IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケイシーエフ テクノロジース カンパニー リミテッドの特許一覧

特許7324297引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
<>
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図1
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図2
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図3
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図4
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図5
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図6
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図7
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図8
  • 特許-引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-01
(45)【発行日】2023-08-09
(54)【発明の名称】引裂またはシワ不良を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
(51)【国際特許分類】
   C25D 1/04 20060101AFI20230802BHJP
   H01M 4/66 20060101ALI20230802BHJP
【FI】
C25D1/04 311
H01M4/66 A
【請求項の数】 15
(21)【出願番号】P 2021548179
(86)(22)【出願日】2020-11-05
(65)【公表番号】
(43)【公表日】2022-03-30
(86)【国際出願番号】 KR2020015390
(87)【国際公開番号】W WO2021091250
(87)【国際公開日】2021-05-14
【審査請求日】2021-08-17
(31)【優先権主張番号】10-2019-0142712
(32)【優先日】2019-11-08
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】518133500
【氏名又は名称】エスケー ネクシリス カンパニー リミテッド
(74)【代理人】
【識別番号】100206335
【弁理士】
【氏名又は名称】太田 和宏
(74)【代理人】
【識別番号】100120857
【弁理士】
【氏名又は名称】渡邉 聡
(72)【発明者】
【氏名】キム ユン テ
(72)【発明者】
【氏名】ジュン サン ヒュン
(72)【発明者】
【氏名】イ ジョン ギル
(72)【発明者】
【氏名】キム スン ミン
【審査官】▲辻▼ 弘輔
(56)【参考文献】
【文献】韓国公開特許第10-2019-0009048(KR,A)
【文献】特開2001-295090(JP,A)
【文献】米国特許出願公開第2019/0017188(US,A1)
【文献】特表2021-512214(JP,A)
【文献】米国特許出願公開第2019/0006658(US,A1)
【文献】特表2020-532653(JP,A)
【文献】韓国公開特許第10-2017-0088614(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
C25D 1/04
H01M 4/64-4/84
(57)【特許請求の範囲】
【請求項1】
銅層を含む電解銅箔であって、
前記電解銅箔は、5%以下の幅方向重量偏差、および25~62kgf/mmの引張強度を有し、
前記銅層は、第1面および第2面を有し、
前記銅層の前記第1面および第2面は、3.5~66.9の谷深さ対比厚さ(VDT)を有し、
前記銅層の前記第1面および第2面は、2.6μm以下の幅方向谷深さ対比厚さの偏差(DVDT)を有する、電解銅箔;
前記幅方向重量偏差は下記の式1で算出され、
前記谷深さ対比厚さ(VDT)は下記の式2で算出され、および
前記幅方向谷深さ対比厚さの偏差(DVDT)は下記の式4で算出される。
<式1>
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
<式2>
谷深さ対比厚さ(VDT)=[電解銅箔の厚さ]/[粗さプロファイルの最大谷深さ(Rv)]
<式4>
【数1】

前記電解銅箔の少なくとも3個以上の地点から谷深さ対比厚さ(VDT)を測定し、測定した谷深さ対比厚さ(VDT)値の平均値が(VDTaverage)であり、測定した谷深さ対比厚さ(VDT)のうち最も高い値の谷深さ対比厚さ(VDT)が(VDTmax)、最も低い値の谷深さ対比厚さ(VDT)が(VDTmin)である。
【請求項2】
前記銅層の前記第1面および第2面は、25~171μmの粗さプロファイル要素の平均幅(RSm)を有する、請求項1に記載の電解銅箔。
【請求項3】
(200)面半値幅(FWHM)の変動比率[FWHM(200)]が0.81~1.19である、請求項1に記載の電解銅箔;
前記(200)面半値幅(FWHM)の変動比率[FWHM(200)]は下記の式5で算出される。
<式5>
[FWHM(200)]=[熱処理後の(200)面半値幅]/[熱処理前の(200)面半値幅]
前記熱処理は、105℃で30分の間行われる。
【請求項4】
4~20μmの厚さを有する、請求項1に記載の電解銅箔。
【請求項5】
前記銅層の前記第1面および第2面のうちの少なくとも一方に配置された保護層を含む、請求項1に記載の電解銅箔。
【請求項6】
前記保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含む、請求項5に記載の電解銅箔。
【請求項7】
請求項1~請求項6のいずれか一項に記載された電解銅箔;および
前記電解銅箔上に配置された活物質層を含む、二次電池用電極。
【請求項8】
正極(cathode);
負極(anode);
前記正極と負極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および
前記正極と前記負極を電気的に絶縁させる分離膜(separator)を含み、
前記負極は請求項7に記載された二次電池用電極からなる、二次電池。
【請求項9】
電解液を準備する段階と、
前記電解液を利用して電気メッキを遂行して銅層を形成する段階を含み、
前記電解液は、
50~100g/Lの銅イオン;
50~150g/Lの硫酸;
1~50ppm以下の塩素(Cl);
0.25g/L以下の鉛イオン(Pb2+);および
有機添加剤;を含み、
前記有機添加剤は、非イオン性水溶性高分子を含む減速剤を含み、
前記減速剤は、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体を含み、
前記電解液は、5~75mg/Lのグリシン(Glycine)を含み、
前記銅層を形成する段階は前記電解液内に互いに離隔するように配置された電極板および回転ドラムの間に40~80A/dmの電流密度を加える段階を含み、
前記銅層を形成する段階で、前記電解液は単位分当たり10%以下の流量偏差に供給される、電解銅箔製造方法;
前記単位分当たり流量偏差は下記の式6で算出される。
<式6>
電解液の単位分当たり流量偏差(%)=[(分当たり流量の最大値-分当たり流量の最小値)/分当たり流量の平均値]×100
【請求項10】
前記銅層を形成する段階で、
前記電解液は34~50m/hrの流速で循環する、請求項9に記載の電解銅箔製造方法。
【請求項11】
前記減速剤は、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリエチレンポリプロピレンコポリマー、ポリグリセリン、ポリエチレングリコールジメチルエーテル、ヒドロキシエチレンセルロース、ポリビニルアルコール、ステアリン酸ポリグリコールエーテルおよびステアリルアルコールポリグリコールエーテルの中から選択された少なくとも一つの非イオン性水溶性高分子を含む、請求項10に記載の電解銅箔製造方法。
【請求項12】
前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は5~50mg/Lの濃度で含む、請求項10に記載の電解銅箔製造方法。
【請求項13】
前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は1000~5000の数平均分子量を有する、請求項10に記載の電解銅箔製造方法。
【請求項14】
前記銅層上に保護層を形成する段階をさらに含む、請求項9に記載の電解銅箔製造方法。
【請求項15】
前記保護層を形成する段階は、クロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを利用して前記銅層の表面を防錆処理する段階を含む、請求項14に記載の電解銅箔製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は引裂またはシワ不良を防止するために、谷深さ対比銅箔の厚さ(Valley Depth to Thickness)および谷深さ対比銅箔の厚さの偏差(Deviation of Valley Depth to Thickness)が最適化された電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関する。
