IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特許7329754リペア溶接システムおよびリペア溶接方法
<>
  • 特許-リペア溶接システムおよびリペア溶接方法 図1
  • 特許-リペア溶接システムおよびリペア溶接方法 図2
  • 特許-リペア溶接システムおよびリペア溶接方法 図3
  • 特許-リペア溶接システムおよびリペア溶接方法 図4
  • 特許-リペア溶接システムおよびリペア溶接方法 図5
  • 特許-リペア溶接システムおよびリペア溶接方法 図6
  • 特許-リペア溶接システムおよびリペア溶接方法 図7
  • 特許-リペア溶接システムおよびリペア溶接方法 図8
  • 特許-リペア溶接システムおよびリペア溶接方法 図9
  • 特許-リペア溶接システムおよびリペア溶接方法 図10
  • 特許-リペア溶接システムおよびリペア溶接方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-10
(45)【発行日】2023-08-21
(54)【発明の名称】リペア溶接システムおよびリペア溶接方法
(51)【国際特許分類】
   B23K 9/10 20060101AFI20230814BHJP
   B23K 31/00 20060101ALI20230814BHJP
   B23K 9/095 20060101ALI20230814BHJP
【FI】
B23K9/10 Z
B23K31/00 D
B23K31/00 K
B23K9/095 510D
【請求項の数】 13
(21)【出願番号】P 2019111620
(22)【出願日】2019-06-14
(65)【公開番号】P2020203294
(43)【公開日】2020-12-24
【審査請求日】2021-12-28
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100138771
【弁理士】
【氏名又は名称】吉田 将明
(72)【発明者】
【氏名】花田 和紀
(72)【発明者】
【氏名】毛利 年成
【審査官】松田 長親
(56)【参考文献】
【文献】特開2000-167666(JP,A)
【文献】特開平01-181989(JP,A)
【文献】特開2017-106908(JP,A)
【文献】特開2012-037488(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 9/00
B23K 9/06-9/133
B23K 10/00
B23K 31/00-33/00
B23K 37/00-37/08
(57)【特許請求の範囲】
【請求項1】
ワークの溶接箇所を外観検査する検査装置と、ワークを溶接するロボットを制御するロボット制御装置とを備え、
前記検査装置は、前記ワークの溶接箇所の状態判定を行い、前記状態判定として前記ワークの溶接箇所に不良箇所が存在しかつ前記不良箇所の修正が可能であると判定した場合、前記溶接箇所の状態判定結果に基づいて、前記不良箇所を修正するリペア溶接の修正方法を示す種別および前記不良箇所の修正に用いるパラメータを生成し、
前記検査装置は、前記状態判定結果と前記リペア溶接の前記種別および前記パラメータとを関連付けるプログラム生成ロジックテーブルを保持し、前記状態判定結果と前記プログラム生成ロジックテーブルとに基づいて、前記リペア溶接の前記種別および前記パラメータを生成するだけでなく、前記ロボットにより前記リペア溶接を自動修正で行うことが可能か否かを判定し、
前記ロボット制御装置は、前記検査装置により前記ロボットにより前記リペア溶接を自動修正で行うことが可能であると判定された場合に、前記リペア溶接の前記種別および前記パラメータに応じて、前記ワークの溶接箇所に前記リペア溶接の自動修正を行うように前記ロボットを制御する、
リペア溶接システム。
【請求項2】
前記状態判定には、前記ワークの溶接箇所における溶接結果の良否判定と、前記ワークの溶接箇所における修正可否判定とが更に含まれる、
請求項1に記載のリペア溶接システム。
【請求項3】
前記検査装置は、前記ワークの溶接箇所における溶接ビードの形状データに基づいた特性データを算出し、前記特性データを所定の閾値と比較することにより、前記状態判定を行う、
請求項1又は2に記載のリペア溶接システム。
【請求項4】
前記特性データは、マスタデータと、前記ワークの溶接箇所における溶接ビードの形状データとに基づいた検査スコアである、
請求項に記載のリペア溶接システム。
【請求項5】
前記検査装置は判定モデルを備え、
前記判定モデルは、前記ワークの溶接箇所における溶接ビードの形状データを用いて機械学習が行われた判定モデルあり、
前記検査装置は、前記判定モデルを用いて、前記状態判定を行う、
請求項1に記載のリペア溶接システム。
【請求項6】
前記判定モデルが、
前記ワークの溶接箇所における溶接結果の良否判定と、前記ワークの溶接箇所における修正可否判定とを行う第1の判定モデルと、
前記リペア溶接の前記自動修正が可能であるかを判定する第2の判定モデルと、を含む、
請求項に記載のリペア溶接システム。
【請求項7】
前記検査装置は、フィードバック情報を受信し、前記フィードバック情報を用いて、前記判定モデルを更新する、
請求項に記載のリペア溶接システム。
【請求項8】
前記検査装置は、前記状態判定の結果を出力する、
請求項1からのうちいずれか1項に記載のリペア溶接システム。
【請求項9】
前記検査装置または前記ロボット制御装置は、
前記状態判定の結果に応じて、前記リペア溶接の前記自動修正に用いるプログラムを編集または変更する、
請求項1からのうちいずれか1項に記載のリペア溶接システム。
【請求項10】
前記検査装置は、
前記ワークの溶接箇所における溶接結果の良否判定を行い、
前記良否判定において不良であると判定された場合に、前記ワークの溶接箇所における修正可否判定を行い、
前記溶接箇所における修正可否判定において修正可能であると判定された場合に、前記リペア溶接の前記自動修正の可否判定を行う、
請求項1からのうちいずれか1項に記載のリペア溶接システム。
【請求項11】
前記リペア溶接の前記自動修正の可否判定において、前記ワークの溶接箇所を自動修正が可能ではないと判定された場合に、前記ワークについて、前記状態判定を終了する、
請求項1から請求項10のうちいずれか1項に記載のリペア溶接システム。
【請求項12】
前記状態判定には、前記ワークの溶接箇所における修正可否判定が含まれており、
前記修正可否判定において、修正不可と判定された場合に、前記状態判定を終了する、
請求項1から請求項11のうちいずれか1項に記載のリペア溶接システム。
【請求項13】
ワークの溶接箇所を外観検査する検査装置と、ワークを溶接するロボットを制御するロボット制御装置とを備えたリペア溶接システムにおいて、
前記検査装置は、前記ワークの溶接箇所の状態判定を行い、前記状態判定として前記ワークの溶接箇所に不良箇所が存在しかつ前記不良箇所の修正が可能であると判定した場合、前記溶接箇所の状態判定結果に基づいて、前記不良箇所を修正するためのリペア溶接の修正方法を示す種別および前記不良箇所の修正に用いるパラメータを生成し、
前記検査装置は、前記状態判定結果と前記リペア溶接の前記種別および前記パラメータとを関連付けるプログラム生成ロジックテーブルを保持し、前記状態判定結果と前記プログラム生成ロジックテーブルとに基づいて、前記リペア溶接の前記種別および前記パラメータを生成するだけでなく、前記ロボットにより前記リペア溶接を自動修正で行うことが可能か否かを判定し、
前記ロボット制御装置は、前記検査装置により前記ロボットにより前記リペア溶接を自動修正で行うことが可能であると判定された場合に、前記リペア溶接の前記種別および前記パラメータに応じて、前記ワークの溶接箇所に前記リペア溶接の自動修正を行うように前記ロボットを制御する、
リペア溶接方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、リペア溶接システムおよびリペア溶接方法に関する。
【背景技術】
【0002】
特許文献1には、撮像光学系を用いて被検査物の形状を検査する形状検査装置であって、被検査物にスリット光を投射する投射手段と、前記スリット光の走査により被検査物上に順次形成される形状線を撮像する撮像手段と、前記順次形成された各形状線の撮像データに基いて、被検査物の三次元形状を点群データとして取得する点群データ取得手段と、前記点群データに基いて表示された被検査物に、入力に応じて切断線を設定する切断線設定手段と、前記切断線に対応した前記点群データにより、前記切断線における被検査物の断面形状を算出する断面形状算出手段とを備えることが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2012-037487号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、リペア溶接を行うことができるリペア溶接システムおよびリペア溶接方法を提供する。
【課題を解決するための手段】
【0005】
本開示は、ワークの溶接箇所を外観検査する検査装置と、ワークを溶接するロボットを制御するロボット制御装置とを備え、前記検査装置は、前記ワークの溶接箇所の状態判定を行い、前記状態判定として前記ワークの溶接箇所に不良箇所が存在しかつ前記不良箇所の修正が可能であると判定した場合、前記溶接箇所の状態判定結果に基づいて、前記不良箇所を修正するためのリペア溶接の修正方法を示す種別および前記不良箇所の修正に用いるパラメータを生成し、前記検査装置は、前記状態判定結果と前記リペア溶接の前記種別および前記パラメータとを関連付けるプログラム生成ロジックテーブルを保持し、前記状態判定結果と前記プログラム生成ロジックテーブルとに基づいて、前記リペア溶接の前記種別および前記パラメータを生成するだけでなく、前記ロボットにより前記リペア溶接を自動修正で行うことが可能か否かを判定し、前記ロボット制御装置は、前記検査装置により前記ロボットにより前記リペア溶接を自動修正で行うことが可能であると判定された場合に、前記リペア溶接の前記種別および前記パラメータに応じて、前記ワークの溶接箇所に前記リペア溶接の自動修正を行うように前記ロボットを制御する、リペア溶接システムを提供する。
【0006】
また、本開示は、ワークの溶接箇所を外観検査する検査装置と、ワークを溶接するロボットを制御するロボット制御装置とを備えたリペア溶接システムにおいて、前記検査装置は、前記ワークの溶接箇所の状態判定を行い、前記状態判定として前記ワークの溶接箇所に不良箇所が存在しかつ前記不良箇所の修正が可能であると判定した場合、前記溶接箇所の状態判定結果に基づいて、前記不良箇所を修正するためのリペア溶接の修正方法を示す種別および前記不良箇所の修正に用いるパラメータを生成し、前記検査装置は、前記状態判定結果と前記リペア溶接の前記種別および前記パラメータとを関連付けるプログラム生成ロジックテーブルを保持し、前記状態判定結果と前記プログラム生成ロジックテーブルとに基づいて、前記リペア溶接の前記種別および前記パラメータを生成するだけでなく、前記ロボットにより前記リペア溶接を自動修正で行うことが可能か否かを判定し、前記ロボット制御装置は、前記検査装置により前記ロボットにより前記リペア溶接を自動修正で行うことが可能であると判定された場合に、前記リペア溶接の前記種別および前記パラメータに応じて、前記ワークの溶接箇所に前記リペア溶接の自動修正を行うように前記ロボットを制御する、リペア溶接方法を提供する。
【発明の効果】
【0007】
本開示によれば、リペア溶接を行うことができる。
