IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テキサス インスツルメンツ インコーポレイテッドの特許一覧

<>
  • 特許-レーダシステムにおける雑音軽減 図1
  • 特許-レーダシステムにおける雑音軽減 図2
  • 特許-レーダシステムにおける雑音軽減 図3A
  • 特許-レーダシステムにおける雑音軽減 図3B
  • 特許-レーダシステムにおける雑音軽減 図4
  • 特許-レーダシステムにおける雑音軽減 図5
  • 特許-レーダシステムにおける雑音軽減 図6
  • 特許-レーダシステムにおける雑音軽減 図7
  • 特許-レーダシステムにおける雑音軽減 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-07
(45)【発行日】2023-08-16
(54)【発明の名称】レーダシステムにおける雑音軽減
(51)【国際特許分類】
   G01S 7/03 20060101AFI20230808BHJP
   G01S 13/931 20200101ALI20230808BHJP
   G01S 13/34 20060101ALN20230808BHJP
【FI】
G01S7/03 220
G01S13/931
G01S13/34
【請求項の数】 9
(21)【出願番号】P 2021148229
(22)【出願日】2021-09-13
(62)【分割の表示】P 2020131380の分割
【原出願日】2016-04-13
(65)【公開番号】P2021192057
(43)【公開日】2021-12-16
【審査請求日】2021-10-08
(31)【優先権主張番号】14/687,617
(32)【優先日】2015-04-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【弁護士】
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】カーティク スブラジ
(72)【発明者】
【氏名】カーティク ラマスブラマニアン
(72)【発明者】
【氏名】スリラム ムラリ
(72)【発明者】
【氏名】スリーキラン サマラ
(72)【発明者】
【氏名】クリシュナンシュ ダンドゥ
【審査官】藤脇 昌也
(56)【参考文献】
【文献】特開平8-262126(JP,A)
【文献】特開2008-39490(JP,A)
【文献】特開2008-199411(JP,A)
【文献】特開2001-91639(JP,A)
【文献】特開2005-30809(JP,A)
【文献】特開2010-187825(JP,A)
【文献】特開2018-151313(JP,A)
【文献】特開2018-146443(JP,A)
【文献】国際公開第2012/20530(WO,A1)
【文献】国際公開第2011/111660(WO,A1)
【文献】国際公開第2008/126602(WO,A1)
【文献】国際公開第2006/95463(WO,A1)
【文献】米国特許出願公開第2011/37642(US,A1)
【文献】米国特許出願公開第2009/33538(US,A1)
【文献】米国特許出願公開第2007/247351(US,A1)
【文献】米国特許第5600675(US,A)
【文献】中国特許出願公開第109239708(CN,A)
【文献】中国特許出願公開第107976656(CN,A)
【文献】登録実用新案第3222075(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42
G01S 13/00 - 13/95
(57)【特許請求の範囲】
【請求項1】
回路であって、
レーダ信号を送信するための送信器と、
干渉体信号を含む反射レーダ信号を受信するための受信器であって、前記反射レーダ信号に応答してベースバンド信号を生成するミキサを含み、前記干渉体信号が関連付けられる振幅雑音と位相雑音との少なくとも1つを含む、前記受信器と、
前記ミキサに結合される信号シフタであって、シフトされたベースバンド信号を生成するために前記ベースバンド信号の周波数又は位相をシフトするように動作可能であり、前記シフトされたベースバンド信号がシフトされた干渉体信号を含む、前記信号シフタと、
前記シフトされベースバンド信号又はその一部を選択するために前記信号シフタに結合されるマルチプレクサと、
を含む、回路。
【請求項2】
請求項1に記載の回路であって、
前記反射レーダ信号を処理し、前記干渉体信号の周波数と位相とを推定するように動作可能な推定器を更に含み、
前記信号シフタが、前記干渉体信号の周波数と位相との推定に応答して、前記干渉体信号に関連付けられる前記振幅雑音と前記位相雑音との少なくとも1つを抑制するように構成される、回路。
【請求項3】
請求項1に記載の回路であって、
前記ミキサが、前記反射レーダ信号とローカル発振器(LO)信号とに応答して前記ベースバンド信号を生成し、前記ベースバンド信号が実部と虚部とを含み、
前記マルチプレクサが、前記シフトされベースバンド信号の実部と虚部との一方を選択する、回路。
【請求項4】
請求項3に記載の回路であって、
前記信号シフタが、前記シフトされベースバンド信号が実質的にゼロ周波数を有するように構成される、回路。
【請求項5】
請求項4に記載の回路であって、
前記干渉体信号が前記関連付けられる振幅雑音と位相雑音とを含み、前記振幅雑音が前記シフトされベースバンド信号の実部と虚部との一方に含まれ、前記位相雑音が前記シフトされベースバンド信号の実部と虚部との他方に含まれる、回路。
【請求項6】
請求項3に記載の回路であって、
前記マルチプレクサが、前記シフトされベースバンド信号の実部と虚部とにおける相対的な雑音レベルに基づいて前記シフトされたベースバンド信号の実部と虚部との一方を選択する、回路。
【請求項7】
請求項3に記載の回路であって、
FFTプロセッサであって、
前記シフトされベースバンド信号のFFTを行ない、
前記干渉体信号に対応するFFTビン周辺の共役偶成分と共役奇成分との少なくとも1つを抽出し、
前記干渉体信号に関連付けられる振幅雑音と位相雑音との少なくとも1つを抑制する、
ように動作可能である、前記FFTプロセッサを更に含む、回路。
【請求項8】
請求項1に記載の回路であって、
前記ミキサが、前記反射レーダ信号とローカル発振器(LO)信号とに応答してベースバンド信号を生成し、
前記信号シフタが、前記干渉体信号に関連付けられる振幅雑音と位相雑音とのうちの少なくとも1つが抑制されるように、前記ベースバンド信号に含まれる前記干渉体信号がおよそゼロ周波数を有するように構成される、回路。
【請求項9】
請求項1に記載の回路であって、
前記信号シフタが、前記干渉体信号に関連付けられる振幅雑音と位相雑音との相対的レベルに基づいて前記干渉体信号の周波数又は位相をシフトするように動作可能である、回路。
【発明の詳細な説明】
【技術分野】
【0001】
レーダシステムは、受信レーダ信号における情報の存在を検出するため信号分析に依存する。こうした情報を検出する能力は、受信レーダ信号における雑音の存在によって低下する。こうした雑音には、レーダの送信器によって送信されたレーダ波に導入される振幅及び位相の雑音、並びに、レーダの受信器のミキサに導入される振幅及び位相の雑音が含まれる。集積回路(例えば、相補型金属酸化物半導体(「CMOS」)技術を用いて製造される)は、多くのレーダシステムの機能性及び可搬性を向上させるために用いられる。しかしながら、CMOS技術に基づく集積回路を用いるレーダシステムはしばしば大量の雑音を含み、この雑音がこうしたレーダシステムの感度を低下させる。
【発明の概要】
【0002】
説明する例において、雑音軽減連続波周波数変調(CWFM)レーダが、反射レーダ信号を受信するための受信器と、受信された反射レーダ信号に応答して及びローカル発振器(LO)信号に応答して、ベースバンド信号を生成するためのミキサとを含む。少なくとも1つの例において、ベースバンド信号は、受信された反射レーダ信号に応答して生成され、干渉体の周波数オフセット及び位相オフセットによって信号シフトされ、ここで、干渉体は、送信レーダ信号を反射する近隣リフレクタによって生じる強い反射を含む受信レーダ信号の一部である。周波数シフトされたベースバンド信号の実部及び/又は虚部は、レーダ周辺のオブジェクトの存在及び位置を検出するために更に処理される。したがって、近傍オブジェクトが、受信器アンテナ(及び/又は、CWFMシステム自体)に対して実質的に固定されており及び/又はレーダリターン信号が望ましくない、レーダ信号反射オブジェクトであり得る。
【0003】
別の例において、送信レーダ信号は、干渉体の周波数オフセット及び位相オフセットによって信号シフトされ、受信レーダ信号は、レーダ周辺のオブジェクトの存在及び位置を検出するために更に処理される。こうした例において、干渉体に関連付けられる振幅雑音又は位相雑音スカートが減少し、雑音軽減連続波周波数変調レーダによる周辺オブジェクトの存在及び位置の検出の精度及び感度は、従来の装置及び方法に比べて向上する。
【図面の簡単な説明】
【0004】
図1】例示の実施形態の例示的電子デバイスを示す。
【0005】
図2】例示の実施形態の雑音軽減FMCW(周波数変調連続波)レーダシステムのブロック図である。
【0006】
図3A】例示の実施形態の反射FMCWレーダシステム信号の周波数波形図である。
【0007】
