IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ TDK株式会社の特許一覧

<>
  • 特許-活物質及び全固体二次電池 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-07
(45)【発行日】2023-08-16
(54)【発明の名称】活物質及び全固体二次電池
(51)【国際特許分類】
   H01M 4/58 20100101AFI20230808BHJP
   H01M 4/13 20100101ALI20230808BHJP
   H01M 10/052 20100101ALI20230808BHJP
   H01M 10/0562 20100101ALI20230808BHJP
   H01B 1/06 20060101ALI20230808BHJP
   H01B 1/08 20060101ALI20230808BHJP
【FI】
H01M4/58
H01M4/13
H01M10/052
H01M10/0562
H01B1/06 A
H01B1/08
【請求項の数】 5
(21)【出願番号】P 2020503451
(86)(22)【出願日】2019-02-21
(86)【国際出願番号】 JP2019006507
(87)【国際公開番号】W WO2019167783
(87)【国際公開日】2019-09-06
【審査請求日】2021-12-09
(31)【優先権主張番号】P 2018033252
(32)【優先日】2018-02-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100163496
【弁理士】
【氏名又は名称】荒 則彦
(74)【代理人】
【識別番号】100188558
【弁理士】
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100169694
【弁理士】
【氏名又は名称】荻野 彰広
(72)【発明者】
【氏名】田中 禎一
(72)【発明者】
【氏名】塚田 岳夫
【審査官】福井 晃三
(56)【参考文献】
【文献】国際公開第2018/026009(WO,A1)
【文献】特開2000-086215(JP,A)
【文献】LIU YUNXIA et al.,Study on the modifying of Li3V2(PO4)3 by Ni doping,Journal of Huazhong Normal University (Nat. Sci.),中国,Huazhong Shifan Daxue Xuebao Bianjibu,2008年,Vol. 42, No. 4,pp. 578-581
【文献】DONG, Y.Z. et al.,The effect of doping Mg2+ on the structure andelectrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ionbatteries,J. Electroanal. Chem.,NL,2011年,Vol. 660,pp. 14-21
【文献】SUN, C. et al.,Hydrothermal Synthesis andElectrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-Ion Batteries,Appl. Mater. Interfaces,米国,2011年,Vol. 3,pp. 3772-3776
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00- 4/62
H01M 10/05-10/0587
H01B 1/06- 1/08
(57)【特許請求の範囲】
【請求項1】
化学式Li3+a2-x(PO(0.1≦a≦0.2、0<x≦1.4)で表され、
Mは結晶構造中で2価又は4価の陽イオンになる元素であ
前記化学式においてMで表記される元素は、Mg、Ca、Ti及びZrからなる群から選択された1種以上の元素である、活物質。
【請求項2】
前記xが、0.2≦x≦1.1である、請求項に記載の活物質。
【請求項3】
請求項1又は2に記載の活物質を含む全固体二次電池。
【請求項4】
前記化学式においてMで表記される元素を含む酸化物系固体電解質層を有する請求項に記載の全固体二次電池。
【請求項5】
正極集電体層と、負極集電体層と、を有し、
前記正極集電体層は正極活物質を含み、
前記負極集電体層は負極活物質を含み、
前記正極集電体層に含まれる前記正極活物質の含有比は、正極集電体/前記正極活物質が90/10から70/30であり、
前記負極集電体層含まれる前記負極活物質の含有比は、負極集電体/前記負極活物質が90/10から70/30である請求項に記載の全固体二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、活物質及び全固体二次電池に関する。本願は、2018年2月27日に出願された特願2018-033252号を基に優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
