(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-07
(45)【発行日】2023-08-16
(54)【発明の名称】認証方法、認証プログラム及び認証装置
(51)【国際特許分類】
G06F 21/32 20130101AFI20230808BHJP
【FI】
G06F21/32
(21)【出願番号】P 2022522446
(86)(22)【出願日】2020-05-14
(86)【国際出願番号】 JP2020019328
(87)【国際公開番号】W WO2021229763
(87)【国際公開日】2021-11-18
【審査請求日】2022-07-29
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】長村 一樹
(72)【発明者】
【氏名】村瀬 太一
【審査官】行田 悦資
(56)【参考文献】
【文献】特開2006-031387(JP,A)
【文献】特開2005-275508(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 21/32
(57)【特許請求の範囲】
【請求項1】
第1のカメラにより撮影された第1の撮影データ及び第2の撮影データを受け付けると、人物の生体情報を前記人物の顔画像の特徴情報に対応付けて記憶する記憶部を参照して、前記第1の撮影データに含まれる第1の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第1の生体情報群と、前記第2の撮影データに含まれる第2の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第2の生体情報群とを特定し、
第2のカメラにより撮影された第3の撮影データを受け付けると、前記第3の撮影データに含まれる第3の顔画像の特徴情報と、前記第1の顔画像の特徴情報及び前記第2の顔画像の特徴情報それぞれとの類似度に基づき、前記第1の生体情報群及び前記第2の生体情報群のうち、いずれかの生体情報群を特定し、
センサにより検出された生体情報を取得すると、特定した前記生体情報群に含まれる複数の生体情報と、取得した前記生体情報とによる認証処理を行う、
処理をコンピュータが実行することを特徴とする認証方法。
【請求項2】
前記第1の生体情報群のリストに前記第1の顔画像の特徴情報のラベルが付与された第1のリストデータと、前記第2の生体情報群のリストに前記第2の顔画像の特徴情報のラベルが付与された第2のリストデータとを生成する処理を前記コンピュータがさらに実行し、
前記特定する処理は、前記第3の顔画像の特徴情報と前記第1のリストデータのラベルとの類似度と、前記第3の顔画像の特徴情報および前記第2のリストデータのラベルとの類似度とのうち、類似度が基準を満たすラベルが付与されたリストデータに含まれる生体情報群を特定する処理を含む請求項1に記載の認証方法。
【請求項3】
前記特定する処理は、前記第3の顔画像の特徴情報と前記第1のリストデータのラベルとの類似度と、前記第3の顔画像の特徴情報および前記第2のリストデータのラベルとの類似度とのうち、類似度が閾値を超えるラベルが付与されたリストデータに含まれる生体情報群を特定する処理を含む請求項2に記載の認証方法。
【請求項4】
前記特定する処理は、前記第3の顔画像の特徴情報と前記第1のリストデータのラベルとの類似度と、前記第3の顔画像の特徴情報および前記第2のリストデータのラベルとの類似度とのうち、類似度が最大であるラベルが付与されたリストデータに含まれる生体情報群を特定する処理を含む請求項2に記載の認証方法。
【請求項5】
前記記憶部は、前記人物の顔画像が前記第1のカメラに撮影されてから前記第2のカメラに撮影されるまでの所要時間をさらに記憶し、
前記特定する処理は、前記第3の顔画像の特徴情報と、前記第1のリストデータのラベルおよび前記第2のリストデータのラベルそれぞれとの照合を前記所要時間の昇順に行う処理を含む請求項2に記載の認証方法。
【請求項6】
前記認証処理は、手のひら静脈の認証処理であることを特徴とする請求項1に記載の認証方法。
【請求項7】
第1のカメラにより撮影された第1の撮影データ及び第2の撮影データを受け付けると、人物の生体情報を前記人物の顔画像の特徴情報に対応付けて記憶する記憶部を参照して、前記第1の撮影データに含まれる第1の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第1の生体情報群と、前記第2の撮影データに含まれる第2の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第2の生体情報群とを特定し、
第2のカメラにより撮影された第3の撮影データを受け付けると、前記第3の撮影データに含まれる第3の顔画像の特徴情報と、前記第1の顔画像の特徴情報及び前記第2の顔画像の特徴情報それぞれとの類似度に基づき、前記第1の生体情報群及び前記第2の生体情報群のうち、いずれかの生体情報群を特定し、
センサにより検出された生体情報を取得すると、特定した前記生体情報群に含まれる複数の生体情報と、取得した前記生体情報とによる認証処理を行う、
処理をコンピュータに実行させることを特徴とする認証プログラム。
【請求項8】
第1のカメラにより撮影された第1の撮影データ及び第2の撮影データを受け付けると、人物の生体情報を前記人物の顔画像の特徴情報に対応付けて記憶する記憶部を参照して、前記第1の撮影データに含まれる第1の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第1の生体情報群と、前記第2の撮影データに含まれる第2の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第2の生体情報群とを特定する第1の特定部と、
第2のカメラにより撮影された第3の撮影データを受け付けると、前記第3の撮影データに含まれる第3の顔画像の特徴情報と、前記第1の顔画像の特徴情報及び前記第2の顔画像の特徴情報それぞれとの類似度に基づき、前記第1の生体情報群及び前記第2の生体情報群のうち、いずれかの生体情報群を特定する第2の特定部と、
センサにより検出された生体情報を取得すると、特定した前記生体情報群に含まれる複数の生体情報と、取得した前記生体情報とによる認証処理を行う認証部と、
を有することを特徴とする認証装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、認証技術に関する。
【背景技術】
【0002】