図3B】例示の実施形態のFMCWレーダシステム信号の周期性及び周波数レンジの周波数波形図である。
【0008】
図4】例示の実施形態の雑音軽減FMCWレーダシステム信号の振幅波形図である。
【0009】
図5】例示の実施形態の雑音軽減FMCWレーダシステム信号のミキサ出力スペクトル図である。
【0010】
図6】例示の実施形態のソフトウェア支援信号シフトを用いるプロセスフローチャートである。
【0011】
図7】例示の実施形態の雑音軽減FMCWレーダシステムのシミュレーションの、入力ベースバンド信号及び処理されたベースバンド信号の周波数波形図である。
【0012】
図8】例示の実施形態のハードウェア支援信号シフトを用いるプロセスフローチャートである。
【発明を実施するための形態】
【0013】
システムは、更に別のシステムのサブシステムであり得る。第1のデバイスが第2のデバイスに結合される場合、その接続は直接的電気接続を介して、又は他のデバイス及び接続を介する間接的電気接続を介して、成され得る。「較正」という用語は、「テスト」という言葉の意味を含み得る。「入力」という用語は、PMOS(ポジティブ型金属酸化物半導体)又はNMOS(ネガティブ型金属酸化物半導体)のソース又はドレインのいずれか(或いは、コンテキストが示すゲートなどの制御入力の場合もある)を意味し得る。「パルス」という用語は、周期波形など、波形の一部を意味し得る。「トランシーバ」という用語は、送信器及び受信器の意味を含み、送信器及び受信器は相互に独立して動作可能である(例えば、トランシーバを含むシステムの動作の間、どちらもオンであり得、いずれかがオンであり得、及びどちらもオフであり得る)。
【0014】
図1は、或る実施形態に従った例示的コンピューティングシステム100を示す。例えば、コンピューティングシステム100は、コンピュータ、電子制御「ボックス」又はディスプレイ、通信機器(送信器を含む)、或いは、無線周波数信号を生成するように配置される任意の他のタイプの電子システムなどの、電子システム129であるか、又は電子システム129に組み込まれる。
【0015】
いくつかの実施形態において、コンピューティングシステム100は、メガセル又はシステムオンチップ(SoC)を含み、メガセル又はシステムオンチップ(SoC)は、CPU 112(中央処理ユニット)、ストレージ114(例えば、ランダムアクセスメモリ(RAM))、及び電源110などの制御論理を含む。例えば、CPU 112は、CISCタイプ(複合命令セットコンピュータ)CPU、RISCタイプCPU(縮小命令セットコンピュータ)、MCUタイプ(マイクロコントローラユニット)、又はデジタル信号プロセッサ(DSP)であり得る。ストレージ114(これは、オンプロセッサキャッシュ、オフプロセッサキャッシュ、RAM、フラッシュメモリ、又はディスクストレージなどのメモリであり得る)は、CPU 112によって実行されるとき、コンピューティングシステム100に関連付けられる任意の適切な機能を実行する、一つ又は複数のソフトウェアアプリケーション130(例えば、埋め込みアプリケーション)を記憶する。
【0016】
CPU 112は、ストレージ114から頻繁にアクセスされる情報を記憶する、メモリ及び論理を含む。コンピューティングシステム100はしばしば、UI(ユーザインターフェース)116を用いてユーザによって制御され、UI 116は、ソフトウェアアプリケーション130の実行の間、ユーザに出力を提供し、ユーザから入力を受信する。出力は、ディスプレイ118、表示灯、スピーカ、及びバイブレーションを用いて提供される。入力は、オーディオ及び/又はビデオ入力(音声又は画像認識を用いるなど)、並びに、キーパッド、スイッチ、近傍検出器、ジャイロ、及び加速度計などの、電気的及び/又は機械的デバイスを用いて受信される。CPU 112は、I/O(入力出力)ポート128に結合され、I/Oポート128は、ネットワーク化デバイス131から入力を受信する(及び/又はネットワーク化デバイス131に出力を提供する)ように構成されるインターフェースを提供する。ネットワーク化デバイス131は、コンピューティングシステム100との二地点間通信及び/又はネットワーク化通信が可能な任意のデバイスを含み得る。コンピューティングシステム100はまた、有形の非一時的媒体(フラッシュメモリなど)、及び/又は、有線又は無線の媒体を含む、周辺装置及び/又はコンピューティングデバイスに結合され得る。これら及びその他の入力及び出力デバイスは、無線又は有線の接続を用いて外部デバイスによってコンピューティングシステム100に選択的に結合される。例えば、ストレージ114は、ネットワーク化デバイス131によってアクセスされ得る。
【0017】
CPU 112はI/O(入力出力)ポート128に結合され、I/Oポート128は、有形(例えば、「非一時的」)媒体(フラッシュメモリなど)、及び/又は、有線又は無線の媒体(JTAG(Joint Test Action Group)インターフェースなど)を含む、周辺装置及び/又はコンピューティングデバイス131から入力を受信するように(及び/又は、それらへ出力を提供するように)構成されるインターフェースを提供する。これら及びその他の入力及び出力デバイスは、無線又は有線の接続を用いて外部デバイスによってコンピューティングシステム100に選択的に結合される。CPU 112、ストレージ114、及び電源110は、外部電源(図示せず)に結合され得るか、又はローカル電力源(バッテリ、太陽電池、オルタネータ、誘導電界、燃料電池、及びキャパシタなど)に結合され得る。
【0018】
コンピューティングシステム100は、雑音軽減周波数変調連続波(FMCW)レーダ138を含む。雑音軽減FMCWレーダ138は、レーダ信号における情報の検出可能性を低減させる雑音の存在及び影響を低減させるための方法及び装置を含む。例えば、開示される雑音軽減FMCWレーダ138は、送信器・受信器結合及び/又は近傍オブジェクト反射に関連付けられる振幅及び位相の雑音を低減させ、これによって遠方オブジェクトの検出及び長距離性能が向上する。したがって、長距離性能は任意選択で、FMCWレーダ138の無線周波数(RF)構成要素などのようにより多くの電力を消費することなく改善される。
【0019】
図2は、実施形態に従った、雑音軽減FMCW(周波数変調連続波)レーダシステムのブロック図である。概して説明すると、雑音軽減FMCWレーダシステム200が、送信器202、受信器204、推定器282、レーダFFT(高速フーリエ変換)プロセッサ290などのDSP、及びシフトコントローラ292を含む。雑音軽減FMCWレーダシステムは、干渉体信号に関連付けられる振幅雑音及び位相雑音のうちの少なくとも1つの影響を低減(例えば、軽減又は抑制)させるように配される。
【0020】
概して説明するレーダシステム200の動作において、推定器282は、ADC出力で干渉体信号の周波数及び位相の値を決定するために用いられる。例えば、干渉体信号は、送信アンテナ230によって送信され、受信器アンテナ240によって(例えば、直接的に)受信される信号の、直接結合が原因で生じる。少なくとも1つの例において、直接結合は2本のアンテナ間の電磁結合が原因で生じる。干渉体信号は、レーダ装置が後部(又は内部)に搭載された車両シャーシなど、レーダ装置に相対的に近い既知のオブジェクトによって、受信器アンテナに送信された信号の強反射(又は近傍オブジェクト反射)も指し得る。
【0021】
送信器202は、任意選択の信号シフタ212及び任意選択の(LO)信号シフタ299を含む。考察の便宜上、信号シフタ212の機能性を以下で説明する。信号シフタ299は、図8を参照するなどして、以下でより具体的に考察する。バイパス信号(例えば、BYPASS-LO及び/又はBYPASS-RF)がアサートされるとき、所与の信号シフタの出力は所与の信号シフタの入力と実質的に同じである。
【0022】
信号シフタ212及び/又は284は、送信信号のスペクトル及び/又は受信信号のスペクトルを、干渉体信号の決められた大きさの周波数及び位相だけシフトするようにプログラミングされる。信号シフタ284の出力は、一般に、シフトされたベースバンド信号、並びに信号シフト後の干渉体信号の周波数及び位相と称され、一方、信号シフタ284の出力は、シフトされたベースバンド信号における干渉体オフセット周波数及び位相と称される。(例えば、シフトされたベースバンド信号は、90度の倍数を実質的に中心とする実質的にゼロの周波数及び位相を有する。)決められた大きさの干渉(例えば、干渉体信号)の周波数及び位相だけスペクトルをシフトすることによって、アンテナ結合(又は近傍オブジェクト反射、どちらか優勢な方)を、信号シフタ284の出力で、DC信号(例えば、0Hzの直流信号)に変換させる。したがって、干渉体信号に関連付けられる実質的にすべての振幅雑音が、Iチェーン信号(例えば、構成要素262、264、270、及びそれ以降を介する信号チェーン)内に存するが、Qチェーン信号には実質的にこうした振幅雑音はない。加えて、干渉体に対応する実質的にすべての位相雑音が、Qチェーン信号(例えば、構成要素263、265、272、及びそれ以降を介する信号チェーン)内に存するが、Iチェーン信号には実質的にこうした位相雑音はない。レーダFFTプロセッサ290は、システムにおける振幅雑音が優勢であるとき、更なるレーダ処理のためにQチェーン信号を受信するように動作可能であり、位相雑音が優勢であるとき、Iチェーン信号を受信するように動作可能である。
