IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

<>
  • 特許-冷却流路構造、バーナー及び熱交換器 図1
  • 特許-冷却流路構造、バーナー及び熱交換器 図2
  • 特許-冷却流路構造、バーナー及び熱交換器 図3
  • 特許-冷却流路構造、バーナー及び熱交換器 図4
  • 特許-冷却流路構造、バーナー及び熱交換器 図5
  • 特許-冷却流路構造、バーナー及び熱交換器 図6
  • 特許-冷却流路構造、バーナー及び熱交換器 図7
  • 特許-冷却流路構造、バーナー及び熱交換器 図8
  • 特許-冷却流路構造、バーナー及び熱交換器 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-01
(45)【発行日】2023-08-09
(54)【発明の名称】冷却流路構造、バーナー及び熱交換器
(51)【国際特許分類】
   F23D 14/78 20060101AFI20230802BHJP
【FI】
F23D14/78 A
F23D14/78 B
【請求項の数】 9
(21)【出願番号】P 2019166738
(22)【出願日】2019-09-13
(65)【公開番号】P2021042927
(43)【公開日】2021-03-18
【審査請求日】2022-06-10
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】亀山 達也
(72)【発明者】
【氏名】池村 大成
(72)【発明者】
【氏名】杉原 泰亮
【審査官】渡邉 聡
(56)【参考文献】
【文献】特表2002-526715(JP,A)
【文献】特開平09-217654(JP,A)
【文献】特開2004-353957(JP,A)
【文献】特開2008-032317(JP,A)
【文献】特開平10-300022(JP,A)
【文献】特表2002-517673(JP,A)
【文献】特開2005-002899(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F23D 14/78
(57)【特許請求の範囲】
【請求項1】
第1方向に沿って延在する第1壁部と、
前記第1方向と直交する第2方向において前記第1壁部と間隔を空けて配置された第2壁部と、
前記第1方向に間隔を空けて配置される複数の流路断面を有する少なくとも1つの冷却流路であって、前記第1壁部と前記第2壁部との間に形成された冷却流路と、
前記冷却流路に設けられ、前記第1壁部と前記第2壁部とを接続し、前記流路の壁面を形成する複数の仕切壁部と、
を備え、
前記第1方向及び前記第2方向を含む断面において、前記第1壁部のうち前記第2壁部側の面と前記仕切壁部の表面とが接続する位置における前記第1壁部の厚さをt1とすると、前記第1壁部は、前記仕切壁部から前記第1方向に離れた位置において、前記厚さt1よりも小さい厚さを有する薄肉部分を含む、冷却流路構造。
【請求項2】
前記薄肉部分は、前記複数の仕切壁部のうち互いに隣接する2つの仕切壁部からの前記第1方向の距離が等しい位置において、上記厚さt1よりも小さい厚さを有する、請求項1に記載の冷却流路構造。
【請求項3】
前記薄肉部分のうち前記第2壁部と反対側の面は、凹状に形成された、請求項1又は2に記載の冷却流路構造。
【請求項4】
前記薄肉部分のうち前記第2壁部側の面は、凹状に形成された、請求項1乃至3の何れか1項に記載の冷却流路構造。
【請求項5】
前記第1壁部及び前記第2壁部の各々は、前記第1方向を軸方向とする筒状に形成され、
前記第2壁部は前記第1壁部の内周側に配置された、請求項1乃至4の何れか1項に記載の冷却流路構造。
【請求項6】
前記第1壁部及び前記第2壁部の各々は、前記第1方向を含む平面に沿って形成された、請求項1乃至4の何れか1項に記載の冷却流路構造。
【請求項7】
第1方向に沿って延在する第1壁部と、
前記第1方向と直交する第2方向において前記第1壁部と間隔を空けて配置された第2壁部と、
