(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-07
(45)【発行日】2023-08-16
(54)【発明の名称】立体物検出装置、及び立体物検出方法
(51)【国際特許分類】
G06T 7/70 20170101AFI20230808BHJP
G06T 7/00 20170101ALI20230808BHJP
H04N 7/18 20060101ALI20230808BHJP
【FI】
G06T7/70 A
G06T7/00 650B
H04N7/18 K
H04N7/18 J
(21)【出願番号】P 2019090116
(22)【出願日】2019-05-10
【審査請求日】2022-03-23
(73)【特許権者】
【識別番号】000001487
【氏名又は名称】フォルシアクラリオン・エレクトロニクス株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】宮下 彩乃
(72)【発明者】
【氏名】清水 直樹
(72)【発明者】
【氏名】安藤 寛哲
(72)【発明者】
【氏名】浅木 健吾
【審査官】新井 則和
(56)【参考文献】
【文献】特開2012-003662(JP,A)
【文献】国際公開第2014/017521(WO,A1)
【文献】米国特許出願公開第2015/0071490(US,A1)
【文献】米国特許出願公開第2014/0368656(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00-7/90
H04N 7/18
(57)【特許請求の範囲】
【請求項1】
車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、
互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、
前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、
前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、
前記立体物位置特定部は、
前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、
前記車両の走行方向に垂直な横方向を横軸とし、前記マスク差分画像の各画素の画素値を前記走行方向に沿って累積した走行方向差分量累積値を縦軸としたマスク差分ヒストグラムにおいて前記走行方向差分量累積値が第3閾値を越える横軸の位置に基づいて、前記差分画像における前記立体物の近傍接地線を特定する接地線特定部を備え、
前記接地線特定部によって特定された前記近傍接地線に基づいて、前記差分画像における前記立体物の位置を特定する
ことを特徴とする立体物検出装置。
【請求項2】
前記接地線特定部は、
前記マスク差分ヒストグラムの横軸において連続して前記第3閾値を越えた範囲の中で前記撮影位置に最も近い範囲を特定し、前記撮影位置からみて当該範囲の直前の地点を前記近傍接地線の位置に特定する、
ことを特徴とする請求項
1に記載の立体物検出装置。
【請求項3】
前記接地線特定部は、
前記立体物の幅と前記近傍接地線とに基づいて、前記差分画像における前記立体物の遠方接地線を特定する
ことを特徴とする請求項
2に記載の立体物検出装置。
【請求項4】
前記立体物位置特定部は、
前記差分画像において前記撮影位置から延び、前記立体物の鉛直方向輪郭線を含む放射線と、前記近傍接地線、及び前記遠方接地線のそれぞれとの交点に基づいて、前記近傍接地線において前記立体物が位置する第1領域、及び前記遠方接地線において前記立体物が位置する第2領域を特定し、これら第1領域、及び第2領域が重複する範囲に基づいて、前記差分画像において前記立体物が映った立体物領域を特定する立体物領域特定部を備える
ことを特徴とする請求項
3に記載の立体物検出装置。
【請求項5】
前記立体物領域特定部は、
前記差分画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、前記差分画像の各画素値を前記放射線に沿って累積した放射線方向差分量累積値を縦軸とした差分ヒストグラムにおいて当該放射線方向差分量累積値が第4閾値以上の放射線を、前記立体物の鉛直方向輪郭線を含む放射線と特定する
ことを特徴とする請求項
4に記載の立体物検出装置。
【請求項6】
前記立体物領域特定部は、
前記第1俯瞰画像、及び前記第2俯瞰画像のうち、直近に撮影された撮影画像に対応する方の画像から前記立体物の輪郭成分を抽出したエッジ画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、当該エッジ画像の各画素値を前記放射線に沿って累積した放射線方向エッジ強度累積値を縦軸としたエッジ強度ヒストグラムにおいて当該放射線方向エッジ強度累積値が第5閾値以上の放射線を、前記立体物の鉛直方向輪郭線を含む放射線と特定する
ことを特徴とする請求項
4または
5に記載の立体物検出装置。
【請求項7】
前記立体物領域特定部は、
前記近傍接地線、及び前記遠方接地線によって挟まれた領域以外がマスキングされた前記差分画像に基づいて前記放射線を求め、当該放射線と前記近傍接地線と交点に基づいて前記第1領域を特定し、
前記撮影位置からみて前記近傍接地線よりも遠い遠方領域以外がマスキングされた前記差分画像に基づいて前記放射線を求め、当該放射線と前記遠方接地線と交点に基づいて前記第2領域を特定する、
ことを特徴とする請求項
4から
6のいずれかに記載の立体物検出装置。
【請求項8】
車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、
互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、
前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、
前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、
前記立体物位置特定部は、
前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、
前記マスク差分画像生成部は、
前記差分画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、前記差分画像の各画素値を前記放射線に沿って累積した放射線方向差分量累積値を縦軸とした差分ヒストグラムにおいて当該放射線方向差分量累積値が第1閾値以下の放射線を特定し、前記差分画像において当該放射線に対応する領域をマスキングする
ことを特徴とする立体物検出装置。
【請求項9】
車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、
互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、
前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、