【背景技術】
【0002】
二次電池は電気エネルギーを化学エネルギーに変えて貯蔵してから、電気が必要な時に化学エネルギーを再び電気エネルギーに変換させることによって電気を発生させるエネルギー変換機器の一種であり、携帯電話、ノートパソコンなどのような携帯用家電はもちろん、電気自動車のエネルギー源として利用されている。二次電池は再充電が可能であるという点で充電式電池(rechargeable battery)とも呼ばれる。
【0003】
使い捨ての一次電池に比べ、経済的にそして環境的に利点を有している二次電池としては、鉛蓄電池、ニッケルカドミウム二次電池、ニッケル水素二次電池、リチウム二次電池などがある。
【0004】
特に、リチウム二次電池は他の二次電池に比べて大きさおよび重量対比相対的に多くのエネルギーを貯蔵することができる。したがって、携帯性および移動性が重要な情報通信機器分野の場合、リチウム二次電池が好まれており、ハイブリッド自動車および電気自動車のエネルギー貯蔵装置にもその応用範囲が拡大している。
【0005】
リチウム二次電池は充電と放電を一つの周期として繰り返し使われる。完全に充電されたリチウム二次電池で何らかの機器を稼動させる時、前記機器の稼動時間を増やすためには前記リチウムイオン二次電池が高い充電/放電容量を有さなければならない。したがって、リチウム二次電池の充電/放電容量に対する需要者の日々高まる期待値(needs)を満足させるための研究が持続的に要求されている。
【0006】
このような二次電池は銅箔からなる負極集電体を含むが、銅箔のうち、電解銅箔が二次電池の負極集電体として広く使われている。二次電池に対する需要の増加とともに、高容量、高効率および高品質の二次電池に対する需要が増加するにつれ、二次電池の特性を向上させ得る電解銅箔が要求されている。特に、二次電池の高容量化および安定した容量維持および性能を担保できる電解銅箔が要求されている。
【0007】
電解銅箔の厚さが薄いほど同一空間に含まれ得る活物質の量が増加し、集電体の数が増加し得るため、二次電池の容量が増加し得る。
【0008】
しかし、電解銅箔の厚さが薄いほど、谷深さ対比厚さが過度に薄くなり、それによって電解銅箔の製造工程で電解銅箔の引裂(tear)のような不良が発生するため、極薄膜(very thin film)の形態の電解銅箔を製造および使うのに困難がある。
【0009】
その反面、電解銅箔の厚さが厚いと、二次電池の容量および効率が低下し、谷深さ対比厚さが過度に厚くなって電解銅箔の製造工程で滑り(slip)が発生するため、電解銅箔のシワ(wrinkle)のような不良が発生することになる。
【0010】
また、電解銅箔の製造過程だけでなく、電解銅箔を利用した二次電池用電極または二次電池の製造過程時に電解銅箔での引裂またはシワが発生してはならない。特に、ロール-ツー-ロール(Roll to Roll、RTR)工程による電解銅箔または電解銅箔を利用した二次電池用電極の製造過程で、巻き取り過程または活物質のコーティング過程において電解銅箔の角が引き裂かれるなどの不良が発生してはならない。
【0011】
したがって、高容量、高効率および高品質の二次電池を製造し、電解銅箔およびこれを利用した二次電池の製造収率を高めるために適切な谷深さ対比厚さを有する電解銅箔の製造が要求され、このために電解銅箔の製造工程が精密に制御されなければならない。
【発明の概要】
【発明が解決しようとする課題】
【0012】
したがって、本発明は前記のような関連技術の制限および要求を満足できる電解銅箔、それを含む電極、それを含む二次電池、および電解銅箔の製造方法に関する。
【0013】
本発明の一実施形態は、薄い厚さを有しても製造過程でシワまたは引裂が発生しない電解銅箔を提供しようとする。また、本発明の一実施形態は、電解銅箔を利用した二次電池用電極または二次電池の製造過程でシワまたは引裂が発生しない電解銅箔を提供しようとする。
【0014】
本発明の他の一実施形態は、このような電解銅箔を含む二次電池用電極、およびこのような二次電池用電極を含む二次電池を提供しようとする。
【0015】
本発明のさらに他の一実施形態は、シワまたは引裂の発生が防止された電解銅箔の製造方法を提供しようとする。
【0016】
以上で言及された本発明の観点の他にも、本発明の他の特徴および利点が以下で説明されたり、そのような説明から本発明が属する技術分野で通常の知識を有する者に明確に理解され得るであろう。
【課題を解決するための手段】
【0017】
前記のような本発明の一観点により、銅層を含み、5%以下の幅方向重量偏差、25~62kgf/mmの引張強度、および3.5~66.9の谷深さ対比厚さVDTを有する電解銅箔が提供され、前記幅方向重量偏差は下記の式1で算出され、前記谷深さ対比厚さVDTは下記の式2で算出される。
【0018】
<式1>
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
【0019】
<式2>
谷深さ対比厚さVDT=[電解銅箔の厚さ]/[粗さプロファイルの最大谷深さ(Rv)]
【0020】
前記電解銅箔は2.6μm以下の幅方向谷深さ対比厚さの偏差DVDTを有することができ、前記幅方向谷深さ対比厚さの偏差DVDTは下記の式4で算出される。
【0021】
<式4>
【数1】
前記電解銅箔は25~171μmの粗さプロファイル要素の平均幅RSmを有することができる。
【0022】
前記電解銅箔は(200)面半値幅FWHMの変動比率[FWHM(200)]が0.81~1.19であり得、前記(200)面半値幅FWHMの変動比率[FWHM(200)]は下記の式5で算出される。
【0023】
<式5>
[FWHM(200)]=[熱処理後(200)面半値幅]/[熱処理前(200)面半値幅]
【0024】
前記電解銅箔は4~20μmの厚さを有することができる。
【0025】
前記電解銅箔は前記銅層に配置された保護層を含むことができる。
【0026】
前記保護層はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。
【0027】
本発明の他の観点により、前記電解銅箔;および前記電解銅箔上に配置された活物質層を含む二次電池用電極が提供される。
【0028】
本発明のさらに他の観点により、正極(cathode);前記二次電池用電極からなる負極(anode);前記正極と負極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および前記正極と前記負極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池が提供される。
【0029】
本発明のさらに他の観点により、電解液を準備する段階;および前記電解液を利用して電気メッキを遂行して銅層を形成する段階を含み、前記電解液は、50~100g/Lの銅イオン;50~150g/Lの硫酸;1~50ppm以下の塩素(Cl);0.25g/L以下の鉛イオン(Pb2+);および有機添加剤;を含み、前記銅層を形成する段階は前記電解液内に互いに離隔するように配置された電極板および回転ドラムの間に40~80A/dmの電流密度を加える段階を含む電解銅箔製造方法が提供される。
【0030】
前記銅層を形成する段階で、前記電解液は34~50m/hrの流速で循環され得る。
【0031】
前記銅層を形成する段階で、前記電解液は単位分当たり10%以下の流量偏差に供給され得、前記単位分当たり流量偏差は下記の式6で算出され得る。
【0032】
<式6>
電解液の単位分当たり流量偏差(%)=[(分当たり流量の最大値-分当たり流量の最小値)/分当たり流量の平均値]×100.
【0033】
前記有機添加剤は、非イオン性水溶性高分子を含む減速剤を含むことができる。
【0034】
前記減速剤は、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリエチレンポリプロピレンコポリマー、ポリグリセリン、ポリエチレングリコールジメチルエーテル、ヒドロキシエチレンセルロース、ポリビニルアルコール、ステアリン酸ポリグリコールエーテルおよびステアリルアルコールポリグリコールエーテルの中から選択された少なくとも一つの非イオン性水溶性高分子を含むことができる。
【0035】
前記減速剤はポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体を含むことができる。
【0036】
前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は5~50mg/Lの濃度で含むことができる。
【0037】
前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は1000~5000の数平均分子量を有することができる。
【0038】
前記電解液は、5~75mg/Lのグリシン(Glycine)を含むことができる。
【0039】
前記電解銅箔製造方法は前記銅層上に保護層を形成する段階をさらに含むことができる。
【0040】
前記保護層を形成する段階は、クロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを利用して前記銅層の表面を防錆処理する段階を含むことができる。
【0041】
前記のような本発明に対する一般的な叙述は、本発明を例示したり説明するためのものに過ぎず、本発明の権利範囲を制限しない。