リチウムイオン二次電池は、例えば、携帯電話、ノートPC、PDAなどの携帯小型機器の電源として広く使用されている。このような携帯小型機器で使用されるリチウムイオン二次電池は、小型化、薄型化、信頼性の向上が求められている。
【0003】
リチウムイオン二次電池としては、電解質に有機電解液を用いたものと、固体電解質を用いたものとが知られている。電解質に固体電解質を用いたリチウムイオン二次電池(全固体二次電池)は、有機電解液を用いたリチウムイオン二次電池と比較して、電池形状の設計の自由度が高く電池サイズの小型化や薄型化が容易であり、また電解液の液漏れなどが起きず信頼性が高いという利点がある。
【0004】
一方で、全固体二次電池は、一般に有機電解液を用いたリチウムイオン二次電池と比較してリチウムイオンの伝導性が低い。加えて、活物質部分に導電助剤を加えることが難しく電子伝導性が低い。このため、全固体二次電池は、有機電解液を用いたリチウムイオン二次電池と比較して、内部抵抗が高く、出力電流が低いという問題がある。そこで、全固体二次電池では、リチウムイオンのイオン伝導性や活物質の電子伝導性を高めて、内部抵抗を低減させることが求められている。
【0005】
例えば、特許文献1には、Li(PO系のリチウム二次電池用活物質のPOアニオンの一部をBOアニオンで置換することにより、優れた保存性能、特に高温保持性能を備えるとある。この実施の形態として、活物質表面にカーボンを付着させ、且つ被覆させて電子伝導性を補って利用することが重要とされている。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2011/052632号
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、全固体二次電池の体積エネルギー密度を向上するためには、正極活物質層、及び、負極活物質層の活物質比率が高い方がよく、カーボンなどの導電助剤を混ぜることなく活物質を利用できることが好ましい。そのため、活物質自身の電子伝導性の向上が求められている。正極活物質及び負極活物質の電子伝導性が向上すれば、全固体二次電池の内部抵抗のさらなる低減が可能である。
【0008】
本発明は、上記課題を鑑みてなされたものであり、電子伝導性の高い活物質及び当該活物質を含む全固体二次電池を提供する。
【課題を解決するための手段】
【0009】
本発明者は、上記課題を解決するために、鋭意検討を重ねた。その結果、従来の活物質Li(PO(以降LVPと略記する)のV(バナジウム)の一部を、2価又は4価の陽イオンになる元素で置換することによって、高い電子伝導性が得られることを見出した。
【0010】
上記課題を解決するために、以下の手段を提供する。
【0011】
(1)第1の態様にかかる活物質は、化学式Li3+a2-x(PO(-0.3≦a≦0.7、0<x≦1.4)で表され、Mは結晶構造中で2価又は4価の陽イオンになる元素である。
【0012】
(2)上記態様にかかる活物質は、上記化学式においてMで表記される元素が、Mg、Ca、Ti及びZrからなる群から選択された1種以上の元素であってもよい。
【0013】
(3)上記態様にかかる活物質において、上記xが、0.2≦x≦1.1であってもよい。
【0014】
(4)第2の態様にかかる全固体二次電池は、上記第1の態様の何れかにかかる活物質を含む。
【0015】
(5)上記態様にかかる全固体二次電池は、上記化学式においてMで表記される元素を含む酸化物系固体電解質層を有していてもよい。
(6)上記態様にかかる全固体二次電池は、正極集電体層と、負極集電体層と、を有し、上記正極集電体層は正極活物質を含み、上記負極集電体層は負極活物質を含み、正極集電体層に含まれる活物質の含有比は、正極集電体/正極活物質が90/10から70/30であり、上記負極集電体層含まれる活物質の含有比は、負極集電体/負極活物質が90/10から70/30であってもよい。
【発明の効果】
【0016】
上記態様にかかる活物質は、高い電子伝導性を有する。
【図面の簡単な説明】
【0017】
図1】第1実施形態にかかる全固体二次電池の断面の一例を示す模式図である。
【発明を実施するための形態】
【0018】
以下、本発明の好ましい例について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。本発明は、以下に示す実施形態のみに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。例えば、本発明の主旨を逸脱しない範囲で、数や数値や量や比率や特性などについて、省略や追加や変更をすることが可能である。
【0019】
[全固体二次電池]
図1は、本実施形態の全固体二次電池10の断面の一例を概略的に示す模式図である。