前記第1方向に間隔を空けて配置される複数の流路断面を有する少なくとも1つの冷却流路を前記第1壁部と前記第2壁部との間に形成するように、前記第1壁部と前記第2壁部とを接続する複数の仕切壁部と、
を備え、
前記第1壁部の厚さは、前記仕切壁部の厚さよりも小さい、冷却流路構造。
【請求項8】
請求項1乃至7の何れか1項に記載の冷却流路構造を備えるバーナー。
【請求項9】
請求項1乃至7の何れか1項に記載の冷却流路構造を備える熱交換器。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、冷却流路構造、バーナー及び熱交換器に関する。
【背景技術】
【0002】
特許文献1には、軸方向に沿って直線状に延在する冷却流路を内部に備える燃料ノズルシュラウドが開示されている。この構成によれば、冷却流路に冷却媒体を流すことにより、燃料ノズルシュラウドに発生する熱応力を低減することができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2015-206584号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、冷却対象物を冷却するための冷却流路に関して、対向する2つの壁部の間に壁面に沿う方向に間隔を空けて複数の流路断面が配置される場合、上記2つの壁部のうち高温流体に晒される壁部には、上記複数の流路断面を仕切る仕切壁部との接続位置に大きな熱応力が発生し、損傷が生じる恐れがある。しかしながら、上記特許文献1には、このような課題及びその解決策に関する知見は開示されていない。
【0005】
上述の事情に鑑みて、本開示は、熱応力に起因する損傷を抑制可能な冷却流路構造、バーナー及び熱交換器を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本開示に係る冷却流路構造は、
第1方向に沿って延在する第1壁部と、
前記第1方向と直交する第2方向において前記第1壁部と間隔を空けて配置された第2壁部と、
前記第1方向に間隔を空けて配置される複数の流路断面を有する少なくとも1つの冷却流路を前記第1壁部と前記第2壁部との間に形成するように、前記第1壁部と前記第2壁部とを接続する複数の仕切壁部と、
を備え、
前記第1方向及び前記第2方向を含む断面において、前記第1壁部のうち前記第2壁部側の面と前記仕切壁部の表面とが接続する位置における前記第1壁部の厚さをt1とすると、前記第1壁部は、前記仕切壁部から前記第1方向に離れた位置において、前記厚さt1よりも小さい厚さを有する薄肉部分を含む。
【0007】
上記目的を達成するため、本開示に係る他の冷却流路構造は、
第1方向に沿って延在する第1壁部と、
前記第1方向と直交する第2方向において前記第1壁部と間隔を空けて配置された第2壁部と、
前記第1方向に間隔を空けて配置される複数の流路断面を有する少なくとも1つの冷却流路を前記第1壁部と前記第2壁部との間に形成するように、前記第1壁部と前記第2壁部とを接続する複数の仕切壁部と、
を備え、
前記第1壁部の厚さは、前記仕切壁部の厚さよりも小さい。
【発明の効果】
【0008】
本開示によれば、熱応力に起因する損傷を抑制可能な冷却流路構造、バーナー及び熱交換器が提供される。
【図面の簡単な説明】
【0009】
図1】一実施形態に係るバーナー2の概略構成を示す縦断面図である。
図2】一実施形態に係るバーナー筒5(5A)の概略構成を示す縦断面図であり、バーナー筒5(5A)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。
図3】比較形態に係るバーナー筒の概略構成を示す縦断面図である。
図4図3に示した構成の部分拡大図である。
図5】他の比較形態に係るバーナー筒の概略構成を示す縦断面図である。
図6】他の実施形態に係るバーナー筒5(5B)の概略構成を示す縦断面図であり、バーナー筒5(5B)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。