【発明の効果】
【0042】
本発明の一実施形態によると、電解銅箔の製造過程でシワまたは引裂の発生が防止される。そして、充放電サイクルの繰り返しにもかかわらず高い充放電容量を長期間維持できる長寿名の二次電池が製造され得る。また、このような電解銅箔が使われる場合、二次電池用電極または二次電池の製造過程で電解銅箔のシワまたは引裂が防止される。
【図面の簡単な説明】
【0043】
添付された図面は本発明の理解を助け、本明細書の一部を構成するためのものであり、本発明の実施形態を例示し、発明の詳細な説明と共に本発明の原理を説明する。
図1】本発明の一実施形態に係る電解銅箔の概略的な断面図である。
図2】JIS B 0601:2001規格による「粗さプロファイルの最大谷深さ(maximum valley depth of roughness profile:Rv)」を説明するための粗さプロファイルの例示である。
図3】JIS B 0601:2001規格による「粗さプロファイル要素の平均幅(mean width of roughness profile elements:RSm)」を説明するための粗さプロファイルの例示である。
図4】電解銅箔のXRDグラフに対する例示である。
図5】本発明の他の一実施形態に係る電解銅箔の概略的な断面図である。
図6】本発明のさらに他の一実施形態に係る二次電池用電極の概略的な断面図である。
図7】本発明のさらに他の一実施形態に係る二次電池用電極の概略的な断面図である。
図8】本発明のさらに他の一実施形態に係る二次電池の概略的な断面図である。
図9図5に図示された銅箔の製造工程に対する概略図である。
【発明を実施するための形態】
【0044】
以下、添付された図面を参照して本発明の実施形態を詳細に説明する。
【0045】
本発明の技術的思想および範囲を逸脱しない範囲内で本発明の多様な変更および変形が可能であることは当業者に自明であろう。したがって、本発明は特許請求の範囲に記載された発明およびその均等物の範囲内の変更と変形をすべて含む。
【0046】
本発明の実施形態を説明するために図面に開示された形状、大きさ、比率、角度、個数等は例示的なものであるので、本発明が図面に図示された事項によって限定されるものではない。明細書全体に亘って同一構成要素は同一参照符号で指称され得る。
【0047】
本明細書で言及された「含む」、「有する」、「なる」等が使われる場合、「~のみ」という表現が使われない限り、他の部分が追加され得る。構成要素が単数で表現された場合、特に明示的な記載事項がない限り複数を含む。また、構成要素の解釈において、別途の明示的な記載がなくても誤差範囲を含むものと解釈される。
【0048】
位置関係に対する説明の場合、例えば、「~上に」、「~上部に」、「~下部に」、「~そばに」等で二つの部分の位置関係が説明される場合、「すぐに」または「直接」という表現が使われない限り、二つの部分間に一つ以上の他の部分が位置することができる。
【0049】
時間関係に対する説明の場合、例えば、「~後に」、「~に引き続き」、「~次に」、「~前に」等で時間的な前後関係が説明される場合、「すぐに」または「直接」という表現が使われない限り、連続的ではない場合が含まれ得る。
【0050】
多様な構成要素を叙述するために、「第1」、「第2」などのような表現が使われるが、これら構成要素はこのような用語によって制限されない。このような用語は単に一つの構成要素を他の構成要素と区別するために使うものである。したがって、以下で言及される第1構成要素は本発明の技術的思想内で第2構成要素であってもよい。
【0051】
「少なくとも一つ」の用語は一つ以上の関連項目から提示可能なすべての組み合わせを含むものと理解されるべきである。
【0052】
本発明の多様な実施形態のそれぞれの特徴が部分的にまたは全体的に互いに結合または組み合わせ可能であり、技術的に多様な連動および駆動が可能であり、各実施形態が互いに対して独立的に実施可能であってもよく、関連関係で共に実施されてもよい。
【0053】
図1は、本発明の一実施形態に係る電解銅箔101の概略的な断面図である。
【0054】
図1に図示された通り、本発明の電解銅箔101は銅層111を含む。銅層111はマット面(matte surface)MSおよびその反対側のシャイニー面(shiny surface)SSを有する。
【0055】
銅層111は、例えば、電気メッキを通じて回転負極ドラム上に形成され得る(図9参照)。この時、シャイニー面SSは電気メッキ過程で回転負極ドラムと接触した面を指称し、マット面MSはシャイニー面SSの反対側面を指し示す。
【0056】
電解銅箔101は銅層111を基準としてマット面MS方向の表面である第1面S1およびシャイニー面SS方向の表面である第2面S2を有する。図1を参照すると、電解銅箔101の第1面S1は第1保護層112aの表面であり、第2面S2はシャイニー面SSである。本発明の一実施形態によると、第1保護層112aは省略されてもよく、第1保護層112aが省略される場合、銅層111のマット面MSが電解銅箔101の第1面S1となる。
【0057】
一般的に第2面は第1面に比べて低い表面粗さRzを有する。しかし、本発明の一実施形態はこれに限定されるものではなく、第2面の表面粗さRzが第1面の表面粗さRzと同一であるかさらに高くてもよい。例えば、銅層111の製造に使われる回転負極ドラム12(図9参照)の研磨の程度により、第2面の表面粗さは第1面の表面粗さRzより低いこともあれば高いこともある。回転負極ドラム12の表面は#800~#3000の粒度(Grit)を有する研磨ブラシによって研磨され得る。
【0058】
図1を参照すると、電解銅箔101は銅層111のマット面MS上に配置された第1保護層112aを含む。第1保護層112aは省略されてもよい。
【0059】
保護層112は銅層111のマット面MSおよびシャイニー面SSのうち少なくとも一つに配置され得る。図1を参照すると、第1保護層112aがマット面MSに配置される。しかし、本発明の一実施形態はこれに限定されるものではなく、第1保護層112aがシャイニー面SSにのみ配置されてもよく、マット面MSとシャイニー面SSの両方に配置されてもよい。
【0060】
保護層112は銅層111を保護して、保存または流通過程で銅層111が酸化したり変質することを防止することができる。したがって、保護層112を防錆膜とも言う。
【0061】
本発明の一実施形態によると、保護層112はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。
【0062】
例えば、クロム(Cr)を含む防錆液、すなわち、クロム酸化合物を含む防錆液によって保護層112が作られ得る。
【0063】
本発明の電解銅箔101は常温(25±15℃)で25~62kgf/mmの引張強度を有することができる。
【0064】
前記引張強度は万能試験機(UTM)を利用して測定するが、この時、サンプルを135℃で10分の間熱処理後に測定する。この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、テスト速度は50mm/minである。
【0065】
電解銅箔101の引張強度が25kgf/mm未満であると、電極製造過程および/または二次電池製造過程のロール-ツー-ロール工程で加えられる力によって電解銅箔101が容易に変形されて引裂および/またはシワが発生する危険がある。その反面、電解銅箔101の引張強度が62kgf/mmを超過すると、電解銅箔101が製造過程で力(tension)を受けると引き裂かれる危険が高くなり、二次電池製造工程の作業性が低下する。
【0066】
本発明の電解銅箔101の幅方向重量偏差は5%以下であり得る。前記幅方向重量偏差は次のように求めることができる。
【0067】
先に、電解銅箔101の幅方向に沿って位置する左側地点、中央地点、および右側地点から5cm×5cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの重量をそれぞれ測定する。引き続き、前記測定値の算術平均および標準偏差を求めて以下の式1によって幅方向重量偏差を算出する。
【0068】
<式1>
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
【0069】
電解銅箔101の幅方向重量偏差が5%を超過すると、電池製造ロール-ツー-ロール工程で重量偏差5%超過の部分でシワが発生し、これによって不良率が上昇することになる。
【0070】
一方、本発明の一実施形態によると、二次電池の充放電が繰り返されるにつれて、活物質層120a、120bの収縮および膨張が交互に発生し、これは前記活物質層120a、120bと前記電解銅箔101の分離を誘発して二次電池の容量を減少させる。したがって、電極が一定水準以上の容量維持率および寿命を確保するためには(すなわち、二次電池の容量減少を抑制するためには)、前記電解銅箔101が前記活物質に対して優秀なコーティング性を有することによって前記電解銅箔101と活物質層120a、120bの間の接着強度が高くなければならない。
【0071】
一般的に、前記電解銅箔101の表面粗さRzの制御を通じて電解銅箔101と活物質層120a、120bの間の接着強度を向上できると知られている。前記表面粗さRzは十点平均粗さとも言う。表面粗さRzは表面粗さプロファイルにおいて、サンプル区間の中心線から上側に最も遠く離れた5ヶ所の距離の和(絶対値)と、下側に最も遠く離れた5ヶ所の距離の和(絶対値)を足して5で割った値に決定される。前記表面粗さRzはJIS B 0601:2001規格によりMahr社のMahrsurf M300粗さ計を利用して測定され得る。
