IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パウル・シェラー・インスティトゥートの特許一覧

特許7330574複数の独立したセル内の分子のプローブ溶液を収容するための装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-14
(45)【発行日】2023-08-22
(54)【発明の名称】複数の独立したセル内の分子のプローブ溶液を収容するための装置
(51)【国際特許分類】
   G01N 23/205 20180101AFI20230815BHJP
   B01D 9/02 20060101ALI20230815BHJP
   G01N 1/28 20060101ALI20230815BHJP
   G01N 1/00 20060101ALI20230815BHJP
   G01N 23/20025 20180101ALI20230815BHJP
   G01N 23/2055 20180101ALI20230815BHJP
【FI】
G01N23/205
B01D9/02 602Z
B01D9/02 603Z
G01N1/28 W
G01N1/00 101H
G01N23/20025
G01N23/2055 310
【請求項の数】 10
(21)【出願番号】P 2022531543
(86)(22)【出願日】2020-11-16
(65)【公表番号】
(43)【公表日】2023-02-01
(86)【国際出願番号】 EP2020082185
(87)【国際公開番号】W WO2021104906
(87)【国際公開日】2021-06-03
【審査請求日】2022-05-27
(31)【優先権主張番号】19212142.4
(32)【優先日】2019-11-28
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】501494414
【氏名又は名称】パウル・シェラー・インスティトゥート
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【弁理士】
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【弁理士】
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】辻野 壮一郎
(72)【発明者】
【氏名】富崎 孝司
(72)【発明者】
【氏名】ミハル ケパ
【審査官】田中 洋介
(56)【参考文献】
【文献】米国特許第5419278(US,A)
【文献】特開2002-179499(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00-23/2276
B01D 9/00-9/04
G01N 1/00-1/44
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
溶液(12)等である結晶化媒体からの分子の結晶(28)の成長のための装置であって、前記結晶化媒体は前記分子を含んでおり、
前記結晶(28)はX線回折実験に適しており、これによって成長した前記結晶(28)を含んでいる液滴において、原子分解で結晶の構造が分解され、前記液滴は、試料ホルダ(9)によって保持されており、前記装置は、
a)複数の独立したセル(3)を含んでおり、前記複数の独立したセル(3)は、ウェル(4)のアレイ、上部プレート(5)および下部プレート(6)によって提供され、これによって前記試料ホルダ(9)のための容積が形成され、各ウェル(4)は、前記上部プレート(5)と前記下部プレート(6)との間に試料ホルダ(9)を収容するように設計されており、前記上部プレート(5)および前記下部プレート(6)の一方または両方は、取り外し可能なキャップ(8)を備えた開口部(7)を有しており、
b)独立したセルのスタックを含んでおり、前記独立したセルのスタックは、前記上部プレート(5)、試料ホルダフレーム(14)、前記下部プレート(6)およびスペーサ層(13,20)によって形成されており、任意選択的に、前記層の間に接着層が挿入されており、
c)前記試料ホルダフレーム(14)に結合されている前記試料ホルダ(9)の周囲にある前記スペーサ層(13,20)内のスペーサバー(21)を含んでおり、各ウェル(4)は、前記試料ホルダ(9)と前記試料ホルダフレーム(14)との間の開口部を通じて前記試料ホルダ(9)の上方および下方の空間において、前記溶液の蒸気と平衡状態になるように調整されており、
d)各ウェル(4)の前記キャップ(8)の厚さによって調整可能な各ウェル(4)の容積を含んでおり、
e)前記上部プレート(5)、下部プレート(6)、キャップ(8)、スペーサ層(13,20)および任意選択的に前記接着層は防水材料から作製されており、
前記試料ホルダ(9)は、低いX線散乱を有する薄いプレートとして設計されており、
前記薄いプレートは、好ましくは、5~50μmの範囲の厚さを有しているポリイミドまたはフッ素化ポリイミドで作製されている、
装置。
【請求項2】
各試料ホルダ(9)は、サンドイッチ結晶化法を介して、溶液(12)から分子の前記結晶(28)を成長させるのに適した薄いプレート(10,11)を含んでおり、さらに、
a)前記試料ホルダフレーム(14)は上部試料ホルダフレーム(14)と下部試料ホルダフレーム(16)とに分割されており、前記試料ホルダ(9)の上部の薄いプレート(10)の周囲の前記スペーサバー(21)は前記上部試料ホルダフレーム(14)に結合されており、前記試料ホルダ(9)の下部の薄いプレート(11)の周囲のスペーサバー(21)は前記下部試料ホルダフレーム(16)に結合されており、かつ
b)前記試料ホルダ(9)のすべての前記上部の薄いプレート(10)は、1つの層として、前記試料ホルダ(9)の周囲の前記スペーサバー(21)を介して前記上部試料ホルダフレーム(14)に結合されており、前記試料ホルダ(9)のすべての前記下部の薄いプレート(11)も、1つの層として、前記試料ホルダ(9)の周囲の前記スペーサバー(21)を介して前記下部試料ホルダフレーム(16)に結合されている、
ことを含んでいる、請求項1記載の装置。
【請求項3】
前記試料ホルダ(9)の前記薄いプレート(10,11)の表面は凹部容積(27)を有しており、前記凹部容積(27)は、好ましくは、前記試料ホルダ(9)の前記スペーサバー(21)の部分まで延在している、請求項1または2記載の装置。
【請求項4】
前記薄いプレート(10,11)の縁部に接着剤(39)が配置されており、好ましくは、前記接着剤(39)は前記スペーサバー(21)に結合されている、請求項2または3記載の装置(2)。
【請求項5】
前記溶液の蒸発を減らすために、前記溶液(12)に面する表面の側で、前記試料ホルダ(9)の前記薄いプレート(10,11)の縁部に突起および/または溝(44)がパターン形成されている、請求項2から4までのいずれか1項記載の装置(2)。
【請求項6】
原子分解で結晶の構造を分解するためにX線回折像を収集する、室温で結晶の自動化された一連の結晶構造解析実験を行うシステム(70,120)であって、