図1に示す全固体二次電池10は、少なくとも一つの第1電極層1と、少なくとも一つの第2電極層2と、第1電極層1と第2電極層2とに挟まれた固体電解質3とを有する。積層体4は、第1電極層1と、固体電解質3と、第2電極層2とが順に積層された構成を有する。第1電極層1は、それぞれ一端側に配設された端子電極5に接続されている。第2電極層2は、それぞれ他端側に配設された端子電極6に接続されている。
ここで、本実施形態では、上下方向を設定して各構成の位置関係を説明する。以下、図1の上側を上方向とし、図1の下側を下方向とする。尚、本実施形態にかかる二次固体電池の構成は向きに限定されず、上下が逆の構成であってもよい。
【0020】
第1電極層1と、第2電極層2は、いずれか一方が正極層として機能し、他方が負極層として機能する。以下、理解を容易にするために、本実施形態では第1電極層1を正極層1とし、第2電極層2を負極層2とした場合を例に記載する。尚、本実施形態は、第1電極層1が正極層で第2電極層2が負極層である構成に限定されず、第1電極層1が負極層で第2電極層が正極層である構成であってもよい。以下、本明細書中で、符号1は正極層を指し、符号2は負極層を指す。
【0021】
図1に示すように、正極層1と負極層2は、固体電解質3を介して交互に積層されている。全固体二次電池の充電は、正極層1と負極層2との間で固体電解質3を介したリチウムイオンの授受により行われる。
【0022】
<正極層及び負極層>
正極層1は、正極集電体層1Aと、正極活物質を含む正極活物質層1Bとを有する。負極層2は、負極集電体層2Aと、負極活物質を含む負極活物質層2Bとを有する。
【0023】
正極集電体層1A及び負極集電体層2Aは、導電率が高いことが好ましい。そのため、正極集電体層1A及び負極集電体層2Aには、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等を用いることが好ましい。これらの物質の中でも、銅は正極活物質、負極活物質及び固体電解質と反応しにくい。そのため、正極集電体層1A及び負極集電体層2Aに銅を用いると、全固体二次電池10の内部抵抗を低減できる。なお、正極集電体層1Aと負極集電体層2Aとを構成する物質は、同一でもよいし、異なってもよい。
【0024】
正極活物質層1Bは、正極集電体層1Aの片面又は両面に形成される。例えば、正極層1と負極層2のうち、積層体4の積層方向の最上層に正極層1が形成されている場合、最上層に位置する正極層1の上には対向する負極層2が無い。すなわち、最上層に位置する正極層1において正極活物質層1Bは、積層方向下側の片面のみにあればよい。
【0025】
負極活物質層2Bも正極活物質層1Bと同様に、負極集電体層2Aの片面又は両面に形成される。また、正極層1と負極層2のうち、積層体4の積層方向の最下層に負極層2が形成されている場合、最下層に位置する負極層2において負極活物質層2Bは、積層方向上側の片面のみにあればよい。
【0026】
正極活物質層1Bは、電子を授受する正極活物質を含む。また、負極活物質層2Bは、電子を授受する負極活物質を含む。この他、正極活物質層1B及び負極活物質層2Bは、導電助剤や結着剤等を含んでもよい。正極活物質及び負極活物質は、リチウムイオンを効率的に挿入、脱離できることが好ましい。
【0027】
負極活物質及び正極活物質には、Li(POにおけるVの一部を別の元素Mで置換し、さらにLiの組成量を調整した活物質が用いられる。具体的には、負極活物質及び正極活物質として、化学式Li3+a2-x(PO(-0.3≦a≦0.7、0<x≦1.4)で表される活物質である。ここで、Mは結晶構造中で2価又は4価の陽イオンになる元素である活物質が用いられる。また、Liの組成量は-0.3≦a≦0.7であることが好ましく、-0.2≦a≦0.6であることがより好ましく、-0.1≦a≦0.4であることがさらに好ましい。Liの組成量を当該範囲とすることで、高い電子伝導性を得ることができる。
【0028】
このような活物質は、Li(POにおけるVの一部を別の元素Mで置換することで元素置換されていない活物質Li(POに比べて高い電子伝導性が得られる。2価の陽イオンとなり得る元素を置換する場合、結晶格子中に酸素欠損が出来易くなり、酸素欠損が生じることで自由になる電子が生じる。また、4価の陽イオンになり得る元素を置換する場合、結晶格子中に正孔が出来易くなり、正孔が生じる。このように、Vの一部を、結晶格子中で2価又は4価をとる元素で置換することによって、活物質の電子伝導性が向上し、全固体二次電池の内部抵抗を低減することが出来る。すなわち、出力電流を高めることができる。
【0029】
活物質は、便宜上、全固体二次電池において用いられるものとして説明されるが、活物質は、全固体二次電池だけでなく全固体電池においても用いてもよい。
【0030】