図7】他の実施形態に係るバーナー筒5(5C)の概略構成を示す縦断面図であり、バーナー筒5(5C)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。
図8】他の実施形態に係るロケットエンジンのノズルスカート18の概略構成を示す部分断面図である。
図9】他の実施形態に係る冷却流路構造の概略構成を示す部分断面図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0011】
図1は、一実施形態に係るバーナー2の概略構成を示す縦断面図である。バーナー2は、例えば、石炭ガス化装置等のガス火炉、コンベンショナルボイラ、ごみ焼却炉、ガスタービン燃焼器又はエンジン等に適用される。
【0012】
バーナー2は、燃料を噴射する燃料ノズル4と、燃料ノズル4の周りに燃料ノズル4と同一の軸線CL上に配置され、燃料を燃焼するための酸化剤としての空気を案内するバーナー筒5とを備える。バーナー筒5は、両端に開口を有する筒状部材であり、熱を遮蔽する遮蔽筒として機能する。燃料ノズル4の外周面とバーナー筒5の内周面との間にはスワラ30が設けられている。バーナー筒5は火炎が形成される燃焼室26の壁28を貫通して設けられ、バーナー筒5の基端側は燃焼室26の外部に位置し、バーナー筒5の先端側は燃焼室26の内部に位置する。バーナー筒5の基端側には、例えば空気を供給する不図示の空気供給管に接続するためのフランジ等が設けられていてもよい。
【0013】
以下では、バーナー筒5の軸方向を単に「軸方向」といい、バーナー筒5の径方向を単に「径方向」といい、バーナー筒5の周方向を単に「周方向」ということとする。また、以下では、バーナー筒5の内部とは、バーナー筒5の肉厚の内部を意味することとする。
【0014】
次に、図2を用いてバーナー筒5の構成例を説明する。図2は、一実施形態に係るバーナー筒5(5A)の概略構成を示す縦断面図であり、バーナー筒5(5A)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。
【0015】
図2に示すように、バーナー筒5(5A)は、第1方向としての軸方向に沿って延在する筒状の第1壁部6と、第1方向と直交する第2方向としての径方向(バーナー筒5の厚さ方向)において第1壁部6と間隔を空けて配置された筒状の第2壁部8と、少なくとも1つの冷却流路14と、第1壁部6と第2壁部8とを接続する複数の仕切壁部10と、を備える。筒状の第2壁部8は、筒状の第1壁部6の内周側に配置されており、第1壁部6の中心軸線CLと第2壁部8の中心軸線とは一致している。
【0016】
複数の仕切壁部10は、軸方向に間隔を空けて配置される複数の流路断面12を有する少なくとも1つの冷却流路14を第1壁部6と第2壁部8との間に形成するように、第1壁部6と第2壁部8とを接続する。すなわち、仕切壁部10の各々は、冷却流路14に設けられ、第1壁部6から第2壁部8まで径方向に沿って延在し、冷却流路14の壁面を形成する。仕切壁部10の各々の径方向外側端は第1壁部6のうち第2壁部8側の面6a(第1壁部6の内周面)に接続し、仕切壁部10の各々の径方向内側端は第2壁部8のうち第1壁部6側の面8a(第2壁部8の外周面)に接続する。すなわち、第1壁部と第2壁部8とは、複数の仕切壁部10を介して接続されている。第1壁部6のうち第2壁部8と反対側の面6bは燃焼室26(図1参照)内の高温流体に面している。少なくとも1つの冷却流路14は、例えば1つの螺旋状流路であってもよいし、複数の螺旋状流路であってもよいし、熱交換器等に採用される他の種々の形状を有する1つ又は複数の流路であってもよい。
【0017】