認証方式の1つとして、1種類の生体情報を用いて多数の人の中から特定の個人を特定する1対N認証が知られている。1対N認証は、ID(IDentification)のキー入力やカードの提示が不要である一方で、単一の生体情報モダリティだけではその精度に限界がある。
【0003】
このような背景から、複数種類の生体情報を併用するマルチ生体認証技術の開発が進められている。あくまで一例として、顔認証および静脈認証を併用する認証システムが提案されている。例えば、認証システムでは、店舗の入口に設置された第1撮影装置が店舗の入口から入店する人物の顔を撮影する。このような第1撮影装置により撮影される顔画像を用いてN人の利用者の静脈認証登録データから一部の静脈認証登録データが認証候補として絞り込まれる。認証候補として絞り込まれた静脈認証登録データのうち、店舗内のカウンタに設置される第2撮影装置により静脈画像が撮影された時点から過去の所定時間帯の顔画像撮影日時に対応付けられた静脈認証登録データを対象に静脈認証における照合が行われる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しなしながら、上記の認証システムは、店舗への入店順に不特定多数の認証候補を絞り込むものに過ぎず、認証時間が増大する場合がある。
【0006】
すなわち、上記の認証システムでは、過去の所定時間帯の顔画像撮影日時に対応付けられた静脈認証登録データが店舗への入店順に静脈認証の照合に用いられる。ところが、入店の順番とカウンタ到着の順番は必ずしも一致するとは限らない。例えば、店舗へ最後に入店する利用者が最初にカウンタへ訪れる場合、最終入店の利用者よりも先に店舗へ入店した他の利用者の顔画像撮影時に認証候補として絞り込まれた静脈認証登録データが先に照合される。この場合、最後に認証候補として絞り込まれた静脈認証登録データが照合されるまで静脈認証の照合が繰り返される結果、認証時間が増大する。
【0007】
1つの側面では、本発明は、認証時間の短縮を実現できる認証方法、認証プログラム及び認証装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
一態様の認証方法では、第1のカメラにより撮影された第1の撮影データ及び第2の撮影データを受け付けると、人物の生体情報を前記人物の顔画像の特徴情報に対応付けて記憶する記憶部を参照して、前記第1の撮影データに含まれる第1の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第1の生体情報群と、前記第2の撮影データに含まれる第2の顔画像の特徴情報との類似度が基準を満たす特徴情報に対応付けられた複数の生体情報を含む第2の生体情報群とを特定し、第2のカメラにより撮影された第3の撮影データを受け付けると、前記第3の撮影データに含まれる第3の顔画像の特徴情報と、前記第1の顔画像の特徴情報及び前記第2の顔画像の特徴情報それぞれとの類似度に基づき、前記第1の生体情報群及び前記第2の生体情報群のうち、いずれかの生体情報群を特定し、センサにより検出された生体情報を取得すると、特定した前記生体情報群に含まれる複数の生体情報と、取得した前記生体情報とによる認証処理を行う、処理をコンピュータが実行する。
【発明の効果】
【0009】
認証時間の短縮を実現できる。
【図面の簡単な説明】
【0010】
【
図1】
図1は、実施例1に係る認証システムに含まれる各装置の機能的構成の一例を示すブロック図である。
【
図2】
図2は、絞込リストデータの一例を示す図である。
【
図3】
図3は、店舗側システムの実装例を示す図である。
【
図4】
図4は、絞込リストデータの一例を示す図である。
【
図5】
図5は、実施例1に係る第1の特定処理の制御シーケンスの一例を示す図である。
【
図6】
図6は、実施例1に係る第2の特定処理の制御シーケンスの一例を示す図である。
【
図7】
図7は、応用例に係る第1の特定処理の制御シーケンスの一例を示す図である。
【
図8】
図8は、ソート後の絞込リストデータの一例を示す図である。
【
図9】
図9は、コンピュータのハードウェア構成例を示す図である。
【発明を実施するための形態】
【0011】
以下に添付図面を参照して本願に係る認証方法、認証プログラム及び認証装置について説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
【実施例1】
【0012】
[システム構成の一例]
図1は、実施例1に係る認証システムに含まれる各装置の機能的構成の一例を示すブロック図である。
図1に示す認証システム1は、あくまで1つの側面として、生体情報の登録者数Nが数百万や数千万といった規模に拡大され得るユースケースに対応する側面から、複数種類の生体情報を用いて本人を認証するマルチ生体認証サービスを提供するものである。
【0013】
図1に示す認証システム1では、IDのキー入力やカードの提示を不要すると共に非接触な認証を実現する側面から、複数種類の生体情報の例として、手のひら静脈および顔情報が用いられる。例えば、登録者数Nから本人認証で照合する照合対象者を絞り込む第1モダリティとして顔情報が用いられると共に、第1モダリティにより絞り込まれた照合対象者の中から本人を認証する第2モダリティとして手のひら静脈が用いられる。ここで言う「モダリティ」は、生体情報の種類、あるいは生体識別部位などの用語に対応し得る。
【0014】
このような認証システム1のユースケースの一例として、レジ無し店舗や無人レジ、セルフレジ等における購入商品の手ぶら決済時の本人認証にマルチ生体認証サービスを適用する例が挙げられる。
【0015】
図1に示すように、認証システム1には、あくまで一例として、サーバ装置10と、店舗側システム30とが含まれ得る。これらサーバ装置10及び店舗側システム30の間は、任意のネットワークを介して接続され得る。
【0016】
サーバ装置10は、上記のマルチ生体認証サービスを提供するコンピュータの一例である。サーバ装置10は、認証装置の一例に対応する。一実施形態として、サーバ装置10は、パッケージソフトウェア又はオンラインソフトウェアとして、上記のマルチ生体認証サービスを実現する認証プログラムを任意のコンピュータにインストールさせることによって実装できる。例えば、サーバ装置10は、上記のマルチ生体認証サービスに関する機能をオンプレミスに提供するサーバ、例えばWebサーバとして実装することができる。これに限定されず、サーバ装置10は、SaaS(Software as a Service)型のアプリケーションとして実装することで、上記のマルチ生体認証サービスをクラウドサービスとして提供することとしてもかまわない。
【0017】
店舗側システム30は、