上記化学式Li3+a2-x(POにおいてMで表記される元素は、結晶構造中で2価又は4価の陽イオンになる元素であればよい。好ましくは、上記化学式Li 3+a2-x(POにおいてMで表記される元素は、Mg、Ca、Ti、Zr、Sr、Ba、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh及びWからなる群から選択された1種以上の元素であればよい。さらに好ましくは、上記化学式Li3+a2-x(POにおいてMで表記される元素は、Mg、Ca、Ti及びZrからなる群から選択された1種以上の元素であればよい。最も好ましくは、上記化学式Li3+a2-x(POにおいてMで表記される元素は、Tiであればよい。
【0031】
例えば、TiはVの3価の陽イオン(6配位)のイオン半径に近いイオン半径を有する。Vの3価の陽イオン(6配位)のイオン半径に近いイオン半径を有する元素は、Vと置換しやすいと考えられる。Vの3価の陽イオン(6配位)のイオン半径よりも大きいイオン半径を有する元素は、Vを当該元素によって置換した場合、Li3+a(PO 結晶中で当該元素とOとの結合を弱くする傾向にある。これによって、還元雰囲気などの加熱処理で容易に酸素が脱離しやすい状態となる。
【0032】
活物質Li3+a(POにおけるVの3価の陽イオン(6配位)のイオン半径は、0.64Åである。これに対して、Tiの2価の陽イオン(6配位)は0.86Åのイオン半径を有し、Tiの3価の陽イオン(6配位)は0.67Åのイオン半径を有し、Tiの4価の陽イオン(6配位)は0.61Åのイオン半径を有する。Mgの2価の陽イオン(6配位)は0.72Åのイオン半径を有する。Caの2価の陽イオン(6配位)は1.00Åのイオン半径を有する。Zrの4価の陽イオン(6配位)は0.72Åのイオン半径を有する。
【0033】
上記化学式Li3+a2-x(POにおいて、元素Mの置換量xは、0.2≦x≦1.1であることが好ましい。元素Mの置換量xは、より好ましくは、0.4≦x≦0.9である。
【0034】
元素Mの置換量xが、1.1より大きくなると、最終的な活物質に含まれるVの含有量が小さくなり、活物質の容量が低下する場合がある。正極活物質層1B及び負極活物質層2Bに用いられるLi3+a(POのLi脱離反応において、価数が変化するVの存在が必須と考えられるためである。
【0035】
元素Mの置換量xが、0.2より小さくなると、最終的な活物質に含まれるMの含有量が小さくなり、酸素欠陥及び/又は正孔が生成されにくくなるので、電子伝導性の向上が小さくなる。元素M置換量を0.4≦x≦0.9とすると、より好適に活物質の容量を向上し、かつ、電子伝導性を向上することができる。
【0036】
元素Mの置換量xの好ましい範囲は、元素Mとして用いられる元素によってはこの範囲より広がる場合もある。例えば、元素MがTiの場合は、0.05≦x≦1.3の範囲で活物質の容量を高く維持でき、好ましくは0.2≦x≦1.1であり、より好ましくは、0.2≦x≦0.75である。また元素MがMgの場合は、0.05≦x≦1.1の範囲で活物質の容量を高く維持でき、好ましくは0.1≦x≦0.75であり、0.1≦x≦0.5である。また元素MがCaの場合は、0.1≦x≦1.1の範囲で活物質の容量を高く維持でき、好ましくは0.1≦x≦0.75であり、よりこのましくは、0.1≦x≦0.5である。また元素MがZrの場合は、0.05≦x≦1.3の範囲で活物質の容量を高く維持でき、好ましくは0.1≦x≦1.1であり、より好ましくは0.1≦x≦0.75である。
【0037】
正極活物質層1B又は負極活物質層2Bを構成する活物質には明確な区別がない。2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質として用い、より卑な電位を示す化合物を負極活物質として用いることができる。
【0038】
また、正極集電体層1A及び負極集電体層2Aは、それぞれ正極活物質及び負極活物質を含んでもよい。それぞれの集電体層に含まれる活物質の含有比は、集電体として機能する限り特に限定はされない。例えば、正極集電体/正極活物質、又は負極集電体/負極活物質が体積比率で90/10から70/30の範囲であることが好ましく、より好ましくは、85/15から75/25の範囲である。
【0039】
正極集電体層1Aが正極活物質を含むことにより、正極集電体層1Aと正極活物質層1Bとの密着性が向上する。同様に、負極集電体層2Aが負極活物質を含むことにより、負極集電体層2Aと負極活物質層2Bとの密着性が向上する。
【0040】
「固体電解質」
固体電解質3は、リン酸塩系固体電解質であることが好ましい。固体電解質3としては、電子の伝導性が小さく、リチウムイオンの伝導性が高い材料を用いることが好ましい。
具体的には例えば、La0.5Li0.5TiOなどのペロブスカイト型化合物や、Li14Zn(GeOなどのリシコン型化合物、Li7LaZr12などのガーネット型化合物、Li1.3Al0.3Ti1.7(POやLi1.5Al .5Ge1.5(POなどのナシコン型化合物、Li3.25Ge0.250. 75やLiPSなどのチオリシコン型化合物、LiS-PやLiO-V-SiOなどのガラス化合物、LiPOやLi3.5Si0.50.5やLi2.9PO3.30.46などのリン酸化合物、よりなる群から選択される少なくとも1種であることが望ましい。