【0023】
初期信号シフトは、RF信号シフタ212、LO信号シフタ299、及び/又はデジタル信号シフタ284によって成される。RF信号シフタ212、LO信号シフタ299、及びデジタル信号シフタ284は、構成要素のうちの少なくとも1つが存在する場合などの、「任意選択」の構成要素である。例えば、RF信号シフタ212及びデジタル信号シフタ284の両方が存在する場合、RF信号シフタ212及びデジタル信号シフタ284の両方の信号シフトの合計は、単独で使用されるRF信号シフタ212又はデジタル信号シフタ284のいずれかの信号シフトに等しい。以下で説明するように、信号シフトは、レーダFFTプロセッサ290による近傍オブジェクト反射信号の処理によって(例えば、較正ルーチンの間に)決定される。信号シフトは、周波数シフト、位相シフトの1方、又はその両方である。
【0024】
送信器202、送信器アンテナ230、受信器204、受信アンテナ240、DSP(レーダFFTプロセッサ290など)、及びシフトコントローラ292は、任意選択で、(例えば、自動車又はトラックなどの車両の)シャーシ206上に取り付けられるか、又はシャーシ206に相対的に近接して(例えば、数センチメートル)位置決めされる。シャーシ206は、同じく(例えば、送信器202及び受信器204に加えて)シャーシ206に取り付けられる近傍オブジェクトリフレクタ208(例えば、車両バンパー)を含み、送信される電波を近傍オブジェクトリフレクタ208に反射させるようになっている。近傍オブジェクトリフレクタ208は、受信器アンテナ(及び/又は、CWFMシステム自体)に対して実質的に固定されており、及び/又は、レーダリターン信号が望ましくない、レーダ信号反射オブジェクトであり得る。近傍オブジェクトリフレクタ208による送信電波の反射は、本明細書における開示に従って、較正及び動作ルーチンを用いて検出及び軽減される。シャーシ206は、任意選択で、送信される信号の一部を直接的に(例えば、ほぼ直接的に)受信器に対して同様に反射させる、レーダ装置の保護ハウジング又はケーシングも指す。
【0025】
送信器202は、LO(ローカル発振器)システム210、PA(電力増幅器)220、及び送信アンテナ230を含む。受信器204は、受信器アンテナ240、LNA(低雑音増幅器)250、ミキサ260、並びに、同相(I)及び直交位相(Q)のADC(アナログ・デジタル変換器)270及び272(それぞれ)を含む。任意選択で、送信器202及び受信器204は、統合トランシーバとして具現化される。或る実施形態において、雑音軽減FMCWレーダシステム200の構成要素が、印刷回路基板上にアンテナを形成することによって、及び、印刷回路基板上に一つ又は複数の集積回路(その中に、LO210、送信器202、及び受信器204が形成される)を取り付けることによって、アセンブルされる。
【0026】
動作の間、LOシステム210は、PA220の入力を駆動させるのに好適な伝送周波数を有するLO出力信号を生成するように動作可能である。下記の図3A及び図3Bを参照して以下で説明するように、LOシステム210出力信号は、経時的に変動する周波数を有する。例えば、LOシステム210出力信号は、予め決められた値(例えば、77GHz)から周波数掃引を開始し、予め決められた持続時間(例えば、20μs)の間、一定の率(例えば、100MHz/μs)で増加する。LOシステム210出力は、周波数掃引が、予め決められた持続時間の各インタバルで周期的に反復されるように、最高周波数から最低周波数へと相対的に急速に遷移する。(様々な実施形態において、周波数掃引は、任意選択で、より高い周波数から始まり、最低周波数に達するまで徐々に下降し、最高周波数へと急速に戻る。)
【0027】
PA220は、LOシステム210から伝送周波数のLOシステム210出力信号を(存在する場合は、RF信号シフタ212を介して)受信するように動作可能である。これに応答して、PA220はLOシステム210出力信号を増幅する。増幅されたLO出力信号は送信アンテナ230に結合され、増幅されたLO出力信号は送信信号232として送信される。送信信号232は電波信号として送信され、電波信号は、(検出及び分析されることが所望される、一つ又は複数の様々な周辺オブジェクトによる電波信号の反射に加えて)受信器204の受信器アンテナ240に結合される。送信アンテナから受信アンテナへの結合は、それが受信器によって受信される信号内に存在することで、回路及びプロセッサが受信器出力を用いて、検出及び分析されることが所望される周辺オブジェクトの存在及び位置を検出することが困難になるため、通常は、意図的でなく、また望ましくない。例えば、送信アンテナ230と受信器アンテナ240との間の意図的でない及び/又は望ましくない電磁(EM)干渉又はEM結合などに起因して、受信された電波信号は、検出されるべき周辺オブジェクトによって反射される送信信号232の正確なコピーではない。
【0028】
LNA250は、受信器アンテナ240から受信電波信号を受信するように、及び、受信電波信号を増幅するように、動作可能である。増幅された受信電波信号は、ミキサ260の同相信号ミキサ(ミキサI)262及び直交位相信号ミキサ(ミキサQ)263に結合される。LOシステム210出力信号はまた、IQ(同相/直交位相)スプリッタモジュール261に結合され、これに応答してIQスプリッタモジュール261は、2つの信号LOI(ローカル発振器同相)及びLOQ(ローカル発振器直交)をつくる。LOI及びLOQの位相は90度離れており、LOシステム210出力信号と同じ周波数を有する。LOI及びLOQ信号は、同相信号ミキサ262及び直交位相信号ミキサ263によって、LNA出力信号とそれぞれミックスされる。
【0029】
同相信号ミキサ262及び直交位相信号ミキサ263の出力は、IF増幅器同相(IFA I)264及びIF増幅器直交位相(IFA Q)265の入力にそれぞれ結合される。同相信号ミキサ262及び直交位相信号ミキサ263は、LOシステム210によって生成されるLO出力信号に応答して増幅電波信号をダウンコンバートするように、及び、増幅電波信号に応答してベースバンド信号を生成するように、動作可能である。IF増幅器同相264及びIF増幅器直交位相265の出力は、ADC同相(ADC I)270及びADC直交位相(ADC Q)272の入力にそれぞれ結合される。ADC同相270及びADC直交位相272のデジタル出力は、一つ又は複数の後続のデジタル信号処理モジュールによって、複合ADC出力(又は単に、「ADC出力」)として、集合的に受信される。複合ADC出力は、ADC I出力+j×ADC Q出力として表され、この式でjは-1の平方根である。ADC I出力は複合ADC出力の実部を表し、ADC Qは複合ADC出力の虚部を表す。例えば、複合ADC出力は、雑音軽減FMCWレーダシステム200に対する、反射オブジェクトの存在並びに相対的な位置及び速度を検出するために、レーダFFTプロセッサ290によって「ダウンストリーム」に処理及び分析される。こうした処理には、任意選択で、反射レーダ信号において対象のオブジェクトの改良情報を有する時間ドメイン信号を生成するために、スペクトル差の変換を行なうことが含まれる。
【0030】
本明細書で説明するように、任意選択でハードウェア(例えば、アナログ)、ソフトウェア(例えば、デジタル)、及び/又はそれらの組み合わせで実装される、様々な実施形態が開示される。したがって、ミキサ260の出力並びにADC270及び272の出力は機能的に同様であり、ミキサ260の出力がADC270及び272の出力のアナログバージョンである点、並びに、ADC270及び272の出力がデジタル的にフィルタリングされている点が異なっている。これらの信号はどちらも、本明細書ではベースバンド信号と称され、一方、ミキサ260又はADC270及び272の出力における干渉体信号の周波数及び位相は、ベースバンド信号における干渉体オフセット周波数及び位相と称される。
【0031】
ADC(複合)出力は、デジタル信号シフタ284(存在し、イネーブルされる場合)を介してマルチプレクサ286に結合される。デジタル信号シフタ284は、周波数シフトω1(例えば、ωANT)、位相シフトφ1(例えば、φANT)の一方又はその両方である、信号シフト値を用いてプログラミングされる。デジタル信号シフタ284は、下記の式に従って、周波数及び位相シフトを行なうように動作可能であり、
y(n)=x(n)×e(jω1×n×Ts+φ1) (1)
式(1)において、y(n)は信号シフタ284出力であり、x(n)は(例えば、デジタル信号シフタ284の入力に結合されるような)ADC出力であり、Tsはサンプリングクロック期間(例えば、ADC I 270及びADC Q272のサンプリングレートの逆数)であり、nはサンプルインデックス(例えば、nは0、1、2、3、・・・である)を表す。したがって、デジタル信号シフタ284の出力は、実部及び虚部を伴う複合信号でもある(例えば、信号シフトされたADC I 270出力及び信号シフトされたADC Q272をそれぞれ有し、ここで復号出力信号は周波数及び/又は位相でシフトされる)。周波数シフトω1及び位相シフトφ1は、ラジアン/Hz及びラジアンで周波数及び位相を表し、デジタルワードの単位の大きさとシフト量の周波数(Hz)及び位相(ラジアン)との間の既知の関係を有するデジタルワード(例えば、2進数)として表される。
【0032】