前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、
前記立体物位置特定部は、
前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、
前記マスク差分画像生成部は、
前記第1俯瞰画像、及び前記第2俯瞰画像のうち、直近に撮影された撮影画像に対応する方の画像から前記立体物の輪郭成分を抽出したエッジ画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、当該エッジ画像の各画素値を前記放射線に沿って累積した放射線方向エッジ強度累積値を縦軸としたエッジ強度ヒストグラムにおいて当該放射線方向エッジ強度累積値が第2閾値以下の放射線を特定し、前記差分画像において当該放射線に対応する領域をマスキングする
ことを特徴とする立体物検出装置。
【請求項10】
車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する第1ステップと、
互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する第2ステップと、
前記差分画像において立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成する第3ステップと、
前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定する第4ステップと、
を備え
、
前記第4ステップは、
前記車両の走行方向に垂直な横方向を横軸とし、前記マスク差分画像の各画素の画素値を前記走行方向に沿って累積した走行方向差分量累積値を縦軸としたマスク差分ヒストグラムにおいて前記走行方向差分量累積値が第3閾値を越える横軸の位置に基づいて、前記差分画像における前記立体物の近傍接地線を特定し、特定した前記近傍接地線に基づいて、前記差分画像における前記立体物の位置を特定する
ことを特徴とする立体物検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、立体物検出装置、及び立体物検出方法に関する。
【背景技術】
【0002】
異なるタイミングの俯瞰画像(鳥瞰視画像とも呼ばれる)の差分に基づいて、車両周囲の他車両等の立体物を検出する技術が知られている(例えば、特許文献1、特許文献2参照)。かかる技術は、特許文献1のように、車両の駐車時に周辺の他車両等の立体物を障害物として検知して警報を発する駐車支援システムなどに応用されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2008-227646号公報
【文献】国際公開第2014/017521号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
建物や標識、信号機等の構造物の影が路面に現れることが多々あり、走行中の車両からは、この影が相対移動して観測される。かかる影が走行中の車両と、その周囲の立体物との間に存在する場合、立体物の検出精度が悪くなる、という問題があった。
【0005】
本発明は、走行中の車両の周囲に存在する立体物の検出精度を向上させることができる立体物検出装置、及び立体物検出方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の立体物検出装置は、車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、前記立体物位置特定部は、前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、前記立体物位置特定部は、前記車両の走行方向に垂直な横方向を横軸とし、前記マスク差分画像の各画素の画素値を前記走行方向に沿って累積した走行方向差分量累積値を縦軸としたマスク差分ヒストグラムにおいて前記走行方向差分量累積値が第3閾値を越える横軸の位置に基づいて、前記差分画像における前記立体物の近傍接地線を特定する接地線特定部を備え、前記接地線特定部によって特定された前記近傍接地線に基づいて、前記差分画像における前記立体物の位置を特定することを特徴とする。
【0007】
本発明は、上記立体物検出装置において、前記接地線特定部は、前記マスク差分ヒストグラムの横軸において連続して前記第3閾値を越えた範囲の中で前記撮影位置に最も近い範囲を特定し、前記撮影位置からみて当該範囲の直前の地点を前記近傍接地線の位置に特定することを特徴とする。
【0008】
本発明は、上記立体物検出装置において、前記接地線特定部は、前記立体物の幅と前記近傍接地線とに基づいて、前記差分画像における前記立体物の遠方接地線を特定することを特徴とする。
【0009】
本発明は、上記立体物検出装置において、前記立体物位置特定部は、前記差分画像において前記撮影位置から延び、前記立体物の鉛直方向輪郭線を含む放射線と、前記近傍接地線、及び前記遠方接地線のそれぞれとの交点に基づいて、前記近傍接地線において前記立体物が位置する第1領域、及び前記遠方接地線において前記立体物が位置する第2領域を特定し、これら第1領域、及び第2領域が重複する範囲に基づいて、前記差分画像において前記立体物が映った立体物領域を特定する立体物領域特定部を備えることを特徴とする。
【0010】
本発明は、上記立体物検出装置において、前記立体物領域特定部は、前記差分画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、前記差分画像の各画素値を前記放射線に沿って累積した放射線方向差分量累積値を縦軸とした差分ヒストグラムにおいて当該放射線方向差分量累積値が第4閾値以上の放射線を、前記立体物の鉛直方向輪郭線を含む放射線と特定することを特徴とする。
【0011】
本発明は、上記立体物検出装置において、前記立体物領域特定部は、前記第1俯瞰画像、及び前記第2俯瞰画像のうち、直近に撮影された撮影画像に対応する方の画像から前記立体物の輪郭成分を抽出したエッジ画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、当該エッジ画像の各画素値を前記放射線に沿って累積した放射線方向エッジ強度累積値を縦軸としたエッジ強度ヒストグラムにおいて当該放射線方向エッジ強度累積値が第5閾値以上の放射線を、前記立体物の鉛直方向輪郭線を含む放射線と特定することを特徴とする。
【0012】
本発明は、上記立体物検出装置において、前記立体物領域特定部は、前記近傍接地線、及び前記遠方接地線によって挟まれた領域以外がマスキングされた前記差分画像に基づいて前記放射線を求め、当該放射線と前記近傍接地線と交点に基づいて前記第1領域を特定し、前記撮影位置からみて前記近傍接地線よりも遠い遠方領域以外がマスキングされた前記差分画像に基づいて前記放射線を求め、当該放射線と前記遠方接地線と交点に基づいて前記第2領域を特定する、ことを特徴とする。
【0013】