【0041】
固体電解質3は、上記化学式Li3+a2-x(POにおいてMで表記される元素を含む酸化物系固体電解質であることが好ましい。すなわち、結晶構造中で2価又は4価の陽イオンになる元素であればよい。例えば、Mg、Ca、Ti、Zr、Sr、Ba、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh及びWからなる群から選択された1種以上の元素である。また、固体電解質3は、好ましくは、Mg、Ca、Ti及びZrからなる群から選択された1種以上の元素であり、より好ましくは、Tiである。このような固体電解質3は、例えば、全固体二次電池に用いることができる。
【0042】
固体電解質3が元素Mを含むと、固体電解質3と元素Mを含む正極活物質層1B及び/又は負極活物質層2Bとの接合界面における元素Mの濃度の変化が緩やかになる。そのため、正極活物質層1Bと固体電解質3との接合界面における活性化エネルギー、及び、負極活物質層2Bと固体電解質3との接合界面におけるLiイオンの活性化エネルギーが小さくなる。ここで、正極活物質層1Bと固体電解質層3との接合界面における活性化エネルギーとは、Liイオンが正極活物質層1Bと固体電解質3との接合界面を通過するのに必要なエネルギーを意味する。また、負極活物質層2Bと固体電解質3との接合界面における活性化エネルギーとは、負極活物質層2Bと固体電解質3との接合界面を通過するのに必要なエネルギーを意味する。そのため、正極活物質層1Bと固体電解質3との接合界面、及び、負極活物質層2Bと固体電解質3との接合界面でのLiイオンの移動がし易くなり、接合界面におけるLiイオン伝導性が向上する。このため、全固体二次電池の内部抵抗は低減する。
【0043】
(端子電極)
端子電極5,6は、図1に示すように、積層体4の側面(正極層1及び負極層2の端面の露出面)に接して形成されている。端子電極5,6は外部端子に接続されて、積層体4への電子の授受を担う。
【0044】
端子電極5,6には、導電率が大きい材料を用いることが好ましい。例えば、銀、金、プラチナ、アルミニウム、銅、スズ、ニッケル、ガリウム、インジウム、及びこれらの合金などを用いることができる。
【0045】
「全固体二次電池の製造方法」
(積層体の形成)
積層体4を形成する方法としては、例えば、同時焼成法を用いてもよいし、逐次焼成法を用いてもよい。
【0046】
同時焼成法は、各層を形成する材料を積層した後、一括焼成により積層体を作製する方法である。逐次焼成法は、各層を順に作製する方法であり、各層を作製する毎に焼成工程を行う方法である。同時焼成法を用いた方が、逐次焼成法を用いる場合と比較して、少ない作業工程で積層体4を形成できる。また、同時焼成法を用いた方が、逐次焼成法を用いる場合と比較して、得られる積層体4が緻密になる。以下、本実施形態に係る積層体4を形成する方法は、公知の逐次焼成法等を用いても良いが、同時焼成法を用いて積層体4を製造する場合を例に挙げて説明する。
【0047】
同時焼成法は、積層体4を構成する各材料のペーストを作成する工程と、ペーストを塗布乾燥してグリーンシートを作製する工程と、グリーンシートを積層して積層シートとし、これを同時焼成する工程とを有する。
まず、積層体4を構成する正極集電体層1A、正極活物質層1B、固体電解質3、負極活物質層2B、及び負極集電体層2Aの各材料をペースト化する。
【0048】
各材料をペースト化する方法は、特に限定されない。例えば、ビヒクルに各材料の粉末を混合してペーストが得ても良い。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダー等が含まれる。
かかる方法により、正極集電体層1A用のペースト、正極活物質層1B用のペースト、固体電解質3用のペースト、負極活物質層2B用のペースト、及び負極集電体層2A用のペーストを作製する。
【0049】
次いで、グリーンシートを作成する。グリーンシートは、作製したペーストをPET(ポリエチレンテレフタラート)フィルムなどの基材上に塗布し、必要に応じ乾燥させた後、基材を剥離して得られる。ペーストの塗布方法は、特に限定されない。例えば、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用できる。
【0050】
次に、作製したそれぞれのグリーンシートを、所望の順序、積層数で積み重ね、積層シートとする。グリーンシートを積層する際には、必要に応じアライメント、切断等を行う。例えば、並列型又は直並列型の電池を作製する場合には、正極集電体層の端面と負極集電体層の端面が一致しないようにアライメントを行い、グリーンシートを積み重ねることが好ましい。
【0051】
