心点
S:B成分の最小厚み
D:繊維径
IFR:複合繊維断面におけるA成分とB成分の界面の曲率半径
5-(a):最終分配プレートにおける分配孔のうち、薄皮を形成するB成分の分配孔
5-(b):最終分配プレートにおける分配孔のうち、5-(a)以外のB成分の分配孔
5-(c):最終分配プレートにおける分配孔のうち、A成分の分配孔