前記システム(70,120)は、
a)音響浮揚装置およびX線源(81)およびハイフレームレートX線画像検出器を含んでいる音響浮揚回折計(76,126)と、
b)前記結晶(28)の試料を前記試料ホルダ(9)内に有する、請求項1から5までのいずれか1項記載の装置(2)と、
c)前記音響浮揚装置の軸線を、前記X線源によって生成されたX線ビームに対して斜角で回転させるゴニオステージと、
d)前記音響浮揚回折計の前記音響浮揚装置(76,126)を、前記X線ビームおよび前記音響浮揚装置の前記軸線に対して垂直な横方向において移動させる並進ステージと、
e)前記試料ホルダ(85,125)を前記装置(2)から回収する機構と、
を含んでおり、
f)前記データ収集中の、前記試料ホルダ(85,125)上の前記X線ビーム(82,122)のスポットのスパイラル軌道は、前記音響浮揚装置(76,126)における音響浮揚させられている前記試料ホルダ(85,125)の回転と、前記音響浮揚装置(76,126)による前記試料ホルダ(85,125)の同時の横方向の並進との組み合わせによって達成され、
前記音響浮揚装置(76,126)の超音波音圧は、前記音響浮揚装置(76,126)において音響浮揚させられている前記試料ホルダ(85,125)の回転速度を、その軸線が前記X線ビーム(82,122)に対して斜めになるように設定するように調整されており、横方向の並進速度は、これに従って、所与のX線光子束での試料結晶(94,134)上の適切なX線線量を伴って、前記試料ホルダ(85,125)上の前記X線ビーム(82,122)の前記スポットの前記スパイラル軌道の間の半径方向間隔を調整するように設定されている、
システム(70,120)。
【請求項7】
前記スパイラル軌道の間の前記半径方向間隔は10~20μmの範囲にあり、前記半径方向間隔は、典型的には5~100μm、好ましくは10~20μm以下の範囲のサイズの小さい結晶に対して、前記一連の結晶構造解析実験を、各回折像につき1つの結晶での高い結晶命中率で行うのに好ましく、
前記半径方向間隔は、前記試料ホルダ(85,125)を約2rpsで回転させるのに約0.5kPaの前記超音波音圧が加えられ、かつ横方向の前記並進ステージの前記並進速度が約0.2mm/秒に設定されている場合に設定されているものである、請求項6記載のシステム(70,120)。
【請求項8】
前記超音波音圧および前記回転速度、横方向の前記並進速度ならびに前記ハイフレームレートX線画像検出器のフレームレートは、前記結晶試料上のX線の最大線量を、所与のX線光子束で結晶あたり10~10kGy未満に制限しながら、前記データセットの所定のデータ収集効率および信号対ノイズ比の値に調整される、請求項6または7記載のシステム(70,120)。
【請求項9】
前記X線ビームの前記光子束は、タンパク質結晶構造解析実験を可能にするように調整されている、請求項6から8までのいずれか1項記載のシステム(70,120)。
【請求項10】
前記試料ホルダ(9)の前記薄いプレート(10,11)の面に対して垂直な軸線を中心とした前記試料ホルダ(9,125)の回転を制御するために、器具(146)が前記試料ホルダ(9)に力を及ぼし、
前記力は細い空気流によって生成されている、または前記力は音響放射力であり、前記音響放射力は、一定の圧の、または超音波の振幅または周波数に関して変調された圧の、または前記音響浮揚装置(126)の前記軸線の方向ならびに前記X線ビーム(122)の方向を横切る方向においてパルス変調された圧の超音波伝搬波または超音波定在波によって誘導される、請求項6から9までのいずれか1項記載のシステム(70,120)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の独立したセル内の分子のプローブ溶液を収容するための装置に関する。さらに、本発明は、原子分解で結晶構造を決定するための(小さい)結晶のX線回折実験のためのシステムに関する。上述の結晶は、上述の装置から取り出された試料ホルダ内で成長させられる。
【0002】
中間相において媒体中で混合された分子の溶液を、薄いガラスプレートの間に挟んで、元来の設定で分子の結晶を成長させるサンドイッチ結晶化法が知られている。この方法で成長した結晶を用いた回折実験の場合、サンドイッチプレートから結晶を取り出さなければならない。これは、ガラスプレートを切断し、結晶の周囲の不要な結晶化媒体を除去し、試料ホルダ上に、重ならずに結晶を回収することを含んでいる。媒体中の試料の乾燥を避けるために、この試料調製を短時間で行う必要があることを考慮すると、非能率的な従来技術の方法は、これらの時間制約を効率的にサポートするものではない。
【0003】
本発明の課題は、従来技術で必要とされる手動介入を最小限に抑え、粘性結晶媒体を伴うサンドイッチプレート内で成長した結晶の回折実験の自動化されたパイプラインを実現することである。
【0004】
上述の課題は、本発明に相応に、溶液または流体等である結晶化媒体からの分子の結晶の成長のための装置によって解決され、結晶化媒体は上述の分子を含んでおり、上述の結晶はX線回折実験に適しており、これによって上述の成長した結晶を含んでいる液滴において、原子分解(atomic resolution)で結晶の構造が分解(solve)され、上述の液滴は、サンドイッチ結晶化法に適した試料ホルダによって保持されており、上述の装置は、
a)複数の独立したセルを含んでおり、複数の独立したセルは、ウェルのアレイ、上部プレートおよび下部プレートによって提供され、これによって試料ホルダのための容積が形成され、各ウェルは、上部プレートと下部プレートとの間に試料ホルダを収容するように設計されており、上部プレートおよび下部プレートの一方または両方は、取り外し可能なキャップを備えた開口部を有しており、
b)独立したセルのスタックを含んでおり、独立したセルのスタックは、上部プレート、試料ホルダフレーム、下部プレートおよびスペーサ層によって形成されており、任意選択的に、上述の層の間に接着層が挿入されており、
c)試料ホルダフレームに結合されている上述の試料ホルダの周囲にあるスペーサ層内のスペーサバーを含んでおり、各ウェルは、試料ホルダと試料ホルダフレームとの間の開口部を通じて試料ホルダの上方および下方の空間において、溶液の蒸気と平衡状態になるように調整されており、
d)各ウェルの上述のキャップの厚さによって調整可能な各ウェルの容積を含んでおり、
e)上述の上部プレート、下部プレート、キャップ、スペーサ層および任意選択的に接着層は防水材料から作製されており、上述の試料ホルダは、低いX線散乱を有する薄いプレートとして設計されており、上述の薄いプレートは、好ましくは、5~50μmの範囲の厚さを有しているポリイミドまたはフッ素化ポリイミドで作製されている。
【0005】
上述の課題は、システムに関して、本発明に相応に、原子分解で結晶の構造を分解するためにX線回折像を収集する、室温で結晶の自動化された一連の結晶構造解析実験を行うシステムによって解決され、このシステムは
a)音響浮揚装置およびX線源を含んでいる音響浮揚回折計(acoustic levitation diffractometer)
b)結晶の試料を試料ホルダ内に有する、請求項のいずれか1項記載の装置