【図面の簡単な説明】
【0008】
図1】本開示に係る自動リペア溶接システム1000のユースケース例を示す概略図
図2】実施の形態1に係る検査・リペア溶接ロボットMC23の制御に関する自動リペア溶接システム1000aの内部構成例を示す図
図3】実施の形態1に係る自動リペア溶接システム1000aによる自動リペア溶接の第1の動作手順例を示すフローチャート
図4】実施の形態1に係る自動リペア溶接システム1000aによる、自動リペア溶接の第2の動作手順例を示すフローチャート
図5】実施の形態2に係る検査ロボットMC2とリペア溶接ロボットMC3との制御に関する、自動リペア溶接システム1000bの内部構成例を示す図
図6】実施の形態2に係る自動リペア溶接システム1000bによる自動リペア溶接の動作手順例を示すフローチャート
図7】変形例1に係る自動リペア溶接システム1000aによる、自動リペア溶接の動作手順例を示すフローチャート
図8】変形例2に係る検査・リペア溶接ロボットMC23の制御に関する自動リペア溶接システム1000cの内部構成例を示す図
図9図8の内部構成例におけるデータ処理部35の構成例を示す図
図10】マスタデータと、検査対象の溶接ビードの形状データとの比較を示す概念図
図11】プログラム生成ロジックテーブルを示す図であり、(a)不良種別と特性データをキーにする場合の一例、(b)不良種別と検査スコアをキーにする場合の一例
【発明を実施するための形態】
【0009】
(本開示に至る経緯)
特許文献1の技術は、外観検査装置により、本溶接を行った後の溶接箇所の形状良否判定を行うことが可能である。しかし、形状が良好で無かった場合に、再溶接(リペア溶接)によって修正を行い得るか否かを判定する可否判定や、修正の為の再溶接(リペア溶接)は、人間である溶接作業者が行っているのが現状である。そのため、作業者の技能レベル差や誤判断により品質が安定しないという潜在的な課題があった。
【0010】
さらに、近年、溶接対象となるワークが多様化している。ワークの多様化に比例して、リペア溶接を行う溶接作業者の負担が大きくなっている。
【0011】
また、本溶接後のワークが、リペア溶接により修正可能であったとしても、この修正を自動リペア溶接で行い得るか、あるいは溶接作業者による溶接(作業者リペア溶接)が必要となるのかを自動で判定することができていない。
【0012】
さらに、上述の種々の判定に係る判定基準や、リペア溶接による修正方法は、溶接技術を用いる工場等のユーザ環境毎に異なり得る。そこで、自工場や他工場の本溶接/リペア溶接作業に関連して生じるデータを有効活用し、より適切な判定基準を得る事ができれば、より好適である。
【0013】
そこで、本開示においては、本溶接が行われたワークの形状不良箇所について、リペア溶接による修正の可否を自動で判定し、更に、自動リペア溶接あるいは作業者リペア溶接のどちらが可能かの判定も自動で行う。これにより、溶接を行ったワークの品質を向上・安定化させることができる。
【0014】
また、自工場や他工場の本溶接/リペア溶接作業に関連して生じるデータをフィードバック情報として用いることで、ユーザ環境により適応し、上記の判定を高精度化、効率化することができる。
【0015】
以下、適宜図面を参照しながら、本開示に係る自動リペア溶接システムおよび自動リペア溶接方法の構成および動作を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
【0016】
図1は、本開示に係る自動リペア溶接システム1000のユースケース例を示す概略図である。本開示に係る自動リペア溶接システム1000は、ユーザにより入力された情報あるいは予め設定された溶接に関する情報に基づいて、ワークWkに対して本溶接された溶接箇所の検査と、溶接箇所のうち不良と判定された不良箇所の修正溶接(リペア溶接)とを自動で行うシステムである。なお、当該システムは、前述の検査とリペア溶接に加えて、本溶接を行ってもよい。
【0017】
自動リペア溶接システム1000は、大きく分けると、溶接や溶接結果の検査に用いるロボット(RB0)と、ロボットやロボットが備える検査機能を制御するコントローラと、コントローラに対する上位装置との3つを備えていてよい。
【0018】
より具体的に列挙すると、自動リペア溶接システム1000は、本溶接を行う本溶接ロボットMC1と、本溶接後の溶接箇所の外観検査を行う検査ロボットMC2と、本溶接後の溶接箇所に不良個所が含まれていた場合のリペア溶接を行うリペア溶接ロボットMC3とを備えていてよい。また、溶接システムは、上述の各種のロボットやロボットが備える検査機能を制御するためのコントローラとして、ロボット制御装置2aと、検査装置3と、ロボット制御装置2bを備えていてよい。また、自動リペア溶接システム1000は、上述のコントローラに対する上位装置1を備えていてよい。上位装置1は、モニタMN1と、インターフェースUI1と、外部ストレージSTとに接続されていてよい。
【0019】
なお、図示は省略したが、上位装置1、あるいはコントローラに含まれる各種の制御装置は、外部ネットワークとの通信を行う通信インターフェース(有線、あるいは無線)を備えていてよい。これらの装置は、外部ネットワークに接続されている場合、外部ネットワーク上に存在する他の機器(典型的にはサーバやPC、種々のセンサ装置等)と通信を行うことができる。
【0020】
図1において、本溶接ロボットMC1は、リペア溶接ロボットMC3と別のロボットとして示されている。しかし、別のシステムを用いて本溶接を行うか、あるいは手作業で本溶接を行った上で、自動リペア溶接システム1000が検査とリペア溶接とを実行するような場合には、本溶接ロボットMC1は省略されてもよい。
【0021】
さらに、本溶接ロボットMC1は、リペア溶接ロボットMC3あるいは検査ロボットMC2のそれぞれと一体であってもよい。例えば、リペア溶接ロボットMC3は、ワークWkを溶接する本溶接と、本溶接によって溶接された溶接箇所のうち不良箇所を修正するリペア溶接とを、同一のロボットで実行してもよい。また、例えば、検査ロボットMC2は、ワークWkを溶接する本溶接と、本溶接によって溶接された溶接箇所のうち不良箇所があるか否かの検査とを、同一のロボットで実行してもよい。
【0022】
なお、検査ロボットMC2とリペア溶接ロボットMC3とを1つのロボットに統合してよく、本溶接ロボットMC1と、検査ロボットMC2と、リペア溶接ロボットMC3とを1つのロボットに統合してもよい。
【0023】
図1に示す自動リペア溶接システム1000は、本溶接ロボットMC1、検査ロボットMC2およびリペア溶接ロボットMC3のそれぞれの台数は、図1に示す数に限定されない。例えば、本溶接ロボットMC1、検査ロボットMC2およびリペア溶接ロボットMC3のそれぞれの台数は、複数台であってもよく、また同じ台数でなくてよい。例えば、自動リペア溶接システム1000は、本溶接ロボットMC1を1台、検査ロボットMC2を3台、リペア溶接ロボットMC3を2台含んで構成されてよい。これにより、自動リペア溶接システム1000は、各ロボットの処理範囲あるいは処理速度などに必要に応じて適応的に構成可能である。
【0024】
上位装置1は、モニタMN1と、インターフェースUI1と、外部ストレージSTと、ロボット制御装置2aと、ロボット制御装置2bとの間で通信可能に接続される。また、図1示す上位装置1は、ロボット制御装置2bを介して検査装置3と接続されるが、ロボット制御装置2bを介さず、検査装置3と直接通信可能に接続されてもよい。
【0025】
なお、上位装置1は、モニタMN1およびインターフェースUI1を含んで一体に構成される端末装置P1であってもよく、さらに外部ストレージSTを含んで一体に構成されてもよい。この場合、端末装置P1は、例えば溶接を実行するにあたってユーザ(作業者)によって使用されるPC(Personal Computer)である。なお、端末装置P1は、上述したPCに限らず、例えばスマートフォン、タブレット端末、PDA(Personal Digital Assistat)などの通信機能を有するコンピュータであってよい。
【0026】
上位装置1は、ユーザ(作業者)による入力操作あるいはユーザ(作業者)によって予め設定された情報に基づいて、ワークWkに対する本溶接、溶接箇所の検査および不良箇所のリペア溶接を実行するための制御信号のそれぞれを生成する。上位装置1は、生成されたワークWkに対する本溶接を実行するための制御信号および不良箇所のリペア溶接を実行するための制御信号をロボット制御装置2aに送信する。また、上位装置1は、本溶接によって溶接された溶接箇所の検査を実行するための制御信号をロボット制御装置2bに送信する。
【0027】
上位装置1は、ロボット制御装置2bを介して検査装置3から受信された溶接箇所の検査結果を収集してよい。上位装置1は、受信された検査結果を外部ストレージSTおよびモニタMN1に送信する。なお、図1に示す検査装置3は、ロボット制御装置2bを介して上位装置1と接続されるが、直接的に通信可能に接続されてもよい。
【0028】
モニタMN1は、例えばLCD(Liquid Crystal Display)または有機EL(Electroluminescence)などのディスプレイを用いて構成されてよい。モニタMN1は、検査装置3から受信された溶接箇所の検査結果およびアラートを表示する。また、モニタMN1は、例えばスピーカ(不図示)を用いて構成されてよく、アラートを受信した際に音声によるアラートの通知を行ってもよい。すなわち、通知を行うための形態は、視覚情報による通知には限られない。
【0029】
インターフェースUI1は、ユーザ(作業者)の入力操作を検出するユーザインターフェース(UI:User Interface)であり、マウス、キーボードまたはタッチパネルなどを用いて構成される。インターフェースUI1は、ユーザの入力操作に基づく入力操作を上位装置1に送信する。インターフェースUI1は、例えば溶接線の入力、溶接線に応じた検査基準の設定、自動リペア溶接システム1000の動作開始あるいは動作終了の操作などを受け付ける。
【0030】
外部ストレージSTは、例えばハードディスク(HDD:Hard Disk Drive)またはソリッドステートドライブ(SSD:Solid State Drive)を用いて構成される。外部ストレージSTは、上位装置1から受信された溶接箇所の検査結果を記憶してよい。
【0031】
ロボット制御装置2aは、上位装置1、本溶接ロボットMC1およびリペア溶接ロボットMC3との間で通信可能に接続される。ロボット制御装置2aは、上位装置1から受信された本溶接に関する制御情報を受信し、受信された制御情報に基づいて本溶接ロボットMC1を制御し、ワークWkに対する本溶接を実行させる。
【0032】
また、ロボット制御装置2aは、上位装置1から受信されたリペア溶接に関する制御情報を受信し、受信された制御情報に基づいてリペア溶接ロボットMC3を制御し、溶接箇所のうち検査装置3によって不良と判定された不良箇所に対して、リペア溶接を実行させる。
【0033】
なお、図1に示すロボット制御装置2aは、本溶接ロボットMC1およびリペア溶接ロボットMC3のそれぞれを制御する。しかし、実施の形態1に係る自動リペア溶接システム1000は、これに限らず、例えば本溶接ロボットMC1およびリペア溶接ロボットMC3のそれぞれを異なる制御装置を用いて制御してもよい。さらに、実施の形態1に係る自動リペア溶接システム1000は、1つの制御装置で本溶接ロボットMC1と、検査ロボットMC2と、リペア溶接ロボットMC3と、を制御してもよい。
【0034】