図2に示す断面において、第1壁部6のうち第2壁部8側の面6aと仕切壁部10の表面10a(図示する断面態では径方向に沿った表面10a)とが接続する位置P1における第1壁部6の厚さをt1とすると、第1壁部6は、仕切壁部10から軸方向に離れた位置P2において厚さt1よりも小さい厚さt2を有する薄肉部分16を含む。図2に示す構成では、薄肉部分16は、複数の仕切壁部10のうち互いに隣接する2つの仕切壁部10からの軸方向の距離が等しい位置P2において、上記厚さt1よりも小さい厚さt2を有する。また、薄肉部分16のうち第2壁部8と反対側の面16b(薄肉部分16の外周面)は、滑らかに湾曲するように凹状に形成されており、薄肉部分16の厚さは、上記位置P2において最小となっている。
【0018】
図2に示す構成では、第1壁部6、第2壁部8及び複数の仕切壁部10が、少なくとも1つの冷却流路14を形成する冷却流路構造100Aを構成する。すなわち、バーナー筒5(5A)を冷却するための冷却媒体が流れる少なくとも1つの冷却流路14がバーナー筒5(5A)自体の内部(バーナー筒5の肉厚の内部)に形成されており、バーナー筒5(5A)自体が冷却流路構造100Aを構成している。このようなバーナー筒5(5A)は、例えば三次元積層造形装置(所謂3Dプリンター)を用いて製造することができる。なお、冷却流路14を流れる冷却媒体は、例えば水や油等の液体であってもよいし、空気等の気体であってもよい。
【0019】
ここで、図2に示す構成により得られる効果について、図3図5に示す比較形態と対比して説明する。図3は、比較形態に係るバーナー筒の概略構成を示す縦断面図である。図4は、図3に示した構成の部分拡大図である。図4には、第1壁部06が仕切壁部010によって熱変形の拘束を受けない仮想的な場合(ケース1)について、第1壁部06の径方向の熱変形量が破線で模式的に示されており、第1壁部06が仕切壁部010によって熱変形の拘束を受ける実際の場合(ケース2)について、第1壁部06の径方向の熱変形量が一点鎖線で模式的に示されている。
【0020】
図3に示すように、熱交換を行う機器では、高温流体と冷却媒体(高温流体よりも温度が低い低温流体)との間に位置する第1壁部06において、第1壁部06の厚さ方向に温度勾配(図3に示す温度Tから温度Tに至る温度分布を有する温度勾配)が生じ、高温流体からの熱流束qによる温度上昇により熱変形が生じる。一方、冷却流路014の流路断面012を仕切る仕切壁部010は、冷却媒体に挟まれているため、仕切壁部010の温度は冷却媒体の温度と同等となる。
【0021】
図4に示すように、第1壁部06は、位置P2では仕切壁部010に接続していないため、位置P2では仕切壁部010から熱変形の拘束を直接的には受けないのに対し、位置P1では仕切壁部010に接続しているため、位置P1では仕切壁部010から熱変形の拘束を直接的に受ける。このため、第1壁部06には、位置P1及びその近傍において大きな熱応力が生じることとなり、損傷が生じる可能性がある。
【0022】
これに対し、図2に示したバーナー筒5(5A)では、上述のように、第1壁部6は、仕切壁部10から軸方向に離れた位置P2において、厚さt1よりも小さい厚さt2を有する薄肉部分16を含む。このため、図3及び図4に示す構成と比較して、位置P2における第1壁部6の温度が低下し、位置P2及びその近傍における第1壁部6の熱変形量を低減することができる。これにより、第1壁部6において位置P1及びその近傍に生じる熱応力を低減することができ、第1壁部6の損傷を抑制することができる。
【0023】
なお、図5のように、軸方向において仕切壁部010の存在する位置に薄肉部分016を設ける場合(第1壁部06の外周面06bが、仕切壁部010の存在する軸方向位置において凹状に形成されている場合)には、位置P2における第1壁部06の温度は図3及び図4の構成の場合と変わらないため、位置P2における第1壁部06の熱変形量も図3及び図4に示す場合と変わらない。むしろ、流路断面012の角部における第1壁部06の厚さt1が減少するため、位置P1及びその近傍に熱応力が集中し、位置P1及びその近傍の熱応力が増加してしまう。
【0024】