c)音響浮揚装置の軸線を、X線源によって生成されたX線ビームに対して斜角で回転させるゴニオステージ
d)上述の音響浮揚回折計の音響浮揚装置を、X線ビームおよび音響浮揚装置の軸線に対して垂直な横方向において移動させる並進ステージ
e)上述の試料ホルダを装置から回収する機構
を含んでおり、
f)データ収集中の、試料ホルダ上のX線ビームのスポットのスパイラル軌道は、音響浮揚装置における音響浮揚させられている試料ホルダの回転と、音響浮揚装置による試料ホルダの同時の横方向の並進との組み合わせによって達成され、音響浮揚装置の超音波音圧は、音響浮揚装置において音響浮揚させられている試料ホルダの回転速度を、その軸線がX線ビームに対して斜めになるように設定するように調整されており、横方向の並進速度は、これに従って、所与のX線光子束での試料上の適切なX線線量を伴って、試料ホルダ上のX線ビームスポットのスパイラル軌道の間の半径方向間隔を調整するように設定されている。
【0006】
したがって、サンドイッチ結晶化法によって、中間相等の粘性結晶媒体において成長した結晶の回折実験の自動化されたパイプラインが、高輝度X線ビームを含んでいるX線回折計、ハイフレームレートでピクセル化されるX線画像検出器、超音波音響浮揚装置および遠隔で、本発明の装置において粘性結晶媒体において成長した上述の結晶を含んでいる複数の試料ホルダのうちの1つの試料ホルダを上述の装置から回収して、上述の試料ホルダをX線回折計へ送る器具によって実現される。試料ホルダにわたったX線ビームのスパイラル軌道でのスキャンを実現するために、浮揚させられた試料ホルダの回転および位置が制御される。
【0007】
本発明のさらなる好ましい実施形態は、添付の従属請求項によって定義される。
【0008】
本発明の好ましい実施形態を、添付の図面を参照しながら以降で説明する。
【図面の簡単な説明】
【0009】
図1】分子を含んでいる溶液を収容するための装置を概略的に示す図であり、上述の装置は複数のセルを含んでおり、各セルは、ウェルおよびウェル内の溶液用の試料ホルダを含んでいる。
図2】第1の薄いプレート、第2の薄いプレートおよびそれらの間の溶液を含んでいる試料ホルダを概略的に示す図である。
図3】セルの一例を概略的に示す図である。
図4】斜視図(左側の上部パネル)、閉じられたセルの上面図(左側の下部パネル)およびセルの線A-A’に沿った断面図において装置を概略的に示す図である。
図5】斜視図(左側の上部パネル)、閉じられたセルの上面図(左側の下部パネル)およびセルの線A-A’に沿った断面図において装置を概略的に示す図である。
図6】第1の薄いプレート、第2の薄いプレートおよびそれらの間の溶液を含んでいる試料ホルダの例を概略的に示す図である。
図7】第1の薄いプレート、第2の薄いプレートおよびそれらの間の溶液を含んでいる試料ホルダのための例を概略的に示す図である。
図8】第1の薄いプレート、第2の薄いプレートおよびそれらの間の溶液を含んでいる試料ホルダの例を概略的に示す図である。
図9】セルの別の例を概略的に示す図である。
図10】斜視図(左側の上部パネル)、閉じられたセルの上面図(左側の下部パネル)およびセルの線A-A’を通る平面に沿った断面図において装置を概略的に示す図である。
図11A】第1の薄いプレート、第2の薄いプレートおよびそれらの間の溶液を含んでいる試料ホルダの別の例(左側のパネル)と、試料ホルダの線A-A’を通る平面に沿った断面(右側のパネル)とを概略的に示す図である。
図11B図11Aの試料ホルダを概略的に示す図であり、右側のパネルは、試料ホルダの線B-B’を通る平面に沿った断面を示す図である。
図12】自動化された結晶回折実験を行うための従来技術の器械を側方から概略的に示す図である。
図13図12に示された、自動化された結晶回折実験を行うための従来技術の器械を上から概略的に示す図である。
図14】試料ホルダ内の成長した小さい結晶のX線回折実験を行うシステムを側方から概略的に示す図である。
図15A】音響浮揚装置において浮揚および回転させられる試料ホルダ内の成長した小さい結晶のX線回折実験のシステムを上から概略的に示す図である。
図15B】試料ホルダ上のX線ビームのスパイラル軌道を概略的に示す図である。
図16】他のウェルを開放することなく、装置の複数のウェルのうちの1つのウェルを開放する器具を概略的に示す図であり、上述の装置は複数のセルを含んでいる。
図17】複数のウェルのうちの1つのウェルが開放されたときに、複数のウェルのうちの1つのウェルから、複数の試料ホルダのうちの1つの試料ホルダを取り出す器具を概略的に示す図である。
図18】装置の複数のウェルのうちの1つのウェルから取り出された複数の試料ホルダのうちの1つの試料ホルダを、器械の音響浮揚装置に送る器具を概略的に示す図である。
図19】X線回折実験中の0秒(スキャンの開始)、4秒および8秒(スキャンの終了)の時点での浮揚させられている試料ホルダのスナップショットを概略的に示す図である。
図20】下部パネルは、音響浮揚装置の軸線が鉛直方向から30°だけ回転させられたときの、浮揚させられている試料ホルダの回転速度と超音波圧の振幅との間の関係を示す図であり、上部パネルは、音響浮揚装置の軸線が鉛直方向から30°だけ傾斜させられたときの、浮揚させられている試料ホルダの回転の中心の二乗平均平方根(RMS)変動と超音波圧の振幅との間の関係を示す図である。
図21】試料ホルダ内の成長した小さい結晶のX線回折実験を行うための器械を側方から概略的に示す図である。
図22】音響浮揚装置において浮揚および回転させられる試料ホルダ内の成長した小さい結晶のX線回折実験を行う器械を上から概略的に示す図である。
図23A】音響浮揚装置において浮揚および回転させられる試料ホルダ内の成長した小さい結晶によるX線回折実験のための器械を側方から概略的に示す図である。
図23B】横方向音響定在波が試料ホルダの回転を調整するときに、試料ホルダ内の成長した小さい結晶によるX線回折実験のための器械の方向に沿った点から見た、側方からの概略図である。
図24】下部パネルは、フレーム数の関数としての、試料ホルダ内の成長した小さい結晶上の推定線量との間の関係を示す図であり、上部パネルは、スキャンが進行するときの、X線が命中した小さい結晶の累積数を示す図である。
【0010】
図1は、分子を含んでいる溶液を収容する装置2を概略的に示している。上述の装置2は、複数のセル3を含んでいる。各セル3のウェル4内で、上述の溶液は、1枚の薄いプレート10上で混ぜ合わされる、または試料ホルダ9の少なくとも2枚の薄いプレート10、11の間で混ぜ合わされ、溶液中に含まれている上述の分子の結晶28を成長させる。種々のセル3内の各ウェル4は、結晶28の成長後のリガンド溶液の浸漬のために個別に開放可能である。他のセル3のウェル4を開放することなく、結晶28の原子構造を決定するために、異なるウェル4内の各試料ホルダ9を個別に取り出すことができる。
【0011】
