(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-15
(45)【発行日】2023-08-23
(54)【発明の名称】回転子および回転子を備えた電動機
(51)【国際特許分類】
H02K 1/28 20060101AFI20230816BHJP
H02K 1/22 20060101ALI20230816BHJP
H02K 1/278 20220101ALI20230816BHJP
【FI】
H02K1/28 A
H02K1/22 A
H02K1/278
(21)【出願番号】P 2019066952
(22)【出願日】2019-03-29
【審査請求日】2022-01-27
(73)【特許権者】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100144211
【氏名又は名称】日比野 幸信
(72)【発明者】
【氏名】田邉 洋一
(72)【発明者】
【氏名】小嶋 智則
(72)【発明者】
【氏名】松岡 忠雄
(72)【発明者】
【氏名】山田 雅樹
(72)【発明者】
【氏名】松井 庸佑
(72)【発明者】
【氏名】守屋 颯馬
(72)【発明者】
【氏名】パッタラワディー パーオブトン
(72)【発明者】
【氏名】村上 正憲
(72)【発明者】
【氏名】鶴田 哲也
【審査官】津久井 道夫
(56)【参考文献】
【文献】特開2018-023241(JP,A)
【文献】特開2007-215301(JP,A)
【文献】特開2008-220154(JP,A)
【文献】特開2016-034176(JP,A)
【文献】国際公開第2018/011979(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 1/28
H02K 1/22
H02K 1/27
(57)【特許請求の範囲】
【請求項1】
外周側鉄心と、内周側鉄心と、前記外周側鉄心と前記内周側鉄心を連結する連結部とを備え、
前記連結部は絶縁性樹脂で形成され、
前記連結部の軸方向の両端面には、
それぞれ環状の凹溝部が形成され、
前記軸方向で対向する2つの前記凹溝部の間には、前記凹溝部同士を区切る底壁部が形成され、
前記底壁部は、前記軸方向に第1の厚みを有する第1底壁部と、前記軸方向に第1の厚みよりも厚い第2の厚みを有する第2底壁部とを有し、
前記連結部は、前記第1底壁部及び前記第2底壁部が円周方向に交互に設けられることにより、前記軸方向において深さの異なる凹溝部が形成される
回転子。
【請求項2】
外周側鉄心と、内周側鉄心と、前記外周側鉄心と前記内周側鉄心を連結する連結部とを備え、
前記連結部は絶縁性樹脂で形成され、
前記連結部の軸方向の両端面には、環状に配置された複数の第1の凹部と、円周方向に隣り合う前記第1の凹部同士を繋ぐ複数の第2の凹部と、が設けられ、
前記第2の凹部の深さは、前記第1の凹部の深さよりも浅く形成され、
前記連結部には、円周方向に隣り合う前記第1の凹部同士を区画する複数の隔壁が設けられ、
前記第2の凹部と前記隔壁とは、前記軸方向に重なって配置され、
複数の前記第1の凹部と複数の前記第2の凹部とが連続することで、前記連結部の軸方向の両端面には、環状の凹溝部が形成され、
前記軸方向に対向する2つの前記凹溝部の間には、前記凹溝部同士を区切る底壁部が円周方向全体に亘って形成される
回転子。
【請求項3】
請求項
1または2に記載の回転子であって、
前記外周側鉄心と前記連結部との間に設けられ、前記外周側鉄心と前記連結部との間での回り止めを行う第1の凹凸係合部と、
前記連結部と前記内周側鉄心との間に設けられ、前記連結部と前記内周側鉄心との間での回り止めを行う第2の凹凸係合部と、
を備える
回転子。
【請求項4】
請求項
3に記載の回転子であって、
前記軸方向に隣接する前記第1の凹凸係合部同士の間、および、前記軸方向に隣接する前記第2の凹凸係合部同士の間の、少なくとも一方には、前記外周側鉄心または前記内周側鉄心に対する前記連結部の抜け止めを行う抜止部が形成されている
回転子。
【請求項5】
請求項
3または4に記載の回転子であって、
前記第2の凹凸係合部の個数は、前記第1の凹凸係合部の個数より多い
回転子。
【請求項6】
請求項1~
5のいずれか1項に記載の回転子であって、
前記絶縁性樹脂は、ポリブチレンテレフタレート(PBT)またはPET(ポリエチレンテレフタレート)である
回転子。
【請求項7】
モータ外郭に固定された固定子と、前記固定子の内周側に配置された回転子と、を備えた電動機であって、
前記回転子は、永久磁石が固定される環状の外周側鉄心と、前記外周側鉄心の内周側に位置する内周側鉄心と、前記外周側鉄心と前記内周側鉄心の間に位置し、絶縁性樹脂で形成された連結部と、前記内周側鉄心に連結されるとともに、前記モータ外郭に軸受によって回転自在に支持されたシャフトとを備え、
前記連結部の軸方向の両端面に
は、それぞれ環状の凹溝部が形成され、