ロボット制御装置2bは、上位装置1、検査装置3および検査ロボットMC2との間で通信可能に接続される。ロボット制御装置2bは、上位装置1から受信された溶接箇所に関する情報(例えば、溶接箇所の位置情報など)を受信する。なお、溶接箇所は、ワークWkに対する溶接箇所(つまり、本溶接により溶接された箇所)とリペア溶接によって修正溶接された溶接箇所とを含む。ロボット制御装置2bは、受信された溶接箇所に関する情報に基づいて検査ロボットMC2を制御し、溶接箇所の溶接ビードの形状を検出させる。また、ロボット制御装置2bは、受信された溶接箇所に関する情報を溶接箇所の形状を検査する検査装置3に送信する。ロボット制御装置2bは、検査装置3から受信された検査結果を上位装置1に送信する。
【0035】
検査装置3は、ロボット制御装置2bおよび検査ロボットMC2との間で通信可能に接続される。検査装置3は、ロボット制御装置2bから受信された溶接箇所に関する情報と、形状検出部500によって生成された溶接箇所の溶接ビードの形状データとに基づいて、溶接箇所に対する溶接不良の有無を検査(判定)する。検査装置3は、溶接箇所のうち不良であると判定された不良箇所に関する情報(例えば、不良区間、不良区間の位置情報、不良要因などを含み得る)を検査結果としてロボット制御装置2bに送信する。また、検査装置3は、不良箇所が自動リペア溶接可能であると判定された場合に、修正の種別や、リペア溶接を行うためのパラメータ等の情報も、検査結果としてロボット制御装置2bに送信してよい。なお、検査装置3は、直接上位装置1と通信可能に接続されてもよい。この場合、検査装置3は、ロボット制御装置2bを介さず、上述の情報を上位装置1に送信可能でもよい。
【0036】
なお、図1においてはロボット制御装置2bと検査装置3を別体として説明しているが、ロボット制御装置2bと検査装置3とを単一の装置へと統合してもよい。
【0037】
本溶接ロボットMC1は、ロボット制御装置2aとの間で通信可能に接続され、溶接処理されていないワークに溶接(本溶接)を実行するロボットである。本溶接ロボットMC1は、ロボット制御装置2aから受信された制御信号に基づいて、ワークWkに対して本溶接を実行する。
【0038】
検査ロボットMC2は、ロボット制御装置2bおよび検査装置3との間で通信可能に接続される。検査ロボットMC2は、ロボット制御装置2bから受信された制御信号に基づいて、溶接箇所の溶接ビードの形状データを取得する。
【0039】
リペア溶接ロボットMC3は、ロボット制御装置2aとの間で通信可能に接続される。リペア溶接ロボットMC3は、ロボット制御装置2aから受信された溶接箇所の検査結果(つまり、不良箇所に関する情報)に基づいて、不良箇所に対してリペア溶接を実行する。
【0040】
<実施の形態1>
図2は、実施の形態1に係る検査・リペア溶接ロボットMC23の制御に関する自動リペア溶接システム1000aの内部構成例を示す図である。なお、図2に示す検査・リペア溶接ロボットMC23は、図1に示した検査ロボットMC2およびリペア溶接ロボットMC3が一体となったロボットである。また、説明をわかりやすくするためにモニタMN1、インターフェースUI1、外部ストレージSTに関する構成を省略する。
【0041】
(検査・リペア溶接ロボットMC23の構成例)
検査・リペア溶接ロボットMC23は、ロボット制御装置2から受信された制御信号に基づいて、本溶接が行われた後のワークWkにおける溶接箇所の検査を実行する。また、検査・リペア溶接ロボットMC23は、ロボット制御装置2から受信された制御信号に基づいて、ワークWkの前記溶接箇所における、溶接不良箇所について、リペア溶接を自動で行う。
【0042】
本例においては、検査・リペア溶接ロボットMC23はアーク溶接を行うロボットである。しかし、検査・リペア溶接ロボットMC23は、アーク溶接以外の、例えばレーザ溶接等を行うロボットであってもよい。この場合、図示は省略するが、溶接トーチ400に代わって、レーザヘッドを、光ファイバを介してレーザ発振器に接続してもよい。
【0043】
本例においてはアーク溶接を行う検査・リペア溶接ロボットMC23は、マニピュレータ200と、ワイヤ送給装置300と、溶接ワイヤ301と、溶接トーチ400と、形状検出部500と、を含んで構成される。
【0044】
マニピュレータ200は多関節のアームを備え、ロボット制御装置2のロボット制御部26から受信された制御信号に基づいて、このアームが可動する。その結果、溶接トーチ400と形状検出部500の位置を制御することができる。なお、ワークWkに対する溶接トーチ400の角度も、上記アームの可動によって変更することができる。
【0045】
ワイヤ送給装置300は、ロボット制御装置2から受信された制御信号に基づいて、溶接ワイヤ301の送給速度を制御する。なお、ワイヤ送給装置300は、溶接ワイヤ301の残量を検出可能なセンサを備えていてもよい。
【0046】
溶接ワイヤ301は溶接トーチ400に保持されており、また、溶接トーチ400に溶接電源装置4から電力が供給されることで、溶接ワイヤ301の先端とワークWkとの間にアークが発生し、アーク溶接が行われる。なお、溶接トーチ400にシールドガスを供給するための構成等は、説明の便宜上、これらの図示及び説明を省略する。
【0047】
検査・リペア溶接ロボットMC23が備える形状検出部500は、ロボット制御装置2から受信された制御信号に基づいて、溶接箇所の溶接ビードの形状を検出し、検出結果に基づいて溶接ビードごとの形状データを取得する。検査・リペア溶接ロボットMC23は、取得された溶接ビードごとの形状データを検査装置3に送信する。
【0048】
形状検出部500は、例えば3次元形状計測センサであり、ロボット制御装置2から受信された溶接箇所の位置情報に基づいて、ワークWk上の溶接箇所を走査可能に構成されたレーザ光源(不図示)と、溶接箇所の周辺を含む撮像領域を撮像可能に配置され、溶接箇所に照射されたレーザ光のうち反射されたレーザ光の反射軌跡(つまり、溶接箇所の形状線)を撮像するカメラ(不図示)とによって構成される。形状検出部500は、カメラによって撮像されたレーザ光に基づく溶接箇所の形状データ(画像データ)を検査装置3に送信する。
【0049】
なお、上述したカメラ(不図示)は、少なくともレンズ(不図示)とイメージセンサ(不図示)とを有して構成される。イメージセンサは、例えばCCD(Charged-Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)の固体撮像素子であり、撮像面に結像した光学像を電気信号に変換する。
【0050】
(上位装置)
次に、上位装置1について説明する。上位装置1は、ユーザ(作業者)による入力操作あるいはユーザ(作業者)によって予め設定された情報に基づいて、リペア溶接を実行するための制御信号を生成し、生成された制御信号をロボット制御装置2に送信する。上位装置1は、通信部10と、プロセッサ11と、メモリ12と、を含んで構成される。
【0051】
通信部10は、ロボット制御装置2との間で通信可能に接続される。通信部10は、リペア溶接を実行させるための制御信号をロボット制御装置2に送信する。なお、ここでいうリペア溶接を実行させるための制御信号は、マニピュレータ200、ワイヤ送給装置300および溶接電源装置4のそれぞれを制御するための制御信号を含んでよい。
【0052】
プロセッサ11は、例えばCPU(Central Processing unit)またはFPGA(Field Programmable Gate Array)を用いて構成されて、メモリ12と協働して、各種の処理および制御を行う。具体的には、プロセッサ11は、メモリ12に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、セル制御部13の機能を実現する。
【0053】
セル制御部13は、インターフェースUI1を用いたユーザ(作業者)による入力操作と、ユーザ(作業者)によって予め設定され、外部ストレージSTに記憶された情報とに基づいて、リペア溶接を実行するための制御信号を生成する。セル制御部13によって生成された制御信号は、通信部10を介してロボット制御装置2に送信される。
【0054】
メモリ12は、例えばプロセッサ11の各処理を実行する際に用いられるワークメモリとしてのRAM(Random Access Memory)と、プロセッサ11の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサ11により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ11の動作を規定するプログラムが書き込まれている。
【0055】
また、メモリ12は、ワークWkに関する情報種別、ワークWkごとに予め付与されたワークS/N(Serial Number)、ユーザによって設定された溶接箇所(溶接線)ごとに付与された溶接線IDなどを記憶する。
【0056】
(ロボット制御装置2)
次に、ロボット制御装置2について説明する。ロボット制御装置2は、上位装置1から受信された制御信号に基づいてマニピュレータ200、ワイヤ送給装置300、および溶接電源装置4のそれぞれを制御する。ロボット制御装置2は、通信部20と、プロセッサ21と、メモリ22とを含んで構成される。プロセッサ21は、プログラム編集部23aと、プログラム呼出部23bと、プログラム記憶部23cと、演算部24と、検査装置制御部25と、ロボット制御部26と、溶接電源制御部27と、を含んで構成される。
【0057】
通信部20は、上位装置1との間で通信可能に接続される。通信部20は、上位装置1から、リペア溶接や、検査装置3による外観検査を実行させるための制御信号を受信する。
【0058】
プロセッサ21は、例えばCPUまたはFPGAを用いて構成されて、メモリ22と協働して、各種の処理および制御を行う。具体的には、プロセッサ21はメモリ22に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。各部は、プログラム編集部23a、プログラム呼出部23b、プログラム記憶部23c、演算部24、検査装置制御部25、ロボット制御部26および溶接電源制御部27である。各部の機能は、例えば、予め記憶されたリペア溶接を実行するためのリペア溶接プログラムを編集して呼び出す機能、呼び出されたリペア溶接プログラムに基づいて、マニピュレータ200、ワイヤ送給装置300および溶接電源装置4のそれぞれを制御するための制御信号を生成する機能などである。
【0059】
メモリ22は、例えばプロセッサ21の各処理を実行する際に用いられるワークメモリとしてのRAMと、プロセッサ21の動作を規定したプログラムおよびデータを格納するROMとを有する。RAMには、プロセッサ21により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ21の動作を規定するプログラムが書き込まれている。
【0060】
プログラム編集部23aは、通信部20を介して検査装置3から受信された不良箇所に関する情報(例えば、後述の検査装置3による判定結果)に基づいて、リペア溶接を実行するためのプログラム(制御信号)を編集する。プログラム編集部23aは、プログラム記憶部23cに予め記憶されているリペア溶接を実行するためのリペア溶接基本プログラムを参照し、受信された不良箇所の位置および不良要因、リペア溶接の為のパラメータ(修正パラメータ)等に応じてリペア溶接プログラムを編集する。編集後のリペア溶接プログラムは、プログラム記憶部23cに記憶してよく、また、メモリ22内のRAM等に記憶してもよい。