マルチプレクサ286は、受信される複合信号の実部及び虚部のいずれか(又は、バイパスモードの場合などは両方)を選択するように、及び、受信された複合信号の選択部分をダウンストリーム処理のために転送するように、動作可能である。デジタル信号シフタ284が存在し、イネーブルされるとき、マルチプレクサ286の受信された複合信号は、デジタル信号シフタ284の出力である。デジタル信号シフタ284がイネーブルされないとき、受信された複合信号はADC(複合)出力である。
【0033】
受信された複合信号の実部又は虚部の選択は、システムにおける振幅雑音と位相雑音との比較に応答して成される。例えば、比較は、特定システムの設計後、及びデプロイメントの前(例えば、どの信号部分が主により多くの雑音を含むかを決定するために、特定システムが出荷前にテストされる場合)に成される。また、比較は、任意選択で、受信された複合信号のそれぞれの実部及び虚部の信号対雑音比を決定するために、レーダFFTプロセッサ290を用いることによって動的に(例えば、デプロイメント後)成される。
【0034】
マルチプレクサ286の選択入力は、システムにおける振幅雑音と位相雑音との比較に基づいて(例えば、マルチプレクサコントローラ292によって)駆動される。例えば、システムにおける振幅雑音が位相雑音よりも優勢であるとき、受信された複合信号の虚部がマルチプレクサ286によって転送されるように選択入力が駆動され、優勢でないときは、受信された複合信号の実部がマルチプレクサ286によって転送されるように選択入力が駆動される。マルチプレクサコントローラ292がバイパス信号をアサートするとき、マルチプレクサ286は複合信号の実部及び虚部の両方を渡すように動作可能である。
【0035】
例えば、マルチプレクサコントローラ292は、振幅雑音とシステムにおける雑音との電力の差が予め決められた閾値(例えば、およそ3dB)より少ないときなどに、バイパス信号をアサートするように動作可能である。予め決められた閾値がおよそ3dBであり、マルチプレクサ286がバイパスされていないとき(例えば、実部又は虚部のうちの選択される一方が転送されているとき)、優勢な雑音は(例えば、転送されないことによって)相対的により大きく抑制され、選択された部分において転送された雑音は、出力で3dBだけ効果的に増加される。マルチプレクサコントローラ292がバイパス信号をアサートするとき、信号シフタ212(存在する場合)、284(存在する場合)、及び288は、それらのそれぞれの入力信号が、いずれのプログラミングされた周波数シフト及び位相シフト制御にも関係なく、それらの出力信号として直接転送されるように、ディセーブルされる。
【0036】
マルチプレクサコントローラ292の出力は、信号シフタ288に転送され、信号シフタ288は、信号シフタ212及び/又は284によって成される如何なる初期信号シフトも、実質的に初期信号シフトに等しくこれに逆の訂正信号シフトを行なうことによって実質的に無効となる点を除いて、信号シフタ284と同様に動作する。信号シフタ288の出力は、レーダ装置周辺の反射オブジェクトの存在及び位置を識別するための動作の間、レーダFFTプロセッサ290に結合される。例えば、訂正信号シフトにより、レーダFFTプロセッサ290は、そうでなければ訂正信号シフトなしに信号シフトされる信号を処理する際にスキューされることになる、反射オブジェクトの存在及び位置を正しく識別できるようになる。同様に、オブジェクトまでの相対的距離の推定はオフセットを有し得、訂正信号シフトが成されない場合、オブジェクトの角度の推定は誤りとなり得る。
【0037】
ADC出力は、ADC出力信号における優勢な反射の周波数及び位相を推定するように動作可能な推定器282に結合される。優勢な反射は、アンテナ結合又は近傍オブジェクト反射(車両バンパー又は他の車両構成要素など)が原因で生じる最大信号リターン(例えば、反射)である。推定器282は、ADC出力のFFTを行なうこと、及び、どのFFT出力ビン(例えば、ピークビン)が優勢な反射の周波数に対応するかを決定することによって、優勢な反射を決定する。
【0038】
例えば、対応するFFT出力ビンは通常、或るレンジの周波数において最高の大きさを有する。近隣FFT出力ビンの大きさの補間が、任意選択で、ピークの場所をより正確に決定するため、並びに周波数及び位相の推定の精度を向上させるために成される。ピークFFTビンの周波数は、2×π×ピークビンのFFTインデックス×ADCサンプリングレートの量に従って決定され、この量はFFTのポイント数で除算される。ピークビンのFFTインデックスは、整数又は実数(ピークビンのFFTインデックスが補間される場合)であり、優勢な反射に対応するFFT出力ビンのインデックスを表す。位相は、ピークビンのFFTインデックスに関連付けられる複素数の角度を用いて推定される(例えば、ピークビンのFFT値が複素数a+jbであるとき、位相はa+jbの角度であり、ここでaは複素数の実部であり、bは複素数の虚部である)。
【0039】
優勢な反射が発生すると予測される周波数のレンジは、(a)FMCW勾配(例えば、図3A及び図3Bに関して以下で考察する)、(b)(例えば、バンパーからの)近傍オブジェクト反射の距離の予測レンジ、又は(例えば、アンテナ結合からの)アンテナ間隔、並びに、(c)空気中(例えば、およそ3×10m/s)の及びレーダシステム200装置自体(例えば、集積回路及び印刷回路基板ベースの構成要素が用いられる場合、およそ2×10)における電磁波の伝搬速度、に応答して決定される。距離の予測レンジ(例えば、優勢な反射について)は、任意選択で、車両(及び/又はレーダシステム)設計者によって推定器282に予めプログラミングされ、及び/又は、レーダシステム200によって動的に決定される。
【0040】
優勢な反射の予測周波数は、往復伝搬遅延とFMCW勾配との乗法積(例えば、乗算の結果)として決定される。往復伝搬遅延は、レーダシステム200内部の伝搬遅延の合計である。こうした伝搬遅延は、(a)PA220において遭遇する遅延、(b)PA220からTXアンテナ230への伝送線において遭遇する遅延、(c)RXアンテナ240からLNA250への伝送線において遭遇する遅延、(d)LNA250において遭遇する遅延、(e)LNA250からミキサ260への伝送線において遭遇する遅延、(f)ミキサ260からADC270及び272への伝送線において遭遇する遅延、並びに(g)追加の伝搬遅延、を含む。追加の伝搬遅延は、TXアンテナ対RXアンテナ結合遅延(アンテナ結合が優勢である場合)、又は、TXアンテナ230から近傍オブジェクトリフレクタ208(例えば、バンパー)へ、及び近傍オブジェクトリフレクタ208からRXアンテナ240への、伝搬遅延(例えば、バンパー反射が優勢である場合)である。往復伝搬遅延が既知のレンジを有するとき、優勢なリフレクタの予測周波数のレンジは、上記の説明に従って決定される。レーダシステム200の例において、優勢なリフレクタの予測周波数の予測レンジは、前述のように推定器282にプログラミングされる。
【0041】
推定器282によって決定される際の優勢な反射の周波数及び位相の推定は、それぞれ、ω及びφとして表される。ω及びφの負の値(-ω及び-φ)は、(単独で又は組み合わせて)信号シフタ212(存在する場合)及び284(存在する場合)の(いずれか又は両方の)プログラミングのために用いられる。ω及びφの正の値(例えば、推定される位相及び周波数シフト)は、(例えば、信号シフタ212及び/又は信号シフタ284によって成される初期信号シフトを補償するために)信号シフタ288にプログラミングされる。推定器282によって決定される際の優勢な反射の周波数及び位相の推定は、任意選択で、初期較正ルーチンにおいて(例えば、通常動作の前に)成され、相対的にわずかな「チャープ」が伝送され、その後、推定器282(任意選択で、レーダFFTプロセッサ290内に組み込まれる)によって処理される。
【0042】
「送信側」信号シフトの実施形態において、LOシステム210出力信号は、任意選択のアナログ(RF)信号シフタ212を介して(例えば、信号シフタ212がRF信号シフトを行なうように動作可能であるように)PA220に結合される。アナログ信号シフタ212は、下記の式に従って、LOシステム210出力信号に対して、プログラミングされた周波数シフト(ω1)及び位相シフト(φ1)を行なうように動作可能であり、
y(t)=x(t)×e(j×2π×ω1×t+φ1) (2)
式(2)において、y(t)は、アナログ信号シフタ212の出力であり、x(t)は、アナログ信号シフタ212に入力されるLOシステム210出力信号であり、tは時間である。
【0043】
一実施形態において、アナログ信号シフタ212はアナログ信号シフト制御に応答する。信号シフトは、(a)IQミキサを用いて(例えば、LO210において)LO I及びLO Q信号(これらは90度離れている)を生成すること、(b)LO I信号を値cos(θ2)と、及びLO Q信号を値sin(θ2)とそれぞれ乗算すること、並びに、(c)信号シフタの出力を生成するために2つのそれぞれの積を加算すること、によって制御される。θ2の値は、デジタルワードの単位と位相(ラジアン)との間に既知の関係を有するデジタルワード(2進数)を用いて表される位相(ラジアン)量であり、量(2π×ω1×t+φ1)に等しくなるようにデジタル的に生成される。別の実施形態において、プログラム可能遅延を伴う伝送線が、位相量(2π×ω1×t+φ1)に比例するデジタル制御信号を用いて遅延を変更するように動作可能である。