本発明の立体物検出装置は、車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、前記立体物位置特定部は、前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、前記マスク差分画像生成部は、前記差分画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、前記差分画像の各画素値を前記放射線に沿って累積した放射線方向差分量累積値を縦軸とした差分ヒストグラムにおいて当該放射線方向差分量累積値が第1閾値以下の放射線を特定し、前記差分画像において当該放射線に対応する領域をマスキングすることを特徴とする。
【0014】
本発明の立体物検出装置は、車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する俯瞰変換処理部と、互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する差分画像生成部と、前記差分画像に基づいて、前記車両の周囲に存在する立体物の位置を特定する立体物位置特定部と、前記差分画像において前記立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成するマスク差分画像生成部と、を備え、前記立体物位置特定部は、前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定し、前記マスク差分画像生成部は、前記第1俯瞰画像、及び前記第2俯瞰画像のうち、直近に撮影された撮影画像に対応する方の画像から前記立体物の輪郭成分を抽出したエッジ画像において前記撮影位置から延びた複数の放射線のそれぞれを横軸とし、当該エッジ画像の各画素値を前記放射線に沿って累積した放射線方向エッジ強度累積値を縦軸としたエッジ強度ヒストグラムにおいて当該放射線方向エッジ強度累積値が第2閾値以下の放射線を特定し、前記差分画像において当該放射線に対応する領域をマスキングすることを特徴とする。
【0015】
本発明は、車両の走行中に異なるタイミングでカメラによって撮影された第1撮影画像、及び第2撮影画像のそれぞれを第1俯瞰画像、及び第2俯瞰画像に変換する第1ステップと、互いの撮影位置が揃った前記第1俯瞰画像、及び前記第2俯瞰画像の差分画像を生成する第2ステップと、前記差分画像において立体物が映っている候補となる立体物候補領域以外をマスキングしたマスク差分画像を生成する第3ステップと、前記マスク差分画像に基づいて前記差分画像における前記立体物の位置を特定する第4ステップと、を備え、前記第4ステップは、前記車両の走行方向に垂直な横方向を横軸とし、前記マスク差分画像の各画素の画素値を前記走行方向に沿って累積した走行方向差分量累積値を縦軸としたマスク差分ヒストグラムにおいて前記走行方向差分量累積値が第3閾値を越える横軸の位置に基づいて、前記差分画像における前記立体物の近傍接地線を特定し、特定した前記近傍接地線に基づいて、前記差分画像における前記立体物の位置を特定することを特徴とする。
【発明の効果】
【0017】
本発明によれば、走行中の車両の周囲に存在する立体物の検出精度を向上させることができる。
【図面の簡単な説明】
【0018】
【
図1】本発明の実施形態に係る車載システムの構成を示す図である。
【
図3】同実施形態における車両と他車両の位置関係を示す図である。
【
図6】マスク画像生成処理のフローチャートである。
【
図7】射影変換による鉛直方向輪郭線の倒れ込みの説明図である。
【
図9】ルックアップテーブルを模式的に示す図である。
【
図13】マスク差分画像の生成動作の説明図である。
【
図17】俯瞰画像における近傍接地線、及び遠方接地線と鉛直方向輪郭線との関係を示す図である。
【
図19】立体物領域特定処理のフローチャートである。
【
図21】エッジ強度近傍ヒストグラムの説明図である。
【
図23】エッジ強度遠方ヒストグラムの説明図である。
【
図24】近傍用マスクラベル画像、及び遠方用マスクラベル画像の説明図である。
【
図25】近傍領域に限定して立体物検出を行った場合の他車両領域特定動作の説明図である。
【
図26】近傍接地線における各交点のグルーピング動作の説明図である。
【
図27】最終的な単一他車両領域の決定動作の説明図である。
【発明を実施するための形態】
【0019】
以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係る車載システム1の構成を示す図である。
車載システム1は、車両2に搭載されたシステムであり、カメラ4と、カメラECU6と、車両制御ユニット8と、カメラECU6と車両制御ユニット8を接続する車載ネットワークの一種であるCAN10と、を備える。
カメラ4は、車両2のリア部に設けられ、車両2の後方DBを撮影するリアカメラであり、撮影によって得られたカメラ映像5をカメラECU6に出力する。本実施形態のカメラECU6は、カメラ映像5に基づいて、立体物の一例である他車両A(
図3)の位置を検出し、CAN10を通じて他車両Aの位置情報を車両制御ユニット8に送信する他車両検出装置(立体物検出装置)として機能する装置であり、カメラ4の撮影動作を制御する機能と、カメラ映像5に適宜の信号処理を施す機能を備える。
車両制御ユニット8は、車両2の走行に係る各種の制御を実行するユニットであり、係る制御のために、操舵機構や駆動機構などの車両2の各部を制御する機能を有する。
【0020】
また車両制御ユニット8は、運転者の運転操作に代わって車両2を運転制御する機能(いわゆる、自動運転制御機能)を備え、車両2の走行時には、車両2の周囲に存在する立体物の位置を逐次に取得し、立体物までの間に適切な距離を確保するように運転制御する。例えば、車線変更時や合流時、分流時などのように、立体物の一例である他車両Aに車両2が接近し得る場合、車両制御ユニット8は、他車両Aの位置を取得し、当該他車両Aの位置に基づいて、当該他車両Aとの間に適切な車間距離を確保するように運転制御する。
【0021】
なお、車両制御ユニット8は、自動運転制御機能に代えて、或いは、自動運転制御機能と併せて、運転者の運転操作を支援する運転支援機能を備えてもよい。運転支援機能は、車両2の走行時に、車両2の周囲に存在する立体物の位置を逐次に取得し、立体物を運転者に案内したり、当該立体物の位置に基づく各種の警報等を運転者に報知したりすることで運転者の運転操作を支援するものである。
【0022】
ここで、上記カメラECU6は、プロセッサの一例であるCPU12と、プログラム13等の各種情報を記憶するROMやRAMなどのメモリ14と、CAN10を通じて車両制御ユニット8と通信する通信モジュールとしてのCANI/F16と、を備えた、いわゆるコンピュータである。本実施形態のカメラECU6は、メモリ14に記憶されたプログラムをCPU12が実行することで、上述した他車両検出装置として機能するように構成されている。
【0023】
図2は、カメラECU6の機能的構成を示す図である。
本実施形態のカメラECU6は、異なるタイミングで撮影された第1撮影画像、及び第2撮影画像をカメラ映像5から取得し、それらを俯瞰変換した第1俯瞰画像F1、及び第2俯瞰画像F2の差分である差分画像Gに基づいて、他車両Aの位置を検出する。係る検出動作のために、カメラECU6は、