図1に示す認証システム1のうち店舗側に設けられる構成要素の一例に対応する。例えば、店舗側システム30は、店舗の入口から入店する人物の顔が撮影された顔画像から第1モダリティの生体情報、例えば顔特徴量を抽出したり、店舗で決済が行われるカウンタで取得される静脈画像から第2モダリティの生体情報、例えば手のひら静脈の特徴量を抽出したりする。
【0018】
[課題の一側面]
上記の背景技術の欄で説明したように、上記の従来技術は、店舗への入店順に不特定多数の認証候補を絞り込むものに過ぎず、認証時間が増大する場合がある。
【0019】
図2は、絞込リストデータの一例を示す図である。
図2には、あくまで一例として、従来技術を用いて生成された3つの絞込リストデータL11~L13が例示されている。例えば、絞込リストデータL11には、店舗へ入店する利用者U1の顔が2019年12月24日9時00分に撮影された撮影データに含まれる顔画像を用いて絞り込まれた登録手のひら静脈情報群F
Palm_L11のリストが含まれる。また、絞込リストデータL12には、店舗へ入店する利用者U2の顔が2019年12月24日9時01分に撮影された撮影データに含まれる顔画像を用いて絞り込まれた登録手のひら静脈情報群F
Palm_L12のリストが含まれる。さらに、絞込リストデータL13には、店舗へ入店する利用者U3の顔が2019年12月24日9時02分に撮影された撮影データに含まれる顔画像を用いて絞り込まれた登録手のひら静脈情報群F
Palm_L13のリストが含まれる。なお、
図2には、利用者登録が行われた登録手のひら静脈情報のうち、入店時に撮影される顔画像から取得された入力顔情報との類似度が上位所定数、例えば上位9個までの登録顔情報に対応付けられた登録手のひら静脈情報が絞り込まれる例が挙げられている。
【0020】
このように店舗への入店順が利用者U1、利用者U2、利用者U3の順である場合、店舗のカウンタで取得される入力手のひら静脈情報は、店舗への入店順、すなわち絞込リストデータL11、絞込リストデータL12、絞込リストデータL13の順に照合される。
【0021】
ここで、入店の順番とカウンタ到着の順番は必ずしも一致するとは限らない。例えば、利用者U1、利用者U2及び利用者U3の中で店舗へ最後に入店した利用者U3が最初にカウンタへ訪れる事例も発生し得る。このように店舗のカウンタ等で取得された利用者U3の入力手のひら静脈情報f
Palm_U3は、次のような順序で照合されることになる。すなわち、
図2に示すように、絞込リストデータL11の登録手のひら静脈情報群F
Palm_L11、絞込リストデータL12の登録手のひら静脈情報群F
Palm_L12、絞込リストデータL13の登録手のひら静脈情報群F
Palm_L13の順に照合される。この場合、利用者U3の顔画像撮影時に絞り込まれた絞込リストデータL13は、利用者U3よりも先に入店した利用者U1及び利用者U2の顔画像撮影時に絞り込まれた絞込リストデータL11および絞込リストデータL12の後に照合される。
【0022】
このように、利用者U3の入力手のひら静脈情報fPalm_U3と一致する登録手のひら静脈情報FPalm_U3との照合が行われるまでに、余分な絞込リストデータL11および絞込リストデータL12との照合が行われる結果、認証時間が増大する。このような余分な照合は、利用者U3よりも先に入店した利用者の数が多くなるほど増加し、さらに、顔画像を用いて絞り込まれる登録手のひら静脈情報の数が多くなるほど増加し得る。
【0023】
[課題解決のアプローチの一側面]
そこで、本実施例に係るマルチ生体認証サービスでは、顔情報を用いる絞り込みを2回に分割するアプローチを採用する。あくまで1つ側面として、本実施例に係るマルチ生体認証サービスでは、入店時に撮影される第1モダリティの顔画像を第2モダリティの登録生体情報群を含む絞込リストの生成に用いる。更なる側面として、本実施例に係るマルチ生体認証サービスでは、決済時に撮影される第1モダリティの顔画像を複数の絞込リストから第2モダリティの本人認証で照合対象とする絞込リストの特定に用いる。
【0024】
図3は、店舗側システム30の実装例を示す図である。
図3には、レジ無し店舗や無人レジ、セルフレジ等における購入商品の決済時の本人認証にマルチ生体認証サービスを適用する例が示されている。
【0025】
図3に示すように、店舗側システム30には、店舗3の入口から入店する人物の顔を撮影可能な状態で設置される第1のカメラ31Aが含まれ得る。さらに、店舗側システム30には、店舗3の決済カウンタに設置される端末32が含まれ得る。例えば、端末32には、商品に付与されたタグやバーコード等から商品情報、例えば商品の名称や金額などを読み取る読取部の他、店舗3の利用者が購入対象とする商品のリストや合計金額などの各種の表示を行う表示部35などが接続され得る。さらに、店舗側システム30には、端末32を利用する人物の顔を撮影可能な状態で設置される第2のカメラ32Aが含まれ得る。例えば、第2のカメラ32Aは、表示部35のスクリーンの向きと同一の方向にレンズを向けて配置されるインカメラとして実現され得る。さらに、店舗側システム30には、端末32を利用する人物の手のひら静脈を検出するセンサ33が含まれ得る。
【0026】
このような店舗側システム30の下、1つの側面として、第1のカメラ31Aの撮影データに含まれる顔画像から抽出される顔情報、例えば顔特徴量を用いて上記の絞込リストが生成される。ここで、第1のカメラ31Aの撮影データに含まれる顔画像から抽出される顔情報は、店舗3への入店時に抽出される側面があるので、以下、「入店時顔情報」と記載する場合がある。例えば、絞込リストは、利用者登録が行われた登録手のひら静脈情報のうち、入店時顔情報との類似度が上位所定数までの登録顔情報の各々に対応付けられた登録手のひら静脈情報をリスト化することにより生成される。このようにリスト化される登録手のひら静脈情報には、入店時顔情報を関連付けることができる。例えば、入店時顔情報は、絞込リストを識別するラベルとして絞込リストに付与することができる。この他、撮影データの撮影日時等の任意の識別情報を介して、入店時顔情報および絞込リストを関連付けることもできる。
【0027】
図4は、絞込リストデータの一例を示す図である。
図4には、あくまで一例として、本実施例に係るマルチ生体認証サービスにしたがって生成された3つの絞込リストデータL1~L3が例示されている。
【0028】
例えば、店舗3へ入店する利用者U1の顔が2019年12月24日9時00分に撮影された撮影データに含まれる利用者U1の顔画像から利用者U1の入店時顔情報fface1_U1が抽出される。このように抽出された利用者U1の入店時顔情報fface1_U1がラベルとして付与されると共に、入店時顔情報fface1_U1を用いて絞り込まれた登録手のひら静脈情報群FPalm_L1がリスト化された絞込リストデータL1が生成される。