【0044】
送信側信号シフトの実施形態において、ω及びφの負の値(-ω及び-φ)は、アナログ信号シフタ212にプログラミングされ、一方、ω及びφの正の値は信号シフタ282にプログラミングされる。ω及びφの負の値全体がアナログ信号シフタ212にプログラミングされるとき、信号シフタ284(例えば、ADC I 270及びADC Q272の後)はバイパスされて、信号シフタ284は如何なる信号シフトも行なわないことになる。
【0045】
「受信側」信号シフトの実施形態において、LOシステム210出力信号は、任意選択のアナログ(RF)信号シフタ212をバイパスし、PA220に結合される。デジタル信号シフタ284は、ω及びφの負の値(-ω及び-φ)を用いてプログラミングされ、一方、ω及びφの正の値は、信号シフタ288にプログラミングされる。ω及びφの負の値全体がデジタル信号シフタ284にプログラミングされるとき、アナログ(RF)信号シフタ212はバイパスされ、信号シフタ212は如何なる信号シフトも行なわないことになる。
【0046】
「送信側及び受信側」の実施形態において、初期位相及び周波数シフトの一部(例えば、-ω及び-φ)が送信側信号シフタ212によってシフトされ、残りの部分は受信側信号シフタ284によってシフトされる。ω及びφの正の値は、信号シフタ288にプログラミングされる。
【0047】
上記の実施形態の各々において、信号シフタ284は任意選択でバイパスされる(そのため、信号シフタ284出力は信号シフタ284入力と実質的に同様となる)。信号シフタ284が任意選択でバイパスされるとき、ω及びφの正の値は入力情報としてレーダFFTプロセッサ290に提供され、そのため、FETプロセッサが初期信号シフトを補償するように動作可能となる。
【0048】
例えば、レーダFFTプロセッサ290は、入力情報に基づいてFFT出力を適切に解釈するように動作可能である。例えば、レーダFFTプロセッサ290は、FFT出力アレイのインデックスを、FFT入力サンプリングレートとωとの乗法積に比例する量だけシフトすることによって、FFTプロセッサに送信された選択されたデータのFFT(例えば、1次元)の出力を解釈するように動作可能である。レーダFFTプロセッサ290はまた、FFT出力を、eのj掛けるφ量の累乗で乗算することによって、FFTの出力を解釈するように動作可能である。
【0049】
送信側信号シフトの一実施形態が、「実」ミキサ(例えば、直交位相IQミキサと比較した場合)であるミキサ260を含む。したがって、送信側信号シフトの実施形態にはミキサQ263は無く、IQスプリッタ261の入力は、ミキサI 262の出力に直接転送される。したがって、IF増幅器及びフィルタ(IFA Q)265並びにADC Q272も無い。ADC I 270の出力は、FFTプロセッサによって直接処理される。こうした下位実施形態において、信号シフタ284、マルチプレクサ286、及び信号シフタ288は無いか、又はバイパスモードで動作し、ADC I 270の出力をFFTプロセッサ290に直接転送する。送信側信号シフトの実施形態は、通常、受信器内の構成要素が少ないことに起因して、必然的に製造コストを減少させる。送信器における信号シフタ212及び信号シフタ299のいずれも、通常、同時にアクティブであり、干渉体信号に関連付けられる振幅及び位相の雑音の一方を軽減するように動作可能である。
【0050】
図3Aは、実施形態に従った、雑音軽減されたFMCWレーダシステム信号の周波数波形図である。概して説明すると、波形図300は、送信信号302の周波数情報及び反射信号304の周波数情報を図示する波形を含む。送信信号302は、レーダ送信器(雑音軽減FMCWレーダシステム200の送信器202など)によって送信される信号である。受信信号304は、レーダ受信器(雑音軽減FMCWレーダシステム200の受信器204など)によって受信される信号である。
【0051】
送信信号302の周波数は、関数f(t)によって表される。送信信号302は、送信信号302の周波数が低周波数から高周波数へ(例えば、正のFM勾配を有する)徐々に上昇する鋸歯波形に従って周波数変調される。送信信号302が低周波数から高周波数まで上昇する時間期間(例えば、鋸歯波形の時間のパルス幅)は、T330によって表される。したがって、各反射信号304はベースバンド信号(例えば、ミキサ260の出力)に対応し、その周波数は、反射オブジェクトの距離及び選択されたFM勾配に比例する。
【0052】
反射信号304は送信信号302の反射であり、反射は、理想的には、無線信号を反射する対象のオブジェクト(例えば、ターゲット、オブジェクト、ハザード、及びナビゲーション構造)によって引き起こされる。レーダ受信器(例えば、受信器220)が、反射信号304を受信し、対象のオブジェクトに関係する情報を抽出するために反射信号304を処理する。
【0053】
反射信号304は、送信信号302に対して遅延310を有する。遅延310は、
=2R/c (3)
であり、式(3)において、tdは遅延310であり、Rは対象のオブジェクトに対するレンジであり、cは送信信号302及び反射信号304の速度の平均である。周波数差320は、或るリフレクタに対応する送信信号と受信信号との間の周波数差を表し、遅延310(例えば、式(3)のtd)とリフレクタ対レーダの相対的速度に関連付けられるドップラー周波数との合計である。受信信号はまた、経路損失(明示的に図示せず)に起因する送信信号より減少した振幅を有する。したがって、図3Aは、持続時間がT330である1つのFMCWチャープに対する1つのリフレクタに関連付けられる送信信号及び受信信号の周波数を示す。
【0054】
図3Bは、実施形態に従ったFMCWレーダシステム信号の周期性及び周波数レンジの周波数波形図である。概して説明すると、波形図300は送信信号306を含む。送信信号306は、レーダ送信器(雑音軽減FMCWレーダシステム200の送信器202など)によって送信される信号である。図3Bに示される例示波形において、送信信号は、およそ100マイクロ秒(μs)の期間にわたって80GHzから81GHzまで循環する(例えば、変調する)瞬時周波数を有する。瞬時周波数は、およそ10MHz/μsの勾配で増加し、より急な勾配で減少する(FMCWシステムは、例えば200μs及び300μsから始まる次のチャープに備えるために減少の間、この時間を用いる)。様々な実施形態において、瞬時周波数は、任意選択で、0.1から100MHz/μsまでの値から選択される増加勾配で、76GHzから77GHz、77GHzから81GHz、又は24から24.5GHz(これらのレンジのそれぞれのサブバンドのうちのいずれかを含む)の間を循環する。
【0055】
図4は、実施形態に従った雑音軽減FMCWレーダシステム信号の振幅波形図である。概して説明すると、波形図400は、反射された送信信号404及び結合される雑音信号402を含む、ADC出力での受信信号のFFTスペクトルを示す。FFTスペクトルのx軸はADC出力の周波数であり、y軸はその周波数でのFFT値である。FMCWレーダにおいて、x軸(ADC出力周波数)は、レーダと反射オブジェクトとの間の相対的距離にも比例する。したがって、x軸は、ADC出力周波数に関して、又は相対的オブジェクト距離に関して、解釈され得る。
【0056】
例えば、反射された送信信号404は、対象の検出されるオブジェクト、すなわち5メートルにあるオブジェクト430、10メートルにあるオブジェクト440、及び200メートルにあるオブジェクト450についてのレンジ情報を示す。一般に、検出されたオブジェクトが有するレンジが高いほど、結果としてFFTスペクトルを生じさせる信号振幅は低い(一方で、反射された送信信号404の雑音フロアは、遠くの低信号振幅オブジェクトの検出を困難にする)。例えば、開示される雑音軽減FMCWレーダシステムにおいて、優勢なリフレクタに関連付けられる優勢な雑音は開示される方法及び装置によって軽減されるため、雑音フロアはより低い。したがって、雑音軽減FMCWレーダ138の感度が上昇することにより、所与の送信信号について増加されたレンジでの対象オブジェクトの検出が可能となる。
【0057】
結合された雑音信号402は、送信アンテナ(例えば、230)から受信アンテナ(例えば、240)への直接結合が原因で生じる低周波数トーン410を含む。例えば、直接結合はアンテナ結合が原因で生じる。相対的に多くの量のこうしたアンテナ結合は、実質的に強い第1の低周波数(例えば、77GHzレーダシステムにおいて、数KHz)部分を有するベースバンド信号をつくる。同様に、近隣オブジェクト(例えば、しばしば、自動車レーダシステムの直前に取り付けられるカーバンパー)からの強い望ましくない反射が、実質的に強い第2の低周波数(例えば、数十KHz)部分を有するベースバンド信号をつくる。低周波数トーン410及びその他の周波数に関連付けられる雑音が、スカート420によって示される。スカート420は周波数ドメインにおいて「スカート」形状を有し、このドメインでは、より低い周波数での雑音はより高い周波数での雑音より大きい(より高い周波数での雑音は、より低い周波数での雑音より相対的に低いが、より高い周波数での雑音は、受信器の熱雑音より相対的に高い可能性がある)。
【0058】