【0072】
前記電解銅箔101の第1および第2面S1、S2それぞれの表面粗さRz1、Rz2が大きい場合には、電解銅箔101の第1および第2面S1、S2が過度に不均一であるため負極活物質のコーティング均一性が低下し、これによって電解銅箔101と第1および第2活物質層120a、120bの間の密着力が顕著に低下する。
【0073】
しかし、実際には、表面粗さRzが適切に調整された(例えば、2.5μm以下に調整された)電解銅箔101が仕様で要求される電解銅箔101と活物質層120a、120b間の接着力を必ずしも満足させるものではない。すなわち、2.5μm以下の表面粗さRzを有する電解銅箔101が業界で要求される83%以上の二次電池容量維持率(500回充放電後)をいつも担保できるものではない。
【0074】
特に、二次電池の高容量化のために前記活物質層120a、120bがSiを含む場合、電解銅箔101の表面粗さRzと二次電池の容量維持率の間の関連性がさらに低いものと示された。
【0075】
本発明の一実施形態によると、83%以上の二次電池容量維持率を担保できる程度に十分に大きい電解銅箔101と活物質層120a、120bの間の接着力を確保するにおいて、電解銅箔101の「谷深さ対比厚さ(Valley Depth to Thickness、VDT)」および「幅方向谷深さ対比厚さの偏差(Deviation of Valley Depth to Thickness、DVDT)」が表面粗さRzより重要な因子であることが発見された。
【0076】
以下では、図2を参照して電解銅箔101の「谷深さ対比厚さ(Valley Depth to Thickness、VDT)」および「幅方向谷深さ対比厚さの偏差(Deviation of Valley Depth to Thickness、DVDT)」を具体的に説明する。
【0077】
「谷深さ対比厚さ(Valley Depth to Thickness、VDT)」は「電解銅箔の厚さ」および「粗さプロファイルの最大谷深さ(Rv)」をそれぞれ測定および算出し、「電解銅箔の厚さ」および「粗さプロファイルの最大谷深さ(Rv)」の測定値および算出値を下記の式2により計算して得ることができる。
【0078】
<式2>
谷深さ対比厚さVDT=[電解銅箔の厚さ]/[粗さプロファイルの最大谷深さ(Rv)]
【0079】
前記「電解銅箔の厚さ」は下記の式3により電解銅箔101の単位面積当たり重量を密度で割ることによって分かる。まず、電解銅箔101の任意の地点から10cm×10cmの大きさのサンプルを取った後、このサンプルの重量を測定する。引き続き、前記測定したサンプルの重量をサンプルの面積(100cm)で割って電解銅箔101の単位面積当たり重量を求めることができる。そして、電解銅箔101の密度は単位体積当たり重量を計算して得ることができ、本発明の一実施形態によると、電解銅箔101の平均密度は約8.92g/cmである。
【0080】
<式3>
電解銅箔の厚さ=[電解銅箔の単位面積当たり重量]/[電解銅箔の密度]
【0081】
例えば、電解銅箔101のサンプル(サンプルの横×縦:10cm×10cm)の重量が0.89gに測定された場合、銅箔の厚さは[(0.89g/100cm)]/[(8.92g/cm)]であり、約0.0010cm(すなわち、約10μm)であることが分かる。
【0082】
JIS B 0601:2001規格に定義された前記「粗さプロファイルの最大谷深さ(Rv)」は、図2に例示された通り、表面粗さプロファイル(サンプリング長さ:4mm)で最も深い谷(deepest valley)の平均線(mean line)からの深さを意味する。
【0083】
前記「粗さプロファイルの最大谷深さ(Rv)」は、前記サンプルの表面上の任意の3か所の地点でMitutoyo社の粗さ計を利用してJIS B 0601:2001規格により「粗さプロファイルの最大谷深さ(Rv)」をそれぞれ測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75 mN]した後、これらの平均値を算出することによってそれぞれ求めることができる。粗さプロファイルは電解銅箔の表面に対するものである。
【0084】
本発明の一実施形態によると、前記電解銅箔101の第1および第2面S1、S2の谷深さ対比厚さVDT1、VDT2は3.5~66.9であり得る。
【0085】
前記第1および第2面S1、S2の谷深さ対比厚さVDT1、VDT2が3.5未満の場合、銅箔の厚さ対比銅箔表面の谷が過度に深いため銅箔製造工程で深い谷に応力が作用して引裂が発生し得る。
【0086】
反面、前記第1および第2面S1、S2の谷深さ対比厚さVDT1、VDT2が66.9超過であると、電解銅箔表面の谷が過度に低いため、電解銅箔101を製造するためのロール-ツー-ロール工程で電解銅箔101がロールと密着できず、滑りによるシワが発生し得る。
【0087】
「幅方向谷深さ対比厚さの偏差(Deviation of Valley Depth to Thickness、DVDT)」は「谷深さ対比厚さVDT」の偏差で次のように計算して得ることができる。
【0088】
まず、「幅方向谷深さ対比厚さの偏差(Deviation of Valley Depth to Thickness、DVDT)」は、前記電解銅箔101の幅方向に沿って位置する左側地点、中央地点および右側地点から10cm×10cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの谷深さ対比厚さVDTをそれぞれ測定する。引き続き、この3個のサンプルで測定した谷深さ対比厚さVDTの平均値VDTaverageを求め、3個のサンプルで測定した谷深さ対比厚さVDTのうち最も低い値をVDTminとし、最も高い値をVDTmaxとする。このように算出したVDTaverage、VDTminおよびVDTmaxを以下の式4により計算して、「幅方向谷深さ対比厚さの偏差DVDT」を得ることができる。
【0089】
<式4>
【数2】
【0090】
本発明の一実施形態によると、前記電解銅箔101の第1および第2面S1、S2は2.6μm以下の幅方向谷深さ対比厚さの偏差DVDT1、DVDT2を有することができる。
【0091】
前記第1および第2面S1、S2の幅方向谷深さ対比厚さの偏差DVDT1、DVDT2が2.6μmを超過すると、幅方向谷深さ対比厚さの偏差DVDTによって電解銅箔101を製造するためのロール-ツー-ロール工程でシワが発生し得る。
【0092】
以下では、図3を参照して電解銅箔101の「粗さプロファイル要素の平均幅RSm」を具体的に説明する。
【0093】
JIS B 0601:2001規格に定義された前記「粗さプロファイル要素の平均幅RSm」は、図3に例示された通り、表面粗さプロファイル(サンプリング長さ:4mm)で互いに隣り合う一対のピークと谷でそれぞれ構成されるプロファイル要素の幅(widths)の平均値である。
【0094】
本発明の「粗さプロファイル要素の平均幅RSm」は、表面の任意の3か所の地点でMitutoyo社のSJ-310粗さ計を利用してJIS B 0601:2001規格により「粗さプロファイル要素の平均幅RSm」を測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75 mN]した後、これらの平均値を算出することによって求めることができる。
【0095】
本発明によると、前記第1および第2面S1、S2の粗さプロファイル要素の平均幅RSm1、RSm2は25~171μmである。
【0096】
前記第1および第2面S1、S2の粗さプロファイル要素の平均幅RSm1、RSm2が25μm未満であると、過度に多い凹凸によって不均一なコーティングが誘発され、これによって電解銅箔101と第1および第2活物質層120a、120bの間の接着力が顕著に低下して二次電池の容量維持率が減少する。
【0097】
反面、前記第1および第2面S1、S2の粗さプロファイル要素の平均幅RSm1、RSm2が171μmを超過すると、負極活物質と物理的に結合できる凹凸が足りないため電解銅箔101と第1および第2活物質層120a、120bの間に十分な接着力が確保され得ず、その結果、前記二次電池の容量維持率が低下する。
【0098】
本発明の一実施形態によると、銅層111のマット面MSおよびシャイニー面SSは結晶面を有し、前記銅層111のマット面MSおよびシャイニー面SSそれぞれの(200)面半値幅(FWHM、Full Width at Half Maximum)の変動比率[FWHM(200)]は0.81~1.19である。本発明の一実施形態によると、銅層111のマット面MSまたはシャイニー面SSの半値幅FWHMを電解銅箔101の半値幅FWHMとも言う。また、本発明の一実施形態によると、銅層111のマット面MSおよびシャイニー面SSの半値幅変動比率を電解銅箔101の第1および第2面S1、S2の半値幅変動比率[FWHM(hkl)]と言ってもいい。
【0099】
以下では、図4を参照して、電解銅箔101の(200)面半値幅FWHMの変動比率[FWHM(200)]を具体的に説明する。
【0100】
半値幅(FWHM、Full Width at Half Maximum)は、ピークを有するグラフでピーク値の半分に該当する部分でのグラフ幅の値である。本発明の一実施形態によると、半値幅FWHMは銅層111の結晶面のXRDピークが観察された時の各結晶面のピーク値の半分でのグラフ幅値を意味する。また、本発明の一実施形態において、半値幅FWHMの変動比率[FWHM(hkl)]は電解銅箔101を熱処理する前と105℃で30分の間熱処理した後の半値幅FWHM値の比率を言う。(200)面半値幅FWHMおよび(200)面半値幅FWHMの変動比率[FWHM(200)]は次のように求めることができる。