図2に示すように、車両情報取得部20と、前処理部22と、立体物位置特定部24と、を備えている。
【0024】
車両情報取得部20は、車両制御ユニット8から車両情報を取得する。この車両情報には、少なくとも車両2の走行速度が含まれる。
【0025】
前処理部22は、カメラ映像5から差分画像Gを得るための処理を実行するものであり、カメラ映像取得部30と、輝度変換処理部32と、俯瞰変換処理部34と、差分画像生成部36と、を備える。
【0026】
カメラ映像取得部30は、カメラ4を制御することで、所定時間以上に亘ってカメラ4による撮影を継続し、その撮影によって得られたカメラ映像5を取得する。
輝度変換処理部32は、カメラ映像5を構成する各フレーム(撮影画像)を輝度画像に変換する。各フレームは静止画像である撮影画像に相当し、輝度画像は、この撮影画像のそれぞれの画素値を、その画素の輝度値に変換した画像である。
俯瞰変換処理部34は、各輝度画像を俯瞰画像に変換する。俯瞰画像は、車両2の上方に設定された仮想視点から直下方向を視た画像であり、輝度画像を射影変換(視点変換とも呼ばれる)することで生成される。
差分画像生成部36は、俯瞰変換処理部34によって順次に生成される俯瞰画像の中から、撮影タイミングが異なる2つの第1撮影画像、及び第2撮影画像から得られた第1俯瞰画像F1、及び第2俯瞰画像F2(
図5参照)を抽出し、両者の差分画像Gを生成する。差分画像Gは、第1撮影画像E1の各画素の画素値(輝度値)を、その画素に対応する第2撮影画像E2の画素の画素値(輝度値)との差に変換し、所定の閾値で各画素の画素値を2値化した画像である。差分画像Gの生成時には、差分画像生成部36は、第1俯瞰画像F1と第2俯瞰画像F2の撮影位置Oを、第1俯瞰画像F1を基準に揃えた状態で、両者の各画素の画素値の差分量を算出することで、差分画像Gを生成する。
【0027】
立体物位置特定部24は、差分画像Gに基づいて、立体物の一例である他車両Aの位置を特定するものであり、マスク差分画像生成部50と、接地線特定部52と、立体物領域特定部54と、を備える。
マスク差分画像生成部50は、差分画像Gにおいて他車両Aが映っている候補の領域(以下、「他車両候補領域60」と言う)以外の領域がマスキングされたマスク差分画像Gm(
図13参照)を生成する。
【0028】
接地線特定部52は、マスク差分画像Gmに基づいて、差分画像Gにおいて他車両領域Hの近傍接地線L1、及び遠方接地線L2を特定する。他車両領域Hは、差分画像Gにおいて、立体物である他車両Aが映っている領域(立体物領域)の一例である。
接地線は、車両2が走行している車線に隣接する他の車線に存在する他車両Aが地面に接する線であり、平面視における他車両Aの輪郭線63(
図3参照)に相当する。本実施形態において、近傍接地線L1は、
図3に示すように、他車両Aの左右両側の輪郭線63のうちの車両2に近い側の線を指し、遠方接地線L2は車両2から遠い側の線を指す。差分画像Gに近傍接地線L1、及び遠方接地線L2が設定されることで、走行方向Bに垂直な横方向Cにおける他車両領域Hの位置が特定されることとなる。
【0029】
立体物領域特定部54は、近傍接地線L1、及び遠方接地線L2の各々における他車両Aの先端VF、及び後端VB(
図3参照)のそれぞれの位置を、差分画像Gに基づいて特定し、これら近傍接地線L1、遠方接地線L2、他車両Aの先端VF、及び後端VBに基づいて、差分画像Gにおける他車両領域Hを検出する。ただし、複数の他車両Aが縦列走行していた場合には、2台以上の他車両Aが他車両領域Hに含まれる可能性がある。本実施形態の立体物領域特定部54は、他車両領域Hに2台以上の他車両Aが含まれる場合でも、単一の他車両Aごとに、差分画像Gにおいて、その他車両Aが位置する単一他車両領域Kを特定するようになっている。
【0030】
立体物位置特定部24は、差分画像Gにおける単一他車両領域Kの位置に基づいて、実空間における他車両Aの位置を、公知又は周知の適宜の手法を用いて特定し、特定した位置を車両制御ユニット8に逐次に送信する。
【0031】
次いで、カメラECU6による他車両Aの検出動作について説明する。
なお、以下の説明では、
図3に示すように、車両2が走行している車線70の両側のそれぞれに隣接する他の車線70R、70Lが存在し、各車線70R、70Lを他車両Aが車両2と同一方向に走行している場合における検出動作を例示する。この場合において、いずれの他車両Aも車両2より後方DBに位置し、かつ、カメラ4の画角αの範囲内に位置するものとする。また、
図3において、矩形線で示した領域は、車両制御ユニット8による自動運転制御や運転支援において他車両Aの存在を検出する検出領域72を示す。
【0032】
図4は、立体物検出処理のフローチャートである。
この立体物検出処理は、少なくとも車両2が走行している間、周囲の他車両Aの存在を検知するために、カメラECU6によって継続的に繰り返し実行される。
【0033】
同図に示すように、カメラECU6は、先ず、少なくとも車両2の走行速度を含む車両情報を車両情報取得部20が取得し(ステップSa1)、カメラ映像取得部30がカメラ4からカメラ映像5を取得する(ステップSa2)。次いで、カメラ映像5の各フレーム(撮影画像)を輝度変換処理部32が輝度画像に順次に変換し(ステップSa3)、それらの輝度画像に基づいて俯瞰変換処理部34が俯瞰画像Fを順次に生成する(ステップSa4)。
【0034】
そして、差分画像生成部36が、俯瞰変換処理部34によって順次に生成される俯瞰画像の中から、撮影タイミングが異なる2つの第1撮影画像、及び第2撮影画像から得られた第1俯瞰画像F1、及び第2俯瞰画像F2を抽出し、両者の差分画像Gを生成する(ステップSa5)。
【0035】
図5は、差分画像生成動作の説明図である。
なお、以下では、直近に撮影された撮影画像を第1撮影画像とし、それよりも前に撮影された撮影画像を第2撮影画像として説明する。
【0036】
第1撮影画像、及び第2撮影画像では、それぞれの撮影位置Oが走行方向Bにずれるため、
図5に示すように、第1俯瞰画像F1、及び第2俯瞰画像F2においても撮影位置Oに、車両2の移動に起因したずれが生じる。差分画像生成部36は、撮影位置Oのずれを補正して差分画像Gを生成するために、第1俯瞰画像F1及び第2俯瞰画像F2の両者の撮影位置Oを、いずれか一方(
図5では第1俯瞰画像F1)を基準に揃えた状態で両者の差分画像Gを生成する。
【0037】
具体的には、差分画像生成部36は、車両2の走行速度と、第1撮影画像、及び第2撮影画像の撮影タイミングの時間差taとに基づいて、車両2の走行距離を算出する。そして差分画像生成部36は、第1俯瞰画像F1、及び第2俯瞰画像F2のいずれか一方(
図5では、撮影タイミングが早い方の第2俯瞰画像F2)の各画素を、走行距離に応じた画素数分だけ走行方向Bに沿ってずらす。これにより、第1俯瞰画像F1、及び第2俯瞰画像F2の他方を基準に、両者の撮影位置Oが揃えられた状態となる。
【0038】
路面標示の一種である白線74等の任意の静止物体が第1俯瞰画像F1、及び第2俯瞰画像F2の各々に映っている場合、両者の撮影位置Oが揃えられることで、