スカート(α(t))420は、PA(例えば、220)及びLNA(例えば、250)において、ピンク雑音(例えば、フリッカ雑音)のアップコンバージョンの影響を実質的に受ける。例えば、振幅雑音α(t)は、送信及び受信されるRF(無線周波数)信号のエンベロープにおける摂動を指す。
【0059】
非相関位相雑音(φu(t))スカートは、第1の信号経路(LOシステム210からミキサ260へと延在する)と第2の信号経路(LOシステム210から送信アンテナ230へ、反射信号の経路においてLNA250を介してミキサ260まで延在する)との間で共通ではない位相雑音である。非相関位相雑音は、それらのそれぞれの出力を生成するときLO信号のゼロ交差時間インスタンスに対して、送信器と受信器との間の非理想的バッファによって導入される摂動に起因する雑音を含む。これに対して、理想的バッファは入力信号の正確な複製である出力信号をつくり、一定の遅延は例外の可能性がある。
【0060】
非相関位相雑音スカートは、レーダミキサ260によって本来完全には抑制されないLOシステム216において生成される位相雑音の一部を付加的に含む。他の類似タイプのミキサと同様に、ミキサ260は本来、LOシステム612において生成される位相雑音に対して高域フィルタタイプの抑制を提供し、高域フィルタコーナー周波数は、送信器によるレーダ信号の生成から外部オブジェクトによる反射後のミキサでのその受信までの、又は、送信アンテナから受信アンテナへの電磁結合を介する、時間遅延に反比例する。「位相雑音」又は「位相雑音スカート」という用語は、一般に、雑音軽減FMCWレーダの位相雑音の非相関部分を指す。
【0061】
非相関位相雑音φ(t)及びスカート(α(t))は、下記の式に従って、LNA250を介してミキサ260で受信する信号における受信器雑音レベルに実質的に影響を与え、
式(4)において、Sは、リフレクタ又は干渉体に対応するLNA250で受信される信号であり、Aは、理想的な(振幅雑音がない)場合の反射された信号の振幅を表す定数であり、α(t)は、PA220及びLNA250において導入される乗法振幅雑音(AN)(乗法と呼ぶのは、理想的信号と乗算するためである)であり、fは、搬送波周波数(PA220を介して、外部オブジェクトからの反射又はアンテナ結合を介して、及びLNA250を介して受信されるときは、LOシステム出力周波数)であり、PNは位相雑音(相関及び非相関の両方)であり、φ(t)は相関位相雑音であり、φ(t)は非相関位相雑音である。相関位相雑音φ(t)はミキサ260出力で実質的に減少し、非相関位相雑音φ(t)はミキサ260の出力で位相雑音の主な源として残る。
【0062】
送信波に対する受信された反射の遅延性質に起因して、ベースバンド信号(例えば、ミキサ260の出力で生成される信号)は周波数に対して「片側」(例えば、正)である。以下で論じるように、雑音軽減FMCWレーダ138のレーダFFTプロセッサ290は、ベースバンド信号の正と負の周波数を区別するように、及び周波数シフト(例えば、周波数シフト及び位相回転、集合的に「回転」又は「逆回転(de-rotation)」)を行なうように、動作可能である。
【0063】
図5は、実施形態に従った、雑音軽減FMCWレーダシステム信号のミキサ出力スペクトル図である。概して説明すると、スペクトル図500は負の周波数レンジ502及び正の周波数レンジ504を含む。エンベロープ520は、負の周波数レンジ502及び正の周波数レンジ504にわたる入力ベースバンド信号のパワーの相対的に最高の偏位を表す。エンベロープ520は、優勢干渉体522、振幅漏れ負周波数部分524、及び振幅漏れ正周波数部分526を含む。
【0064】
振幅漏れ負周波数部分524は、主に振幅雑音及び非相関位相雑音を含み、望ましいオブジェクトトーン(例えば、一つ又は複数の望ましいオブジェクトを表す逆回転された信号における周波数)は無い。例えば、開示される方法及び装置は、優勢干渉体522の左及び右の周波数側で、優勢干渉体522に関連付けられる雑音が、対称であるか又は複素共役対称である(例えば、スペクトルの左側の雑音とスペクトルの右側の雑音とは、位相雑音の場合は互いに複素共役であるため、振幅雑音の場合は同じである)という特性を利用するように動作可能である。
【0065】
例えば、優勢干渉体(例えば、反射信号スペクトルエンベロープの最高部分)522は、低周波数トーン410からの周波数成分及びスカート420の漸減成分を含む。優勢干渉体520は、DC(例えば、「ゼロ」)周波数ポイントでy軸から周波数オフセット530だけオフセットされる(例えば、周波数分離を有する)。周波数オフセット530は干渉体オフセット周波数とも称され、位相オフセット(例えば、干渉体オフセット周波数の正弦波に対する干渉信号の位相)を有する。上記で考察したように、周波数及び位相オフセットはFMCW勾配及び干渉体往復遅延に依存する。
【0066】
前述の式(4)に従い、優勢干渉体に対応するミキサ(例えば、260)でのビート信号(例えば、ベースバンド出力信号)は、下記の形式であり、
式(5)において、r(t)は、優勢干渉体に対応するミキサ出力でのビート信号であり、θintは、優勢干渉体の位相(干渉体オフセット位相)であり、ωintは、優勢干渉体の周波数(干渉体オフセット周波数)であり、(t)は時間であり、ANは、優勢干渉体に関連付けられるPA220及びLNA250において導入される振幅雑音であり、PNは、優勢干渉体に関連付けられるPA220及びLNA250において導入される位相雑音である。量θint及びωintは、FMCW勾配、開始周波数、及び干渉体までの往復距離に応答して、瞬時に変動する。
【0067】
位相シフトθintの実際の値は、推定器282によって決定され、その後、(例えば、初期信号シフタ212及び/又は284の動作によって)実質的にすべての雑音を、信号シフタ284の出力で、実質的に、実アーム(例えば、Iチェーン信号)又は虚アーム(例えば、Qチェーン信号)内に完全に誘導させるために用いられる。したがって、優勢雑音を実質的に欠いた信号の処理を可能にするために、虚アーム及び実アームの一方が選択される。例えば、優勢雑音は、優勢干渉体に関連付けられる非相関の位相雑音又は振幅雑音のうちの大きい方(例えば、複数の干渉体のうちの最大であり、車体反射及び/又はTXアンテナ対RXアンテナ結合であり得る)である。
【0068】
ビート信号が優勢干渉体520の周波数及び位相によって逆回転されるとき、結果として生じる信号(例えば、逆回転ベースバンド信号)は、以下のように、実部において優勢干渉体に関連付けられる振幅雑音、及び、主に虚部において優勢干渉体に関連付けられる位相雑音を有し、
式(6)において、rderot(t)はミキサ出力でのビート信号である(他の変数は、式(5)について上記で述べた変数と一致する)。
【0069】
レーダFFTプロセッサ290は、受信信号をオフセット530の量(例えば、優勢干渉体520の周波数及び位相)だけ信号シフト(例えば、「逆回転」)するように動作可能であり、逆回転信号をつくるように動作可能である。つくられた逆回転信号は、DCの周辺にスペクトルベースバンドバージョンの優勢リフレクタ部分を有することを中心として、逆回転信号の振幅雑音が、振幅漏れ正周波数部分526(例えば、実部)及び振幅漏れ負周波数部分524(虚部)に含まれるようになっている。したがって、信号シフトは、任意選択で、(a)信号シフタ212及び/又は284(信号シフタ288はバイパスされる)、又は(b)FFTプロセッサ290(信号シフタ212、284、及び288はバイパスされる)によって、成される。
【0070】
優勢干渉体520に対応する逆回転ベースバンド信号の振幅及び位相雑音の各部分は、対称(又は「共役対称」)スペクトルを有する。これに対して、実際のオブジェクト反射の信号は、片側周波数にのみ対応する(例えば、FM勾配が正であるか負であるかに従う)。レーダFFTプロセッサ290は、逆回転ベースバンド信号の振幅雑音及び位相雑音をそれぞれ分析するように動作可能である。
【0071】
例えば、分析は、逆回転ベースバンド信号において振幅雑音又は位相雑音のいずれが優勢であるかを判別することを含む。少なくとも1つの例において、レーダFFTプロセッサ290が、振幅雑音が優勢であるものと判別した場合、対象の一つ又は複数のオブジェクト550を検出及び特定するために、逆回転ベースバンド信号の虚部のみが(例えば、レーダFFTプロセッサ290によって)更に処理される。レーダFFTプロセッサ290が、位相雑音が優勢であるものと判別した場合、対象の一つ又は複数のオブジェクト550を検出及び特定するために、実部のみが(例えば、レーダFFTプロセッサ290によって)更に処理される。(図2に関して上記で考察したように、分析は、任意選択で、特定の設計について成され、分析の結果は、システムのデプロイメントの前にデバイス構成要素にプログラミングされる。)
【0072】
したがって、振幅雑音又は非相関位相雑音のいずれか(例えば、より高いものと決定されるいずれか)を、3dB SNR(信号対雑音比)の損失という「犠牲」(例えば、性能ペナルティ)を払って軽減することができる。3dBの損失は、逆回転ベースバンド信号の実又は虚の成分のみの減算の結果として生じる。式(2)に関して上記で考察したように、位相雑音は、(例えば、受信)ミキサの2つの入力間で非相関である。受信されたベースバンド信号に対して逆回転を行なう実施形態は、「受信側」実施形態と称される。
【0073】