図1図4を参照すると、装置2は、キャップ8を備えた開口部7を有する上部プレート5と、上部セパレータ13と、試料ホルダ9の複数の第1の薄いプレート10がスペーサバー21を介して結合されている第1の薄いプレートのフレーム14と、薄いプレートのセパレータ15と、複数の第2の薄いプレート11がスペーサバー21を介して結合されている第2の薄いプレートのフレーム16と、下部セパレータ20と、下部プレート6とを含んでいる(図1図3および図4を参照)。各試料ホルダ9について、上部の薄いプレート10と下部の薄いプレート11とが溶液12を挟んでいる。
【0012】
図2は、第1の薄いプレート10と第2の薄いプレート11とを含んでいる試料ホルダ9を概略的に示している。右側のパネルは、左側のパネルに示されている線A-A’を通る平面に沿った上述の試料ホルダ9の断面を概略的に示している。上述の薄いプレート10と薄いプレート11との間に、上述の溶液12が貯蔵されている。溶液12内で小さい結晶28が成長する。
【0013】
分子の結晶の成長のために、装置2は、たとえば次の順序で組み立てられる。第1に、上述の第1の薄いプレートのセパレータ15、複数の上述の第2の薄いプレート11を有する上述の第2の薄いプレートのフレーム16および上述の下部セパレータ20が、上述の下部プレート6の上に積層される。第2に、複数の上述の第2の薄いプレート11上に溶液液滴が分配される。第3に、キャップ8を備えた上述の上部プレート5、上述の上部セパレータ13、複数の上述の第1の薄いプレート10を有する上述の第1の薄いプレートのフレーム14および上述の薄いプレートのセパレータ15が積層される。最後に、層5、13および14の上述のスタックが、層15、16、20を含んでいるスタックおよび6の上に積層される。装置2のセル3の各ウェル4は、これらの層と上部プレート5と下部プレート6との間に添加された接着剤によって封止されている。好ましくは、上述の層と上述の上部プレートと下部プレートとの位置合わせのためのガイド構造が、これらの層の位置合わせのために提供され、これによって、この装置は、たとえばこれらの層に孔を提供し、これらの層の上述の孔の位置で下部プレートおよび/または上部プレートに突出部を提供するように組み立てられる。
【0014】
図5は、斜視図(左側の上部パネル)、閉じられたセル3の上面図(左側の下部パネル)および線A-A’を通る平面に沿ったセル3の断面図において装置2を概略的に示している。ここでは、上部プレート5が開口部7を有しており、この開口部7は、上述のウェル4を封止するキャップ8を備えており、かつ右側に示されているように、他のウェル4を開放せずに、ウェル4から試料ホルダ9を個別に取り出すために開放可能である。下部プレート22は付加的な凹部容積23を有しており、これは上部セパレータ13、第1の薄いプレートのフレーム14、薄いプレートのセパレータ15、第2の薄いプレートのフレーム16および下部セパレータ20の厚さとは無関係に設定可能な容積内でウェル4に溶液12を貯蔵するためのものである。
【0015】
図6は、第1の薄いプレート25と第2の薄いプレート26とを含んでいる試料ホルダ24を概略的に示している。右側のパネルは、左側のパネルに示されている線A-A’を通る平面に沿った上述の試料ホルダ24の断面を概略的に示している。上述の薄いプレート25と薄いプレート26との間に溶液12が貯蔵されている。溶液12内で小さい結晶28が成長する。薄いプレート25、26は、溶液12に面した表面上に付加的な凹部容積27を有しており、これによって、薄いプレート25と薄いプレート26との間の間隔とは無関係に溶液12の体積を調整することができる。
【0016】
図7は、第1の薄いプレート31と第2の薄いプレート32とを含んでいる試料ホルダ30を概略的に示している。右側のパネルは、左側のパネルに示されている線A-A’を通る平面に沿った上述の試料ホルダ30の断面を概略的に示している。上述の薄いプレート31と薄いプレート32との間に溶液12が貯蔵されている。溶液12内で小さい結晶28が成長する。薄いプレート31、32は、溶液12に面した表面上に付加的な凹部容積33を有しており、これによって、上述の薄いプレート31と薄いプレート32との間の間隔とは無関係に上述の溶液12の体積を調整することができる。上述の凹部容積33は、スペーサバー21の表面上に延在することができる。
【0017】
図8は、第1の薄いプレート36と第2の薄いプレート37とを含んでいる試料ホルダ35を概略的に示している。右側のパネルは、左側のパネルに示されている線A-A’を通る平面に沿った上述の試料ホルダ35の断面を概略的に示している。上述の薄いプレート36と薄いプレート37との間に溶液12が貯蔵されている。溶液12内で小さい結晶28が成長する。薄いプレート36、37は、溶液12に面した表面上に付加的な凹部容積38を有しており、これによって、上述の薄いプレート36と薄いプレート37との間の間隔とは無関係に溶液12の体積を調整することができる。2つの薄いプレート36、37の縁部での接着剤39が、溶液12のための容積を封止する。
【0018】
図9は、上部プレート5、下部プレート6、上部セパレータ13、第1の薄いプレートのフレーム14、薄いプレートのセパレータ15、第2の薄いプレートのフレーム16、下部セパレータ20、第1の薄いプレート36、第2の薄いプレート37および接着剤39を含んでいるセル3の例を概略的に示している。試料ホルダは、第1の薄いプレート36と第2の薄いプレート37とを含んでおり、互いに対向する薄いプレート36、37の表面は凹部容積を含んでいる。接着剤39によって薄いプレート36、37の縁部が封止される。試料ホルダは、第1の薄いプレートのフレーム14に結合されている第1の薄いプレート36の周囲のスペーサバー21を介してウェルに結合されている。第2の薄いプレート37の周囲のスペーサバーが第2の薄いプレートのフレーム16に結合されている、または接着剤39の周囲のスペーサバー21が第1の薄いプレートのセパレータ15に結合されている、またはこれらの組み合わせ、またはこれらのすべてと結合されている。
【0019】
図10は、斜視図(左側の上部パネル)、閉じられたセルの上面図(左側の下部パネル)および線A-A’を通る平面に沿ったセル3の断面図において装置2を概略的に示している。ここでは、上部プレート5が開口部7を有しており、この開口部7は、上述のウェル4を封止することができるキャップ8を備えており、かつ右側に示されているように、他のウェル4を開放せずに、ウェル4から試料ホルダを個別に取り出すために開放可能である。試料ホルダ9は、第1の薄いプレート36と第2の薄いプレート37とを含んでおり、これらは、互いに対向する表面上に凹部容積を有しており、薄いプレート36、37の縁部で接着剤39によって接着されている。
【0020】
図11Aおよび図11Bは、第1の薄いプレート41と第2の薄いプレート42とを含んでいる試料ホルダ40を概略的に示している。図の右側のパネルは、図11Aの左側のパネルに示されている線A-A’を通る平面に沿った上述の試料ホルダ40の断面と、図11Bの左側のパネルに示されている線B-B’を通る平面に沿った上述の試料ホルダ40の断面とを概略的に示している。上述の薄いプレート41と薄いプレート42との間に溶液12が貯蔵されている。溶液12内で小さい結晶28が成長する。薄いプレート41、42は、溶液12に面した表面上に付加的な凹部容積43を有しており、これによって、上述の薄いプレート41と薄いプレート42との間の間隔とは無関係に上述の溶液12の体積を調整することができる。上述の2つの薄いプレート41、42の縁部における突起または溝またはその両方を含んでいる表面構造44は、上述の薄いプレート41と薄いプレート42との間の間隔を狭める。上述の薄いプレート41と薄いプレート42との間の狭められた間隔は、上述の薄いプレート41、42を2つの薄いプレート41、42の縁部で封止するために接着剤が添加される場合に、封止効果を高めることができる。