積層シートは、公知の方法で作成することができるが、積層シートは、例えば、以下に説明する正極活物質層ユニット及び負極活物質層ユニットを作製し、これを積層する方法を用いて作製してもよい。
まず、PETフィルムなどの基材上に、固体電解質3用ペーストをドクターブレード法により塗布し、乾燥してシート状の固体電解質3を形成する。次に、固体電解質3上に、スクリーン印刷により正極活物質層1B用ペーストを印刷して乾燥し、正極活物質層1Bを形成する。次いで、正極活物質層1B上に、スクリーン印刷により正極集電体層1A用ペーストを印刷して乾燥し、正極集電体層1Aを形成する。さらに、正極集電体層1A上に、スクリーン印刷により正極活物質層1B用ペーストを印刷して乾燥し、正極活物質層1Bを形成する。
【0052】
その後、PETフィルムを剥離することで正極活物質層ユニットが得られる。正極活物質層ユニットは、固体電解質3/正極活物質層1B/正極集電体層1A/正極活物質層1Bがこの順で積層された積層シートである。
同様の手順にて負極活物質層ユニットを作製する。負極活物質層ユニットは、固体電解質3/負極活物質層2B/負極集電体層2A/負極活物質層2Bがこの順に積層された積層シートである。
【0053】
次に、一枚の正極活物質層ユニットと一枚の負極活物質層ユニット一枚とを積層する。この際、正極活物質層ユニットの固体電解質3と負極活物質層ユニットの負極活物質層2B、若しくは正極活物質層ユニットの正極活物質層1Bと負極活物質層ユニットの固体電解質3とが接するように積層する。これによって、正極活物質層1B/正極集電体層1A/正極活物質層1B/固体電解質3/負極活物質層2B/負極集電体層2A/負極活物質層2B/固体電解質3がこの順で積層された積層シートが得られる。次いで脱バイおよび焼成することにより全固体電池の積層体が製造される。
【0054】
なお、正極活物質層ユニットと負極活物質層ユニットとを積層する際には、正極活物質層ユニットの正極集電体層1Aが一の端面にのみ延出し、負極活物質層ユニットの負極集電体層2Aが他の面にのみ延出するように、各ユニットをずらして積み重ねる。その後、ユニットを積み重ねた積層体の固体電解質3が表面に存在しない側の面に、所定厚みの固体電解質3用シートをさらに積み重ね、積層シートとする。脱バイおよび焼成は、例えば窒素雰囲気下で600℃~1000℃の温度で焼成を行うことができる。脱バイおよび焼成の保持時間は、例えば0.1~6時間とする。
【0055】
次に、作製した積層シートを一括して圧着する。圧着は、加熱しながら行うことが好ましい。圧着時の加熱温度は、例えば、40~95℃とすることができ、50~80℃とすることが好ましい。
次に、圧着した積層シートを、一括して同時焼成し、焼結体からなる積層体4とする。積層シートの焼成は、例えば、窒素雰囲気下で600℃~1000℃に加熱することにより行う。焼成時間は、例えば、0.1~3時間とする。
【0056】
得られた焼結体(積層体4)は、アルミナなどの研磨材とともに円筒型の容器に入れて、バレル研磨してもよい。これにより積層体4の角の面取りをすることができる。そのほかの方法として、積層体4をサンドブラストにて研磨しても良い。この方法では特定の部分のみを削ることができるため好ましい。
以上の工程により、積層体4が得られる。
【0057】
作製された積層体4の端部に、端子電極5,6を形成することで、全固体リチウムイオン二次電池を作製できる。端子電極5,6は、公知の手段で作成することができるが、例えばスパッタリング等の手段で作製できる。
【0058】
上述のように、本実施形態にかかる活物質は、高い電子伝導性を示す。
【0059】
また活物質Li(POよりも電子伝導性の高いLi3+a2-x(PO(-0.3≦a≦0.7より好ましくは-0.1≦a≦0.4、0<x≦1.4、より好ましくは、0.2≦x≦1.1)を全固体二次電池の正極活物質又は負極活物質に用いることで、全固体二次電池における正極活物質層又は負極活物質層の電子伝導性が向上することができる。つまり全固体二次電池の内部抵抗を低減できる。
【0060】
以上、本発明の好適な実施形態の例について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明はかかる例に限定されないことは言うまでもない。各実施形態における各構成は、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の種々の変更が可能である。
【実施例
【0061】
(実施例1~10、比較例1、2)
固体電解質3/正極活物質層1B/正極集電体層1A/正極活物質層1B/固体電解質3/負極活物質層2B/負極集電体層2A/負極活物質層2B/固体電解質3がこの順で積層されている積層体4を同時焼成法により作製した。各層の構成は以下とした。
正極集電体層1A及び負極集電体層2A:Cu+Li(PO
正極活物質層1B及び負極活物質層2B:Li3+a2-xTi(PO(ただし、a=0、0≦x≦1.5)
固体電解質3:Li1.3Al0.3Ti1.7(PO