図5に示すように、静止物体が映っている位置が揃う。
その一方で、移動物体である他車両Aが第1俯瞰画像F1、及び第2俯瞰画像F2の各々に映っている場合、両者の撮影位置Oが揃えられることで、
図5に示すように、それぞれに映った他車両Aの位置にずれが生じる。
このため、両者の差分を示す差分画像Gにおいては、路面標示(白線74等)の静止物体が映っている領域の画素値(差分量)は小さくなり、他車両Aが映っている領域の画素値(差分量)は比較的大きくなる。したがって、差分画像Gの2値化に用いる輝度値の閾値を適切に設定することで、静止物体を除いた画像を得ることができ、その差分画像Gにおける画素値の分布に基づいて、他車両領域Hを抽出し、他車両Aの位置(特に、近傍接地線L1)が特定可能となる。
【0039】
しかしながら、前掲
図3に示すように、車両2と他車両Aとの間に、車両2や他車両Aなどの任意の移動物体によって影76が生じている場合、差分画像Gにおいては、その影76に対応する領域の画素値も増大する。このため、差分画像Gにおいて、単純に画素値が大きい領域を他車両領域Hとして抽出すると、その影76に対応する領域が他車両領域Hに含まれてしまい精度が悪くなる。
【0040】
そこで、カメラECU6においては、立体物領域特定部54が差分画像Gに基づいて他車両領域Hを特定するに際し、前掲
図4に示すように、先ず、マスク差分画像生成部50がマスク差分画像生成処理を実行することで(ステップSa6)、差分画像Gにおいて影76などのノイズに対応する領域、換言すれば、他車両Aが映っている候補の領域である上記他車両候補領域60以外の領域をマスキング領域62としてマスキングした上記マスク差分画像Gmを生成する。そして、接地線特定部52が接地線特定処理を実行し(ステップSa7)、マスキングによってノイズの影響が除かれたマスク差分画像Gmに基づいて、他車両Aの位置として近傍接地線L1、及び遠方接地線L2を特定する。
【0041】
図6は、マスク画像生成処理のフローチャートである。
マスク画像生成処理では、先ず、マスク差分画像生成部50がマスキング領域62をマスクするためのマスク画像90を生成する(ステップSb1)。上述の通り、マスキング領域62は、差分画像Gにおける他車両候補領域60以外の領域であり、他車両候補領域60は、差分画像Gに映った他車両Aの鉛直方向輪郭線Pに基づいて特定される。
【0042】
図7は射影変換による鉛直方向輪郭線Pの倒れ込みの説明図である。
鉛直方向輪郭線Pは、
図7に示すように、撮影画像M(カメラ映像5のフレーム)に映った他車両Aの輪郭線63や、当該他車両Aの車体パーツ(ドアなど)の輪郭線、他車両Aに描かれた模様の輪郭線などのうち、鉛直方向(地面に対して垂直方向)に延びる各々の線である。これらの鉛直方向輪郭線Pは、撮影画像Mの射影変換(視点変換)によって、いわゆる倒れ込みが生じ、俯瞰画像Fにおいてカメラ4の撮影位置Oから延びる放射線Q上の線分に変換される。つまり、俯瞰画像Fにおいて、鉛直方向輪郭線Pを含む放射線Qの領域(
図7のハッチングで示す領域)は他車両Aが存在する領域を示すので、かかる領域が他車両候補領域60となる。
なお、鉛直方向輪郭線Pを含む放射線Qの方向は、射影変換(視点変換)によって立体物が倒れ込む方向とも呼ばれる。
【0043】
2つの俯瞰画像Fの差分である差分画像Gにおいても俯瞰画像Fと同様に、鉛直方向輪郭線Pは放射線Q上の線分となる。差分画像Gにおいて、鉛直方向輪郭線Pを含んだ放射線Qの各画素は、その画素値(差分量)が他の画素よりも大きくなる。したがって、差分画像Gにおける画素値に基づいて他車両候補領域60を当該差分画像Gから抽出することができる。
【0044】
本実施形態では、ラベル画像91、及びルックアップテーブル92を用いて他車両候補領域60の抽出を効率良く行っている。
【0045】
図8は、ラベル画像91を模式的に示す図である。
ラベル画像91は、撮影位置Oから等間隔に放射状に延び、それぞれがラベル番号によって識別された複数の放射線Qの画像であり、それぞれの放射線Qが、差分画像Gにおける鉛直方向輪郭線Pを含んだ放射線Qの候補となる。本実施形態では、ラベル画像91には、ラベル番号が「1」から「100」までの100本の放射線Qが含まれる。
かかるラベル画像91は、差分画像Gに相当する画素数を有し、
図8に示すように、同じ放射線Qを構成する各画素に、その放射線Qのラベル番号(「1」から「100」のいずれか)が対応付けられている。
【0046】
図9は、ルックアップテーブル92を模式的に示す図である。
ルックアップテーブル92は、ラベル画像91の各画素に、非マスキング(白色)に対応する「255」、及びマスキング(黒色)に対応する「0」のいずれかの画素値を指定するものである。ラベル画像91の各画素の画素値が、ルックアップテーブル92の指定に基づいて設定されることで、各画素が非マスキング状態(白色)、又はマスキング状態(黒色)となったマスク画像90が得られる。
【0047】
図9に示すように、このルックアップテーブル92では、放射線Qのラベル番号ごとに、その放射線Qの画素値が指定されるようになっており、その画素値は、差分画像Gにおける放射線Qごとの画素値に基づいて決定されるようになっている。
【0048】
前掲
図6に戻り、ステップSb1において、マスク差分画像生成部50は、かかるマスク画像90の生成のために、先ず上記ラベル画像91の全ての画素値を、「255」(非マスキング状態)、又は「0」(マスキング状態)にして初期化する(ステップSb1A)。
【0049】
次いで、マスク差分画像生成部50は、差分画像Gにおける放射線Qごとの画素値に基づいて、上記ルックアップテーブル92を作成する(ステップSb1B)。具体的には、マスク差分画像生成部50は、差分ヒストグラムRa、及びエッジ強度ヒストグラムRbに基づいて、ルックアップテーブル92における放射線Qごとの各画素の輝度値を示すフラグ(「0」又は「255」)を決定する。
【0050】
図10は、差分ヒストグラムRaの説明図である。
差分ヒストグラムRaは、
図10に示すように、ラベル番号を横軸とし、差分画像Gにおいて放射線Qごとに画素値の有無を累積した値(以下、「放射線方向差分量累積値」と言う)を縦軸としたグラフである。放射線方向差分量累積値は、放射線Qが鉛直方向輪郭線Pを含んでいると大きくなるので、この差分ヒストグラムRaにおいて、放射線方向差分量累積値が所定の第1閾値Th1を越えている各放射線Qを特定することで、他車両候補領域60となる放射線Qの範囲Uaを特定できる。
また放射線Qごとの放射線方向差分量累積値に基づいて、鉛直方向輪郭線Pを含む放射線Qを特定するので、例えば差分画像Gに対して輪郭抽出処理などの画像処理を施して鉛直方向輪郭線Pを検出する場合に比べ、高速かつ高精度に放射線Qを特定できる。
【0051】
図11は、エッジ強度ヒストグラムRbの説明図である。
エッジ強度ヒストグラムRbは、
図11に示すように、ラベル番号を横軸とし、エッジ画像Eにおいて放射線Qごとに画素値の有無を累積した値(以下、「放射線方向エッジ強度累積値」と言う)を縦軸としたグラフである。