これに対し、図2に示した構成では、薄肉部分16は、位置P1から軸方向に離れた位置(位置P1を含まない軸方向範囲)に形成されているため、第1壁部6の位置P1における熱応力を効果的に低減することができる。また、図2に示す構成では、上述のように、薄肉部分16は、複数の仕切壁部10のうち互いに隣接する2つの仕切壁部10からの軸方向の距離が等しい位置P2において、上記厚さt1よりも小さい厚さt2を有するため、位置P1への熱応力の集中を効果的に抑制して、第1壁部6の位置P1における熱応力を効果的に低減することができる。
【0025】
次に、幾つかの他の実施形態について説明する。以下で説明する他の実施形態において、前述の実施形態の各構成と共通の符号は、特記しない限り前述の実施形態の各構成と同様の構成を示すものとし、説明を省略する。
【0026】
図6は、他の実施形態に係るバーナー筒5(5B)の概略構成を示す縦断面図であり、バーナー筒5(5B)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。図2及び図3に示すバーナー筒5(5A)では、薄肉部分16のうち第2壁部8と反対側の面16bが凹状に形成されていたが、図6に示すバーナー筒5(5B)では、薄肉部分16のうち第2壁部8側の面16a(薄肉部分16の内周面)が凹状に形成されている。図6に示す断面では、薄肉部分16のうち第2壁部8側の面16aは、互いに隣接する2つの仕切壁部10の一方から他方にかけて滑らかに湾曲するように凹状に形成されている。
【0027】
図6に示す構成では、第1壁部6、第2壁部8及び複数の仕切壁部10が、冷却流路14を形成する冷却流路構造100Bを構成する。すなわち、バーナー筒5(5B)を冷却するための冷却媒体が流れる冷却流路14がバーナー筒5(5B)自体の内部(バーナー筒5の肉厚の内部)に形成されており、バーナー筒5(5B)自体が冷却流路構造100Bを構成している。
【0028】
図6に示す構成においても、第1壁部6のうち第2壁部8側の面6aと仕切壁部10の表面10aとが接続する位置P1における第1壁部6の厚さをt1とすると、第1壁部6は、仕切壁部10から軸方向に離れた位置P2において厚さt1よりも小さい厚さt2を有する薄肉部分16を含む。このため、図3及び図4に示す構成と比較して、位置P2における第1壁部6の温度上昇を抑制し、位置P2における第1壁部6の熱変形量を低減することができる。これにより、第1壁部6において位置P1及びその近傍に生じる熱応力を低減することができ、第1壁部6の損傷を抑制することができる。
【0029】
また、薄肉部分16は、複数の仕切壁部10のうち互いに隣接する2つの仕切壁部10からの軸方向の距離が等しい位置P2において、上記厚さt1よりも小さい厚さt2を有しており、薄肉部分16の厚さは、上記位置P2において最小となっている。かかる構成によれば、位置P1への熱応力の集中を効果的に抑制して第1壁部6の位置P1における熱応力を効果的に低減することができる。
【0030】
図7は、他の実施形態に係るバーナー筒5(5C)の概略構成を示す縦断面図であり、バーナー筒5(5C)の中心軸線CLを含む断面(軸方向及び径方向を含む断面)を示している。
【0031】
幾つかの実施形態では、例えば図7に示すように、第1壁部6の厚さtは、仕切壁部10の厚さdよりも小さくてもよい。図7に示す例示的形態では、第1壁部6は軸方向位置によらず一様な厚さtを有しており、仕切壁部10は径方向位置によらず一様な厚さを有している。
【0032】
図7に示す構成では、第1壁部6、第2壁部8及び複数の仕切壁部10が、冷却流路14を形成する冷却流路構造100Cを構成する。すなわち、バーナー筒5(5C)を冷却するための冷却媒体が流れる冷却流路14がバーナー筒5(5C)自体の内部(バーナー筒5の肉厚の内部)に形成されており、バーナー筒5(5C)自体が冷却流路構造100Cを構成している。
【0033】
図7に示す構成においても、図3及び図4に示す構成と比較して、第1壁部6の厚さtを小さくすることにより、位置P2における第1壁部6の温度上昇を抑制し、位置P2における第1壁部6の熱変形量を低減することができる。これにより、第1壁部6において位置P1及びその近傍に生じる熱応力を低減することができ、第1壁部6の損傷を抑制することができる。