積層数は25層とした。正極集電体層1A、負極集電体層2A、正極活物質層1B及び負極活物質層2Bの焼成後におけるそれぞれの厚さが3μm、正極活物質層1Bと負極活物質層2Bとに挟まれる固体電解質層の焼成後における厚さが20μmとなるように作製した。
同時焼成時の温度は800℃とし、焼成時間は、1時間とした。
尚、以下a=0のLi3+a2-xTi(POは、Li2-xTi(POは、として記載する場合がある。
【0062】
正極活物質層1B及び負極活物質層2Bに用いた活物質に関して、電子伝導性[S/cm]を測定した。また、当該活物質を用いて作製した積層体4に関して、内部抵抗[Ω]を測定した。
【0063】
正極活物質層1B及び負極活物質層2Bに用いた活物質の電子伝導性[S/cm]は、以下のように測定された。
活物質粉末をディスク成形し(サイズはφ10mm、厚さ約2mm)、相対密度が92%以上になるように窒素雰囲気中にて850~1000℃で焼成し、ディスク焼結体を得た。得られたディスク焼結体を表面研磨し、寸法(直径R、厚みt)を測定したのち、マグネトロンスパッタ器を用いて、Ptスパッタし、ディスク焼結体両面にPt電極を形成し電子伝導性測定用サンプルを作製した。インピーダンスアナライザー(ソーラトロン社製1260)を用いて、作製した電子伝導性測定用サンプルに1V印加し、15分間後の電流値I´から電子伝導性を算出した。算出式としてσ=I´×t/(π(R/2))を用いた。
【0064】
積層体4の内部抵抗[Ω]は、以下のように測定された。
積層体4の端子電極5,6として樹脂Agペーストを塗布し、電極を形成したのち、1.6VまでCC20μA充電を行った。10分間の休止の後(このときの放電開始直前の電圧をVとする)、CC20μA放電を開始した直後1秒後の電圧値V´から内部抵抗を算出した。算出式として内部抵抗=(V-V´)/20μを用いた。
【0065】
【表1】
【0066】
表1から分かるようにLi(POにおけるVの一部をTiで置換した活物質は、電子伝導性の増加を示し、当該活物質を有する積層体4は、内部抵抗の低減を示した。特に、化学式Li2-xTi(POにおいてTiの置換量xが0.2から1.1(実施例4から8)の場合に、電子伝導性は4.7×10-7S/cm以上となり、内部抵抗は240Ω以下となった。
【0067】
理論によって縛られるものではないが、このような電子伝導性の増加及び内部抵抗の減少は、活物質の結晶格子中でTiがイオン化した際に取り得る価数、及びTiイオンのイオン半径に起因すると考えられる。活物質の結晶格子中でTiが2価の陽イオンになる場合、結晶格子中に酸素欠損が出来易くなり、自由になる電子が生じる。活物質の結晶格子中でTiが4価の陽イオンになる場合、結晶格子中に正孔が出来易くなり、正孔が生じる。Vのイオン半径(3価の陽イオン、6配位で0.64Å)よりも大きいTiのイオン半径(2価の陽イオン且つ6配位で0.86Å)が、活物質の結晶格子中でTi-O間の結合力を弱めることで、加熱処理における酸素の脱離を促進し、酸素欠陥を生成する。このようにして、活物質の電子伝導性が増加していると考えられる。
【0068】
一方、VをTiで置換しない場合(比較例1)、電子伝導性は7.4×10-8S/cmであり、実施例4から8と比較して約1桁低かった。また、Tiを多量に置換した場合(比較例2)、電子伝導性の向上はほとんど観測されなかった。また、Tiを多量に置換した場合に内部抵抗は増加した。
【0069】
(実施例11~20、比較例3)
実施例11~20は、実施例1~10における正極活物質層1B及び負極活物質層2B:Li3+a2-xTi(PO(ただし、a=0、0≦x≦1.5)を、Li 3+a2-xMg(PO(ただし、a=0、0≦x≦1.5)に変更したこと以外は、実施例1~10と同様の条件である。すなわち、電子伝導性[S/cm]及び内部抵抗[Ω]は、実施例1~10と同様の条件で測定された。
【0070】
【表2】
【0071】
表2から分かるように、Li(POにおけるVの一部をMgで置換した活物質は、Vの一部をMgで置換していない活物質と比較して、電子伝導性の増加を示す。当該活物質を有する積層体4は、内部抵抗の低減を示した。特に、化学式Li2-xMg(POにおいてMgの置換量xが0.1から1.1(実施例13から18)の場合に、電子伝導性の増加、及び内部抵抗の低減が見られた。
【0072】
理論によって縛られるものではないが、このような電子伝導性の増加及び内部抵抗の減少は、活物質の結晶格子中でMgがイオン化した際に取り得る価数、及びMgイオンのイオン半径に起因すると考えられる。活物質の結晶格子中でMgが2価の陽イオンになる場合、結晶格子中に酸素欠損が出来易くなり、自由になる電子が生じる。Vのイオン半径(3価の陽イオン、6配位で0.64Å)よりも大きいMgのイオン半径(2価の陽イオン且つ6配位で0.72Å)が、活物質の結晶格子中でMg-O間の結合力を弱めることで、加熱処理における酸素の脱離を促進し、酸素欠陥を生成する。このようにして、活物質の電子伝導性が増加していると考えられる。