エッジ画像Eは、第1俯瞰画像F1、及び第2俯瞰画像F2のうち、撮影タイミングが遅い方(すなわち直近の方)の俯瞰画像(本実施形態では第1俯瞰画像F1)において、その俯瞰画像に映った物体(当該物体の模様等を含む)の輪郭成分を抽出した画像である。かかるエッジ画像Eは、俯瞰画像において、周辺の画素との間の輝度差が大きな(所定値以上)の各画素の画素値を、その輝度差に応じた値(強度値)とすることで生成される。
すなわち、エッジ強度ヒストグラムRbは、放射線Qに含まれる立体物のエッジ成分の大小を、放射線Qのラベルごとに示したグラフとなる。
【0052】
前掲
図6に戻り、マスク差分画像生成部50は、ステップSb1Bにおいて、差分ヒストグラムRaにおいて放射線方向差分量累積値が所定の第1閾値Th1を越え、かつ、エッジ強度ヒストグラムRbにおいて放射線方向エッジ強度累積値が所定の第2閾値Th2を越えている放射線Qを特定する。そして、マスク差分画像生成部50は、ルックアップテーブル92において、それらの放射線Qについては「非マスキング状態」の画素値を設定し、それ以外の放射線Qについては「マスキング状態」の画素値を設定する。
【0053】
次いでマスク差分画像生成部50は、ルックアップテーブル92に基づいてラベル画像91の各画素値を設定することで、マスク画像90を生成する(ステップSb1C)。
これにより、
図12に示すように、他車両候補領域60が非マスキング状態となり、他車両候補領域60以外の領域がマスキング領域62となったマスク画像90が得られる。
【0054】
そして、マスク差分画像生成部50は、ステップSb2において、差分画像Gに、マスク画像90を重畳することで、
図13に示すように、他車両候補領域60以外の領域がマスキング領域62としてマスキングされたマスク差分画像Gmを生成する。
【0055】
図14は、接地線特定処理のフローチャートである。
接地線特定処理では、接地線特定部52によって、マスク差分画像Gmに基づいて、差分画像Gにおける近傍接地線L1、及び遠方接地線L2が他車両Aの位置として特定される。
具体的には、接地線特定部52は、近傍接地線L1を求めるために、マスク差分ヒストグラムRcを生成する(ステップSc1)。
【0056】
図15は、マスク差分ヒストグラムRcの説明図である。
マスク差分ヒストグラムRcは、
図15に示すように、車両2の走行方向Bに対して垂直な横方向Cの位置(以下、「横方向位置」と言う)を横軸とし、マスク差分画像Gmの横方向を所定間隔で短冊状の小領域に区切り、その領域ごとに走行方向Bに沿って画素値の有無を累積した値(以下、「走行方向差分量累積値」と言う)を縦軸としたグラフである。マスク差分画像Gmでは、他車両候補領域60以外はマスキングされているため、横方向Cにおける走行方向差分量累積値の分布によって、他車両Aの近傍接地線L1を特定することができる。
【0057】
具体的には、前掲
図14に示すように、接地線特定部52は、その横方向位置に他車両Aが存在すると見做す走行方向差分量累積値の第3閾値Th3を設定する(ステップSc2)。この第3閾値Th3には、走行方向差分量累積値の平均値Aveと、走行方向差分量累積値の最小値Minとの中間値(=(Ave+Min)/2)が設定される。
【0058】
次いで、接地線特定部52は、マスク差分ヒストグラムRcにおいて、走行方向差分量累積値が、所定数以上に亘って連続して第3閾値Th3を越えている横方向位置の範囲Ucに基づいて近傍接地線L1を特定する。
具体的には、接地線特定部52は、
図16に示すように、マスク差分ヒストグラムRcの横軸上のi(iは1以上の整数)箇所に判定点Xを等間隔に設定する。各判定点Xは、マスク差分ヒストグラムRcの横軸における区間(グラフの柱)に対応させてもよい。
そして、接地線特定部52は、前掲
図14に示すように、撮影位置Oに近い判定点Xから順に、所定の接地線判定条件を満足するか否かを判定し(ステップSc3)、満足してない場合には(ステップSc3:No)、次の判定点Xを判定する(ステップSc4)。また、接地線判定条件が満足されている場合は(ステップSc3:Yes)、接地線特定部52は、その判定点Xを近傍接地線L1の位置であると特定する(ステップSc5)。
【0059】
上記接地線判定条件は、その判定点Xの走行方向差分量累積値が第3閾値Th3以下であり、なおかつ、その次の判定点Xから所定個数分の判定点Xの全てにおいて走行方向差分量累積値が第3閾値Th3以上である、という条件である。
撮影位置Oに近い判定点Xから順に接地線判定条件を判定することで、
図16に示すように、所定個数分の判定点Xの全ての走行方向差分量累積値が第3閾値Th3を越える範囲Ucに対し、撮影位置Oからみて直前の判定点Xが求められ、この判定点Xが近傍接地線L1として特定されることとなる。これにより、近傍接地線L1が他車両Aに入り込んだ位置(第3閾値Th3を越えている範囲)に設定されることがなく、より正確な位置に近傍接地線L1が設定される。
【0060】
そして接地線特定部52は、前掲
図14に示すように、近傍接地線L1の位置と、他車両Aの車幅とに基づいて、遠方接地線L2の位置を特定する(ステップSc6)。他車両Aの車幅には、小型車、普通車、及び大型車ごとに予め設定された値が用いられる。すなわち、ステップSc6において、接地線特定部52は、差分画像Gにおける他車両候補領域60の大きさや形状に基づいて、他車両Aの車種が小型車、普通車、及び大型車のどれに該当するかを特定し、特定した車種に対応する車幅を、近傍接地線L1の位置に加算することで、差分画像Gにおける遠方接地線L2の位置を特定する。
【0061】
以上の接地線特定処理により、車両2からみて横方向Cにおける他車両Aの位置である近傍接地線L1、及び遠方接地線L2が特定される。
上述の通り、差分画像Gにおける近傍接地線L1の位置は、当該差分画像Gではなく、影76などのノイズがマスキングされたマスク差分画像Gmに基づいて特定されるので、特定された位置は非常に正確なものとなる。
【0062】
前掲
図4に戻り、接地線
特定処理が終了すると(ステップSa7)、立体物領域特定部54が、近傍接地線L1、及び遠方接地線L2に基づいて、他車両Aの先端VF、及び後端VBを特定することで、差分画像Gにおける他車両領域Hを検出する立体物領域特定処理を実行する(ステップSa8)。
【0063】
図17は、俯瞰画像Fにおける近傍接地線L1、及び遠方接地線L2と鉛直方向輪郭線Pとの関係を示す図である。
近傍接地線L1を用いて他車両Aの先端VF、及び後端VBを求める手法としては、次のような手法がある。すなわち、
図17に示すように、俯瞰画像Fにおいて、他車両Aの鉛直方向輪郭線Pのうち、後端近傍側鉛直方向輪郭線P1、及び先端近傍側鉛直方向輪郭線P2と、近傍接地線L1との交点を求めるという手法である。これらの交点によって、近傍接地線L1における後端近傍側位置L1VBと、先端近傍側位置L1VFとが求められる。
なお、後端近傍側鉛直方向輪郭線P1は、他車両Aの後端側であり撮影位置Oに近い側の鉛直方向輪郭線Pを指し、先端近傍側鉛直方向輪郭線P2は、他車両Aの先端側であって撮影位置Oに近い側の鉛直方向輪郭線Pを指す。
【0064】