【0101】
図4は、電解銅箔のXRDグラフに対する例示である。より具体的には、図4は、電解銅箔101を構成する銅層111のXRDグラフである。電解銅箔101の銅層111は複数の結晶面を有し、結晶面はミラー指数(Miller Index)を利用して表現され得る。具体的には、銅層111の結晶面は(hkl)面で表示され得る。図4のピークはそれぞれ結晶面に対応する。
【0102】
このような結晶面それぞれは半値幅FWHMの値を有し、半値幅FWHMの値は銅層111のX線回折(XRD)を利用して測定することができる。そして、半値幅FWHMの変動比率[FWHM(hkl)]は熱処理前に結晶面(hkl)の半値幅FWHMを測定し、105℃で30分の間熱処理した後に該当結晶面(hkl)の半値幅FWHMを測定した後、下記の式5により計算して算出することができる。
【0103】
<式5>
[FWHM(hkl)]=[熱処理後の(hkl)面半値幅]/[熱処理前の(hkl)面半値幅]
【0104】
前記(200)面半値幅FWHMの変動比率[FWHM(200)]は次のように求めることができる。
【0105】
まず、熱処理する前に20°~90°の回折角(2θ)範囲でX線回折法(XRD)[Target:Copper K alpha 1、2θinterval:0.01°、2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフ[例えば、図4に例示された通り、(111)面、(200)面、(220)面、および(311)面に該当するピーク(n=4)が示されたXRDグラフ]および各結晶面の半値幅FWHMを得ることができる。
【0106】
そして、電解銅箔101を105℃で30分の間熱処理した後に、前記と同様の方法でX線回折法(XRD)を実施して、結晶面に対応するピークを有するXRDグラフおよび各結晶面の半値幅FWHMを得ることができる。
【0107】
各結晶面の半値幅FWHMのうち、(200)面の熱処理前後の半値幅FWHMを前記式5により計算することによって、(200)面半値幅FWHMの変動比率[FWHM(200)]を算出することができる。
【0108】
(200)面半値幅FWHMの変動費率[FWHM(200)]が0.81未満であるか、1.19を超過すると、二次電池の製造過程で受ける熱履歴によって電解銅箔101の寸法の変化が大きく発生し、このような寸法の変動によりロール-ツー-ロール二次電池製造工程中に電解銅箔101に巻かれ、引裂およびシワなどが発生する危険が大きくなって不良を引き起こす。
【0109】
本発明の一実施形態によると、電解銅箔101は4~20μmの厚さを有することができる。
【0110】
電解銅箔101が二次電池で電極の集電体として使われる時、電解銅箔101の厚さが薄いほど同一空間内により多くの集電体が受容され得るため、二次電池の高容量化に有利である。しかし、電解銅箔101の厚さが4μm未満である場合、電解銅箔101を利用した二次電池用電極および二次電池の製造過程で作業性が顕著に低下する。また、電解銅箔101の厚さが4μm未満である場合、二次電池の充電および放電を繰り返しながら、電解銅箔101の膨張と収縮も交互に発生し、これによって電解銅箔101の引裂が発生する危険性が大きくなる。
【0111】
反面、電解銅箔101の厚さが20μmを超過する場合には、電解銅箔101を利用した二次電池用電極の厚さが大きくなって、このような厚さによって二次電池の高容量の具現に困難が発生し得る。
【0112】
図5は、本発明の他の一実施形態に係る電解銅箔102の概略的な断面図である。以下、重複を避けるためにすでに説明された構成要素に対する説明は省略される。
【0113】
図5を参照すると、本発明の他の一実施形態に係る電解銅箔102は銅層111および銅層111のマット面MSとシャイニー面SSにそれぞれ配置された第1および第2保護層112a、112bを含む。図1に図示された電解銅箔101と比較して、図5に図示された電解銅箔102は銅層111のシャイニー面SSに配置された保護層112bをさらに含む。
【0114】
説明の便宜のために、二つの保護層112a、112bのうち、銅層111のマット面MSに配置された保護層112aを第1保護層といい、シャイニー面SSに配置された保護層112bを第2保護層とも言う。
【0115】
また、図5に図示された電解銅箔102は、銅層111を基準として、マット面MS方向の表面である第1面S1とシャイニー面SS方向の表面である第2面S2を有する。ここで、電解銅箔102の第1面S1はマット面MSに配置された第1保護層112aの表面であり、第2面S2はシャイニー面SSに配置された第2保護層112bの表面である。
【0116】
本発明の他の一実施形態によると、二つの保護層112a、112bはそれぞれクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。
【0117】
図5に図示された電解銅箔102は常温(25±15℃)で25~62kgf/mmの引張強度を有することができる。
【0118】
図5に図示された電解銅箔102の幅方向重量偏差は5%以下であり得る。
【0119】
図5の電解銅箔102の第1および第2面S1、S2の谷深さ対比厚さVDT1、VDT2は3.5~66.9であり得る。
【0120】
図5の電解銅箔102の第1および第2面S1、S2は2.6μm以下の幅方向谷深さ対比厚さの偏差DVDT1、DVDT2を有することができる。
【0121】
図5に図示された電解銅箔102の第1および第2面S1、S2の粗さプロファイル要素の平均幅RSm1、RSm2は25~171μmであり得る。
【0122】
図5の電解銅箔102の銅層111のマット面MSおよびシャイニー面SSそれぞれの(200)面半値幅FWHMの変動比率[FWHM(200)]は0.81~1.19であり得る。
【0123】
図5の電解銅箔102は4~20μmの厚さを有することができる。
【0124】
図6は、本発明のさらに他の一実施形態に係る二次電池用電極103の概略的な断面図である。図6に図示された二次電池用電極103は、例えば、図8に図示された二次電池105に適用され得る。
【0125】
図6を参照すると、本発明のさらに他の一実施形態に係る二次電池用電極103は、電解銅箔101および電解銅箔101上に配置された活物質層120aを含む。ここで、電解銅箔101は銅層111および銅層111上に配置された第1保護層112aを含み、電流集電体として使われる。
【0126】
具体的には、電解銅箔101は第1面S1と第2面S2を有し、活物質層120aは電解銅箔101の第1面S1と第2面S2のうち少なくとも一つに配置される。活物質層120aは第1保護層112a上に配置され得る。
【0127】
図6に電流集電体として図1の電解銅箔101が利用された例が図示されている。しかし、本発明のさらに他の一実施形態はこれに限定されるものではなく、図5に図示された銅箔102が二次電池用電極103の集電体として使われてもよい。
【0128】
また、電解銅箔101の第1面S1にのみ第1活物質層120aが配置された構造が図6に図示されているが、本発明のさらに他の一実施形態はこれに限定されるものではなく、電解銅箔101の第1面S1と第2面S2の両方に第1および第2活物質層120a、120bがそれぞれ配置できる。また、活物質層120は電解銅箔101の第2面S2にのみ配置されてもよい。
【0129】
図6に図示された第1活物質層120aは電極活物質からなり、特に負極活物質からなり得る。すなわち、図6に図示された二次電池用電極103は負極として使われ得る。
【0130】
活物質層120は、炭素;金属;金属を含む合金;金属の酸化物;および金属と炭素の複合体のうち少なくとも一つを負極活物質として含むことができる。金属として、Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiおよびFeのうち少なくとも一つが使われ得る。具体的には、二次電池の充放電容量を増加させるために、前記金属はシリコン(Si)を含むことが好ましい。
【0131】
二次電池の充放電が繰り返されるにつれて、活物質層310の収縮および膨張が交互に発生し、これは活物質層310と銅箔101の分離を誘発して二次電池の充放電効率を低下させる。特に、シリコン(Si)を含む活物質310は膨張と収縮の程度が大きい。
【0132】
本発明のさらに他の一実施形態によると、集電体として使われた電解銅箔101が活物質層120の収縮および膨張に対応して収縮および膨張できるため、活物質層120が収縮および膨張しても、これによって電解銅箔101が変形されたり引き裂かれない。それにより、電解銅箔101と活物質層120aの間で分離が発生しない。したがって、このような二次電池用電極103を含む二次電池は優秀な充放電効率および優秀な容量維持率を有する。
【0133】
図7は、本発明のさらに他の一実施形態に係る二次電池用電極104の概略的な断面図である。
【0134】
本発明のさらに他の一実施形態に係る二次電池用電極104は、電解銅箔102および電解銅箔102上に配置された第1および第2活物質層120a、120bを含む。電解銅箔102は銅層111および銅層111の両面に配置された第1および第2保護層112a、112bを含む。しかし、本発明の一実施形態はこれに限定されるものではなく、第1活物質層120aおよび第2活物質層120bのうちいずれか一つは省略されてもよい。