【0034】
なお、本願発明者の検討によれば、図2図3図6及び図7に示した構成の各々について、位置P1に生じる熱応力を比較したところ、図2に示す構成が位置P1の熱応力を最も小さくすることができ、最も良好な結果を得ることができた。また、図7に示す構成が図2に示す構成の次に位置P1の熱応力を小さくすることができ、2番目に良好な結果を得ることができた。また、図6に示す構成が図7に示す構成の次に位置P1の熱応力を小さくすることができ、3番目に良好な結果を得ることができた。特に、図2に示す構成では、第1壁部6のうち第2壁部8と反対側の面6bが薄肉部分16において凹状に形成されているため、位置P2を通る熱流束を減少させて、位置P2における温度を図6及び図7の各々に示す場合よりも低くすることができるため、位置P1の熱応力をより効果的に低減できると考えられる。
【0035】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0036】
例えば、上述した幾つかの実施形態では、バーナー筒5(5A~5E)が冷却流路構造を構成する場合を例示したが、これらと同様の冷却流路構造をロケットエンジンのノズルスカートに適用してもよい。
【0037】
図8は、他の実施形態に係るロケットエンジンのノズルスカート18の概略構成を示す部分断面図である。
図8に示すロケットエンジンのノズルスカート18は、筒状に構成されており、第1方向d1に沿って延在する筒状の第1壁部6と、第1方向d1と直交する第2方向d2(ノズルスカート50の厚さ方向)において第1壁部6と間隔を空けて配置された筒状の第2壁部8と、第1壁部6と第2壁部8とを接続する複数の仕切壁部10と、を備える。筒状の第2壁部8は、筒状の第1壁部6の内周側に配置されており、第1壁部6の中心軸線CLと第2壁部8の中心軸線CLとは一致している。筒状の第1壁部6の半径と筒状の第2壁部8の半径は、ノズルスカート18の先端側(紙面下側)に近づくにつれて拡大する。
【0038】
複数の仕切壁部10は、第1方向d1に間隔を空けて配置される複数の流路断面12を有する少なくとも1つの冷却流路14を第1壁部6と第2壁部8との間に形成するように、第1壁部6と第2壁部8とを接続する。
【0039】
図8に示す断面において、第1壁部6のうち第2壁部8側の面6aと仕切壁部10の表面10aとが接続する位置P1における第1壁部6の厚さをt1とすると、第1壁部6は、仕切壁部10から軸方向に離れた位置P2において厚さt1よりも小さい厚さt2を有する薄肉部分16を含む。
【0040】
図8に示す構成では、第1壁部6、第2壁部8及び複数の仕切壁部10が、少なくとも1つの冷却流路14を形成する冷却流路構造100Dを構成する。すなわち、ノズルスカート18を冷却するための冷却媒体が流れる冷却流路14がノズルスカート18自体の内部(ノズルスカート18の肉厚の内部)に形成されており、ノズルスカート18自体が冷却流路構造100Dを構成している。
【0041】
かかる構成においても、位置P2における第1壁部6の温度が低下し、位置P2における第1壁部6の熱変形量を低減することができる。これにより、第1壁部6において位置P1及びその近傍に生じる熱応力を低減することができ、第1壁部6の損傷を抑制することができる。
【0042】
また、上述した幾つかの実施形態では、筒状の部材が冷却流路構造100A~100Dを構成する場合を例示した。すなわち、第1壁部6及び第2壁部8の各々が筒状に構成された場合を例示した。しかしながら、他の実施形態では、例えば図9に示すように、第1壁部6及び第2壁部8の各々は、平面Sに沿って形成されてもよい。この場合、図9に示す断面において、第1壁部6のうち第2壁部8側の面6aと仕切壁部10の表面10aとが接続する位置P1における第1壁部6の厚さをt1とすると、第1壁部6は、仕切壁部10から平面Sに沿った第1方向に離れた位置P2において厚さt1よりも小さい厚さt2を有する薄肉部分16を含む。