しかしながら、俯瞰画像Fにおいては、他車両Aが放射線Qの方向に倒れ込んで映るため、他車両Aのルーフ部分Ar等の影響により実際よりも走行方向Bに長く延びた他車両領域Hが検出されることとなり、他車両Aの位置に誤差が生じることとなる。
【0065】
本実施形態の立体物領域特定処理では、かかる誤差を排除するために、立体物領域特定部54は、次のようにして他車両領域Hを特定している。
すなわち、
図18に示すように、立体物領域特定部54は、近傍接地線L1、及び遠方接地線L2のそれぞれごとに、他車両Aの鉛直方向輪郭線Pを含む放射線Qとの交点LVを求める。次いで、立体物領域特定部54は、近傍接地線L1における交点LVから他車両領域H1を特定し、また遠方接地線L2における交点LVから他車両領域H2を特定する。そして、立体物領域特定部54は、これら他車両領域H1と他車両領域H2とが重複するエリアに基づいて他車両Aの先端VF、及び後端VBを特定する。これにより、他車両Aについて、近傍接地線L1、遠方接地線L2、先端VF、及び後端VBによって区画される他車両領域Hが特定されることとなる。
【0066】
以下、かかる立体物領域特定処理について、より詳細に説明する。
【0067】
図19は、立体物領域特定処理のフローチャートである。
立体物領域特定部54は、近傍接地線L1、及び遠方接地線L2ごとの他車両領域H1、H2を特定するために、先ず、差分近傍ヒストグラムRan、及びエッジ強度近傍ヒストグラムRbnと、差分遠方ヒストグラムRaf、及びエッジ強度遠方ヒストグラムRbfと、をそれぞれ生成する(ステップSd1)。
【0068】
図20は差分近傍ヒストグラムRanの説明図であり、
図21はエッジ強度近傍ヒストグラムRbnの説明図である。
差分近傍ヒストグラムRanは、
図20に示すように、差分画像Gにおける近傍領域Jnについて上述した差分ヒストグラムRaを求めたものであり、またエッジ強度近傍ヒストグラムRbnは、
図21に示すように、エッジ画像Eにおける近傍領域Jnについて、上述したエッジ強度ヒストグラムRbを求めたものである。
近傍領域Jnは、差分画像Gにおいて、近傍接地線L1と遠方接地線L2とで挟まれた領域である。
【0069】
図22は差分遠方ヒストグラムRafの説明図であり、
図23はエッジ強度遠方ヒストグラムRbfの説明図である。
差分遠方ヒストグラムRafは、
図22に示すように、差分画像Gにおける遠方領域Jfについて上述した差分ヒストグラムRaを求めたものであり、またエッジ強度遠方ヒストグラムRbfは、
図23に示すように、エッジ画像Eにおける遠方領域Jfについて、上述したエッジ強度ヒストグラムRbを求めたものである。
遠方領域Jfは、差分画像Gにおいて、撮影位置Oからみて近傍接地線L1よりも遠方の領域である。
【0070】
差分近傍ヒストグラムRan、及びエッジ強度近傍ヒストグラムRbnの生成には近傍用マスクラベル画像91nが用いられ、差分遠方ヒストグラムRaf、及びエッジ強度遠方ヒストグラムRbfの生成には遠方用マスクラベル画像91fが用いられる。
【0071】
図24は、近傍用マスクラベル画像91n、及び遠方用マスクラベル画像91fの説明図である。
近傍用マスクラベル画像91nは、差分画像Gにおいて近傍領域Jn以外の画素値を無効とし、累積値のカウントから除外されるようにする画像である。かかる近傍用マスクラベル画像91nは、
図24に示すように、差分画像Gにおける近傍領域Jn以外をマスキングする近傍領域用マスク画像90nを、上述したラベル画像91に重畳することで得られる。
立体物領域特定部54が、近傍用マスクラベル画像91nを用いて差分ヒストグラムRa、及びエッジ強度ヒストグラムRbを求めることで、近傍領域Jnの画素値だけが累積値の加算対象となり、差分近傍ヒストグラムRan、及びエッジ強度近傍ヒストグラムRbnが求められることとなる。
【0072】
遠方用マスクラベル画像91fは、差分画像Gにおいて遠方領域Jf以外の画素値を無効とし、累積値のカウントから除外されるようにする画像であり、差分画像Gにおける遠方領域Jf以外をマスキングする遠方領域用マスク画像90fをラベル画像91に重畳することで得られる。
体物領域特定部54が、遠方用マスクラベル画像91fを用いて差分ヒストグラムRa、及びエッジ強度ヒストグラムRbを求めることで、遠方領域Jfの画素値だけが累積値の加算対象となり、差分遠方ヒストグラムRaf、及びエッジ強度遠方ヒストグラムRbfが求められる。
【0073】
前掲
図19に戻り、立体物領域特定部54は、次に、差分近傍ヒストグラムRan、及びエッジ強度近傍ヒストグラムRbnに基づいて、近傍領域Jnにおける立体物判定を行う(ステップSd2)。
具体的には、立体物領域特定部54は、差分近傍ヒストグラムRanにおいて放射線方向差分量累積値が第4閾値Th4(
図20)以上であり、なおかつエッジ強度近傍ヒストグラムRbnにおいて放射
線方向エッジ強度累積値が第5閾値Th5(
図21)以上となるラベル番号の放射線Qを特定する。
そして、
図25に示すように、立体物領域特定部54は、差分画像Gにおいて、特定された放射線Qの各々と近傍接地線L1との交点LVを特定する。これらの交点LV
の特定は、差分画像Gの中に設定された所定の検出領域についてのみ行われる。この検出領域は、例えば上記検出領域72(
図3、
図5)などである。
これらの交点LVによって、近傍領域Jnに限定して立体物検出を行った場合の他車両領域H1が特定される。なお、他車両領域H1の横方向Cの幅(すなわち他車両Aの車幅)については、近傍接地線L1と遠方接地線L2の位置に基づいて特定される。
【0074】
前掲
図19に戻り、立体物領域特定部54は、差分遠方ヒストグラムRaf、及びエッジ強度遠方ヒストグラムRbfに基づいて遠方領域Jfにおける立体物判定を行う(ステップSd3)。これにより、遠方領域Jfに限定して立体物検出を行った場合の他車両領域H2が特定されることとなる。
【0075】
ここで、複数の他車両Aが縦列走行していた場合、他車両領域H1、H2には、2台以上の他車両Aが含まれる可能性がある。
そこで、立体物領域特定部54は、近傍接地線L1における各交点LV、及び遠方接地線L2における各交点LVのそれぞれを、次のようにして1台の他車両Aごとにグループ化する(ステップSd4、Sd5)。
【0076】
近傍接地線L1に交点LVを例にす
ると、
図26に示すように、立体物領域特定部54は、近傍接地線L1における各交点LVを、撮影位置Oから近い順に探索し、隣り合う2つの交点LVの間の距離Wが所定の第6閾値Th6以下の場合は、それら2つの交点LVを同一のグループ97に分類し、距離Wが所定の第6閾値Th6を越えた場合は、撮影位置Oから遠い方の交点LVを新たなグループ97に分類する。これにより、第6閾値Th6よりも交点LV同士の間隔が開いている箇所、すなわち2台の他車両Aの車間でグループ97が分けられ、他車両Aごとに、交点LVがグループ化される。
そして、立体物領域特定部54は、グループ97ごとに、そのグループ97に属する交点LVによって単一他車両領域K1を特定することで、他車両領域H1が、単一の他車両Aごとに分けられることとなる。
【0077】
前掲