【0021】
一般に、すべての薄いプレートの材料は、中間相における結晶の成長を監視する目的で、試料ホルダの観察をより容易にするために透明であってよい。回折像における高い信号対ノイズ比のために、薄いプレートからの不必要なX線散乱を回避するために、薄いプレートの材料は、非晶質または非結晶性であってよい。溶液12が薄いプレート内へ浸透しないという意味において、薄いプレートの材料は密であるべきである。さらに、上述の試料ホルダの薄いプレートの表面の少なくとも一部を、親水性を高めるために科学的に改良することができる。好ましくは、試料ホルダ9の薄いプレートは、X線散乱が低い薄いプレートとして設計されている。上述の薄いプレートは、好ましくは、5~50μm、好ましくは20~25μmの範囲の厚さを有するポリイミドまたはフッ素化ポリイミドから作製されている。
【0022】
上述の装置2の複数のセル3は、96well,ANSI規格SBS(The society of biomolecular screening)プレート等の結晶化規格によって与えられるような、9.1mmのピッチを伴う8行および12列で与えられていてよい。上述の試料ホルダ9、24、30、35および40のジオメトリは、幅0.5mmおよび長さ1mmの4つのスペーサバーが取り付けられた直径4mmの円板部分であってよい。上述の薄いプレートの材料は、ポリイミド、フッ素化ポリイミドまたは水の透過率が低い他の同様のポリマであってよい。上述の薄いプレートの厚さは、サンドイッチ試料ホルダの完全性が維持される限り、12~25μm以下の範囲にあってよい。好ましくは、試料ホルダが、X線ビームスキャン用の音響浮揚装置における高い位置安定性および回転制御性に適合する。
【0023】
試料ホルダ9をシステム70または120内で音響浮揚させる際に、試料ホルダの円板部分の円周上にスペーサバー21を配置することによって、円板面に対して垂直な軸線に沿った回転の位置安定性および安定性の観点から試料ホルダの安定性が向上する。試料ホルダの円板部分の平面内にある回転軸線を中心とした、浮揚させられている試料ホルダの回転を阻止することによっても、試料ホルダの安定性が向上する。
【0024】
上述のスペーサバーの個数Nは4であってよく、上述の複数のスペーサバーは、図4に示されているように、円板の中心を通り、かつ試料ホルダの円板面に対して垂直な軸線を中心とした回転に関して対称に配置されてよい。それにもかかわらず、試料ホルダが、4より大きいまたは小さいNを有する形状と同様の対称的な形状または準対称的な形状を有することができることは言うまでもない。
【0025】
図12は、自動化された結晶回折実験を行うための従来技術のシステム50を側面から概略的に示している。原子分解で結晶構造を分解するのに十分な質の単結晶55を成長させ、結晶化プレート63内のウェルに貯蔵する。液滴64内に封入されている上述の単結晶55が回収され、超音波音響浮揚装置56内に装填される。超音波音響浮揚装置56は、電源61によって駆動される超音波トランスデューサ57、音響ミラー反射器60および音響定在波58が励起される音響空洞59を含んでいる。X線源51は、X線ビーム52を発生させる。上述のX線ビーム52によって、上述の結晶55が照射される。上述の結晶55からのX線回折54は、高速フレームレートでピクセル化されるX線画像検出器53によって記録される。結晶55は、上述の電源61の出力を調整することによって、または上述の音響空洞59の共鳴を調整することによって、超音波音響定在波58によって調整された回転速度で回転させられる。音響浮揚装置56が取り付けられている器具62によって、上述の結晶55の位置が、上述のX線ビーム52に位置合わせされる。
【0026】
図13は、図12に示された、自動化された結晶回折実験を行うための従来技術のシステム50を上から概略的に示している。
【0027】
図12および図13を参照すると、分子の単結晶55に対して、自動化されたX線回折実験を行うシステム50は次のことを必要とする。すなわち、結晶の回収および音響浮揚装置への装填が、遠隔で、集束された音響放射による結晶化液を伴う結晶の音響放射によって成し遂げられ得る、または結晶化液を伴う結晶で充填された毛細管からの音響放射と、それに続く、音響浮揚装置によって放出された液滴の捕捉によって成し遂げられ得ることを必要とする。結晶55を含んでいる、浮揚させられている液滴中の対流性の流れの強さを調整することによって、浮揚させられている液滴中の結晶が所望の回転速度で回転させられる。これによって、対流性の流れの強さおよび空間パターンは、液滴の周囲の音響流の強さおよび空間パターンを介して超音波音響波によって決定される。しかし、中間相等の高粘性媒体において調製された結晶の遠隔回収および装填は、音響浮揚装置への高粘性液滴の装填、ならびに特に、音響放射による膜タンパク質の従来技術による結晶化法のために使用される中間相媒体における結晶の自動回収および装填という点で困難を伴うため、器械50では困難である。
【0028】
図14は、試料ホルダ85内の成長した小さい結晶28のX線回折実験を行う、本発明によるシステム70を側面図で概略的に示している。自動化された器具101、102、103を用いて、上述の試料ホルダ85は、遠隔で、装置2の複数のウェル4のうちの1つのウェルから回収され、超音波音響浮揚装置86内へ装填される。超音波音響浮揚装置86は、電源91によって駆動される超音波トランスデューサ87、音響ミラー反射器90、音響定在波88が励起される音響空洞89を含んでいる。X線源81はX線ビーム82を発生させる。上述の電源91の出力を調整することによって、または上述の音響空洞89の共振を調整することによって、音響定在波88の超音波音圧によって調整された回転速度で、試料ホルダ85の円板面に対して垂直な回転軸線で、上述の試料ホルダ85が回転させられる。音響浮揚装置86が取り付けられている器具92によって、上述の試料ホルダ85の位置を、上述のX線ビーム82に対して位置合わせする。音響浮揚装置の軸線95を、器具93によって、鉛直方向96から角度θだけ回転させることができ、これによって、試料ホルダに斜角でX線ビームを照射することができる。
【0029】
図15Aは、音響浮揚装置86において浮揚および回転させられる試料ホルダ85内の成長した小さい結晶94のX線回折実験のシステム70を上から概略的に示している。上述のX線ビーム82によって、上述の試料ホルダ85内の上述の小さい結晶が照射される。X線ビームは、スパイラル軌道110に沿って試料ホルダ85上でスキャンされる。データ収集中、上述の結晶94からのX線回折84は、上述の試料ホルダ85が器具95によって回転させられ、x方向に移動させられる間、高速フレームレートでピクセル化されるX線画像検出器83によって連続的に記録される。