【0029】
また、店舗3へ入店する利用者U2の顔が2019年12月24日9時01分に撮影された撮影データに含まれる利用者U2の顔画像から利用者U2の入店時顔情報fface1_U2が抽出される。このように抽出された利用者U2の入店時顔情報fface1_U2がラベルとして付与されると共に、入店時顔情報fface1_U2を用いて絞り込まれた登録手のひら静脈情報群FPalm_L2がリスト化された絞込リストデータL2が生成される。
【0030】
さらに、店舗3へ入店する利用者U3の顔が2019年12月24日9時02分に撮影された撮影データに含まれる利用者U3の顔画像から利用者U3の入店時顔情報fface1_U3が抽出される。このように抽出された利用者U3の入店時顔情報fface1_U3がラベルとして付与されると共に、入店時顔情報fface1_U3を用いて絞り込まれた登録手のひら静脈情報群FPalm_L3がリスト化された絞込リストデータL3が生成される。
【0031】
他の側面として、第2のカメラ32Aの撮影データに含まれる顔画像から抽出される顔情報、例えば顔特徴量を用いて、複数の絞込リストから第2モダリティの静脈認証で照合対象とする絞込リストが特定される。ここで、第2のカメラ32Aの撮影データに含まれる顔画像から抽出される顔情報は、店舗3のカウンタでの決済時に抽出される側面があるので、以下、「決済時顔情報」と記載する場合がある。例えば、決済時顔情報は、絞込リストの各々に含まれる入店時の顔情報と照合される。あくまで一例として、絞込リストのうち、決済時顔情報との類似度が所定の閾値を超える入店時顔情報がラベルとして付与された絞込リストが特定される。他の一例として、絞込リストのうち、決済時顔情報との類似度が最大である入店時顔情報がラベルとして付与された絞込リストが特定される。
【0032】
例えば、第2のカメラ32Aの撮影データから利用者U3の決済時顔情報f
face2_U3が抽出された場合、
図4に示すように、決済時顔情報f
face2_U3は、店舗への入店順に、絞込リストデータL1の入店時顔情報f
face1_U1、絞込リストデータL2の入店時顔情報f
face1_U2及び絞込リストデータL3の入店時顔情報f
face1_U3が照合される。このとき、決済時顔情報f
face2_U3及び入店時顔情報f
face1_U1の類似度と、決済時顔情報f
face2_U3及び入店時顔情報f
face1_U2の類似度は、決済時顔情報f
face2_U3及び入店時顔情報f
face1_U3の類似度よりも小さく、閾値を超えない。一方、決済時顔情報f
face2_U3及び入店時顔情報f
face1_U3の類似度は、3つの類似度の間で最大であり、閾値を超える。このため、3つの絞込リストデータL1~L3のうち入店時顔情報f
face1_U3がラベルとして付与された絞込リストデータL3が第2モダリティの静脈認証における照合対象と特定される。この結果、センサ33から検出される入力手のひら静脈情報が絞込リストデータL3の登録手のひら静脈情報群F
Palm_L1と照合される。
【0033】
このように、本実施例に係るマルチ生体認証サービスでは、利用者U3の入力手のひら静脈情報fPalm_U3と一致する登録手のひら静脈情報FPalm_U3との照合が行われるまでに、余分な絞込リストデータL11および絞込リストデータL12との照合を省略できる。具体的には、決済時顔情報face2_U3と類似しない入店時顔情報fface1_U1に対応付けられた登録手のひら静脈情報群FPalm_L1との照合、さらには、決済時顔情報face2_U3と類似しない入店時顔情報fface1_U2に対応付けられた登録手のひら静脈情報群FPalm_L2との照合をスキップできる。
【0034】
したがって、本実施例に係るマルチ生体認証サービスによれば、認証時間の低減を実現することが可能になる。
【0035】
[店舗側システム30の構成]
次に、本実施例に係る店舗側システム30の機能的構成の一例について説明する。
図1には、上記のマルチ生体認証サービスの機能に対応するブロックがサーバ装置10および店舗側システム30ごとに示されている。
図1に示すように、店舗側システム30は、第1のカメラ31Aと、第1の抽出部31Bと、第2のカメラ32Aと、第2の抽出部32Bと、センサ33と、表示部35とを有する。なお、
図1には、上記のマルチ生体認証サービスに関連する機能部が抜粋して示されているに過ぎず、図示しない機能部、例えば上記の読取部等が店舗側システム30に備わることを妨げない。
【0036】
第1のカメラ31Aおよび第2のカメラ32Aは、いずれも第1モダリティの顔画像を撮影する機能部である。一実施形態として、これら第1のカメラ31Aおよび第2のカメラ32Aは、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を搭載する撮像装置により実現できる。
【0037】
ここで、第1のカメラ31Aが撮影する「撮影データ」には、利用者が店舗3の入口から商品の選択や移動等を経て決済カウンタに訪れるまでに顔情報に基づく絞り込みを終了させる側面で利用される。このような側面から、第1のカメラ31Aは、店舗3の入口から入店する人物の顔を撮影可能な状態で設置される。第1のカメラ31Aは、必ずしも上記のマルチ生体認証サービス専用のカメラでなくともよく、他のシステム、例えば監視システムで用いられる監視カメラを上記のマルチ生体認証サービスに共用できる。
【0038】
また、第2のカメラ32Aが撮影する「撮影データ」には、複数の絞込リストの中から第2モダリティの静脈認証で照合対象とする絞込リストを特定する側面で利用される。このような側面から、第2のカメラ32Aは、端末32を利用する人物の顔を撮影可能な状態で設置される。例えば、第2のカメラ32Aは、表示部35のスクリーンの向きと同一の方向にレンズを向けて配置されるインカメラとして実現され得る。
【0039】
第1の抽出部31Bおよび第2の抽出部32Bは、第1モダリティの生体情報を抽出する機能部である。例えば、第1モダリティが顔情報である場合、当該顔情報は、顔が撮影された画像そのものであってもよいし、顔の画像から抽出された顔の特徴量であってもよい。以下、顔情報のあくまで一例として、埋め込みベクトルを用いる場合を例示する。この場合、第1の抽出部31Bおよび第2の抽出部32Bは、ディープラーニング等により埋め込み空間の学習が行われたモデル、例えばCNN(Convolutional Neural Network)を用いることができる。例えば、第1の抽出部31Bおよび第2の抽出部32Bは、第1のカメラ31Aまたは第2のカメラ32Aの出力、例えばフレーム単位で撮像された画像に顔検出を行う。その上で、第1の抽出部31Bおよび第2の抽出部32Bは、顔検出で得られた顔領域に対応する部分画像、すなわち顔画像を埋め込み空間が学習済みであるCNNへ入力する。これによって、CNNから埋め込みベクトルを得ることができる。その上で、第1の抽出部31Bおよび第2の抽出部32Bは、上記の顔情報を入店時顔情報または決済時顔情報として所定の暗号方式、例えば公開鍵暗号などのアルゴリズムにしたがって暗号化した上で暗号化された入店時顔情報または決済時顔情報をサーバ装置10へ伝送する。なお、埋め込みベクトルは、顔情報のあくまで一例に過ぎず、他の特徴量、例えばSIFT(Scale-Invariant Feature Transform)などが抽出されることとしてもよい。