【0061】
なお、ここでいうリペア溶接プログラムには、リペア溶接を実行するにあたって、溶接電源装置4、マニピュレータ200、ワイヤ送給装置300、溶接トーチ400、形状検出部500、などを制御するための、電流、電圧、オフセット量、速度、姿勢、方法等のパラメータが含まれていてよい。
【0062】
プログラム呼出部23bは、メモリ22に含まれるROMや、プログラム記憶部23c等に記憶されている各種プログラムを呼び出す。なお、プログラム呼出部23bは、検査・リペア溶接ロボットMC23側にあるプログラムを呼び出してもよい。また、プログラム呼出部23bは、複数のプログラムから、検査装置3による検査結果(判定結果)に応じて、適切なプログラムを選択して呼び出すことができる。すなわち、プログラム呼出部23bは、検査装置3による検査結果(判定結果)に応じてプログラムを変更することができる。
【0063】
プログラム記憶部23cは、ロボット制御装置2が使用する各種プログラムを記憶する。例えば、上述のリペア溶接基本プログラムや、プログラム編集部23aによって編集済のリペア溶接プログラム等がプログラム記憶部23cに記憶されてよい。
【0064】
演算部24は、各種の演算を行う機能ブロックである。例えば、リペア溶接プログラムに基づいて、ロボット制御部26によって制御されるマニピュレータ200およびワイヤ送給装置300を制御するための演算等を行う。その他、演算部24は、不良箇所の位置に基づいて、不良箇所に対するリペア溶接に必要なオフセット量を演算してもよい。
【0065】
検査装置制御部25は、検査装置3を制御するための制御信号を生成する。この制御信号は通信部20を介して検査装置3へと送信される。反対に、検査装置制御部25は、検査装置3から各種情報を通信部20経由で受信し、当該情報に基づき、例えばリペア溶接プログラムの編集を行う(プログラム編集部23a)、通知を上位装置1に送信する、等の各種処理を行う。
【0066】
ロボット制御部26は、プログラム呼出部23bによって呼び出された、あるいはプログラム記憶部23cに記憶されたリペア溶接プログラムや、演算部24からの演算結果に基づいて、マニピュレータ200およびワイヤ送給装置300のそれぞれを駆動させる。溶接電源制御部27は、プログラム呼出部23bによって呼び出された、あるいはプログラム記憶部23cに記憶されたリペア溶接プログラムや、演算部24からの演算結果に基づいて、溶接電源装置4を駆動させる。
【0067】
なお、検査ロボットMC2とリペア溶接ロボットMC3を別体にする構成の場合、前記の不良箇所に関する情報は、検査ロボットMC2と接続された検査装置3から、上位装置1を経由して、リペア溶接ロボットMC3と接続されたロボット制御装置2へと送信されてよい。リペア溶接ロボットMC3と接続されたロボット制御装置2のプログラム編集部23aは、通信部20を介して上位装置1から受信された不良箇所に関する情報(例えば、後述の検査装置3による判定結果)に基づいて、リペア溶接を実行するためのプログラム(制御信号)を編集してよい。
【0068】
また、上記の構成例においては、プログラム編集部23aやプログラム呼出部23bがロボット制御装置2側にある形態を説明した。しかし、プログラム編集部やプログラム呼出部を、検査装置3側に設けてもよい。この場合、上述のプログラムの呼出しや、リペア溶接プログラムの編集を検査装置3が行ってよい。プログラムの呼出し元は、検査装置3内に限られず、ロボット制御装置2、あるいはロボット制御装置2に接続された検査・リペア溶接ロボットMC23等からプログラムを呼び出してもよい。呼び出されたプログラムは、プログラム編集部で編集され、編集後のプログラムが、リペア溶接プログラムとして検査装置3からロボット制御装置2へと送信され、ロボット制御装置2はこのリペア溶接プログラムを用いて、リペア溶接を行うことができる。
【0069】
(検査装置3)
次に、検査装置3について説明する。検査装置3は、形状検出部500によって取得された溶接箇所ごとの溶接ビードの形状データに基づいて、ワークWkの溶接箇所を検査(判定)する。この判定には、溶接箇所の溶接結果の良否判定、溶接不良箇所の修正可否判定、自動リペア溶接の可否判定などが含まれ得る。これらの各種判定については後述する。
【0070】
検査装置3は、通信部30と、プロセッサ31と、メモリ32と、形状検出制御部34と、データ処理部35と、判定閾値記憶部36と、判定部37と、を含んで構成される。
【0071】
通信部30は、ロボット制御装置2との間で通信可能に接続される。なお、通信部30は、上位装置1との間を直接、通信可能に接続されてもよい。通信部30は、上位装置1またはロボット制御装置2から、溶接箇所に関する情報を受信する。溶接箇所に関する情報には、例えば、ワーク種別、ワークS/N、溶接線ID等が含まれていてよい。
【0072】
また、検査装置3は、溶接箇所の検査結果を、通信部30を介して、上位装置1またはロボット制御装置2に送信する。
【0073】
プロセッサ31は、例えばCPUまたはFPGAを用いて構成されて、メモリ32と協働して、各種の処理および制御を行う。具体的には、プロセッサ31はメモリ32に保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、各部の機能を実現する。各部は、形状検出制御部34、データ処理部35、判定閾値記憶部36および判定部37を含む。各部の機能は、例えば、ロボット制御装置2から受信された溶接箇所に応じた検査に関する制御信号に基づいて形状検出部500を制御する機能、形状検出部500から受信された溶接ビードの形状データに基づいて、画像データを生成する機能、および生成された画像データに基づいて、溶接箇所に対する検査を実行する機能などである。
【0074】
なお、後述の機械学習を行う場合、プロセッサ31は、例えば、計算用のGPUを複数備える構成としてよい。この場合、プロセッサ31は、上述のCPU等と併用してもよい。
【0075】
メモリ32は、例えばプロセッサ31の各処理を実行する際に用いられるワークメモリとしてのRAMと、プロセッサ31の動作を規定したプログラムおよびデータを格納するROMとを有する。RAMには、プロセッサ31により生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、プロセッサ31の動作を規定するプログラムが書き込まれている。また、メモリ32には、例えばハードディスク(HDD:Hard Disk Drive)やソリッドステートドライブ(SSD:Solid State Drive)等が含まれていてよい。
【0076】
形状検出制御部34は、形状検出部500から受信された溶接箇所における溶接ビードの形状データと、ロボット制御装置2から受信された溶接箇所に応じた検査に関する制御信号とに基づいて、形状検出部500を制御させる。形状検出制御部34は、形状検出部500が溶接箇所を撮像可能(形状検出可能)な位置に位置すると、レーザ光線を照射させて溶接箇所における溶接ビードの形状データを取得させる。形状検出制御部34は、形状検出部500によって取得された形状データを受信すると、この形状データをデータ処理部35に出力する。
【0077】
データ処理部35は、形状検出制御部34から入力された溶接箇所における溶接ビードの形状データを画像データに変換する。形状データは、例えば、溶接ビードの表面に照射されたレーザ光線の反射軌跡からなる形状線の点群データである。データ処理部35は、入力された形状データに対して統計処理を実行し、溶接箇所における溶接ビードの形状に関する画像データを生成する。なお、データ処理部35は、溶接ビードの位置および形状を強調するために、溶接ビードの周縁部分を強調したエッジ強調補正を行ってもよい。
【0078】
判定閾値記憶部36は、溶接箇所に応じて後述の判定を実行するために、溶接箇所に応じて設定された各閾値を記憶する。各閾値は、例えば溶接箇所の位置ずれに関する許容範囲(閾値)、溶接ビードの高さに関する閾値、溶接ビードの幅に関する閾値などである。また、判定閾値記憶部36は、リペア溶接後の各閾値として、顧客から要求される品質を満たす程度の許容範囲(例えば、溶接ビードの高さに関する最小許容値、最大許容値など)を記憶する。
【0079】
また、判定閾値記憶部36は、溶接箇所ごとに検査回数の上限値を記憶してよい。これにより、検査装置3は、リペア溶接によって不良箇所を修正する際に所定の回数を上回るものに関して、自動リペア溶接による不良箇所の修正が困難あるいは不可能と判定して、自動リペア溶接システム1000aの稼働率の低下を抑制することができる。
【0080】
判定部37は、判定閾値記憶部36に記憶された閾値を、参照する等して、溶接箇所における溶接ビードの形状データに基づいて、溶接箇所についての判定を行う。この判定についての詳細は、図3以降を参照しつつ後述する。
【0081】
判定部37は、不良箇所の位置(例えば、不良箇所の開始位置と終了位置や、溶接ビードに生じた穴あきの位置や、アンダーカットの位置等)を計測し、不良内容を分析して不良要因を推定する。判定部37は、計測された不良箇所の位置および推定された不良要因を溶接箇所に対する検査結果(判定結果)として生成し、生成された検査結果を、ロボット制御装置2を介して、上位装置1に送信する。
【0082】
なお、判定部37は、不良箇所がないと判定した場合には、不良箇所がないことを通知するアラートを生成し、生成されたアラートを、ロボット制御装置2を介して、上位装置1に送信する。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
【0083】
また、データ処理部35は、溶接箇所ごとに検査回数をカウントし、検査回数が判定閾値記憶部36に記憶された回数を超えても溶接検査結果が良好にならない場合、自動リペア溶接による不良箇所の修正が困難あるいは不可能と判定する。この場合、判定部37は、不良箇所の位置および不良要因を含むアラートを生成し、生成されたアラートを、ロボット制御装置2を介して、上位装置1に送信する。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
【0084】
なお、検査装置3は、上記以外の内容のアラートを生成してもよい。このアラートもまた、ロボット制御装置2を介して、上位装置1に送信される。上位装置1に送信されたアラートは、モニタMN1に送信されて表示される。
【0085】
図3は、実施の形態1に係る自動リペア溶接システム1000aによる自動リペア溶接の第1の動作手順例を示すフローチャートである。なお、このフローチャートは、図2に示したシステム構成に基づいており、本溶接が行われた後のワークWkについて、検査とリペア溶接とを行う例を示している。
【0086】
まず、本溶接が実行済みのワークWkについて、外観検査を行う(ステップSt101)。この外観検査は、形状検出部500によって取得された上述の形状データを用いて行う。ここで、1つのワークWkには、複数の溶接箇所(溶接線)が存在し得る。そこで本例においては、溶接箇所(溶接線)毎に外観検査を行っている(ステップSt101からSt103のループ)。
【0087】
ここで、処理内部でのデータの状態について例示する。形状検出部500が検出した、溶接ビードの形状データには、複数の溶接箇所(溶接線)が含まれ得る。データ処理部35が、この形状データから各溶接箇所(溶接線)を検出する。この検出アルゴリズムは従来技術を用いてよい。また、検査装置3は、その溶接ビードが存在するワークWkにおける、ワーク種別、ワークのシリアルナンバー(ワークS/N)、溶接線IDなどを、上位装置1またはロボット制御装置2から取得してよい。検査装置3は、前述の形状データに、ワーク種別、ワークS/N、溶接線ID等を紐付けて管理することができる。検査装置3はこれらのデータをメモリ32等に記憶してよい。