【0073】
一方、Mgを多量に置換した場合(比較例3)、電子伝導性の向上は観測されなかった。また、Mgを多量に置換した場合、内部抵抗は増加した。
【0074】
(実施例21~30、比較例4)
実施例21~30は、実施例1~10における正極活物質層1B及び負極活物質層2B:Li2-xTi(PO(ただし、0≦x≦1.5)を、Li2-xCa(PO(ただし、0≦x≦1.5)に変更したこと以外は、実施例1~10と同様の条件である。電子伝導性[S/cm]及び内部抵抗[Ω]は、実施例1~10と同様の条件で測定された。
【0075】
【表3】
【0076】
表3から分かるように、Li(POにおけるVの一部をCaで置換した活物質は、電子伝導性の増加を示し、当該活物質を有する積層体4は、内部抵抗の低減を示した。特に、化学式Li2-xCa(POにおいてCaの置換量xが0.1から1.1(実施例23から28)の場合に、電子伝導性の増加、及び内部抵抗の低減が顕著に見られた。
【0077】
理論によって縛られるものではないが、このような電子伝導性の増加及び内部抵抗の減少は、活物質の結晶格子中でCaがイオン化した際に取り得る価数、及びCaイオンのイオン半径に起因すると考えられる。活物質の結晶格子中でCaが2価の陽イオンになる場合、結晶格子中に酸素欠損が出来易くなり、自由になる電子が生じる。Vのイオン半径(3価の陽イオン、6配位で0.64Å)よりも大きいCaのイオン半径(2価の陽イオン且つ6配位で1.00Å)が、活物質の結晶格子中でCa-O間の結合力を弱めることで、加熱処理における酸素の脱離を促進し、酸素欠陥を生成する。このようにして、活物質の電子伝導性が増加していると考えられる。
【0078】
一方、Caを多量に置換した場合(比較例4)、電子伝導性の向上は観測されなかった。また、Caを多量に置換した場合は、内部抵抗が増加した。
【0079】
(実施例31~40、比較例5)
実施例31~40は、実施例1~10における正極活物質層1B及び負極活物質層2B:Li2-xTi(PO(ただし、0≦x≦1.5)を、Li2-xZr(PO(ただし、0≦x≦1.5)に変更したこと以外は、実施例1~10と同様の条件である。電子伝導性[S/cm]及び内部抵抗[Ω]は、実施例1~10と同様の条件で測定された。
【0080】
【表4】
【0081】
表4から分かるように、Li(POにおけるVの一部をZrで置換した活物質は、電子伝導性の増加を示し、当該活物質を有する積層体4は、内部抵抗の低減を示した。特に、化学式Li2-xZr(POにおいてZrの置換量xが0.1から1.1(実施例33から38)の場合に、電子伝導性の増加、及び内部抵抗の低減が見られた。
【0082】
理論によって縛られるものではないが、このような電子伝導性の増加及び内部抵抗の減少は、活物質の結晶格子中でZrがイオン化した際に取り得る価数、及びZrイオンのイオン半径に起因すると考えられる。活物質の結晶格子中でZrが4価の陽イオンになる場合、結晶格子中に正孔が出来易くなり、正孔が生じる。Vのイオン半径(3価の陽イオン、6配位で0.64Å)よりも大きいZrのイオン半径(4価の陽イオン且つ6配位で0.72Å)が、活物質の結晶格子中でZr-O間の結合力を弱めることで、加熱処理における酸素の脱離を促進し、酸素欠陥を生成する。このようにして、活物質の電子伝導性が増加していると考えられる。
【0083】
一方、Zrを多量に置換した場合(比較例5)、電子伝導性の向上は観測されなかった。また、Zrを多量に置換した場合、内部抵抗は増加した。
【0084】
(実施例41~50、比較例11、12)
実施例41~50は、実施例1~10における正極活物質層1B及び負極活物質層2B:Li3+a2-xTi(PO(ただし、a=0、0≦x≦1.5)を、Li 2-xTiCa(PO(ただし、-0.3≦a≦0.7、x=1)に変更したこと以外は、実施例1~10と同様の条件である。電子伝導性[S/cm]及び内部抵抗[Ω]は、実施例1~10と同様の条件で測定された。
【0085】
【表5】
【0086】
表5から分かるように、Li3+a2-xTi(POにおけるLiの組成量を-0.3≦a≦0.7の範囲で調整した活物質は、電子伝導性の増加をし示し、当該活物質の内部抵抗の低減を示した。特に-0.2≦a≦0.6の範囲で調整した(実施例42から実施例49の)場合に、電子伝導性の増加、及び内部抵抗の低減が顕著に見られた。
【0087】
理論によって縛られるものではないが、このような電子伝導性の増加及び内部抵抗の減少は、。このようにして、活物質の電子伝導性が増加及び内部抵抗の減少が発生していると考えられる。
【0088】
一方、a≦-0.4や、0.8≦aとした場合、電子伝導性の向上は観測されなかった。また、内部抵抗は増加した。
【符号の説明】
【0089】
1…第1電極層、正極層、1A…正極集電体層、1B…正極活物質層、2…第2電極層、負極層、2A…負極集電体層、2B…負極活物質層、3…固体電解質、4…積層体、5,6…端子電極、10…全固体二次電池
図1