【0040】
センサ33は、第2モダリティの生体情報を検出する機能部である。一実施形態として、センサ33は、手のひらの内部に存在する静脈の血管パターンを映すのに適切な波長を持つ赤外光、例えば近赤外光を照射する照明と、赤外光を捉えることができるカメラとを含むセンサユニットとして実現できる。例えば、手のひらが所定の撮影位置に載置されると、照明によって赤外光が手のひらに照射される。この赤外光の照射に連動して起動されたカメラによって手のひらの内部から反射して戻ってきた赤外光が撮影される。このような撮影によって、静脈中の赤血球によって赤外光が吸収される結果、手のひらの静脈の血管パターンが現れた手のひら静脈画像が生体画像として得られる。その後、センサ33は、手のひら静脈画像から血管部分を取り出した上で細線化し、血管における分岐点の座標、分岐点間の長さ、分岐点の分岐角度などの特徴量を手のひら静脈情報として抽出する。その上で、センサ33は、手のひら静脈情報を入力手のひら静脈情報として所定の暗号方式、例えば公開鍵暗号などのアルゴリズムにしたがって暗号化した上で暗号化された入力手のひら静脈情報をサーバ装置10へ伝送する。
【0041】
表示部35は、各種の情報を表示する機能部である。あくまで一例として、表示部35は、液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイなどにより実現できる。なお、表示部35は、図示しない入力部と一体化することにより、タッチパネルとして実現されることとしてもよい。
【0042】
なお、第1の抽出部31Bや第2の抽出部32Bの他、センサ33で行われる一部の処理、例えば手のひら静脈の特徴抽出等の機能は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等のハードウェアプロセッサにより仮想的に実現され得る。ここで、プロセッサは、上記の店舗側システム30の如何なる装置に搭載されるものであってもかまわない。あくまで一例として、第1のカメラ31A、第2のカメラ32A及びセンサ33が接続される端末32に搭載されたプロセッサを利用できる。例えば、プロセッサは、図示しない記憶装置、例えばROM(Read Only Memory)、あるいは補助記憶装置から、上記の特徴抽出等の機能を実現する特徴抽出プログラムを読み出す。その上で、プロセッサは、上記の特徴抽出プログラムを実行することにより、RAM(Random Access Memory)等のメモリ上に上記の機能に対応するプロセスを展開する。この結果、上記の機能がプロセスとして仮想的に実現される。ここでは、プロセッサの一例として、CPUやMPUを例示したが、汎用型および特化型を問わず、任意のプロセッサにより上記の機能部が実現されることとしてもかまわない。この他、上記の機能は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードワイヤードロジックによって実現されることとしてもかまわない。
【0043】
[サーバ装置10の構成]
次に、本実施例に係るサーバ装置10の機能的構成の一例について説明する。
図1に示すように、サーバ装置10は、通信インタフェイス部11と、記憶部13と、制御部15とを有する。なお、
図1には、上記のマルチ生体認証サービスに関連する機能部が抜粋して示されているに過ぎず、図示以外の機能部、例えば既存のコンピュータがデフォルトまたはオプションで装備する機能部、例えば入力部や表示部等がサーバ装置10に備わることを妨げない。
【0044】
通信インタフェイス部11は、他の装置、例えば店舗側システム30との間で通信制御を行う通信制御部の一例に対応する。
【0045】
あくまで一例として、通信インタフェイス部11は、LAN(Local Area Network)カードなどのネットワークインターフェイスカードにより実現される。例えば、通信インタフェイス部11は、第1の抽出部31Bから入店時顔情報を受け付けたり、第2の抽出部32Bから決済時顔情報を受け付けたり、センサ33から入力手のひら静脈情報を受け付けたりする。また、通信インタフェイス部11は、本人認証のリトライ要求、認証結果や決済処理結果などを表示部35へ出力する。
【0046】
記憶部13は、制御部15で実行されるOS(Operating System)を始め、上記のマルチ生体認証サービスを実現する認証プログラムなどの各種プログラムに用いられるデータを記憶する機能部である。
【0047】
一実施形態として、記憶部13は、補助記憶装置により実現され得る。例えば、HDD(Hard Disk Drive)や光ディスク、SSD(Solid State Drive)などが補助記憶装置に対応する。この他、EPROM(Erasable Programmable Read Only Memory)などのフラッシュメモリも補助記憶装置に対応し得る。
【0048】
記憶部13は、制御部15で実行されるプログラムに用いられるデータの一例として、登録データ13Aと、絞込リストデータL1~Lmとを記憶する。これら登録データ13Aや絞込リストデータL1~Lm以外にも、記憶部13は、第1のカメラ31Aや第2のカメラ32Aの撮影データなどの各種のデータを記憶することができる。なお、絞込リストデータL1~Lmは、第1のカメラ31Aの撮影データからダイナミックに生成される側面があるので、絞込リストデータL1~Lmを生成する機能部の説明に合わせて後述する。
【0049】
登録データ13Aは、所定の登録処理、例えば利用者登録が行われたデータである。例えば、登録データ13Aには、N人の利用者、例えば利用者登録が行われた登録者の識別情報ごとに登録顔情報および登録手のひら静脈情報が対応付けられたデータを採用できる。これら登録顔情報および登録手のひら静脈情報の例として、利用者登録時に撮影された撮影データの顔画像や静脈画像から抽出された顔情報および手のひら静脈情報が登録される。なお、登録データ13Aには、上記の項目の他、利用者の属性情報、例えば氏名や年齢、性別などが含まれることとしてもかまわない。