【0030】
図15Bは、浮揚させられている試料ホルダ85が1回/秒で回転させられ、0.25mm/秒の速度で8秒間、水平方向に並進させられたときの試料ホルダ85上のX線ビーム82のスパイラル軌道110を概略的に示している。試料ホルダ85上の、X線ビーム82によって覆われる円形部分の直径は4mmである。
【0031】
図16は、他のウェルを開放することなく、装置2の複数のウェル4のうちの1つのウェルを開放する器具101を概略的に示している。
【0032】
図17は、装置2の開放されたウェル4から、複数の試料ホルダ85のうちの1つの試料ホルダを取り出す器具102を概略的に示している。
【0033】
図18は、小さい結晶のX線回折実験を行うために、複数のウェル4のうちの1つのウェルから取り出された複数の試料ホルダ85のうちの1つの試料ホルダを、器械70の音響浮揚装置86に送る器具103を概略的に示している。
【0034】
図19は、X線ビームの方向から撮影された、X線回折実験中の0秒(スキャンの開始)、4秒および8秒(スキャンの終了)の時点での浮揚させられている試料ホルダ85のスナップショットを示している。浮揚させられている試料ホルダ85は、約1回/秒で回転させられ、0.25mm/秒の速度で右から左へ+x方向において水平方向に並進させられた。データ収集の期間は8秒であり、その間に回折像が連続的に撮影された。各画像において、X線ビームスポットは、各画像の線A-A’と線B-B’との交点にあった。試料ホルダの中心は、各画像の線A-A’と線S-S’との交点にある。
【0035】
図20は、下部パネルにおいて、音響浮揚装置の軸線が鉛直方向から30°だけ回転させられたときの、浮揚させられている試料ホルダ85の回転速度と超音波圧の振幅との間の関係を示している。上部パネルは、音響浮揚装置の軸線が鉛直方向から30°だけ傾斜させられたときの、浮揚させられている試料ホルダの回転中心の二乗平均平方根(RMS)変動と超音波圧の振幅との間の関係を示している。
【0036】
図21は、試料ホルダ125内の成長した小さい結晶134(図22を参照)のX線回折実験を行う別のシステム120を側面図で概略的に示している。自動化された器具101、102、103を用いて、上述の試料ホルダ125は、遠隔で、装置2の複数のウェル4のうちの1つのウェルから回収され、超音波音響浮揚装置126内へ装填される。超音波音響浮揚装置126は、電源131によって駆動される超音波トランスデューサ127、音響ミラー反射器130、音響定在波128が励起される音響空洞129を含んでいる。X線源121はX線ビーム122を発生させる。上述の試料ホルダ125は、器具146によって励起される音場によって調整された回転速度で、試料ホルダの円板面に対して垂直な回転軸線によって回転させられる。音響浮揚装置126、器具133および146が取り付けられている器具132によって、上述の試料ホルダ125の位置を、上述のX線ビーム122に対して位置合わせする。音響浮揚装置126の軸線135を、器具133によって、鉛直方向136から角度θだけ回転させることができ、これによって、試料ホルダに斜角でX線ビームを照射することができる。
【0037】
図22は、音響浮揚装置126において浮揚および回転させられる試料ホルダ125内の成長した小さい結晶134のX線回折実験を行うシステム120を上から概略的に示している。上述のX線ビーム122によって、上述の試料ホルダ125内の成長した上述の小さい結晶が照射される。X線ビームは、スパイラル軌道110に沿って試料ホルダ上でスキャンされる。データ収集中、上述の結晶からのX線回折124は、上述の試料ホルダが器具135によって回転させられ、x方向に移動させられる間、高速フレームレートでピクセル化されるX線画像検出器123によって連続的に記録される。上述の試料ホルダ125は、器具146によって励起されるX線ビームに対して垂直な方向において、音場151によって調整された回転速度で、試料ホルダ125の円板面に対して垂直な回転軸線によって回転する。この器具146は、電源149によって駆動される超音波トランスデューサ147と、音響反射器148と、音響空洞150とを含んでいる。上述の浮揚させられている試料ホルダ125の回転は、定在波151の超音波圧によって調整されている。
【0038】
図23Aは、音響浮揚装置において浮揚および回転させられる試料ホルダ125内の成長した小さい結晶134のX線回折実験のシステム120を側方から概略的に示している。図23Bは、横方向音響定在波151が試料ホルダの回転を調整するときに、試料ホルダ125内の成長した小さい結晶134のX線回折実験のシステム120の方向152に沿った視点153から見た、側方からの概略図である。器具146内で励起された音響定在波151の軸線155は、軸線135および方向152の両方に対して垂直な軸線154からφだけ回転させられる。
【0039】
図24において下部パネルは、フレーム数の関数としての、試料ホルダ内の成長した小さい結晶上の推定線量との間の関係を示している。上部パネルは、スキャンが進行するときの、X線が命中した小さい結晶の累積数を示している。想定されるパラメータは、以下のとおりである:1012光子/秒の光子束、5μmのX線ビームスポットサイズ、20μmの結晶サイズ、3kHzのX線画像検出器のフレームレート、0.25mm/秒での試料ホルダの横方向の並進速度および8秒の総スキャン時間。異なる試料ホルダ回転速度である、0.5回/秒(a)、1回/秒(b)および2回/秒(c)が想定された。
【0040】
ここで再び図14図18を参照すると、装置2のウェルから取り出された試料ホルダ10、85内に含まれている小さい結晶28、94に関する自動化されたX線回折実験の器械70は、2オングストローム以上のオーダの原子分解で結晶構造を決定する能力を有している。試料ホルダは、上述の試料ホルダの遠隔回収および装填のための各器具101、102、103を使用することによって、自動的に回収され、超音波音響浮揚装置86へ送られる。従来技術の器械56とは異なり、試料ホルダ内の中間相媒体内で小さい結晶を成長させるための装置2を使用することによって、本発明は、高度に自動化された方式でX線回折データセットを収集する器械を提供し、これによって、高粘性媒体中の結晶に対する原子分解でのその結晶構造が最小の手動介入で決定される。
【0041】
X線回折データセットは、各試料ホルダ85に含まれているランダムな結晶方位を有する複数の結晶からの複数のX線回折像を含んでおり、原子分解での結晶構造は、このような一連の結晶構造解析データを分析するために従来技術のアルゴリズムを使用して決定される。ランダムな結晶方位の各結晶には、名目上、高輝度X線ビームが一度だけ照射される。
【0042】
ここで、器械70の概略的な上面図である図15Aを参照すると、浮揚させられている試料ホルダは、試料ホルダの円板面に対して垂直な軸線に沿って、時計回りまたは反時計回りに回転させられ、データ収集中に、X線ビームおよび音響浮揚装置の軸線に対して垂直な方向において、+x方向または-x方向に沿って移動させられる。このようにして、X線ビームは、たとえば図15Bに示されているスパイラル軌道110に沿って試料ホルダ上でスキャンされる。