前記軸方向で対向する2つの前記凹溝部の間には、前記凹溝部同士を区切る底壁部が形成され、
前記底壁部は、前記軸方向に第1の厚みを有する第1底壁部と、前記軸方向に第1の厚みよりも厚い第2の厚みを有する第2底壁部とを有し、
前記連結部は、前記第1底壁部及び前記第2底壁部が円周方向に交互に設けられることにより、前記軸方向において深さの異なる凹溝部が形成される
回転子を備えた電動機。
【請求項8】
モータ外郭に固定された固定子と、前記固定子の内周側に配置された回転子と、を備えた電動機であって、
前記回転子は、永久磁石が固定される環状の外周側鉄心と、前記外周側鉄心の内周側に位置する内周側鉄心と、前記外周側鉄心と前記内周側鉄心の間に位置し、絶縁性樹脂で形成された連結部と、前記内周側鉄心に連結されるとともに、前記モータ外郭に軸受によって回転自在に支持されたシャフトとを備え、
前記連結部の軸方向の両端面には、環状に配置された複数の第1の凹部と、円周方向に隣り合う前記第1の凹部同士を繋ぐ複数の第2の凹部と、が設けられ、
前記第2の凹部の深さは、前記第1の凹部の深さよりも浅く形成され、
前記連結部には、円周方向に隣り合う前記第1の凹部同士を区画する複数の隔壁が設けられ、
前記第2の凹部と前記隔壁とは、前記軸方向に重なって配置され、
複数の前記第1の凹部と複数の前記第2の凹部とが連続することで、前記連結部の軸方向の両端面には、環状の凹溝部が形成され、
前記軸方向に対向する2つの前記凹溝部の間には、前記凹溝部同士を区切る底壁部が円周方向全体に亘って形成される
回転子を備えた電動機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁部材を有する回転子およびその回転子を備えた電動機に関する。
【背景技術】
【0002】
従来の電動機には、回転磁界を発生させる固定子の内側に、永久磁石を有する回転子を回転可能に配置したインナーロータ型の永久磁石電動機が知られている。この永久磁石電動機は、例えば、空気調和機に搭載する送風ファンの回転駆動用として用いられる。
【0003】
この永久磁石電動機は、高周波スイッチングを行うPWM方式のインバータで駆動する場合に、軸受の内輪と外輪の間に電位差(軸電圧)を生じる。この軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受に電食を発生させる。この軸受の電食を防止するために、例えば、絶縁部材を有する回転子を備えたものが知られている(例えば、特許文献1参照)。
【0004】
この回転子は、例えば、環状の永久磁石と、永久磁石の内径側に位置する環状の外周側鉄心と、外周側鉄心の内径側に位置する環状の内周側鉄心と、外周側鉄心と内周側鉄心の間に位置する絶縁部材と、内周側鉄心の中心軸の方向に貫通する貫通穴に固着されたシャフトを備えている。
【0005】
このような回転子の絶縁部材は、外周側鉄心と内周側鉄心を連結する連結部であり、例えば、外周側鉄心と内周側鉄心の間に充填された樹脂で形成されている。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上述した軸受の電食は、永久磁石電動機をPWM方式のインバータで駆動すると、固定子の巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧は、スイッチングによる高周波成分が含まれるため、永久磁石電動機の内部の浮遊容量によって、軸受の外輪と内輪の間に軸電圧を発生させる。
【0008】
コモンモード電圧は、固定子の巻線とシャフトの間の静電容量分布と、シャフトとインバータ駆動用回路基板の間の静電容量により、軸受の内輪側(シャフト側)の電位として分圧される。そして、コモンモード電圧は、固定子の巻線とブラケットの間の静電容量とブラケットとインバータ駆動用回路基板の間の静電容量により、軸受の外輪側(ブラケット側)の電位として分圧される。この軸受の内輪側と外輪側の電位差が軸電圧となる。
【0009】
回転子の絶縁部材の厚みの上限が構造上規制され、且つ材料として絶縁性樹脂(例えばPBT樹脂)を使用しても回転子側(軸受内輪側)のインピーダンスが低く、軸電圧が高い場合に、軸電圧を抑制するため、特許文献1に記載の先行技術では、絶縁部材の一部に空気層や空孔を形成するようにしている。空気の比誘電率は、ほぼ1であるため、3程度のPBTに比べて比誘電率が小さい(即ち、空気は絶縁性樹脂よりも絶縁性が高い)。したがって、空気層や空孔を設けることによって回転子の静電容量を小さくすることが可能となり、回転子側(軸受内輪側)のインピーダンスを高くするようにしている。
【0010】
しかしながら、特許文献1に記載された、絶縁部材に空気層を形成するための空孔を、多数形成する場合には、絶縁部材の強度が低下するおそれがあった。
その一方で、永久磁石電動機の使用環境や駆動時の固定子巻線からの発熱によって、絶縁部材に熱応力が生じる。熱応力が絶縁部材の一部に集中すると、絶縁部材の耐久性の低下や割れやクラックの発生が懸念される。この熱応力を緩和することも望まれていた。