【0088】
検査装置3のデータ処理部35は、上記ループ(ステップSt101からSt103)において現在処理中の溶接箇所(溶接線)について、外観検査の結果得られた溶接ビードの形状データに基づき、溶接の不良種別や、後述の特性データを生成する(ステップSt102)。
【0089】
ここで、図10を参照する。図10は、マスタデータと、検査対象の溶接ビードの形状データとの比較を示す概念図である。図10の左側は、メモリ32等に保存されたマスタデータを示している。マスタデータは、良好に溶接が行われた場合のワーク(の溶接箇所)を、形状検出部500で検出して画像化した画像データであってよい。図10の右側は、検査対象のワークWkにおける、溶接ビードの形状データを示している。
【0090】
ワークWkの溶接箇所に例えばアーク溶接を行った場合、その溶接箇所には、種々の形状不良が生じ得る。例えば、溶接箇所の一部が溶け落ちてできる穴あきや、アンダーカットが生じることがある。また、溶接線に沿った溶接ビードの長さや、溶接線に直交する方向の溶接ビード幅、溶接ビードの高さ等が、基準値と比較して許容範囲以上にずれる場合もある。これら「穴あき」「アンダーカット」「ビードの長さ」「ビード幅」「ビードの高さ」等が、溶接の不良種別(ステップSt102)に相当する。ただし、前述した以外の不良種別を用いてもよい。
【0091】
データ処理部35は、これらの不良種別ごとに、マスタデータと、検査対象のワークWkにおける溶接ビードの形状データとに基づいて、特性データを算出してよい。
【0092】
特性データは、前述の不良種別ごとに、溶接の良あるいは不良を識別する為のデータである。例えば図10には、ビード切れ601と、穴あき602とが例示されている。ビード切れ601は、溶接線に沿った溶接ビードの長さが、マスタデータと比較して短くなっている。すなわち、溶接ビードの開始位置や終了位置が、マスタデータにおける溶接ビードの開始位置や終了位置からずれている。データ処理部35は、このずれの量を、特性データとして算出する。なお、データ処理部35は、溶接ビードの長さ自体を、特性データとして算出してもよい。
【0093】
同様に、穴あき602は、溶接ビードに穴が開いた状態である。データ処理部35は、例えばこの穴の直径を、特性データとして算出する。
【0094】
その他、データ処理部35は、ビード幅や、アンダーカットの大きさ等を、特性データとして算出することができる。なお、特性データの種類は、上述のものには限られない。
【0095】
そして、判定部37は、上述のようにして算出された特性データと、判定閾値記憶部36に記憶された閾値とを比較する。この特性データと閾値との比較により、後述の判定(ステップSt104、St105、St107)を行うことができる。なお、異なる判定ステップにおける判定の間で、同じ閾値を用いてもよく、異なる閾値を用いてもよい。
【0096】
また、データ処理部35は、上記の複数の特性データを総合的に用いて、検査スコアを算出してもよい。例えば、検査対象のワークWkの形状データにおける溶接ビードの長さと、マスタデータにおける溶接ビードの長さとの差をΔLとする。検査対象のワークWkの形状データにおける溶接ビードの幅と、マスタデータにおける溶接ビードの長さとの差をΔWとする。検査対象のワークWkの形状データにおける溶接ビードの高さと、マスタデータにおける溶接ビードの高さとの差をΔHとする。検査対象のワークWkの形状データに、穴あきを検出した場合は、穴あきの直径をrとする。この時、例えば、検査スコアSを、以下のように計算してよい。
【0097】
検査スコアS=w1×ΔL+w2×ΔW+w3×ΔW+w4×r
【0098】
上記の数式において、w1~w4はそれぞれ、重み付け(その特性データの重要度)を示す係数である。
【0099】
データ処理部35は、例えば上記のような検査スコアを、特性データとして算出してよい(ステップSt102)。なお、前述の数式は一例であり、データ処理部35は、上記以外の計算式を用いて検査スコアを算出してもよい。また、検査スコアは、単一の値でなくともよい。例えば、溶接ビードの寸法(長さ、幅、高さ等)についての検査スコアと、穴あきやアンダーカット等についての検査スコアを別々に計算して、これらを合わせて、検査スコアのグループとして用いてもよい。
【0100】
データ処理部35は、上記以外の特性データを算出してもよい。例えば、検査装置3によって既に検査済みの複数のワークについての形状データや、それらの形状データから算出した特性データをメモリ32等に蓄積しておき、この蓄積データに対する標準偏差の値や、分散値などを特性データとしてデータ処理部35が算出してもよい。
【0101】
検査装置3は、ステップSt102において生成された不良種別を示す情報や特性データを、前述の形状データに更に紐づけて管理することができる。すなわち、ステップSt102の時点において検査装置3は、検査対象のワークWkについての形状データに、ワーク種別、ワークS/N、溶接線ID、不良種別、および特性データを紐づけて管理することができる。検査装置3は、これらのデータを、メモリ32等に記憶しておいてよい。
【0102】
次に、検査装置3は、現在検査中のワークWkについて、全ての溶接箇所(全ての溶接線)についての外観検査が完了したか否かを判定する(ステップSt103)。全ての溶接箇所(全ての溶接線)についての外観検査が終了していれば(ステップSt103、Y)、処理がステップSt104へと遷移する。全ての溶接箇所(全ての溶接線)についての外観検査が終了していなければ(ステップST103、N)、ステップSt101へと戻って、そのワークWkにおける次の溶接箇所(溶接線)についての外観検査を行う。
【0103】
次に、ステップSt104について説明する。検査装置3の判定部37は、全ての溶接箇所(全ての溶接線)についての外観検査が終わったワークWkについて、溶接検査結果の良否を判定する。この溶接結果良否判定は、前述の特性データと閾値とに基づく判定であってよく、検査スコアに基づく判定であってもよく、図8および図9に基づいて後述するように、機械学習がなされた判定モデル(AIの学習モデル)による判定であってもよい。
【0104】
溶接検査結果が良好である場合(ステップSt104、Y)は、このワークWkについてのリペア溶接がそもそも不要なので、当該ワークWkについての処理が終了する。なおこの時、当該ワークWkについての溶接検査結果が良好である旨のアラートを、上述のように行ってよい。
【0105】
一方、ワークWkについての溶接検査結果が不良である場合(ステップSt104、N)、もし不良箇所を修正可能なのであればリペア溶接を行うために、ステップSt105が実行される。
【0106】
検査装置3の判定部37は、当該ワークWkの溶接箇所(溶接線)に含まれる溶接の不良箇所について、リペア溶接によって修正可能であるか否かを判定する(ステップSt105)。この修正可否判定は、前述の特性データと閾値とに基づく判定であってよく、検査スコアに基づく判定であってもよく、機械学習がなされた判定モデル(AIの学習モデル)による判定であってもよい。また、ステップSt105における判定基準は、ステップSt104における判定基準と異なっていてよい。例えば、ステップSt104において用いられた閾値の値とは異なる値が、ステップSt105において閾値として用いられてよい。
【0107】
不良箇所を修正可能であると判定された場合(ステップSt105、Y)、後述のステップSt106が実行される。不良箇所を修正不能であると判定された場合(ステップSt105、N)、リペア溶接を試みたとしても不良箇所を修正できないのであるから、このワークWkについての処理を終了する。この時、当該ワークWkについての溶接検査結果が不良であり、修正も不可である旨のアラートを、上述のように行っても良い。
【0108】
検査装置3は、前述の形状データに、ステップSt105において生成された修正の可否を示す情報を、さらに紐づけて管理することができる。すなわち、ステップSt105の時点において検査装置3は、検査対象のワークWkについての形状データに、ワーク種別、ワークS/N、溶接線ID、不良種別、特性データ、および修正可否を示すデータを紐づけて管理することができる。検査装置3は、これらのデータを、メモリ32等に記憶しておいてよい。
【0109】
次に、データ処理部35は、修正の種別と、修正を行う際のパラメータとを生成する(ステップSt106)。修正の種別は、溶接の不良箇所に対する適切な修正方法(本溶接と同じ溶接方法、本溶接とは異なる種々の溶接方法)等であってよい。修正を行う際のパラメータ(修正パラメータ)は、溶接電源装置4の電流や電圧、不良箇所の位置情報、リペア溶接の開始位置またはリペア終了位置のオフセット量、溶接速度、溶接トーチ400の姿勢、ウィービングの有無、等であってよい。ただしこれらには限られない。
【0110】
データ処理部35による、修正の種別および修正を行う際のパラメータの生成は、例えばプログラム生成用の表データ(プログラム生成ロジックテーブル)をメモリ32等に保存しておくことで実現することができる。ここで、図11を参照する。図11は、プログラム生成ロジックテーブルを示す図であり、(a)不良種別と特性データをキーにする場合の一例、(b)不良種別と検査スコアをキーにする場合の一例である。
【0111】
図11(a)に示したように、プログラム生成ロジックテーブルには、修正の種別、およびその際に使用可能な修正パラメータが、前述の不良種別や特性データの値の範囲等に応じて登録されていてよい。データ処理部35は、ステップSt102で生成した不良種別や特性データに基づいて、このプログラム生成ロジックテーブルから、修正の種別と修正パラメータとの組を抽出する。例えば、不良種別が「穴あき」で、特性データ(直径など)の値が2~4の場合は、修正の種別は「リペア溶接を2回行う」、修正パラメータは「1回目のリペア溶接はデータセットdata6を用い、2回目のリペア溶接はデータセットdata7を用いる」、という修正の種別と修正パラメータとの組を抽出することができる。なお、あくまで一例であるが、データセットに含まれているA、V、Sはそれぞれ、「電流」、「電圧」、「溶接速度」であってよい。
【0112】
また、図11(b)に示したように、プログラム生成ロジックテーブルには、修正の種別および修正パラメータが、前述の不良種別や検査スコアに応じて登録されていてもよい。例えば、不良種別が「穴あき」で、検査スコアの値が83~94の場合は、修正の種別は「リペア溶接を2回行う」、修正パラメータは「1回目のリペア溶接はデータセットdata6を用い、2回目のリペア溶接はデータセットdata7を用いる」、という修正の種別と修正パラメータとの組を抽出することができる。
【0113】
上述のプログラム生成ロジックテーブルは、データそのものを保持していてよい。また、データを他の記憶領域等に保存しておき、プログラム生成ロジックテーブルは、当該データへの参照情報(リンク情報)を保持していてもよい。
【0114】
なお、データ処理部35による、修正の種別および修正を行う際のパラメータの生成アルゴリズムは、上記のプログラム生成ロジックテーブルに限られない。例えば、溶接方法(修正の種別)は、本溶接における溶接方法と同じものを用いた上で、修正パラメータについては、本溶接の時に用いたパラメータに対して、検査スコアの値に基づいた係数を乗算したものを用いてもよい。より具体的な一例を挙げると、検査スコアが一定以下である場合には、溶接方法は変えずに、本溶接の際の電流値の0.6倍(係数0.6)の電流を用いてリペア溶接を行う、等である。