他の実施形態において、「送信側」雑音軽減FMCWレーダが、送信信号を周波数及び位相シフトするように動作可能な送信器を含む。周波数シフト及び位相シフト信号(例えば、これは相関位相雑音を含む)は、受信器ミキサの入力に結合される。送信側雑音軽減FMCWレーダにおいて、送信波の位相は、開始周波数及び開始位相を有するFM勾配を用いて継続的に変調されるため、優勢干渉体520が受信器ミキサ出力信号スペクトルのDCポイントに存することになる。
【0074】
したがって、送信側雑音軽減FMCWレーダは、受信器ミキサ出力で逆回転信号を生成する。送信側雑音軽減FMCWレーダ処理は、逆回転信号の受信側雑音軽減FMCW処理に類似する。例えば、開示される逆回転信号の逆回転及び処理は、振幅雑音又は非相関位相雑音のいずれかが優勢であり、及び実質的に受信器雑音フロアよりも上である、1つの優勢干渉体520を有する様々な実施形態において少なくとも適用可能である。
【0075】
図6は、例示の実施形態に従ったソフトウェア支援信号シフトを用いるプロセスフローチャートである。ソフトウェア支援信号シフトを行なうように動作可能な実施形態において、レーダ装置は、図2を参照して説明されたすべての構成要素を必要とはしない。例えば、ソフトウェアがデジタルドメインにおいて信号シフトを行なうように動作可能な実施形態において、信号シフタ212は無く、ADC(例えば、270及び272)出力はFFTプロセッサ290に直接進む。こうしたシステムにおいて、FFTプロセッサのソフトウェア又はファームウェアは、プロセスフロー600に従って雑音軽減を達成するような方式でコード化される。(これに対して、ハードウェアが信号シフトを行なうように動作可能である実施形態を、図8に関して後に説明する。)
【0076】
プロセスフロー600は端部602から始まり、プロセスフローは動作610に進む。動作610において、優勢干渉体の周波数及び位相が決定される。まず、FMCWチャープが送信され、優勢干渉体を含むリターン信号が、受信され、推定器282について上記で説明した処理と同様に処理される。優勢干渉体の周波数及び位相は、どのFFT出力ビン(例えば、ピークビン)が優勢反射の周波数に対応するかを決定するために、ADC出力のFFTを行なうことによって決定される。優勢干渉体に対応するFFT出力ビンの値は、Mとして示され(Mは、任意選択で、優勢干渉体周波数が近隣FFT値の補間を用いて実質的に正確に決定されるときの分数である)、優勢干渉体の位相の値はPとして示される。優勢干渉の周波数及び位相を見つけるための処理が主として、ソフトウェア及び/又はファームウェアにおいてコード化される実施形態において、処理は推定器282によって成される処理に類似する。図8を参照して以下で説明するように、ハードウェア支援信号シフトの実施形態において優勢干渉体の周波数及び位相を見つけるために、こういった動作は、ハードウェア実施形態におけるハードウェア回路及びブロックによって成される(ハードウェア支援及びソフトウェア支援の信号シフトの様々な組み合わせが可能である)。プログラムフローは動作620に進む。
【0077】
動作620において、FMCWチャープが送信され、優勢干渉体とレーダ装置周辺のオブジェクトからの反射に対応する信号とを含むリターン信号が、受信及び処理される。例えば、リターン信号に応答してADC出力のFFT(高速フーリエ変換)が決定され、ここで、FFT出力シーケンスはX[k]で表され、kは、FFTのFFT出力ビンインデックス又は周波数サンプルインデックスを表し、X[k]は、k番目のFFT出力ビンインデックスに対応する複合FFTシーケンスの値を表す。FFT出力シーケンスは、新しいシーケンスY[k]を決定するためにスペクトル変換され、Y[k]=X[k-M]×exp(-j×P)であり、Mは、動作610において決定されるような、干渉体ビンとも称される、優勢干渉体に対応するFFT出力ビンインデックス(又は周波数サンプルインデックス)である。プログラムフローは動作630に進む。
【0078】
動作630において、イメージスペクトル減算動作が成される。優勢干渉体に関連付けられる振幅及び非相関雑音は実量であり、したがって、共役対称スペクトルを有する。イメージスペクトル減算において、周波数スペクトルの正の部分からの雑音が、周波数スペクトルの負の部分の雑音推定に応答して抑制されるため、所望のオブジェクトトーンが、減算後のスペクトル内に主に存在する(及び/又は、実質的に拡張される)ことになる。したがって、システムにおいて振幅雑音が優勢であるとき、新しいシーケンスZ[k]が決定され、Z[k]=(Y[k]-Y’[-k])/2であり、この式で、Y’はYシーケンスの複素共役を表し、シーケンスZは、0(ゼロ)周波数又は0ビン周辺のYの「共役奇成分」であると言われる。システムにおいて非相関位相雑音が優勢である場合、新しいシーケンスZ[k]は、Z[k]=(Y[k]+Y’[-k])/2として決定され、シーケンスZは、0周波数又は0ビン周辺のYの「共役偶成分」であると言われる。プログラムフローは動作640に進む。
【0079】
動作620の一部として成されるスペクトル変換、及び動作630において成されるイメージスペクトル減算は、雑音抑制の一実施形態である。一般に、たとえこうしたスペクトル変換を行なわなくとも、任意選択の否定ルーチンを行なうことなどによって、スペクトル変換の結果は達成可能である。
【0080】
システムにおいて振幅雑音が優勢であるとき、新しいシーケンスZ[k]は、任意選択の否定ルーチンによって、Z[k]=exp(-j×P)×(Y[k]-Y’[M-(k-M)])/2として決定される。こうした処理は、「干渉体ビンM周辺の共役奇成分を抽出すること」と称される。システムにおいて非相関位相雑音が優勢である場合において、新しいシーケンスZ[k]は、任意選択の否定ルーチンによって、Z[k]=exp(-j×P)×(Y[k]+Y’[M-(k-M)])/2として決定される。この処理は、「干渉体ビンM周辺の共役偶成分を抽出すること」と称される。例えば、抽出された値(シーケンスZ[k])は、抑制された量の振幅雑音又は非相関位相雑音を有し、これによって従来のレーダ処理に比べて改善された反射オブジェクトの識別が可能になる。
【0081】
動作640において、動作630において取得されたシーケンスZ[k]は、周辺オブジェクトの存在及び相対的位置を決定するために、更なる従来のFMCWレーダ信号処理に用いられる。一実施形態において、動作620及び630は、複数(例えば、L)回反復され、これらすべての回から取得される複数(L個)のシーケンス(Z[k])が、L個のZ[0]のシーケンスのFFT、L個のZ[1]のシーケンスのFFT、L個のZ[2]のシーケンスのFFT、・・・を行なうこと、並びに、周辺オブジェクトの存在、相対的位置、及び速度を決定するためにこれらのFFTの出力を処理することなどの、従来のレーダ信号処理技法を用いて、集合的に処理される。決定された情報は、安全機能(例えば、ハザードが最終閾値を越える場合の制動)、ロボット機械の制御(例えば、ドローンの操縦又はロボットアームの制御)、及びその他のこうした時空間制御タスクを行なうために有用である。レーダFFTプロセッサは、任意選択で、反射オブジェクトの決定された情報に応答して、こうした制御コマンドを生成するように動作可能である。
【0082】
異なる実施形態において、Z[p]の大きさのセットよりも著しく大きいZ[k]の大きさを有する、インデックスk(FFTインデックスとも称される)が識別され、pはk付近のインデックスである。知覚されるオブジェクトまでの距離は、識別されたインデックスに対応する周波数に光速(3×10m/s)を掛けること、及び、この積を送信信号の周波数の変化率(FMCW信号の周波数勾配)の2倍で割ることによって、決定される。例えば、知覚されたオブジェクトの距離情報は、任意選択で、ロボット車両を加速する、減速する、又はロボット車両のため定められた元のコースから逸脱させるように、ロボット車両を制御するプロセッサによって用いられる。プログラムフローは、任意選択で、動作650又は端部699に進む。
【0083】
動作650において、対象オブジェクトの距離情報は、任意選択で、ユーザがオブジェクトの存在及びオブジェクトのレンジを速く決定し得るように、レンジ情報を有するように表示される。プログラムフローは端部699に進み、ここでプログラムフローは終了する。
【0084】
図7は、実施形態に従った、雑音軽減FMCWレーダシステムのシミュレーションの、入力ベースバンド信号及び処理されたベースバンド信号の周波数波形図である。概して説明すると、波形図700は、入力ベースバンド信号702、及び処理された(拡張された)ベースバンド信号704を含む。入力ベースバンド信号702は優勢干渉体710を含む。例えば、優勢干渉体710の後、エネルギーが弱まり、入力ベースバンド信号は主に35dB(デシベル)から20dB辺りに明らかな雑音レベルを有し、30dB辺りに明らかな平均雑音レベルを有する。
【0085】
本明細書で開示する開示された雑音軽減技法に従って入力ベースバンド信号702を処理した後、処理されたベースバンド信号704は、入力ベースバンド信号702の雑音レベルより実質的に低い雑音レベルを有する。例えば、入力ベースバンド信号702の対象オブジェクトのインジケーション720、730、及び740は、各々、50dB辺りに信号ピークを有する。これに対して、処理されたベースバンド信号704は、0(ゼロ)dB辺りに最大値を有し、主に-10dB(デシベル)から-25dB辺りに明らかな雑音レベルを有し、-20dB辺りに明らかな平均雑音レベルを有する。