【0050】
制御部15は、サーバ装置10の全体制御を行う処理部である。一実施形態として、制御部15は、CPUやMPUなどのハードウェアプロセッサにより実現される。ここでは、プロセッサの一例として、CPUやMPUを例示したが、汎用型および特化型を問わず、任意のプロセッサにより実装することができる。この他、制御部15は、ASICやFPGAなどのハードワイヤードロジックによって実現されてもよい。
【0051】
制御部15は、図示しないメモリ、例えばRAMのワークエリア上に、上記の認証プログラムを展開することにより、下記の処理部を仮想的に実現する。
図1に示すように、制御部15は、第1の特定部15Aと、生成部15Bと、第2の特定部15Cと、認証部15Dとを有する。
【0052】
第1の特定部15Aは、記憶部13に記憶された登録データ13Aを参照して、入店時顔情報との類似度が所定の基準を満たす登録顔情報に対応付けられた第2モダリティの登録生体情報を特定する処理部である。一実施形態として、第1の特定部15Aは、第1の抽出部31Bから入店時顔情報を受け付けた場合に起動し得る。例えば、第1の特定部15Aは、登録データ13Aに含まれる登録顔情報ごとに、当該登録顔情報と、第1の抽出部31Bにより抽出された入店時顔情報との間で類似度を算出する。あくまで一例として、顔情報として埋め込みベクトルが抽出される場合、類似度には、登録顔情報および入力顔情報の間のハミング距離を用いることができる。その上で、第1の特定部15Aは、登録データ13Aに含まれる登録手のひら静脈情報のうち、入店時顔情報との類似度が上位所定数、例えば上位K(<N)個までの登録顔情報の各々に対応付けられた登録手のひら静脈情報を特定する。これによって、登録手のひら静脈情報は、N個からK個まで絞り込まれる。
【0053】
なお、ここでは、上記の基準の一例として、入店時顔情報との類似度が上位所定数までの登録顔情報の各々に対応付けられた登録手のひら静脈情報を特定する例を挙げたが、これに限定されない。例えば、入店時顔情報との類似度が所定の絞込率RNd、例えば登録者数Nの1%などに対応する上位所定割合に該当する登録顔情報の各々に対応付けられた登録手のひら静脈情報を特定することもできる。
【0054】
生成部15Bは、絞込リストを生成する処理部である。一実施形態として、生成部15Bは、第1の抽出部31Bにより抽出された入店時顔情報をラベルとして付与すると共に、第1の特定部15Aにより特定された登録手のひら静脈情報群がリスト化された絞込リストデータLjを生成する。このように生成された絞込リストデータLjが記憶部13に保存される。このように記憶部13へ保存された絞込リストデータLjは、所定の条件を満たす場合に削除することができる。例えば、認証または決済に使用された絞込リストデータLjを削除したり、保存後から一定期間、例えば1時間が経過した場合に絞込リストデータLjを削除したり、定期時刻、例えば閉店時刻になったりした場合に絞込リストデータL1~Lmを削除したりすることができる。また、絞込リストデータLjは、必ずしも削除せずともよく、認証または決済に使用後のものと未使用のものとの間でフラグ等を用いて区別することもできる。
【0055】
第2の特定部15Cは、決済時顔情報と入店時顔情報との間の類似度に基づいて、いずれかの入店時顔情報を用いて絞り込まれた登録生体情報群を特定する処理部である。一実施形態として、第2の特定部15Cは、記憶部13に記憶された絞込リストデータL1~Lmごとに、当該絞込リストデータLjのラベルとして付与された入店時顔情報と、第2の抽出部32Bにより抽出された決済時顔情報との類似度を算出する。その上で、第2の特定部15Cは、絞込リストデータL1~Lmのうち、決済時顔情報との類似度が所定の閾値を超える入店時顔情報がラベルとして付与された絞込リストデータを第2モダリティの静脈認証における照合対象の絞込リストとして特定する。なお、ここでは、決済時顔情報との類似度が最大である入店時顔情報がラベルとして付与された絞込リストデータを特定する例を挙げたが、これに限定されない。例えば、絞込リストデータL1~Lmのうち、決済時顔情報との類似度が最大である入店時顔情報がラベルとして付与された絞込リストデータを特定することもできる。
【0056】
認証部15Dは、第2モダリティの認証処理を実行する処理部である。一実施形態として、認証部15Dは、第2の特定部15Cにより特定された絞込リストデータに含まれる登録手のひら静脈情報群と、センサ33により検出された入力手のひら静脈情報との類似度を算出する。このような類似度の一例として、登録手のひら静脈情報および入力手のひら静脈情報のパターンマッチングで得られる相互相関を用いることができる。このとき、認証部15Dは、入力手のひら静脈との類似度が所定の閾値以上である登録手のひら静脈が存在する場合、入力手のひら静脈が登録者本人のものであると認証する。一方、認証部15Dは、入力手のひら静脈との類似度が所定の閾値以上である登録手のひら静脈が存在しない場合、入力手のひら静脈が登録者本人のものでないと認証する。その上で、認証部15Dは、認証結果、例えば認証OKまたは認証NGを店舗側システム30へ通知する。このように通知された認証結果は、表示部35等で出力され得る。
【0057】
なお、ここでは、サーバ装置10が認証結果を店舗側システム30へ通知する例を挙げたが、これに限定されない。例えば、サーバ装置10は、登録者本人であると認証された利用者に対応付けられた決済情報、例えばクレジットカードやデビッドカード、電子マネー等を用いて購入対象とする商品の決済処理を実行し、決済処理結果を店舗側システム30へ通知することもできる。この他、サーバ装置10は、サーバ装置10の内部または外部で決済処理を実行するアプリケーションへ認証結果を転送することもできる。
【0058】
[処理の流れ]
次に、本実施例に係るサーバ装置10の処理の流れについて説明する。以下、サーバ装置10により実行される(1)第1の特定処理を説明した後に、(2)第2の特定処理を説明することとする。
【0059】
(1)第1の特定処理
図5は、実施例1に係る第1の特定処理の制御シーケンスの一例を示す図である。この処理は、あくまで一例として、第1のカメラ31Aにより撮影が行われる単位、例えばフレーム単位で実行することができる。
【0060】
図5に示すように、第1のカメラ31Aの撮影データが取得されると(ステップS101)、第1の抽出部31Bは、ステップS101で取得された撮影データに含まれる顔画像から顔の特徴量を抽出する(ステップS102)。続いて、第1の抽出部31Bは、ステップS102で抽出された顔の特徴量を入店時顔情報としてサーバ装置10へ通知する(ステップS103)。
【0061】