【0043】
X線回折実験のための個々の試料ホルダの回収および装填は、遠隔で行われる以降のステップを含んでいる:
a)器具101が、上述の装置2の複数のウェル4のうちの1つのウェルの上にあるキャップ8を開ける
b)器具102が、開放された上述のウェル4から試料ホルダを取り出す
c)器具103が、上述の試料ホルダを音響浮揚装置86に送る
d)次いで、浮揚させられている試料ホルダの位置および回転を相応に調整する
【0044】
上部プレート5の個々の開口部7は、キャップ8をたとえば、ねじとして扱うことによる、遠隔制御可能なマニピュレータによるウェル4の繰り返される開放および封止を可能にするために、キャップ8によって封止され得る。この繰り返される開放および封止は、器具101の動作である。上述の装置2のウェル4がウェル4の下方に第2のキャップを備えている場合、上述の器具101はこの第2のキャップも開けることができる。
【0045】
上述のセル3の上述のウェル4内の上述の試料ホルダは、第1の薄いプレートのフレーム14および薄いプレートのフレーム16に取り付けられている。器具102によって、上述のウェル4から上述の試料ホルダを取り出すステップは、14および16からの上述の試料ホルダの取り外し、および上述のウェル4の外側への上述の試料ホルダのピックアップを含んでいる。この取り外しを、試料ホルダのスペーサバー21の端部を切断することによって行うことができる。真空チャックまたはベルヌーイ式グリッパを含んでよい適切な機械式マニピュレータは、このピックアップを行うことができる。
【0046】
音響浮揚装置86への上述の試料ホルダの自動化された装填器具103は、試料ホルダとの最小限の物理的接触で、試料ホルダを薄いフォークまたは低密度材料のホルダに配置し、試料ホルダを音響浮揚装置へ挿入することによって、このタスクを達成することができ、これによって音響放射力がこのような試料ホルダから、この試料ホルダをピックアップすることができる。択一的に、たとえば小さなプラスチックの毛細管からの真空チャックを利用する試料ホルダ-ピックアップマニピュレータは、試料ホルダを音響浮揚装置へ送ることができる。マニピュレータからの試料ホルダの解放は、真空ラインを閉じることによって、または毛細管の先端に弱い正圧を加えることによって達成され得る。
【0047】
図20を参照すると、浮揚させられている試料ホルダの回転速度と一軸音響浮揚装置の超音波圧との間の典型的な関係ならびに浮揚させられている試料ホルダの二乗平均平方根の位置変動と一軸音響浮揚装置の超音波圧との間の関係が示されている。浮揚および回転させられている試料ホルダの位置安定性は、図19および図20に示されているように数十μm以内であってよく、これらは、図15Bに示されているようなスパイラル軌道110にわたったX線ビームの安定したスキャンを実現するのに適している。図20における、浮揚させられている試料ホルダの回転速度および位置安定性が、回転している試料ホルダのビデオ記録を分析することによって評価された。しかし、図20に示された高い位置安定性を考慮すると、回転している試料ホルダの全体または縁部を狭い光ビームで照射し、光の透過または反射の変調周波数を測定することによって、回転速度を別個に監視することができる。さらに、このようにして得られた回転速度を用いて、音響浮揚装置の超音波圧を調整して、標準的なフィードバック制御方式において所望の回転速度を得ることができる。
【0048】
均一なサイズを有する試料ホルダおよび試料ホルダ内の溶液の場合、上述の音響浮揚装置における上述の試料ホルダの浮揚位置および回転の繰り返しの調整は、名目上、試料ホルダを交換した後に必要とされない。それにもかかわらず、X線ビームに対する、浮揚させられている試料ホルダの位置は、たとえば、オンライン画像モニタを設置して、記録された画像を分析することによって、音響浮揚装置をX線ビームに対して並進させることによって、遠隔で調整可能である。図20に示されているように音響浮揚装置の超音波圧を調整することによって、浮揚させられている試料ホルダの回転速度を、典型的には0.5~2Hzの範囲にある所望の値に調整することができる。
【0049】
図21および図22を参照すると、これらの概略図は、音響浮揚装置126内で浮揚および回転させられる試料ホルダ125内で成長した小さい結晶134のX線回折実験を行う器械120を示しており、器具146は、音響浮揚装置126の軸線135およびX線ビーム122を横切る方向で音場を生成する。試料ホルダ125がゼロ回転で浮揚させられている場合、器具146において励起された定在波151によって生じる音響放射力の適用が、浮揚させられている試料ホルダ125の回転をオンにする。音響浮揚装置126の軸線135および方向137の両方に対して垂直な軸線152に沿った方向153からの概略的な側面図における図23を参照すると、上述の定在波151の軸線155は、方向137および154からφだけ回転されている。音響浮揚装置126の超音波圧が、試料ホルダをゼロ回転で浮揚させるように設定されている場合、音響定在波151によって発生された音響放射力が重畳されて、上述の試料ホルダ125の回転を開始させる。これは、上述の試料ホルダに加えられる全音響放射力が上述の試料ホルダを回転させるのに十分である場合、および上述の定在波151の超音波圧が上述の試料ホルダを縦に反転させないほど弱い場合である。定在波151および定在波128の脈動が、浮揚させられている試料ホルダの回転および位置運動に及ぼす影響を回避するために、上述の定在波128の超音波周波数と上述の定在波151の超音波周波数とは、50~100Hzの範囲における量よりも多く異なっていてよく、これは、回転および位置運動に関する上述の試料ホルダの典型的な応答時間の逆数と比べて十分に大きい。波128と波151との周波数差は、浮揚させられている上述の試料ホルダの軸方向および半径方向の共鳴振動の周波数範囲(球状の液滴のケースでは、1~3kPa・rmsの超音波圧の場合に10~40Hzの範囲にある)と一致すべきではない。151の超音波圧の振幅は、上述の試料ホルダの回転を開始させるために一定の値に設定されてよい。択一的に、151の超音波圧は、上述の試料ホルダの回転を調整するために、振幅変調、周波数変調またはパルス変調されてよい。X線ビーム122は、スパイラル軌道110に沿って試料ホルダ125上でスキャンされる。データ収集中、上述の試料ホルダが器具135によってx方向に回転および移動させられる間、上述の結晶からのX線回折信号124は、高速フレームレートでピクセル化されるX線画像検出器123によって連続的に記録される。
【0050】
音響浮揚させられている対象物を回転させる従来技術の方法は、音響定在波の円筒形の対称性およびその機械的な回転を破壊するための機械的インサートの使用、または音響浮揚装置の軸線の方向において角度モーメントを有する音場によって生成される粘性トルクの使用を含んでいる。この角度モーメントは、たとえば音響浮揚装置の軸線に対して垂直な方向において、一対の交差した定在波を加えることによって生成されてよく、これによって、2つの定在波のノードが、浮揚させられている対象物の位置と一致し、2つの定在波の位相がたとえば90°シフトされる。しかし、典型的には150dBのオーダの音圧レベル(SPL)を有する十分な粘性トルクを誘導するために必要とされる音圧は、本願で考察される、浮揚させられている試料ホルダの回転を制御するためには適切ではない場合がある。なぜなら、このような相当な音圧は、浮揚させられている試料ホルダの円板面を鉛直方向において反転させるリスクを有しているからである。