【0135】
具体的には、図7に図示された二次電池用電極104は、電解銅箔102の第1面S1と第2面S2にそれぞれ配置された二つの第1および第2活物質層120a、120bを含む。ここで、電解銅箔102の第1面S1上に配置された活物質層120aを第1活物質層といい、電解銅箔102の第2面S2に配置された活物質層120bを第2活物質層とも言う。
【0136】
二つの第1および第2活物質層120a、120bは互いに同一の材料によって同一の方法で作られてもよく、異なる材料または異なる方法で作られてもよい。
【0137】
図8は、本発明のさらに他の一実施形態に係る二次電池105の概略的な断面図である。図8に図示された二次電池105は、例えば、リチウム二次電池である。
【0138】
図8を参照すると、二次電池105は、正極(cathode)370、負極(anode)340、正極370と負極340の間に配置されてイオンが移動できる環境を提供する電解質(electrolyte)350、および正極370と負極340を電気的に絶縁させる分離膜(separator)360を含む。ここで、正極370と負極340の間で移動するイオンは、例えば、リチウムイオンである。分離膜360は一つの電極で発生した電荷が二次電池105の内部を通じて他の電極に移動することによって無駄に消耗することを防止するために正極370と負極340を分離する。図8を参照すると、分離膜360は電解質350内に配置される。
【0139】
正極370は正極集電体371および正極活物質層372を含み、正極集電体371としてアルミホイル(foil)が使われ得る。
【0140】
負極340は負極集電体341および負極活物質層342を含み、負極集電体341として電解銅箔が使われ得る。
【0141】
本発明の一実施形態によると、負極集電体341として図1または図5に開示された電解銅箔101、102が使われ得る。また、図6または図7に図示された二次電池用電極103、104が図8に図示された二次電池105の負極340として使われ得る。
【0142】
以下では、図9を参照して、本発明の一実施形態に係る電解銅箔102の製造方法を具体的に説明する。
【0143】
図9図5に図示された電解銅箔102の製造方法に対する概略図である。
【0144】
本発明の電解銅箔102製造方法は、電解液11を準備する段階;および前記電解液11を利用して電気メッキを遂行して銅層111を形成する段階;を含む。
【0145】
具体的には、電解液11を準備する段階は、まず銅イオンを含む電解液11が製造される。電解液11は電解槽10に収容される。
【0146】
引き続き、前記電解液11を利用して電気メッキを遂行して銅層111を形成する段階は、電解液11内に互いに離隔するように配置された正極板13および回転負極ドラム12を40~80ASD(A/dm)の電流密度で通電させて電気メッキを遂行することによって前記銅層111を前記回転負極ドラム12上に形成させる。銅層111は電気メッキの原理によって形成される。
【0147】
正極板13と回転負極ドラム12の間に印加される電流密度が40ASD未満の場合、銅層111の結晶粒の生成が増加し、80ASDを超過する場合、結晶粒の微細化が加速化する。より具体的には、電流密度は50ASD以上に調整され得る。
【0148】
銅層111のシャイニー面SSの表面特性は、回転負極ドラム12の表面のバフ研磨または研磨の程度により変わり得る。シャイニー面SS方向の表面特性の調整のために、例えば、#800~#3000の粒度(Grit)を有する研磨ブラシで回転負極ドラム12の表面が研磨され得る。
【0149】
銅層111形成段階で、電解液11は50~60℃の温度に維持される。また、電解液11が供給される流速は34~50m/hrであり、流量の偏差は分当たり10%以下に維持される。この時、電解液11の組成が調整されることによって銅層111の物理的、化学的および電気的特性が制御され得る。
【0150】
本発明の一実施形態によると、電解液11は50~100g/Lの銅イオン、50~150g/Lの硫酸、1~50ppm以下の塩素(Cl)、0.25g/L以下の鉛イオン(Pb2+)および少量の有機添加剤を含む。
【0151】
銅の電着による銅層111の形成が円滑となるようにするために、電解液11内の銅イオンの濃度と硫酸の濃度はそれぞれ50~100g/Lおよび50~150g/Lに調整される。
【0152】
電解液11内で塩素(Cl)の濃度は1~50ppm以下に管理される。しかし、本発明の一実施形態はこれに限定されるものではない。
【0153】
塩素(Cl)は塩素イオン(Cl)および分子内に存在する塩素原子をすべて含む。塩素(Cl)は、例えば、銅層111が形成される過程で電解液11に流入した銀(Ag)イオンの除去に使われ得る。具体的には、塩素(Cl)は銀(Ag)イオンを塩化銀(AgCl)の形態で沈殿させることができる。このような塩化銀(AgCl)は濾過によって除去され得る。
【0154】
塩素(Cl)の濃度が1ppm未満の場合、銀(Ag)イオンの除去が円滑になされない。反面、塩素(Cl)の濃度が50ppmを超過する場合、過量の塩素(Cl)による不要な反応が発生し得る。したがって、電解液11内の塩素(Cl)濃度は1~50ppmの範囲に管理される。より具体的には、塩素(Cl)の濃度は25ppm以下に管理され得、例えば、5~25ppmの範囲に管理され得る。
【0155】
電解液11内で鉛イオン(Pb2+)の濃度は0.25g/L以下に管理される。鉛イオン(Pb2+)は電解液11に存在する鉛イオン(Pb2+)以外に、他の添加される材料に鉛イオン(Pb2+)が添加されないように調整する。電解液11内の鉛イオン(Pb2+)の濃度が0.25g/Lを超過する場合にはイオン交換フィルタを利用して鉛イオン(Pb2+)を除去しなければならない。
【0156】
電解液11内の鉛イオン(Pb2+)が0.25g/Lを超過すると、銅層形成過程で、銅が不均一に析出されて幅方向で谷深さ対比厚さVDTの偏差を引き起こし、したがって、幅方向谷深さ対比厚さの偏差DVDTが2.6μmを超過することになる。
【0157】
一方、本発明の一実施形態によると、電解液11に含まれた少量の有機添加剤は、非イオン性水溶性高分子を含む減速剤を含むことができる。
【0158】
前記減速剤は銅の電着速度を減少させて電解銅箔102の急激な粗さの上昇および強度の低下を防止する。このような減速剤は抑制剤またはsuppressorとも呼ばれる。
【0159】
前記減速剤はポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリエチレンポリプロピレンコポリマー、ポリグリセリン、ポリエチレングリコールジメチルエーテル、ヒドロキシエチレンセルロース、ポリビニルアルコール、ステアリン酸ポリグリコールエーテルおよびステアリルアルコールポリグリコールエーテルの中から選択された少なくとも一つの非イオン性水溶性高分子を含む。具体的には、前記減速剤はポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体を含むことが好ましい。
【0160】
特に、前記減速剤として使われる非イオン性水溶性高分子のうちポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は、電解銅箔102の製造時に銅層111を均一に電着するようにする。したがって、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体の濃度を調整することによって、電解銅箔102の谷深さ対比厚さVDTを調節することができる。前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は下記の化学式1で表示され得る。
【0161】
<化学式1>
【化1】
【0162】
前記化学式1でxおよびyは、それぞれ独立的に、1以上の整数である。
【0163】
前記減速剤のうちポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は、電解液11内で5~50mg/Lの濃度を有することができる。
【0164】
電解液11内のポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体の濃度が5mg/L未満であると、電解銅箔102の電気メッキ過程でメッキが局部的に不均一となって、「粗さプロファイルの最大谷深さ(Rv)」が大きな深い谷(valley)が形成され、これによって谷深さ対比厚さVDTの値が3.5未満の電解銅箔102が製造される。
【0165】
反面、電解液11内のポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体の濃度が50mg/Lを超過すると、電解銅箔102の電気メッキ過程で銅層111が鏡面(かがみメン)の形態のなめらかな面を有するようになって、「粗さプロファイルの最大谷深さ(Rv)」が小さくなる。したがって、これによって、電解銅箔102の谷深さ対比厚さVDTが66.9を超過することになる。
【0166】
一方、前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体は1000~5000の数平均分子量を有することができる。
【0167】