図19に戻り、立体物領域特定部54は、近傍接地線L1について特定された単一他車両領域K1と、遠方接地線L2について特定された単一他車両領域K2と、に基づいて、最終的な単一他車両領域Kを決定する(ステップSd6)。
すなわち、
図27に示すように、単一他車両領域K1、及び単一他車両領域K2の各々の他車両Aの先端VF、及び後端VBのうち、単一他車両領域K1、及び単一他車両領域K2の両者が重複している範囲にあるものを、最終的な単一他車両領域Kの先端VF、及び後端VBとして特定する。
そして、これら先端VF、及び後端VBと、近傍接地線L1及び遠方接地線L2とによって、射影変換による倒れ込みに起因する誤差を排除し、矩形状の単一他車両領域Kの正確な位置が特定されることとなる。
【0078】
上述した実施形態によれば、次のような効果を奏する。
【0079】
本実施形態のカメラECU6(立体物検出装置)は、互いの撮影位置Oが揃った第1俯瞰画像F1、及び第2俯瞰画像F2の差分画像Gにおいて他車両Aが映っていると候補となる他車両候補領域60以外をマスキングしたマスク差分画像Gmを生成し、このマスク差分画像Gmに基づいて、差分画像Gにおける他車両Aの位置を特定する。
これにより、走行中の車両2と、その周囲の他車両Aとの間に影76が存在する場合でも、他車両Aの位置を精度よく特定ができる。
したがって、車両制御ユニット8にあっては、他車両Aの正確な位置に基づいて、車線変更や合流、分流時の他車両と接近するようなシーンで、より正確な自動運転制御を実現できる。
【0080】
本実施形態のカメラECU6は、マスク差分ヒストグラムRcにおいて走行方向差分量累積値が第3閾値Th3を越える横軸の位置に基づいて、差分画像Gにおける他車両Aの近傍接地線L1を特定するので、近傍接地線L1が正確に特定される。
【0081】
本実施形態のカメラECU6は、マスク差分ヒストグラムRcの横軸において連続して第3閾値Th3を越えた範囲の中で撮影位置Oに最も近い範囲Ucを特定し、撮影位置Oからみて当該範囲Ucの直前の地点を近傍接地線L1の位置に特定する。これにより、近傍接地線L1が他車両Aに入り込んだ位置に設定されることがなく、より正確な位置に近傍接地線L1が設定される。
【0082】
本実施形態のカメラECU6は、他車両Aの車幅と近傍接地線L1とに基づいて、差分画像Gにおける他車両Aの遠方接地線L2を特定する。これら近傍接地線L1、及び遠方接地線L2により、車両2の走行方向Bに垂直な横方向Cにおける他車両Aの位置が特定される。
【0083】
本実施形態のカメラECU6は、差分ヒストグラムRaにおいて放射線方向差分量累積値が第1閾値Th1以下の放射線Qを特定し、差分画像Gにおいて当該放射線Qに対応する領域をマスキングすることでマスク差分画像Gmを生成する。これにより、他車両候補領域60以外を効率良くマスキングできる。
【0084】
本実施形態のカメラECU6は、エッジ強度ヒストグラムRbにおいて放射線方向エッジ強度累積値が第2閾値Th2以下の放射線Qを特定し、差分画像Gにおいて当該放射線Qに対応する領域をマスキングすることでマスク差分画像Gmを生成する。これにより、白線74等の路面標示などが差分画像Gに現れていても、他車両候補領域60以外を正確にマスキングできる。
【0085】
本実施形態のカメラECU6は、他車両Aの鉛直方向輪郭線Pを含む放射線Qと、近傍接地線L1、及び遠方接地線L2のそれぞれとの交点LVに基づいて、近傍接地線L1において他車両Aが位置する他車両領域H1、遠方接地線L2において他車両Aが位置する他車両領域H2を特定し、これら2つの他車両領域H1、H2が重複する範囲に基づいて、差分画像Gにおける他車両領域Hを特定する。
これにより、射影変換による倒れ込みの影響を排除して、正確に他車両領域Hを特定することができる。
【0086】
本実施形態のカメラECU6は、差分近傍ヒストグラムRan、及び差分遠方ヒストグラムRafにおいて放射線方向差分量累積値が第4閾値Th4以上の放射線Qを、他車両Aの鉛直方向輪郭線Pを含む放射線Qと特定する。これにより、かかる放射線Qが効率良く求められる。
【0087】
本実施形態のカメラECU6は、エッジ強度近傍ヒストグラムRbn、及びエッジ強度遠方ヒストグラムRbfにおいて放射線方向エッジ強度累積値が第5閾値Th5以上の放射線Qを、他車両Aの鉛直方向輪郭線Pを含む放射線Qと特定する。これにより、白線74等の路面標示が差分画像Gに現れていても、かかる放射線Qが正確に求められる。
【0088】
本実施形態のカメラECU6は、近傍接地線L1、及び遠方接地線L2によって挟まれた近傍領域Jn以外がマスキングされた差分画像Gに基づいて、鉛直方向輪郭線Pを含む放射線Qを求め、当該放射線Qと近傍接地線L1と交点LVに基づいて他車両領域H1を特定し、撮影位置Oからみて近傍接地線L1よりも遠い遠方領域Jf以外がマスキングされた差分画像Gに基づいて、鉛直方向輪郭線Pを含む放射線Qを求め、当該放射線Qと遠方接地線L2と交点LVに基づいて他車両領域H2を特定する。
これにより、2つの他車両領域H1、H2が正確に求められる。
【0089】
なお、上述した実施形態は、あくまでも本発明の一態様の例示であり、本発明の主旨を逸脱しない範囲において任意に変形、及び応用が可能である。
【0090】
上述した実施形態では、カメラ4が車両2の後方DBを撮影する場合を例示したが、車両2の左サイド、右サイド、又は前方のいずれを撮影する場合にも適用できる。
【0091】
上述した実施形態では、カメラECU6が立体物検出装置として機能したが、これに限らず、車載システム1が備える任意の装置が立体物検出装置として機能してもよい。
【0092】
また上述した実施形態において、
図2に示す機能ブロックは、本願発明を理解容易にするために、カメラECU6の構成要素を主な処理内容に応じて分類して示した概略図であり、カメラECU6の構成要素は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。
【0093】
また上述した実施形態において、水平、及び垂直等の方向や、各種の形状は、特段の断りがなされていない限り、同一の作用効果を奏する限りにおいて、その周辺の方向や近似の形状(いわゆる、均等の範囲)を含むものである。
【符号の説明】
【0094】
2 車両
4 カメラ
6 カメラECU(立体物検出装置)
24 立体物位置特定部
32 輝度変換処理部
34 俯瞰変換処理部
36 差分画像生成部
50 マスク差分画像生成部
52 接地線特定部
54 立体物領域特定部
62 マスキング領域
90 マスク画像
90f 遠方領域用マスク画像
90n 近傍領域用マスク画像
A 他車両
B 走行方向
C 横方向
E エッジ画像
F、F1、F2 俯瞰画像
G 差分画像
Gm マスク差分画像
H、H1、H2 他車両領域
Jf 遠方領域
Jn 近傍領域
K、K1、K2 単一他車両領域
L1 近傍接地線
L2 遠方接地線
LV 交点
M 撮影画像
O 撮影位置
P 鉛直方向輪郭線
Q 放射線
Ra 差分ヒストグラム
Raf 差分遠方ヒストグラム
Ran 差分近傍ヒストグラム
Rb エッジ強度ヒストグラム
Rbf エッジ強度遠方ヒストグラム
Rbn エッジ強度近傍ヒストグラム
Rc マスク差分ヒストグラム
VB 後端
VF 先端