続いて、第1の特定部15Aは、登録データ13Aに含まれる登録顔情報ごとに、当該登録顔情報と、ステップS103で通知された入店時顔情報とを照合する(ステップS104)。そして、第1の特定部15Aは、登録データ13Aに含まれる登録手のひら静脈情報のうち、入店時顔情報との類似度が上位所定数、例えば上位K(<N)個までの登録顔情報の各々に対応付けられた登録手のひら静脈情報を特定する(ステップS105)。
【0062】
その上で、生成部15Bは、ステップS103で通知された入店時顔情報をラベルとして付与すると共に、ステップS105で特定された登録手のひら静脈情報群がリスト化された絞込リストデータLjを生成する(ステップS106)。その後、生成部15Bは、ステップS106で生成された絞込リストデータLjを記憶部13に保存し(ステップS107)、処理を終了する。
【0063】
(2)第2の特定処理
図6は、実施例1に係る第2の特定処理の制御シーケンスの一例を示す図である。この処理は、あくまで一例として、第2のカメラ32Aにより撮影が行われる単位、例えばフレーム単位で実行することができる。
【0064】
図6に示すように、第2のカメラ32Aの撮影データが取得されると(ステップS301)、第2の抽出部32Bは、ステップS301で取得された撮影データに含まれる顔画像から顔の特徴量を抽出する(ステップS302)。続いて、第2の抽出部32Bは、ステップS302で抽出された顔の特徴量を決済時顔情報としてサーバ装置10へ通知する(ステップS303)。
【0065】
以下、上記のステップS303の実行後、サーバ装置10で行われるステップS304A及びステップS305Aの処理と、店舗側システム30で行われるステップS304B及びステップS305Bの処理とは、並列に実行される。
【0066】
例えば、ステップS304Aでは、第2の特定部15Cは、記憶部13に記憶された絞込リストデータL1~Lmごとに、当該絞込リストデータLjのラベルとして付与された入店時顔情報と、ステップS302で通知された決済時顔情報とを照合する。
【0067】
その上で、第2の特定部15Cは、絞込リストデータL1~Lmのうち、決済時顔情報との類似度が所定の閾値を超える入店時顔情報がラベルとして付与された絞込リストデータを第2モダリティの静脈認証における照合対象の絞込リストとして特定する(ステップS305A)。
【0068】
一方、センサ33は、ステップS304A及びステップS305Aと並行して、センサ33の撮影データに含まれる手のひら静脈画像から手のひら静脈の特徴量を検出する(ステップS304B)。そして、センサ33は、ステップS304Bで検出された手のひら静脈の特徴量を入力手のひら静脈情報としてサーバ装置10へ通知する(ステップS305B)。
【0069】
その後、認証部15Dは、ステップS305Aで特定された絞込リストデータに含まれる登録手のひら静脈情報群と、ステップS305Bで通知された入力手のひら静脈情報とに基づいて入力手のひら静脈情報が登録者本人のものであるか否かを認証する認証処理を実行する(ステップS306)。その上で、認証部15Dは、ステップS306における認証結果を店舗側システム30へ通知する(ステップS307)。
【0070】
このとき、ステップS307で通知された認証結果が認証OK、すなわち入力手のひら静脈が登録者本人のものであると認証された場合(ステップS308Yes)、店舗側システム30の端末32は、次のような処理を実行する。すなわち、端末32は、登録者本人であると認証された利用者に対応付けられた決済情報、例えばクレジットカードやデビッドカード、電子マネー等を用いて購入対象とする商品の決済処理を実行し(ステップS309)、処理を終了する。
【0071】
なお、ステップS307で通知された認証結果が認証NG、すなわち入力手のひら静脈が登録者本人のものでないと認証された場合(ステップS308No)、ステップS309の決済処理は実行されず、そのまま処理を終了する。
【0072】
[効果の一側面]
上述してきたように、本実施例に係るマルチ生体認証サービスは、入店時顔情報ごとに絞り込まれた登録手のひら静脈情報群のうち、決済時顔情報と類似する入店時顔情報を用いて絞り込まれた登録手のひら静脈情報群を入力手のひら静脈情報と照合する。このため、本実施例に係るマルチ生体認証サービスでは、決済時顔情報と類似しない入店時顔情報で絞り込んだ生体情報群との照合を省略できる。したがって、本実施例に係るマルチ生体認証サービスによれば、認証時間の低減を実現することが可能である。
【実施例2】
【0073】
さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
【0074】
[所要時間を用いるソート]
上記の実施例1では、決済時顔情報および各絞込リストの入店時顔情報の照合は、店舗3への入店順、すなわち入店時顔情報の抽出に用いる顔画像が撮影された順に行われる例を挙げたが、必ずしも店舗3への入店順でなくともかまわない。
【0075】
例えば、サーバ装置10は、利用者ごとに当該利用者の顔画像が第1のカメラ31Aに撮影されてから第2のカメラ32Aに撮影されるまでの所要時間を対応付けて記憶することができる。あくまで一例として、サーバ装置10は、絞込リストデータが生成された時間と、当該絞込リストデータが決済時顔情報を用いて第2モダリティの生体認証における照合対象として特定された時間との時間差を上記の所要時間として算出することができる。このように算出された所要時間は、利用者の識別情報に対応付けて登録データ13Aに格納することができる。このとき、登録データ13Aに初期値、例えばNULL値以外の値が既に保存されている場合、算出値および保存値の統計値、例えば平均値や中央値を角にすることとすればよい。
【0076】
このような所要時間の管理の下、サーバ装置10は、新規の絞込リストデータが生成された場合、新規の絞込リストデータLjを含むm個の絞込リストデータL1~Lmごとに当該絞込リストの入店時顔情報との類似度が最大である登録顔情報に対応付けられた所要時間を登録データ13Aから取得する。そして、サーバ装置10は、m個の絞込リストデータL1~Lmを所要時間の昇順にソートする。その後、サーバ装置10は、所要時間の昇順にソート後のm個の絞込リストデータL1~Lmを記憶部13に保存する。
【0077】
図7は、応用例に係る第1の特定処理の制御シーケンスの一例を示す図である。
図7には、
図5に示された処理と同一の処理には同一のステップ番号が付与されると共に
図5に示された処理と異なる処理には新規のステップ番号が付与されている。なお、ここでは、
図5に示された処理と同一の処理の説明を省略し、差分を抜粋して説明することとする。
【0078】