前記ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体の数平均分子量が1000未満であると、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体による銅層111の均一電着効果が微小であり、5000を超過するとポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体の大きな分子量により銅層111の形成が容易になされないことがある。
【0168】
本発明の一実施形態によると、前記電解液11はグリシン(Glycine、NH-CH-COOH)を含むことができる。前記グリシン(Glycine)は電解液11内で5~75mg/Lの濃度に調整され得る。
【0169】
前記グリシン(Glycine)は電解液11内の銅メッキ粒子の大きさを制御するために電解液11に添加される物質である。銅メッキ粒子の大きさが過度に小さいと電解銅箔102の引張強度が増加することになり、反対に、銅メッキ粒子の大きさが過度に大きいと電解銅箔102の引張強度が減少することになる。
【0170】
電解液11内で前記グリシン(Glycine)の濃度は5~75mg/Lに管理される。しかし、本発明の一実施形態はこれに限定されるものではない。
【0171】
前記グリシン(Glycine)の濃度が75mg/Lを超過する場合、銅メッキ粒子が超微細にメッキされて、電解銅箔102の熱処理後の引張強度が62kgf/mmを超過することになる。
【0172】
反面、前記グリシン(Glycine)の濃度が5mg/L未満である場合、銅メッキ粒子が粗大にメッキされて電解銅箔102の熱処理後の引張強度が25kgf/mm未満になる。
【0173】
銅層111形成段階で、電解液11が供給される流量の偏差は分当たり10%以下に維持する。電解液11が供給される流量の偏差は電解銅箔102の幅方向重量偏差を調整するためのものである。前記流量の偏差は次のように求めることができる。
【0174】
まず、1分の間電解液11が供給される流量を少なくとも2回以上測定する。測定された単位分当たりの流量値を利用して分当たり流量の平均値、分当たり流量の最大値および分当たり流量の最小値をそれぞれ求めて、以下の式6によって電解液が供給される流量の偏差を算出することができる。
【0175】
<式6>
電解液の単位分当たり流量偏差(%)=[(分当たり流量の最大値-分当たり流量の最小値)/分当たり流量の平均値]×100
【0176】
電解銅箔102の幅方向重量偏差を5%以下となるようにするために、電解液11が供給される流量の偏差を分当たり10%以下に維持する。電解液11が供給される流量の偏差が10%を超過すると、電解銅箔102の幅方向の電解液11供給流速の偏差が発生する。これによって幅方向に銅メッキをするにおいて効率の差が発生し、それにより電解銅箔102の重量偏差が5%を超過することになる。
【0177】
このように製造された銅層111は洗浄槽20で洗浄され得る。
【0178】
例えば、銅層111の表面上の不純物、例えば、樹脂成分または自然酸化膜(natural oxide)等を除去するための酸洗浄(acid cleaning)および酸洗浄に使われた酸性溶液の除去のための水洗浄(water cleaning)が順次遂行され得る。洗浄工程は省略されてもよい。
【0179】
本発明の一実施形態によると、追加で前記銅層111上に第1および第2保護層112a、112bを形成する段階;をさらに含むことができる。
【0180】
保護層112形成段階では、前記のように製造された銅層111上に第1および第2保護層112a、112bが形成される。
【0181】
図9を参照すると、防錆槽30に入っている防錆液31内に銅層111を浸漬させて、銅層111上に第1および第2保護層112a、112bを形成することができる。
【0182】
前記防錆液31はクロム(Cr)、シラン化合物および窒素化合物のうち少なくとも一つを含むことができる。
【0183】
具体的には、前記防錆液31はクロム(Cr)を含むことができ、クロム(Cr)は防錆液31内でイオン状態で存在することができる。
【0184】
前記防錆液31は0.5~1.5g/Lのクロムを含むことができる。第1および第2保護層112a、112b形成のために、防錆液31の温度は20~40℃に維持され得る。銅層111は防錆液31内に1~30秒程度浸漬され得る。
【0185】
具体的には、製造された銅層111を0.5~1.5g/Lのクロム(Cr)を含む防錆液内に浸漬(例えば、常温に2~20秒の間)させた後に乾燥させることによって、前記銅層111上に第1および第2保護層112a、112bをそれぞれ形成させる。
【0186】
前記防錆液はシラン化合物と窒素化合物のうち少なくとも1種以上をさらに含むことができる。例えば、前記防錆液は0.5~1.5g/Lのクロム(Cr)および0.5~1.5g/Lのシラン化合物を含むことができる。
【0187】
このような保護層112の形成によって電解銅箔102が作られる。
【0188】
次に、電解銅箔102が洗浄槽40で洗浄される。このような洗浄工程は省略され得る。
【0189】
次に、乾燥工程が遂行された後、電解銅箔102がワインダーWRに巻き取られる。
【0190】
このように製造された本発明の電解銅箔110上に負極活物質をコーティングすることにより、本発明の二次電池用電極(すなわち、負極)が製造され得る。
【0191】
前記負極活物質は、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択され得る。
【0192】
例えば、100重量部の負極活物質用炭素に1~3重量部のスチレンブタジエンゴム(SBR)および1~3重量部のカルボキシメチルセルロース(CMC)を混合した後、蒸溜水を溶剤として使ってスラリーを調製する。引き続き、ドクターブレードを利用して前記電解銅箔110上に20~100μm厚さで前記スラリーを塗布し、110~130℃で0.5~1.5ton/cmの圧力でプレスする。
【0193】
以上の方法で製造された本発明の二次電池用電極(負極)と共に通常の正極、電解質、および分離膜を利用してリチウム二次電池を製造することができる。
【0194】
以下では、実施形態および比較例を通じて本発明を具体的に説明する。ただし、下記の実施形態および比較例は本発明の理解を助けるためのものに過ぎず、本発明の権利範囲は実施形態または比較例によって限定されない。
【0195】
実施形態1~7および比較例1~6
電解液11内に互いに離隔するように配置された正極板13および回転負極ドラム12を含む製箔機で45ASDの電気密度を通電させて電気メッキを遂行することによって銅層111を製造した。電解液11は硫酸銅溶液である。電解液11内の銅イオン濃度は75g/L、硫酸の濃度は100g/L、塩素(Cl)の濃度は15~25ppm、電解液の温度は55℃、電流密度は45ASDに設定された。電気メッキを遂行する間、循環ポンプで37m/hrの流量でメッキ液を供給槽とメッキ槽の間に循環させ、メッキ液内の微細不純物は供給槽とメッキ槽の間のCartridg Filterで除去した。
【0196】
また、電解液11に含まれた鉛イオン(Pb2+)の濃度、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体(Sigma-Aldrich社、平均分子量1200g/mol)の濃度、グリシン(Glycine)の濃度およびメッキが進行される間電解液が供給される流量の偏差は下記の表1の通りである。
【0197】
回転負極ドラム12と正極板13の間に45ASDの電流密度で電流を印加して銅層111を製造した。次に、銅層111を防錆液に約2秒間浸漬させて銅層111の表面にクロメート処理をして第1および第2保護層112a、112bを形成することによって電解銅箔102を製造した。防錆液としてクロム酸を主成分とする防錆液が使われ、クロム酸の濃度は1.0g/Lであった。前記電気メッキを通じて形成された銅層を防錆液に浸漬させた後に乾燥させることによって電解銅箔を完成した。
【0198】
その結果、実施形態1~7および比較例1~6の電解銅箔が製造された。
【0199】
【表1】
【0200】
このように製造された実施形態1~7および比較例1~6の電解銅箔に対して、(i)谷深さ対比厚さVDT(ii)幅方向谷深さ対比厚さの偏差DVDT(iii)引張強度(iv)重量偏差(v)粗さプロファイル要素の平均幅RSm(vi)(200)面半値幅FWHMの変動比率[FWHM(200)]を測定した。
【0201】
また、銅箔を利用して二次電池を製造し、二次電池に対して充放電を実施した後、(vii)二次電池を解体して電解銅箔の引裂およびシワ発生の有無を観察した。
【0202】
(i)谷深さ対比厚さVDT
「谷深さ対比厚さ(Valley Depth to Thickness、VDT)」は「電解銅箔の厚さ」および「粗さプロファイルの最大谷深さ(Rv)」をそれぞれ測定し、「電解銅箔の厚さ」および「粗さプロファイルの最大谷深さ(Rv)」の測定値を以下の式2により計算して得ることができる。
【0203】
<式2>
谷深さ対比厚さVDT=[電解銅箔の厚さ]/[粗さプロファイルの最大谷深さ(Rv)]
【0204】
前記「電解銅箔の厚さ」は下記の式3により電解銅箔101の単位面積当たり重量を密度で割ることによって分かる。まず、電解銅箔101の任意の地点から10cm×10cmの大きさのサンプルを取った後、このサンプルの重量を測定する。引き続き、前記測定したサンプルの重量をサンプルの面積(100cm)で割って電解銅箔101の単位面積当たり重量を求めることができる。そして、電解銅箔101の密度は単位体積当たり重量を計算して得ることができ、本発明の一実施形態によると、電解銅箔101の平均密度は約8.92g/cmである。