【0086】
例示の一実施形態が、様々なパラメータの値に従って動作する。例えば、FMCW波形周波数は、40マイクロ秒の持続期間(例えば、「チャープ」又は「FMCWチャープ」)にわたって77GHzから81GHzまで増加し、100MHz/マイクロ秒の勾配をもたらす。送信出力パワーは、およそ10dBmからおよそ13dBmのパワーを有し、その結果、およそ-10dBmの反射又はアンテナ結合となる。受信器雑音は、およそ11dBmであり、その結果、およそ-163dBm/Hzの熱雑音レベルとなる。受信器位相雑音は、およそ-147dBc/Hzである。アンテナ結合干渉は100ピコ秒の伝搬遅延を有し、その結果、ADC出力における10KHzの干渉周波数(例えば、干渉体信号)となる。この例示の実施形態において、信号シフタ284は-10KHz周波数シフトでプログラミングされ、信号シフタ288は10KHz周波数シフトでプログラミングされる。代替として、信号シフタ212及び284が、各々-5KHz周波数シフトでプログラミングされ、信号シフタ288が10KHz周波数シフトでプログラミングされる。車両シャーシの反射が原因で生じる干渉は、(シャーシからレーダアンテナまでの距離が5cmの場合)333ピコ秒の往復伝搬遅延を有する。したがって、ADC出力において33.33KHzの干渉周波数が決定される。
【0087】
様々な実施形態において、アンテナ結合は、車両シャーシ反射と比較してより優勢(又はより劣勢)であり得る。優勢干渉体のタイプは、様々な車両上のレーダ装置の設計、製造、及び/又はテストの間、(例えば、オリジナルの機器製造として開示されるシステムをインストールする車両製造によって)通常は既知である(及び/又は決定される)。様々な実施形態において、LNA及びPA回路において導入される振幅雑音は、非相関位相雑音より優勢(又は劣勢)である。特定のレーダ装置についての振幅雑音の大きさは、そのレーダ装置の設計、製造、及び/又はテストの間、通常は既知である。
【0088】
図8は、例示の実施形態に従ったハードウェア支援信号シフトを用いるプロセスフローチャートである。プロセスフローは端部802で始まり、プロセスフローは動作810に進む。動作810において、優勢干渉体の周波数及び位相が推定される。例えば、動作810は、すべての信号シフタ212、284、288が初期的にバイパスされる較正ルーチンにおいて用いられる。信号シフタ212、284、288がバイパスされた後、FMCWチャープが送信され、優勢干渉体を含むリターン信号が受信される。推定器282は、優勢干渉体の周波数及び位相を(ADC出力で)決定するため、受信したリターン信号を処理する。推定器282は、信号シフタ212、284、288に適用するために周波数及び位相シフト制御を(例えば、優勢干渉体の周波数及び位相の推定に基づいて)計算する。プログラムフローはステップ820に進む。
【0089】
動作820において、信号シフタはプログラミングされる。例えば、推定器282は、信号シフタ212及び284上にプログラミングされるシフトの合計が優勢干渉体の負の周波数及び位相に等しくなるような方式で、及び、信号シフタ212及び284上にプログラミングされるシフトの合計が288上にプログラミングされる負のシフトに等しくなるような方式で、信号シフタ212、284、288をプログラミングする。プログラムフローはステップ830に進む。
【0090】
動作830において、最低雑音レベルを提供する構成が決定される。例えば、3つの構成がテストされ、マルチプレクサ292は、(a)実部のみを転送するように、(b)虚部のみを転送するように、及び(c)複合入力(実部及び虚部の両方)を転送するように、マルチプレクサ286を構成する。こうした各構成について、FMCWチャープが送信され、優勢干渉体を含むリターン信号が受信される。FFTプロセッサ290は、(各構成について)受信信号を処理し、信号シフタ288の出力の雑音パワーレベルを推定して、どの構成が最低の雑音パワーレベルを提供するかを決定する。様々な実施形態において、情報(及び信号シフト情報)はマルチプレクサコントローラ292内に埋め込まれるため、レーダの設計及び製造段階の間に最適な構成が決定された場合、動作830は成されない。プログラムフローはステップ840に進む。
【0091】
動作840において、システムは、最適な構成に関する情報を用いて構成される。例えば、マルチプレクサコントローラ292は、動作830において(或いは、設計及び/又は製造段階において)決定された構成でマルチプレクサをプログラミングする。プログラムフローはステップ850に進む。
【0092】
動作850において、動作モードが入力される。例えば、複数のFMCWチャープが送信及び受信され、FFTプロセッサ290の入力における信号は、反射オブジェクトの存在、位置、及び速度を経時的に決定するために、FFTプロセッサ290によって反復的に処理される。決定された情報は、安全機能(例えば、ハザードが最終閾値を越える場合の制動)、ロボット機械の制御(例えば、ドローンの操縦又はロボットアームの制御)、及びその他のこうした時空間制御タスクを行なうために有用である。レーダFFTプロセッサは、任意選択で、反射オブジェクトの決定された情報に応答して、こうした制御コマンドを生成するように動作可能である。プログラムフローはステップ899に進み、ここでプログラムフローは終了する。
【0093】
受信器が、(例えば、図2に関して上記で考察したような)(例えば、直交位相)ミキサQ263、IFA Q265、及びADC Q272を含まない実施形態において、動作820及び830はわずかに改変される。例えば、(構成が次々に評価されるように)送信器における信号シフタをプログラミングするために、信号シフトの様々な値のセットが用いられる。FFTプロセッサ290は、どの構成がADC I 270の出力において最低の雑音レベルを提供するかを決定するために用いられる。最低の雑音レベルを提供する構成は、最適構成として選択され、選択された最適構成として動作840に転送される。
【0094】
上記で考察したように、「信号シフタ212」という用語は、便宜上(例えば、信号シフタ212及び299のいずれか又は両方について)総称的に用いられる。信号シフタ212の代わりに(例えば、信号シフタ299が無いか又はバイパスされる間に、信号シフタ212に対して或る周波数シフト及び位相シフトをプログラミングする代わりに)信号シフタ299が用いられる実施形態において、負の周波数シフト及び位相シフトが、信号シフタ299内にプログラミングされる(信号シフタ212は無いか又はバイパスされる)。周波数シフト値と位相シフト値との間の負の関係を用いて、2つの信号シフタが構成される(例えば、2つの信号シフタが、受信器のミキサ260につながる異なる経路内に存在するためなど)。
【0095】
本明細書で説明する様々な実施形態において、ADC出力上で動作する回路(例えば、デジタル回路)は、信号処理機能を行なうように、及びそれらの出力をプロセッサに転送するように示されており、ファームウェア又はソフトウェアコードを用いてアルゴリズムを実行するように説明される。デジタル回路によって成される信号処理機能は、プロセッサによって実行可能なファームウェア又はソフトウェアにおいて(例えば、こうしたプロセスの結果を他のプロセスへの入力として用いる前に)同等にコード化され得る。例えば、信号シフタ284、マルチプレクサ286、及び信号シフタ288の各々は、装置においてバイパスされるか又は無い可能性があるが、本明細書に開示される技法は、等価の信号シフト、多重化、及びその他の動作を、ファームウェア、ソフトウェア、又はそれらの組み合わせを介して実行するようにプロセッサを配することによって達成され得る。別の例として、周波数又は位相シフトの一部は、一部はデジタル回路を用いて、残りの部分はプロセッサにおいて、(例えば、FMCW雑音軽減システムを全体として見た場合、実質的に、同じ信号処理効果が実行されるように)、達成され得る。また、プロセッサ(例えば、FFT)によって行なわれるように説明される機能は、デジタル回路において同等に実装され得る。更に、信号シフタ284、マルチプレクサ286、及び信号シフタ288などの要素は、ファームウェア又はソフトウェアの形式で実行される、デジタル回路、プロセッサ機能、及び/又はアルゴリズムとして実装され得る。
【0096】
本明細書で説明する様々な実施形態において、干渉体からの振幅雑音及び位相雑音スカートは、互いに対して主に90度位相シフトされる(例えば、互いに直交位相関係を有する)ように説明される。したがって、振幅雑音又は位相雑音を抑制するために実部及び虚部のいずれかが用いられる。信号シフタ出力が、説明を容易にするために上記で考察したような(正準)0度の代わりに、干渉体オフセット位相に対する90度、180度、及び270度の直交角度の干渉体信号を有するように、位相シフトが成され得るような他の実施形態が可能である。こうした場合において、更なるレーダ処理のためのシフトされたベースバンド信号の実部又は虚部の選択は、直交関係の角度(例えば、象限)に対して成される。本明細書における開示に鑑みて、位相シフトは、信号シフタ出力が(例えば、90度又は他の直交角度とは)任意に異なるが既知の干渉体オフセット位相の干渉体信号を有するように成され得る。
【0097】
特許請求の範囲内で、説明される実施形態における改変が可能であり、他の実施形態が可能である。
図1
図2
図3A
図3B
図4
図5
図6
図7
図8