すなわち、ステップS106で新規の絞込リストデータLjが生成された後、生成部15Bは、新規の絞込リストデータLjを含むm個の絞込リストデータL1~Lmごとに当該絞込リストの入店時顔情報との類似度が最大である登録顔情報に対応付けられた所要時間を登録データ13Aから取得し、m個の絞込リストデータL1~Lmを所要時間の昇順にソートする(ステップS501)。
【0079】
その上で、生成部15Bは、所要時間の昇順にソート後のm個の絞込リストデータL1~Lmを記憶部13に保存し(ステップS502)、処理を終了する。
【0080】
図7に示すステップS501及びステップS502の処理によって、記憶部13には、所要時間が短い絞込リストデータから順にm個の絞込リストデータL1~Lmが記憶されることになる。これによって、第2の特定部15Cは、
図6に示されたステップS304Aにおいて、決済時顔情報および各絞込リストの入店時顔情報の照合を所要時間が短い順に行うことができる。
【0081】
図8は、ソート後の絞込リストデータの一例を示す図である。
図8には、
図4に示された絞込リストデータL1~L3が所要時間の昇順にソートされたものが示されている。
図8には、あくまで一例として、所要時間の大小関係が「絞込リストデータL3<絞込リストデータL1<絞込リストデータL2」である場合が示されている。
【0082】
図8に示すように、所要時間の昇順にソート後の絞込リストデータL1~L3では、決済時顔情報f
face2_U3は、絞込リストデータL3の入店時顔情報f
face1_U3、絞込リストデータL1の入店時顔情報f
face1_U1、絞込リストデータL2の入店時顔情報f
face1_U2の順に照合される。この場合、決済時顔情報f
face2_U3及び入店時顔情報f
face1_U3の照合時に決済時顔情報f
face2_U3及び入店時顔情報f
face1_U3の類似度が閾値を超える。それ故、
図4に示す例と比べて、決済時顔情報f
face2_U3と、絞込リストデータL1の入店時顔情報f
face1_U1および絞込リストデータL2の入店時顔情報f
face1_U2との照合を省略できる。
【0083】
以上のように、m個の絞込リストデータL1~Lmを所要時間の昇順にソートすることで、決済時顔情報および各絞込リストの入店時顔情報の照合時間を低減できる。なお、ここでは、記憶部13への保存時にソートを実行する例を挙げたが、必ずしも保存時にソートを実行せずともよく、
図6に示すステップS304Aの参照時にソートを実行することもできる。
【0084】
[スタンドアローンへの適用]
上記の実施例1では、サーバ装置10および店舗側システム30を含むマルチ生体認証サービスの機能がクライアントサーバシステムで動作される例を挙げたが、上記のマルチ生体認証サービスはスタンドアローンで動作されることとしてもかまわない。
【0085】
[モダリティの応用例]
上記の実施例1では、第2モダリティが手のひら静脈である例を挙げたが、各モダリティは特定の認証部位に限定されない。例えば、第2モダリティに指紋や虹彩などの他の認証部位を適用することを妨げない。
【0086】
[ユースケースの応用例]
上記の実施例1では、上記のマルチ生体認証サービスのユースケースの一例として手ぶら決済を例示したが、金融機関におけるATM(Automatic Teller Machine)の利用や入退室管理などの他のユースケースにも上記のマルチ生体認証サービスを適用できる。
【0087】
[認証プログラム]
また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、
図9を用いて、上記の実施例1及び実施例2に係る認証プログラムを実行するコンピュータの一例について説明する。
【0088】
図9は、コンピュータのハードウェア構成例を示す図である。
図9に示すように、コンピュータ100は、第1のカメラ110aと、第2のカメラ110bと、センサ110cと、ディスプレイ120と、通信部130とを有する。さらに、このコンピュータ100は、CPU150と、ROM160と、HDD170と、RAM180とを有する。これら110~180の各部はバス140を介して接続される。
【0089】
HDD170には、
図9に示すように、上記の実施例1で示した第1の特定部15A、生成部15B、第2の特定部15C及び認証部15Dと同様の機能を発揮する認証プログラム170aが記憶される。この認証プログラム170aは、
図1に示した第1の特定部15A、生成部15B、第2の特定部15C及び認証部15Dの各構成要素と同様、統合又は分離してもかまわない。すなわち、HDD170には、必ずしも上記の実施例1で示した全てのデータが格納されずともよく、処理に用いるデータがHDD170に格納されればよい。
【0090】
このような環境の下、CPU150は、HDD170から認証プログラム170aを読み出した上でRAM180へ展開する。この結果、認証プログラム170aは、
図9に示すように、認証プロセス180aとして機能する。この認証プロセス180aは、RAM180が有する記憶領域のうち認証プロセス180aに割り当てられた領域にHDD170から読み出した各種データを展開し、この展開した各種データを用いて各種の処理を実行する。例えば、認証プロセス180aが実行する処理の一例として、
図5~
図7に示す処理などが含まれる。なお、CPU150では、必ずしも上記の実施例1で示した全ての処理部が動作せずともよく、実行対象とする処理に対応する処理部が仮想的に実現されればよい。
【0091】
なお、上記の認証プログラム170aは、必ずしも最初からHDD170やROM160に記憶されておらずともかまわない。例えば、コンピュータ100に挿入されるフレキシブルディスク、いわゆるFD、CD-ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させる。そして、コンピュータ100がこれらの可搬用の物理媒体から各プログラムを取得して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WANなどを介してコンピュータ100に接続される他のコンピュータまたはサーバ装置などに各プログラムを記憶させておき、コンピュータ100がこれらから各プログラムを取得して実行するようにしてもよい。
【符号の説明】
【0092】
1 認証システム
10 サーバ装置
11 通信インタフェイス部
13 記憶部
13A 登録データ
L1~Lm 絞込リストデータ
15 制御部
15A 第1の特定部
15B 生成部
15C 第2の特定部
15D 認証部
30 店舗側システム
31A 第1のカメラ
31B 第1の抽出部
32 端末
32A 第2のカメラ
32B 第2の抽出部
33 センサ
35 表示部