【0205】
<式3>
電解銅箔の厚さ=[電解銅箔の単位面積当たり重量]/[電解銅箔の密度]
【0206】
前記「粗さプロファイルの最大谷深さ(Rv)」は、前記サンプルの表面上の任意の3か所の地点でMitutoyo社の粗さ計を利用してJIS B 0601:2001規格により「粗さプロファイルの最大谷深さ(Rv)」をそれぞれ測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75 mN]した後、これらの平均値を算出することによってそれぞれ求めることができる。粗さプロファイルは電解銅箔の表面に対するものである。
【0207】
(ii)幅方向谷深さ対比厚さの偏差DVDT
「幅方向谷深さ対比厚さの偏差(Deviation of Valley Depth to Thickness、DVDT)」は前記電解銅箔101の幅方向に沿って位置する左側地点、中央地点および右側地点から10cm×10cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの谷深さ対比厚さVDTをそれぞれ測定する。引き続き、この3個のサンプルで測定した谷深さ対比厚さVDTの平均値VDTaverageを求め、3個のサンプルで測定した谷深さ対比厚さVDTのうち最も低い値をVDTminとし、最も高い値をVDTmaxとする。このように算出したVDTaverage、VDTminおよびVDTmaxを以下の式4により計算して、「幅方向谷深さ対比厚さの偏差DVDT」を得ることができる。
【0208】
<式4>
【数3】
【0209】
(iii)引張強度
引張強度は万能試験機(UTM)を利用して測定するが、この時、サンプルを135℃で10分の間熱処理後に測定する。この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、テスト速度は50mm/minである。
【0210】
(iv)重量偏差
電解銅箔101の幅方向に沿って位置する左側地点、中央地点、および右側地点から5cm×5cmの大きさのサンプルをそれぞれ取った後、この3個のサンプルの重量をそれぞれ測定する。引き続き、前記測定値の算術平均および標準偏差を求めて以下の式1によって幅方向重量偏差を算出する。
【0211】
<式1>
幅方向重量偏差(%)=(重量の標準偏差/重量の算術平均)×100
【0212】
(v)粗さプロファイル要素の平均幅RSm
「粗さプロファイル要素の平均幅RSm」は、表面の任意の3か所の地点でMitutoyo社のSJ-310粗さ計を利用してJIS B 0601:2001規格により「粗さプロファイル要素の平均幅RSm」を測定[サンプリング長さ(sampling length):4mm、スタイラスチップ(stylus tip)の半径:2μm、スタイラスチップのテーパー角(taper angle):60°、測定力(measuring force):0.75 mN]した後、これらの平均値を算出することによって求めることができる。
【0213】
(vi)(200)面半値幅FWHMの変動比率[FWHM(200)]
熱処理する前および105℃で30分の間熱処理した後にそれぞれ、20°~90°の回折角(2θ)範囲でX線回折法(XRD)[Target:Copper K alpha 1、2θinterval:0.01°、2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフ[例えば、図4に例示された通り、(111)面、(200)面、(220)面、および(311)面に該当するピーク(n=4)が示されたXRDグラフ]および各結晶面の半値幅FWHMと各結晶面の半値幅の変動比率[FWHM(hkl)]を得る。
【0214】
各結晶面の半値幅FWHMのうち、(200)面の熱処理前後の半値幅FWHMを下記の式5により計算することによって、(200)面半値幅FWHMの変動比率[FWHM(200)]を算出する。
【0215】
<式5>
[FWHM(200)]=[熱処理後の(200)面半値幅]/[熱処理前の(200)面半値幅]
【0216】
(vii)シワおよび引裂発生観察
1)負極の製造
商業的に利用可能な負極活物質用シリコン/カーボン複合負極材100重量部に2重量部のスチレンブタジエンゴム(SBR)および2重量部のカルボキシメチルセルロース(CMC)を混合し、蒸溜水を溶剤として利用して負極活物質用スラリーを調製した。ドクターブレードを利用して10cm幅を有する実施形態1~7および比較例1~6の電解銅箔上に40μm厚さで負極活物質用スラリーを塗布し、これを120℃で乾燥して、1ton/cmの圧力を加えて二次電池用負極を製造した。
【0217】
2)電解液の製造
エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を1:2の割合で混合した非水性有機溶媒に溶質であるLiPFを1Mの濃度で溶解して基本電解液を製造した。99.5重量%の基本電解液と0.5重量%のコハク酸無水物(Succinic anhydride)を混合して非水電解液を製造した。
【0218】
3)正極製造
Li1.1Mn1.85Al0.05O4であるリチウムマンガン酸化物とo-LiMnO2であるorthorhombic結晶構造のリチウムマンガン酸化物を90:10(重量比)の比で混合して正極活物質を製造した。正極活物質、カーボンブラック、および結着剤であるPVDF[Poly(vinylidenefluoride)]を85:10:5(重量比)で混合し、これを有機溶媒であるNMPと混合してスラリーを製造した。このように製造されたスラリーを厚さ20μmのAl箔(foil)の両面に塗布した後に乾燥して正極を製造した。
【0219】
4)試験用リチウム二次電池の製造
アルミニウム缶の内部に、アルミニウム缶と絶縁されるように正極と負極を配置し、その間に非水電解液および分離膜を配置し、コインの形態のリチウム二次電池を製造した。使われた分離膜はポリプロピレン(Celgard 2325;厚さ25μm、average pore sizeφ28nm、porosity 40%)であった。
【0220】
5)二次電池の充放電
このように製造されたリチウム二次電池を利用して、4.3V充電電圧および3.4V放電電圧で電池を駆動し、50℃の高温で0.2C率(current rate、C-rate)で100回の充電/放電を遂行した。
【0221】
6)シワまたは引裂発生の有無
100回の充放電後、二次電池を分解して銅箔にシワまたは引裂が発生するかどうかを観察した。銅箔にシワまたは引裂が発行した場合を「発生」で表示し、発生していない場合を「なし」で表記した。
【0222】
以上の試験結果は表2の通りである。
【0223】
【表2】
【0224】
表1および表2を参照すると、次のような結果を確認することができる。
【0225】
鉛イオン(Pb2+)を過量に含む電解液によって製造された比較例1の電解銅箔は、幅方向谷深さ対比厚さの偏差DVDTが2.8μmであって基準値より大きく、電解銅箔にシワが発生した。
【0226】
ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体を少量で含む電解液によって製造された比較例2の電解銅箔は、谷深さ対比厚さVDTが3.4であって基準値より小さく、粗さプロファイル要素の平均幅Rsmが23μmであって基準値より小さく、電解銅箔に引裂が発生した。また、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)共重合体を過量に含む電解液によって製造された比較例3の電解銅箔は、谷深さ対比厚さVDTが71.2であって基準値より大きく、粗さプロファイル要素の平均幅Rsmが173μmであって基準値より大きく、電解銅箔にシワが発生した。
【0227】
グリシン(Glycine)を少量で含む電解液によって製造された比較例4の電解銅箔は、引張強度が24kgf/mmであって基準値より小さく、[FWHM(200)]が0.79であって基準値より小さく、電解銅箔に引裂およびシワが発生した。また、グリシン(Glycine)を過量に含む電解液によって製造された比較例5の電解銅箔は、引張強度が64kgf/mmであって基準値より大きく、[FWHM(200)]が1.22であって基準値より大きく、電解銅箔に引裂が発生した。
【0228】
電解液11が供給される流量の偏差が分当り11%に高く供給して製造された比較例6の電解銅箔は重量の偏差が6%であって基準値より高く、引裂が発生しない代わりに、シワが発生した。
【0229】
反面、本発明に係る実施形態1~7の銅箔ではすべての数値が基準値以内であり、シワと引裂が発生しなかった。
【0230】
以上で説明された本発明は、前述した実施形態および添付された図面によって限定されるものではなく、本発明の技術的事項を逸脱しない範囲内で多様な置換、変形および変更が可能であることが本発明が属する技術分野で通常の知識を有する者に明白であろう。したがって、本発明の範囲は後述する特許請求の範囲によって表現され、特許請求の範囲の意味、範囲そしてその等価概念から導き出されるすべての変更または変形された形態は本発明の範囲に含まれるものと解釈されるべきである。
【符号の説明】
【0231】
101、102:銅箔
112a、112b:第1および第2保護層
120a、120b:第1および第2活物質層
103、104:二次電池用電極
MS:マット面
SS:シャイニー面
図1
図2
図3
図4
図5
図6
図7
図8
図9