【0051】
音響浮揚させられている対象物を回転させる従来の方法と比較して、本発明は、高い角度(X線画像検出器に向かって60°のオーダ)および高い分解能(2オングストローム以上のオーダ)のX線回折信号が妨害されないように、浮揚させられている試料ホルダからX線画像検出器までの大きなステレオ角度を可能にする、より単純な構成を提供する。音響浮揚装置86内で浮揚させられている試料ホルダの回転は、音響定在波88の超音波圧を、試料ホルダの小さな弾性変形または塑性変形と試料ホルダ面に対する音響放射力との結合を介して調整して、上述の浮揚させられている試料ホルダの円板面に対して垂直な方向においてトルクを誘導することによって制御することができる。
【0052】
器械120内の浮揚させられている試料ホルダの回転の速度および方向の制御は、次のことによっても達成可能である。すなわち、試料ホルダの片側の小さな毛細管から放出される細い空気流、または上述の試料ホルダが浮揚させられているノードとは異なる、複数のノードのうちの1つのノードに放出される細い空気流を適用することによっても達成可能である。付加的な位置不安定性を最小限にするために、空気流の量は十分に弱くなければならない。浮揚させられている試料ホルダの回転速度を0~10回/秒の範囲で制御するために、超音波音響定在波によって及ぼされる音響放射力を使用することによって、このような位置不安定性の付加が回避されることに留意されたい。
【0053】
音響浮揚装置86内の浮揚させられている試料ホルダの回転速度は、上述の定在波88の超音波圧を調整することによって制御可能であるが、超音波圧の調整の範囲が重要になる幾つかの状況において、超音波圧の上述の調整が、特に垂直方向における、浮揚させられている位置の変化につながる可能性があるということにも留意されたい。上述の試料ホルダの回転が器具146によって調整される場合、回転速度制御と浮揚位置との間のこの干渉は、器械120内に存在していない。
【0054】
音響浮揚装置86、126は一軸型であってよく、これによって、直径20mmの円筒形ホーンが約40kHzで動作するランジュバン型超音波振動子によって駆動され、設置されたホーンと直径20mmおよび焦点距離20mmを有する、設置された凹球面ミラー反射器とが音響空洞を形成する。超音波トランスデューサの周囲の加熱された空気からの対流性の空気流による、浮揚させられている試料ホルダで起こり得る位置の乱れを回避するために、ホーンが音響浮揚装置の上部に設けられてよく、ミラーが音響浮揚装置の下部に設けられてよい。X線回折実験の場合、音響浮揚装置が第7の共振に調整され、かつ音響浮揚装置軸線が鉛直方向からまたはX線ビームに対して垂直な方向から30°だけ回転させられる場合に、試料ホルダを、ミラー反射器から第3の圧力ノード付近で浮揚させることができる。
【0055】
浮揚装置86、126によって浮揚させられている試料ホルダの回転速度は、0.51~0.55kPa・rmsの間の超音波音圧を調整することによって、数十μmのオーダの高い位置安定性で0.5~2Hzの範囲において制御可能である。明らかに、正確に要求される超音波音圧は、正確な材料、その中の中間相媒体の体積および試料ホルダの形状およびジオメトリに応じて変化する。音響浮揚装置86、126および正確な浮揚装置のジオメトリは、2オングストローム以上のオーダの高い分解能に対応する高い角度までX線回折が妨げられないことを条件に、上述の試料ホルダにおける小さい結晶にわたってX線ビームを高速でスキャンすることでX線回折像の高速データ収集を達成できる限り、上述のものに限定されない。
【0056】
器具146は、約40kHzで動作するランジュバン型超音波発振子によって駆動される超音波トランスデューサによって励起される先端直径8mmのカテノイダルホーンとミラー反射器とを含んでいる音響空洞150であってよく、ここでは0~0.6kPaの範囲の音圧が加えられる。音響空洞の周波数および直径は、これらの値に限定されず、これによって、空洞のサイズおよび音響波長を試料ホルダのサイズに適合させて、0~10Hzの範囲の回転が達成される。
【0057】
明らかに、正確に要求される超音波音圧は、正確な材料、その中の中間相媒体の体積、および試料ホルダの形状およびジオメトリに応じて変化する。音響浮揚装置86、126および器具146は、試料ホルダ85、125に作用する音響放射力が所望の回転をもたらす限り、周波数、サイズまたは駆動方法が上述のものに限定されない。
【0058】
図24を参照すると、試料ホルダ内で成長した20μmのサイズの結晶を測定するための、1012光子/秒の光子束、5μmのスポットサイズを有するX線ビームのケースにおいて、2オングストロームよりも良好な十分な分解能でブラグ反射を記録するための結晶あたりの十分な線量(10~10kGy)が、次のような場合に得られる。すなわち、4mmの直径(円板部分)の試料ホルダを、0.5~2回転/秒の範囲での一定の試料ホルダ回転速度で、0.25mm/秒に等しい、横方向における試料ホルダの一定の速度で、3kHzの検出器フレームレートで、かつ8秒に等しい、X線回折像の記録時間で回転させた場合である。8秒のスキャンの間に測定された結晶の総数は、試料ホルダ内の結晶密度が4×10/cmの場合、500~2000であると推定される。
【0059】
器械70、120を利用するX線回折データ収集のケースでは、浮揚させられている試料ホルダの回転速度が、スキャン中に適切な速度で増す場合に、個々の試料ホルダのデータセット内の結晶あたりの線量の増加を抑制することができる。同時に、データセット内の、X線ビームによって照射される試料ホルダの小さい結晶の総数の減少を部分的に回避するために、横方向において、浮揚させられている試料ホルダの並進速度を並行して適切な速度で減少させることができる。器具95、135の速度設定をプログラミングすることによって、データ収集中の試料ホルダの並進速度の変化を容易に実現することができる。データ収集中の試料ホルダの回転速度の変化を、器械70の音響浮揚装置86の超音波圧を相応にプログラミングすることによって容易に実現することができる。データ収集中の試料ホルダの回転速度の変化を、器械120の音響浮揚装置126の超音波圧を相応にプログラミングすることによって、または器械120の器具146の超音波圧を相応にプログラミングすることによって、容易に実現することができる。器械120を使用し、器具146の超音波圧を調整することは、結晶ごとの線量の最小限の位置変動で、上述の試料ホルダにおける小さい結晶上でX線回折実験を行うために有利である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11A
図11B
図12
図13
図14
図15A
図15B
図16
図17
図18
図19
図20
図21
図22
図23A
図23B
図24