【0115】
次に、検査装置3の判定部37は、ワークWkのその溶接箇所(溶接線)に含まれる溶接の不良箇所について、自動溶接が可能であるかを判定する(ステップSt107)。この判定は、上述のプログラム生成ロジックテーブルを用いて行ってよい。すなわち、プログラム生成ロジックテーブルから、修正の種別と修正パラメータとの組を1組でも抽出できれば、自動修正可能と判定することができる(ステップSt107、Y)。逆に、プログラム生成ロジックテーブルから、修正の種別と修正パラメータとの組を1組も抽出できなければ、自動修正不能と判定することができる(ステップSt107、N)。
【0116】
また、検査装置3の判定部37は、他の方法により、自動溶接の可否を判定することもできる。例えば、判定部37が、ステップSt102において生成された特性データと、判定閾値記憶部36に保存された自動溶接可否判定用の閾値とを比較して判定を行ってよい。また、判定部37が、ステップSt102において生成された検査スコア(あるいは検査スコアのグループ)と、判定閾値記憶部36に保存された自動溶接可否判定用の閾値とを比較して判定を行ってもよい。さらに、図8および図9に基づいて後述するように、機械学習がなされた判定モデル(AIの学習モデル)による判定を行ってもよい。
【0117】
ワークWkのその溶接箇所(溶接線)に含まれる溶接の不良箇所について、自動溶接が可能であると判定された場合(ステップSt107、Y)、この判定結果に基づいて、リペア溶接の為の条件設定(ステップSt109)を行った上で、リペア溶接を実行する(ステップSt110)。例えば、ステップSt106で生成された、修正の種別と、修正を行う際のパラメータとを設定条件として用いて(ステップSt109)、ロボット制御装置2または検査装置3におけるプログラム編集部が、リペア用プログラムを編集する。あるいは、ステップSt106で生成された、修正の種別と、修正を行う際のパラメータとを設定条件として用いて(ステップSt109)、ロボット制御装置2または検査装置3におけるプログラム呼出部が、リペア用プログラムを変更する。この編集済または変更済のリペア用プログラムを用いて、ロボット制御装置2が、検査・リペア溶接ロボットMC23を制御し、リペア溶接を実行する(ステップSt110)。
【0118】
ワークWkのその溶接箇所(溶接線)に含まれる溶接の不良箇所について、自動溶接が不能であると判定された場合(ステップSt107、N)、不良箇所の修正自体は可能である(ステップSt105、Y)ので、自動溶接ではなく作業者による手溶接(ステップSt108)を行う。そのため、検査装置3は、作業者による溶接が可能である旨のアラートを、上述のように行う。
【0119】
なお、検査装置3は、ステップSt107において生成された自動溶接の可否を示す情報を、前述の形状データに更に紐づけて管理することができる。すなわち、ステップSt107の時点において検査装置3は、検査対象のワークWkについての形状データに、ワーク種別、ワークS/N、溶接線ID、不良種別、特性データ、修正可否を示すデータ、および、自動修正可否を示すデータを紐づけて管理することができる。検査装置3は、これらのデータを、メモリ32等に記憶しておいてよい。
【0120】
また、リペア溶接を自動で行う場合(ステップSt110)も、作業者が手溶接で行う場合(ステップSt108)も、リペア溶接後は、再びステップSt101へと処理が遷移してよい。リペア溶接後の溶接ビードが良好か、再検査を行うためである。検査装置3は、この再検査において算出される特性データや検査スコア(ステップSt102)を、その前に行った検査における特性データや検査スコアとは別のデータ項目として、形状データに対して紐付けてよい。
【0121】
リペア溶接を作業者が行う場合(ステップSt108)は、このワークWkについてのその後の扱いを、作業者に一任することができる。この場合、処理はステップSt101へと戻らず、このワークWkについての処理を終了することができる(ステップSt108、破線)。
【0122】
また、ステップSt106で生成した修正の種別および修正を行う際のパラメータや、形状データに紐づいている上述の各種データは、手溶接でリペア溶接を行う溶接作業者にとって有益な参考情報となり得る。そこで、自動リペア溶接ではなく、作業者によるリペア溶接を行う場合(ステップSt108)、検査装置3は、前述の各種データを、作業者に対してアラートしてよい。このアラートは前述のように、上位装置1による制御の下、モニタMN1にデータ表示すること等で行ってよい。
【0123】
以上のようにして、ワークWkについての外観検査、及びリペア溶接を行うことができる。なお、ステップSt104における溶接検査結果の良否判定、ステップSt105における修正可否判定、ステップSt107における自動溶接可否判定の結果は、上位装置1等にアラートしてよい。上位装置1はこの判定結果をモニタMN1に表示してよい。
【0124】
図4は、実施の形態1に係る自動リペア溶接システム1000aによる、自動リペア溶接の第2の動作手順例を示すフローチャートである。なお、このフローチャートは、図2に示したシステム構成に基づいており、本溶接を実行済みのワークWkについて、検査とリペア溶接を行う例を示している。
【0125】
図4のフローチャートにおける動作手順は、図3のフローチャートにおける動作手順と基本的に同様である。具体的には、図3におけるステップSt101、St102、St103、St104、St105、St106、St107、St108、St109、およびSt110が、図4におけるステップSt201、St202、St204、St203、St205、St206、St207、St208、St209、およびSt210に、それぞれ対応している。そこで、図3のフローチャートに示した動作手順と同様の部分については説明を省略し、異なる内容について以下に説明する。
【0126】
図4のフローチャートにおいては、全箇所検査が完了したか否かを判定するステップSt204が、溶接検査結果の良否判定ステップSt203よりも後ろに来ている。すなわち、現在処理中のワークWkについて、全ての溶接箇所(全ての溶接線)についての外観検査が終了するのを待たずに、溶接検査結果が不良である溶接箇所が見つかる都度、その溶接箇所についてのリペア溶接(ステップSt208、St210)を行い得る処理順序となっている。
【0127】
図3のフローチャートに示した処理手順の場合は、1つのワークWkが含む全ての溶接箇所について外観検査が完了した後に、複数の溶接不良箇所についてのリペア溶接をまとめて行うことができる。すなわち、外観検査とリペア溶接との間を往復する回数が少なくなるので、煩雑さが無くなるという利点がある。特に、図1に示した検査ロボットMC2とリペア溶接ロボットMC3とが別個のロボットである場合には、ワークWkがこれら複数台のロボットの間を行き来する頻度が減るので、図3のフローチャートに示した処理手順は好適である。
【0128】
一方、図4のフローチャートに示した処理手順の場合は、ステップSt205において、修正不能と判断された場合に、そのワークWkについての処理自体が終了する(ステップSt205、N)。すなわち、修正不能な溶接不良箇所が最初に見つかった時点で、その後に続くはずだった処理を省略して、検査処理を早期に終了することができる。従って、図4のフローチャートに示した処理手順には、不要な処理を行わなくて済み、処理時間を低減できるという利点がある。
【0129】
なお、図示は省略するが、ステップSt205において修正不能と判定された場合に、ステップSt204を実行するようにしてもよい。この一部修正された処理手順の場合、修正不能な溶接箇所が発見された後も、ステップSt201からステップSt204のループ処理が続くことになるので、上述の処理を省略するというメリットは享受できなくなる。しかし、前記一部修正された処理手順には、ワークWkについてより多くの外観検査結果を得られるという利点がある。
【0130】
<実施の形態2>
図5は、実施の形態2に係る検査ロボットMC2とリペア溶接ロボットMC3との制御に関する、自動リペア溶接システム1000bの内部構成例を示す図である。実施の形態1と異なり、検査ロボットMC2とリペア溶接ロボットMC3とが別体となっている。なお、説明をわかりやすくするためにモニタMN1、インターフェースUI1、外部ストレージSTに関する構成を省略する。
【0131】
図5においては、検査ロボットMC2と、リペア溶接ロボットMC3とが、同一のワークWkを挟んで向かい合わせに配置されている。しかし、配置位置はこれには限られない。例えば、検査ロボットMC2およびリペア溶接ロボットMC3は、互いに異なる工場あるいはセルに配置されてもよい。
【0132】
図示されているように、リペア溶接ロボットMC3側には、リペア溶接ロボットMC3を制御するためのロボット制御装置2aが接続されている。また、検査ロボットMC2側には、検査ロボットMC2を制御するロボット制御装置2bと検査装置3とが接続されている。ロボット制御装置2aと、ロボット制御装置2bとは、上位装置1を介して通信可能に接続されている。
【0133】
また、ロボット制御装置2aから、検査装置制御部25が省略されている。リペア溶接ロボットMC3側は、検査装置3が接続されておらず、形状検出部500がリペア溶接ロボットMC3側に無いからである。また、ロボット制御装置2bから、溶接電源制御部27が省略されている。検査ロボットMC2に、溶接に係る構成要素である、溶接トーチ400、ワイヤ送給装置300、溶接ワイヤ301、等が無いからである。
【0134】
図5に示したように、検査ロボットMC2とリペア溶接ロボットMC3とが別体になっている場合には、ワークWkの検査(検査ロボットMC2)と、検査結果に応じたリペア溶接(リペア溶接ロボットMC3)とを別個独立に実施することができる。
【0135】
図6は、実施の形態2に係る自動リペア溶接システム1000bによる自動リペア溶接の動作手順例を示すフローチャートである。なお、このフローチャートは、図5に示したシステム構成に基づいており、本溶接が行われた後のワークWkについて、検査とリペア溶接とを行う例を示している。図6に示したフローチャートにおける動作手順は、図3に示したフローチャートにおける動作手順と基本的に同様である。具体的には、図3におけるステップSt101からSt107が、図6におけるステップSt301からSt307にそれぞれ対応している。そこで、図6に示した動作手順と同様の部分については説明を省略し、異なる内容について以下に説明する。
【0136】
図6のステップSt307の後に、通知・作業者溶接(ステップSt108)、条件設定(ステップSt109)、リペア溶接(St110)が続いていない。これは、図5に示したように、検査ロボットMC2とリペア溶接ロボットMC3とが別体になっているからである。すなわち、図6に示した処理手順において、検査ロボットMC2に接続された検査装置3が自動溶接可否判定(ステップSt307)を行った後は、検査ロボットMC2ではなく、これとは別体のリペア溶接ロボットMC3が、必要に応じてリペア溶接を行う。
【0137】
そのため、ステップSt308において、検査装置3が通知(アラート)を行う。この通知には、ステップSt304、St305、St307における判定の判定結果を示す情報が含まれていてよく、また、リペア溶接を行う場合は、リペア溶接の際の条件を示す情報(ステップSt306、修正の種別およびパラメータ)が含まれていてよい。