【0043】
図9に示す構成では、第1壁部6、第2壁部8及び複数の仕切壁部10が、少なくとも1つの冷却流路14を含む冷却流路構造100Eを構成する。図9に示す冷却流路構造100Eは、例えばボイラの火炉の水冷壁等に適用することが可能である。図9に示す構成によれば、第1壁部6において位置P1及びその近傍に生じる熱応力を低減することができ、第1壁部6の損傷を抑制することができる。
【0044】
また、上述した幾つかの実施形態では、第1壁部6及び第2壁部8が平行に配置された構成を例示したが、第1壁部6壁部6及び第2壁部8は必ずしも平行に配置されていなくともよい。
【0045】
上記各実施形態に記載の内容は、例えば以下のように把握される。
【0046】
(1)本開示に係る冷却流路構造(例えば上述の冷却流路構造100A~100E)は、
第1方向(例えば上述の軸方向又は第1方向d1)に沿って延在する第1壁部(例えば上述の第1壁部6)と、
前記第1方向と直交する第2方向(例えば上述の径方向又は第2方向d2)において前記第1壁部と間隔を空けて配置された第2壁部(例えば上述の第2壁部8)と、
前記第1方向に間隔を空けて配置される複数の流路断面(例えば上述の複数の流路断面12)を有する少なくとも1つの冷却流路(例えば上述の少なくとも1つの冷却流路14)であって、前記第1壁部と前記第2壁部との間に形成された冷却流路と、
前記冷却流路に設けられ、前記第1壁部と前記第2壁部とを接続し、前記冷却流路の壁面を形成する複数の仕切壁部(例えば上述の複数の仕切壁部10)と、
を備え、
前記第1方向及び前記第2方向を含む断面において、前記第1壁部のうち前記第2壁部側の面(例えば上述の面6a)と前記仕切壁部の表面(例えば上述の表面10a)とが接続する位置(例えば上述の位置P1)における前記第1壁部の厚さをt1とすると、前記第1壁部は、前記仕切壁部から前記第1方向に離れた位置(例えば上述の位置P2)において、前記厚さt1よりも小さい厚さを有する薄肉部分(例えば上述の薄肉部分16)を含む。
【0047】
上記(1)に記載の冷却流路構造によれば、第1壁部が仕切壁部から軸方向に離れた位置において、厚さt1よりも小さい厚さを有する薄肉部分を含むため、第1壁部が一様な厚さt1を有する場合と比較して、薄肉部分における第1壁部の温度が低下し、薄肉部分における第1壁部の熱変形量を低減することができる。これにより、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置に生じる熱応力を低減することができ、第1壁部の損傷を抑制することができる。
【0048】
(2)幾つかの実施形態では、上記(1)に記載の冷却流路構造において、
前記薄肉部分は、前記複数の仕切壁部のうち互いに隣接する2つの仕切壁部からの前記第1方向の距離が等しい位置(例えば上述の位置P2)において、上記厚さt1よりも小さい厚さを有する。
【0049】
上記(2)に記載の冷却流路構造によれば、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置への熱応力の集中を効果的に抑制して、該位置における熱応力を効果的に低減することができる。
【0050】
(3)幾つかの実施形態では、上記(1)又は(2)に記載の冷却流路構造において、
前記薄肉部分のうち前記第2壁部と反対側の面(例えば上述の面16b)は、凹状に形成される。
【0051】
上記(3)に記載の冷却流路構造によれば、薄肉部分のうち第2壁部と反対側の面が凹状に形成されているため、薄肉部分のうち第2壁部側の面が凹状に形成されている場合と比較して、薄肉部分の温度を低くすることができる。これにより、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置の応力を効果的に低減できる。
【0052】
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかに記載の冷却流路構造において、
前記薄肉部分のうち前記第2壁部側の面(例えば上述の面16a)は、凹状に形成される。
【0053】
上記(4)に記載の冷却流路構造によれば、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置に生じる熱応力を低減することができ、第1壁部の損傷を抑制することができる。また、第1壁部のうち第2壁部と反対側の面に凹形状に形成する必要が無い。
【0054】
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかに記載の冷却流路構造において、
前記第1壁部及び前記第2壁部の各々は、前記第1方向を軸方向とする筒状に形成され、
前記第2壁部は前記第1壁部の内周側に配置される。
【0055】
上記(5)に記載の冷却流路構造によれば、例えば、燃料を燃焼するための酸化剤としての空気を案内するバーナー筒に適用することができる。この場合、バーナー筒は、例えば、石炭ガス化装置等のガス火炉、コンベンショナルボイラ、ごみ焼却炉、ガスタービン燃焼器又はエンジン等で使用され得る。
【0056】
(6)幾つかの実施形態では、上記(1)乃至(4)の何れかに記載の冷却流路構造において、
前記第1壁部及び前記第2壁部の各々は、前記第1方向を含む平面(例えば上述の平面S)に沿って形成される。
【0057】
上記(6)に記載の冷却流路構造によれば、例えばボイラの火炉の水冷壁等に適用することができる。
【0058】
(7)本開示の冷却流路構造は、
第1方向(例えば上述の軸方向又は第1方向d1)に沿って延在する第1壁部(例えば上述の第1壁部6)と、
前記第1方向と直交する第2方向(例えば上述の径方向又は第1方向d2)において前記第1壁部と間隔を空けて配置された第2壁部(例えば上述の第2壁部8)と、
前記第1方向に間隔を空けて配置される複数の流路断面(例えば上述の複数の流路断面12)を有する少なくとも1つの冷却流路(例えば上述の少なくとも1つの冷却流路14)を前記第1壁部と前記第2壁部との間に形成するように、前記第1壁部と前記第2壁部とを接続する複数の仕切壁部(例えば上述の複数の仕切壁部10)と、
を備え、
前記第1壁部の厚さ(例えば上述の厚さt)は、前記仕切壁部の厚さ(例えば上述の厚さd)よりも小さい。
【0059】
上記(7)に記載の冷却流路構造によれば、第1壁部の厚さを小さくして冷却流路を流れる冷却媒体による第1壁部の冷却効果を高めることにより、第1壁部の温度上昇を抑制して、第1壁部の熱変形量を低減することができる。これにより、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置に生じる熱応力を低減することができ、第1壁部の損傷を抑制することができる。
【0060】
(8)本開示に係るバーナーは、
上記(1)乃至(7)の何れかに記載の冷却流路構造を備える。
【0061】
上記(8)に記載のバーナーによれば、上記(1)乃至(7)の何れかに記載の冷却流路構造を備えるため、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置に生じる熱応力を低減することができ、第1壁部の損傷を抑制することができる。このため、バーナーの損傷を抑制することができる。
【0062】
(9)本開示に係る熱交換器は、
上記(1)乃至(7)の何れかに記載の冷却流路構造を備える。
【0063】
上記(9)に記載の熱交換器によれば、上記(1)乃至(7)の何れかに記載の冷却流路構造を備えるため、第1壁部のうち第2壁部側の面と仕切壁部の表面とが接続する位置に生じる熱応力を低減することができ、第1壁部の損傷を抑制することができる。このため、熱交換器の損傷を抑制することができる。
【符号の説明】
【0064】
2 バーナー
4 燃料ノズル
5(5A~5E) バーナー筒
6 第1壁部
8 第2壁部
10 仕切壁部
12 流路断面
14 冷却流路
16 薄肉部分
18 ノズルスカート
26 燃焼室
28 壁
30 スワラ
100A~100E 冷却流路構造
図1
図2
図3
図4
図5
図6
図7
図8
図9