【0138】
検査装置3から上述の通知を受信した上位装置1は、通知に含まれる上述の情報に基づいて、リペア溶接を行うための制御信号をロボット制御装置2aに送信してよい。この制御信号を受信したロボット制御装置2aは、ロボット制御部26による制御の下、リペア溶接ロボットMC3を駆動して、ワークWkについてリペア溶接を行う。
【0139】
なお、リペア溶接用のプログラムの編集は、ロボット制御装置2aが備えるプログラム編集部23aが行ってもよく、ロボット制御装置2bが備えるプログラム編集部23aが行ってもよい。また、図示は省略するが、検査装置3がプログラム呼出部およびプログラム編集部を備えており、検査装置3が備えるプログラム編集部が、上記のリペア用プログラムの編集を行ってもよい。ロボット制御装置2aは、ロボット制御装置2bまたは検査装置3によって編集済みのリペア溶接用プログラムを、上位装置1の通信部10を経由して受信し、この編集済みのリペア溶接用プログラムに基づいてリペア溶接ロボットMC3を駆動して、ワークWkにリペア溶接を行ってよい。
【0140】
ロボット制御装置2aによるリペア溶接が完了した後は、上位装置1による制御の下、再び検査装置3を処理主体とする溶接検査(再検査)が行われてよい。この再検査は、上述の図6に示した処理手順に従って実行されてよい。
【0141】
<変形例1>
次に、実施の形態1および実施の形態2に対する変形例1を説明する。実施の形態1および実施の形態2においては、溶接検査結果の良否判定(ステップSt104、St204、St304)、修正可否判定(St105、St205、St305)、自動溶接可否判定(St107、St207、St307)を、それぞれ別個に判定していた。一方、変形例1においては、これら3種類の判定を、1度の判定で行う。なお、この変形例1を、図2に示したシステム構成に基づいて説明するが、それ以外のシステム構成を用いてもよい。
【0142】
図7は、変形例1に係る自動リペア溶接システム1000aによる、自動リペア溶接の動作手順例を示すフローチャートである。なお、ステップSt401およびSt403は、図3におけるステップSt101およびSt103と同様であるため、説明を省略する。
【0143】
ステップSt402について説明する。特性データとして例えば上述の検査スコアを用いて、この検査スコアに対し複数の閾値を設ければ、「溶接検査結果良好」「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」「修正不能」の4つの状態を、判定部37が一度に判定することができる。
【0144】
この判定を行う為に、ステップSt402において、データ処理部35が検査スコアを生成している。生成された検査スコアを、ここでは検査スコアSと表記する。なお、判定閾値記憶部36には、少なくとも、第1の閾値T1、第2の閾値T2、第3の閾値T3が記憶されている。本例では、検査スコアの値が大きい程、溶接ビードの品質が良く、第1の閾値T1<第2の閾値T2<第3の閾値T3であると仮定する。
【0145】
全箇所検査が完了した後(ステップSt403、Y)、判定部37は、検査スコアSが第1の閾値T1未満なのか、第1の閾値T1以上かつ第2の閾値T2未満なのか、第2の閾値T2以上かつ第3の閾値T3未満なのか、第3の閾値T3以上なのかを判定する(ステップSt404)。検査スコアSが第1の閾値T1未満の場合は「修正不能」として扱う(ステップSt405)。検査スコアSが第1の閾値T1以上かつ第2の閾値T2未満である場合は「作業者によるリペア溶接により修正可能」として扱う(ステップSt406)。検査スコアSが第2の閾値T2以上かつ第3の閾値T3未満である場合は「自動リペア溶接により修正可能」として扱う(ステップSt407)。検査スコアSが第3の閾値T3以上である場合は「溶接検査結果良好」として扱う(ステップSt410)。
【0146】
なお、判定部37は、検査スコアSが第1の閾値以下なのか、第1の閾値を超えかつ第2の閾値以下なのか、第2の閾値を超えかつ第3の閾値以下なのか、第3の閾値を超えるのかを判定(ステップSt404)してもよい。この場合、検査スコアSが第1の閾値以下の場合は「修正不能」として扱う(ステップSt405)。検査スコアSが第1の閾値を超えかつ第2の閾値以下である場合は「作業者によるリペア溶接により修正可能」として扱う(ステップSt406)。検査スコアSが第2の閾値を超えかつ第3の閾値以下である場合は「自動リペア溶接により修正可能」として扱う(ステップSt407)。検査スコアSが第3の閾値を超える場合は「溶接検査結果良好」として扱う(ステップSt410)。
【0147】
また、検査スコアの値が小さい程、溶接ビードの品質が良いような検査スコアを算出した上で、この検査スコアと閾値とを比較することにより、「溶接検査結果良好」「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」「修正不能」の4つのケースを、判定部37が一度に判定してもよい。
【0148】
そして、判定結果が「自動リペア溶接により修正可能」である場合に、リペア溶接を行うことができる。この際のリペア溶接についての制御であるステップSt407、ステップSt408、およびステップSt409の処理内容は、それぞれ、図3のステップSt106、St109、およびステップSt110の処理内容と同様であってよい。ステップSt407およびステップSt408においては、データ処理部35が、上述のプログラム生成ロジックテーブルを参照して、修正の種別や修正パラメータを取得(抽出)してもよい。
【0149】
なお、ステップSt402において、検査スコア以外の特性データを生成した場合であっても、判定部37は、この特性データを複数の閾値と比較して、「溶接検査結果良好」「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」「修正不能」の4つのケースを1度に判定してよい。
【0150】
<変形例2>
次に、実施の形態1および実施の形態2に対する変形例2を説明する。実施の形態1および実施の形態2においては、溶接検査結果の良否判定(ステップSt104、St204、St304)、修正可否判定(St105、St205、St305)、自動溶接可否判定(St107、St207、St307)を、特性データと閾値、検査スコア、プログラム生成テーブル等に基づいて行っていた。一方、変形例2においては、機械学習により学習済みの判定モデルを用いて、これらの判定が行われる。また、変形例2においては、上位装置1やロボット制御装置2からのフィードバックを受けることにより、判定モデルの精度が改善される。
【0151】
図8は、変形例2に係る検査・リペア溶接ロボットMC23の制御に関する自動リペア溶接システム1000cの内部構成例を示す図である。図9は、図8の内部構成例におけるデータ処理部35の構成例を示す図である。以下、図8および図9に基づいて、変形例2について説明する。なお、図8に示す検査・リペア溶接ロボットMC23は、図1に示した検査ロボットMC2およびリペア溶接ロボットMC3が一体となったロボットである。なお、説明をわかりやすくするためにモニタMN1、インターフェースUI1、外部ストレージSTに関する構成を省略する。
【0152】
図8に示した自動リペア溶接システム1000cは、図2に示した自動リペア溶接システム1000aとほぼ同様の構成を備えている。そこで、図2に示した自動リペア溶接システム1000aと同様の部分については説明を省略し、異なる内容について以下に説明する。
【0153】
図8に示した自動リペア溶接システム1000cにおいては、判定閾値記憶部36および判定部37が設けられていない。なお、判定処理は、判定部37ではなくデータ処理部35が行う。また、図8に示した自動リペア溶接システム1000cは、フィードバック受信部38を有している。このフィードバック受信部38については後述する。
【0154】
図9には、データ処理部35の他に、フィードバック受信部38と、検査・リペア溶接ロボットMC23における形状検出部500とが図示されている。
【0155】
データ処理部35は、2つの判定ブロックを含んでいる。第1判定ブロックは、第1記憶部352a、第1学習データ生成部353a、第1判定モデル生成部354a、および第1判定部355aから構成される。第2判定ブロックは、第2記憶部352b、第2学習データ生成部353b、第2判定モデル生成部354b、および第2判定部355bから構成される。
【0156】
第1判定ブロックは、図3に示した実施の形態1における、溶接検査結果の良否判定(ステップSt104)と、修正可否判定(ステップSt105)とに相当する判定を行う。すなわち、第1判定ブロックは「溶接検査結果良好」「修正可能」「修正不能」の3種類の判定結果を出す事ができる。
【0157】
第2判定ブロックは、図3に示した実施の形態1における、自動溶接の可否判定(ステップSt107)に相当する判定を行う。すなわち、第1判定ブロックによって「修正可能」と判定されている(ステップSt105、Y)という前提のもとで、第2判定ブロックは「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」の2種類の判定結果を出す事ができる。
【0158】
判定ブロックが上述の2系統存在するので、後述の、機械学習に用いる為のデータを更新する役割を果たすフィードバック受信部38についても、第1フィードバック受信部38aと第2フィードバック受信部38bの2系統が設けられていてよい。
【0159】
ただし、フィードバック受信部38を1系統としてもよい。この場合、フィードバック受信部38は、第1判定ブロックと第2判定ブロックのそれぞれに対して、異なるデータを更新してよい。
【0160】
第1記憶部352aおよび第2記憶部352bにはそれぞれ、学習データを生成する為のデータが蓄積されている。典型的には、形状検出部500によって取得された、溶接ビードの形状データが蓄積される。なお、第1記憶部352aおよび第2記憶部352bは、形状データに紐づけられた、ワーク種別、ワークS/N、溶接線ID、不良種別、特性データ、修正可否を示すデータ、および、自動修正可否を示すデータ等を合わせて蓄積しておいてもよい。形状データに紐づけられたこれらのデータは、機械学習を行う際のラベルデータとして用いられてよい。例えば、CNN(Convolutional Neural Network)と、自動修正可否を示すデータによってラベル付けされた形状データとを用いて、教師あり学習を行う、等である。ただし、機械学習のタイプは前述のものには限定されない。
【0161】
第1記憶部352aおよび第2記憶部352bに蓄積されるデータの量は、データ追加によって増加させることができる。まず、図9に示したように、フィードバック受信部38からのデータ追加が可能である。また、形状検出部500から入力された形状データを形状処理部351がデータ加工した上で、第1記憶部352aおよび第2記憶部352bにデータ追加を行ってもよい。
【0162】
機械学習を行う為の学習データを得るには、効率よく学習を行うためにデータ整形をする必要がある。例えば、形状データのフォーマットを揃える、不要なデータ項目を削除する、教師無し学習において、統計上ノイズとなり得るデータ自体を削除する、等である。そのため、第1学習データ生成部353aおよび第2学習データ生成部353bはそれぞれ、第1記憶部352aおよび第2記憶部352bにそれぞれ記憶されている蓄積データに基づいてデータ整形を行って、学習データを生成する。
【0163】
第1判定モデル生成部354aおよび第2判定モデル生成部354bはそれぞれ、上述のようにして生成された学習データを用いて、機械学習を行い、判定モデルを生成する。生成された判定モデルが、第1判定部355aおよび第2判定部355bとして実装される。判定モデルは、入力データに基づいてスコアを生成するタイプの判定モデルであってよく、また、入力データをいくつかの種類へと分類する分類器タイプの判定モデルであってもよい。
【0164】
なお、判定モデルの生成タイミングは、学習データの更新時(第1学習データ生成部353aおよび第2学習データ生成部353b)でもよく、判定モデルを用いて判定を行った回数が一定回数になった時でもよく、形状検出部500やフィードバック受信部38からのデータ追加がなされた時でもよい。
【0165】
生成された第1判定部355aおよび第2判定部355bに、形状処理部351によって処理済みの形状データを入力することで、判定結果が出力される。なお、第2判定部355bには、第1判定部355aによる出力結果を入力してよい。
【0166】
出力された判定結果に応じて、設定部356が出力内容の設定を行う。例えば設定部356は、上位装置1に接続されたモニタMN1への判定結果(良・自動リペア・人間リペア・不可)のアラート情報や、ロボット制御部26へ向けた、リペア溶接のための設定条件を示す情報等を設定する。設定部356によって設定された情報が、通信部30を介して、検査装置3の外部へと出力される。
【0167】
機械学習を用いる場合、判定モデル(第1判定部355a、第2判定部355b)による判定を、環境に合わせてより精度高くなるように更新できれば好適である。そこで、本開示の検査装置3は、フィードバック受信部38を備えている(図8図9参照)。
【0168】
フィードバック受信部38は、ロボット制御装置2や上位装置1等から、フィードバック情報を受け取る。このフィードバック情報として、例えば、以下のような情報が挙げられる。ただし、これらには限定されない。
・各工場や、ワークの使用者により定められた、溶接(本溶接、リペア溶接)に関する要求仕様を示す情報。
・本溶接またはリペア溶接後の溶接箇所を示す形状データ(溶接良好の場合のデータ、および、溶接不良の場合のデータの双方)。
・作業者がリペア溶接した場合の作業条件(修正パラメータを含む)を示す情報。
・溶接線IDに紐づいた判定結果の修正・更新に係る情報(インターフェースUI1による手動入力等によって得られる)
・ソフトウェアのアップデートに伴う、第1記憶部352a、第2記憶部352bに記憶されるベースデータそのものの更新情報。
・他工場等で行われたリペア溶接後のフィードバック情報。
【0169】
フィードバック受信部38が例えば上述のようなフィードバック情報を受信すると、図9に示したように、それらの情報が、データ処理部35内の第1記憶部352aおよび第2記憶部352bへと追加(あるいは更新)される。このフィードバック情報に基づいて、第1学習データ生成部353aおよび第2学習データ生成部353bが学習データを更新(生成)する。更新(生成)後の学習データで機械学習を行う(第1判定モデル生成部354a、第2判定モデル生成部354b)ことにより、判定モデル(第1判定部355a、第2判定部355b)が更新され、判定精度が向上する。
【0170】
なお、上述の「溶接検査結果良好」「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」「修正不能」等の判定を行う為の判定基準は、本溶接(またはリペア溶接)を行う工場等によって異なり得る。また、溶接後のワークを使用する使用者によっても、この判定基準は異なり得る。そこで上述のように、フィードバック情報をフィードバック受信部38が受信して、その情報を学習データへと上述のように反映させることにより、所望の環境に適した学習データを生成し、所望の環境に適した自動判定を行うことができるようになる。
【0171】
また、上記の例では、機械学習に係るデータの記憶、学習データの生成、判定モデルの生成等をデータ処理部35の内部で行っている。しかし、これらの処理の一部を外部システム(特に、クラウド上に置かれた、多数のGPUを有する処理装置)によって行ってもよい。例えば、データ処理部35の内部には学習済みの判定モデル(第1判定部355a、第2判定部355b)のみを残し、データの蓄積、学習データ生成、判定モデルの生成を外部システムによって行ってもよい。また、フィードバック受信部38によるフィードバック情報の追加先(更新先)は、前記外部システムであってもよい。
【0172】
以上により、自動リペア溶接システムは、ワークWkの溶接箇所を外観検査する検査装置3と、ワークWkを溶接するロボットを制御するロボット制御装置2とを備え、検査装置3は、ワークWkの溶接箇所の状態判定を行い、状態判定には、少なくとも、ワークWkの溶接箇所を自動リペア溶接が可能であるかを判定する、または作業者によるリペア溶接が可能であるかを判定する、自動リペア溶接可否判定が含まれており、ロボット制御装置2は、状態判定の結果に応じて、ワークWkの溶接箇所に自動リペア溶接を行うようにロボットを制御する。これにより、溶接品質を向上・安定化させる自動リペア溶接を行うことができる。
【0173】
また、状態判定には、ワークWkの溶接箇所における溶接結果の良否判定と、ワークWkの溶接箇所における修正可否判定とが更に含まれる。これにより、溶接結果の良否、修正可否に応じて、自動リペア溶接を行わない場合も含めて適切に処理を行うことができる。
【0174】
また、検査装置3は、ワークWkの溶接箇所における溶接ビードの形状データに基づいた特性データを算出し、特性データを所定の閾値と比較することにより、状態判定を行う。これにより、予め定めておいた閾値に基づいて、ワークWkの溶接箇所の状態の判定を行うことができる。
【0175】
また、特性データは、マスタデータと、ワークWkの溶接箇所における溶接ビードの形状データとに基づいた検査スコアであってよい。これにより、複数の特性を総合考慮した検査スコアに基づいて、ワークWkの溶接箇所の状態の判定を行うことができる。
【0176】
また、検査装置3は判定モデルを備え、判定モデルは、ワークWkの溶接箇所における溶接ビードの形状データを用いて機械学習が行われた判定モデルあり、検査装置3は、判定モデルを用いて、状態判定を行う。これにより、機械学習がなされた判定モデルを用いて、ワークWkの溶接箇所の状態の判定を行うことができる。
【0177】
また、判定モデルが、ワークWkの溶接箇所における溶接結果の良否判定と、ワークWkの溶接箇所における修正可否判定とを行う第1の判定モデルと、自動リペア溶接が可能であるかを判定する第2の判定モデルと、を含んでよい。これにより、ワークWkの溶接箇所における溶接結果の良否判定およびワークWkの溶接箇所における修正可否判定と、自動リペア溶接可否判定とを異なる判定モデルを用いて行うことができる。すなわち、それぞれを異なる基準で判定することができる。
【0178】
また、検査装置3は、フィードバック情報を受信し、前記フィードバック情報を用いて、判定モデルを更新する。これにより、判定モデルによる判定を、環境に合わせてより精度高くなるように更新することができる。
【0179】
また、検査装置3は、状態判定の結果を出力する。これにより、検査装置3以外の主体が判定結果を認識することができ、たとえばこの出力を受けてロボット制御装置2がリペア溶接を行う、作業者が手溶接を行う等の処理を行うことができる。
【0180】
また、検査装置3またはロボット制御装置2は、状態判定の結果に応じて、自動リペア溶接に用いるプログラムを編集または変更する。これにより、判定結果に応じて適切なリペア溶接を自動で行うことができる。
【0181】
また、検査装置3は、ワークWkの溶接箇所における溶接結果の良否判定を行い、良否判定において不良であると判定された場合に、ワークWkの溶接箇所における修正可否判定を行い、溶接箇所における修正可否判定において修正可能であると判定された場合に、自動リペア溶接可否判定を行う。これにより、溶接箇所についての状態を「溶接検査結果良好」「自動リペア溶接により修正可能」「作業者によるリペア溶接により修正可能」「修正不能」の4つの状態へと適切に分類することができる。
【0182】
また、自動リペア溶接可否判定において、ワークWkの溶接箇所を自動リペア溶接可能ではないと判定された場合に、ワークWkについて、前記状態判定を終了してよい。これにより、自動リペア溶接が不能と判定された場合に、そのワークWkについての処理を作業者に委任し、次のワークWkについての外観検査に早期に着手することができる。
【0183】
また、状態判定には、ワークWkの溶接箇所における修正可否判定が含まれており、修正可否判定において、修正不可と判定された場合に、状態判定を終了してよい。これにより、修正不可と判定された場合に、そのワークWkについてのその後の処理を省略し、次のワークWkについての外観検査に早期に着手することができる。
【0184】
また、ワークWkの溶接箇所を外観検査する検査装置3と、ワークWkを溶接するロボットを制御するロボット制御装置2とを備えたシステムにおける、自動リペア溶接方法において、検査装置3は、ワークWkの溶接箇所の状態判定を行い、状態判定には、少なくとも、ワークWkの溶接箇所を自動リペア溶接が可能であるかを判定する、または作業者によるリペア溶接が可能であるかを判定する、自動リペア溶接可否判定が含まれており、ロボット制御装置2は、状態判定の結果に応じて、ワークWkの溶接箇所に自動リペア溶接を行うようにロボットを制御する。これにより、溶接品質を向上・安定化させる自動リペア溶接を行うことができる。
【0185】
以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。
【産業上の利用可能性】
【0186】
本開示は、リペア溶接を行うことができるリペア溶接システムおよびリペア溶接方法として有用である。
【符号の説明】
【0187】
1 上位装置
2 ロボット制御装置
2a ロボット制御装置
2b ロボット制御装置
3 検査装置
4 溶接電源装置
10 通信部
11 プロセッサ
12 メモリ
13 セル制御部
20 通信部
21 プロセッサ
22 メモリ
23a プログラム編集部
23b プログラム呼出部
23c プログラム記憶部
24 演算部
25 検査装置制御部
26 ロボット制御部
27 溶接電源制御部
30 通信部
31 プロセッサ
32 メモリ
34 形状検出制御部
35 データ処理部
36 判定閾値記憶部
37 判定部
38 フィードバック受信部
38a 第1フィードバック受信部
38b 第2フィードバック受信部
50 通信部
200 マニピュレータ
300 ワイヤ送給装置
301 溶接ワイヤ
351 形状処理部
352a 第1記憶部
352b 第2記憶部
353a 第1学習データ生成部
353b 第2学習データ生成部
354a 第1判定モデル生成部
354b 第2判定モデル生成部
355a 第1判定部
355b 第2判定部
356 設定部
400 溶接トーチ
500 形状検出部
1000 自動リペア溶接システム
1000a 自動リペア溶接システム
1000b 自動リペア溶接システム
1000c 自動リペア溶接システム
MC1 本溶接ロボット
MC2 検査ロボット
MC3 リペア溶接ロボット
MC23 検査・リペア溶接ロボット
MN1 モニタ
UI1 インターフェース
Wk ワーク
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11