【0011】
そこで、本発明は、強度を保ちつつ熱割れを防止できる絶縁部材を有する回転子およびその回転子を備えた電動機を提供することを目的としている。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明の回転子の一態様は、外周側鉄心と、内周側鉄心と、外周側鉄心と内周側鉄心を連結する連結部とを備える。連結部は、絶縁性樹脂で形成される。連結部の軸方向の両端面には、環状に配置された複数の第1の凹部と、円周方向に隣り合う第1の凹部同士を繋ぐ複数の第2の凹部とが設けられる。第2の凹部の深さは、第1の凹部の深さよりも浅く形成される。
【0013】
本発明の電動機の一態様は、モータ外郭に固定された固定子と、固定子の内径側に配置された回転子とを備える。回転子は、永久磁石が固定される環状の外周側鉄心と、外周側鉄心の内径側に位置する内周側鉄心と、外周側鉄心と内周側鉄心の間に位置し、絶縁性樹脂で形成された連結部と、内周側鉄心に連結されるとともに、モータ外郭に軸受によって回転自在に支持されたシャフトとを備える。回転子は、連結部の軸方向の両端面に、環状に配置された複数の第1の凹部と、円周方向に隣り合う第1の凹部同士を繋ぐ複数の第2の凹部とが設けられる。第2の凹部の深さは、第1の凹部の深さよりも浅く形成される。
【発明の効果】
【0014】
本発明によれば、絶縁性樹脂で形成された連結部の強度を保ちつつ熱割れを防止することができる。
【図面の簡単な説明】
【0015】
【
図1】本発明に係る永久磁石電動機を示す縦断面図である。
【
図2】本発明に係る永久磁石電動機の回転子における外周側鉄心の斜視図(a)および平面図(b)である。
【
図3】本発明に係る永久磁石電動機の回転子における内周側鉄心の斜視図(a)および平面図(b)である。
【
図4】本発明に係る永久磁石電動機の回転子における絶縁部材の斜視図(a)および平面図(b)である。
【
図5】本発明に係る永久磁石電動機の回転子の斜視図である。
【
図11】本発明に係る永久磁石電動機の回転子、シャフトおよび第2軸受の斜視図である。
【
図12】本発明に係る永久磁石電動機を示す横断面図である。
【
図13】
図1または
図12の永久磁石電動機が、空気調和機の室外機に取り付けられる様子を示す斜視図である。
【発明を実施するための形態】
【0016】
次に、図面を参照して、本発明の一実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは必ずしも一致しないことに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。
【0017】
また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
【0018】
以下に、本発明の一実施形態に係る電動機について説明する。
【0019】
<電動機の全体構成>
図1乃至
図12は、第1実施形態における電動機1の構成を説明する図である。これらの図に示すように、この永久磁石電動機1は、例えば、ブラシレスDCモータである。この電動機1は、
図13に示すような空気調和機の室外機10に搭載される送風ファンを回転駆動するために用いられる。空気調和機の室外機10は、例えば、室外機10のベース101にねじ留めされる底板102と、室外機10の上部に固定される上板103と、電動機1が取り付けられる台座104と、底板102と上板103と台座104とが固定される2本の支柱105とを備える。電動機1は、台座104の中央部にねじ留めされる。
【0020】
以下では、回転磁界を発生する固定子2の内周側に、永久磁石31を有する回転子3を回転可能に配置したインナーロータ型の永久磁石電動機1を例に説明する。本実施形態における永久磁石電動機1は、固定子2と、回転子3と、モータ外郭6を備えている。
【0021】
<固定子と回転子>
固定子2は、円筒形状のヨーク部とヨーク部から内径側に延びる複数のティース部を有した固定子鉄心21と、インシュレータ22を介してティース部に巻回された巻線23を備えている。この固定子2は、固定子鉄心21の内周面を除いて、樹脂で形成されたモータ外郭6で覆われている。
【0022】
回転子3は、固定子2の固定子鉄心21の内周側に所定の空隙(ギャップ)を持って回転自在に配置されている。この回転子3は、固定子鉄心21に対向する外周面に環状に永久磁石31を配置した表面磁石型である。永久磁石31は、後述する外周側鉄心32の外周面に固定されている。このシャフト35は、内周側鉄心34に連結されており、回転子2で生じた動力がシャフト35を介して負荷(送風ファン)へと伝達され、送風ファンを回転駆動するようになっている。また、シャフト35は、第1軸受41および第2軸受42によって支持され、第1軸受41が第1ブラケット51に、第2軸受42が第2ブラケット52にそれぞれ支持されることで、回転子3が回転自在に支持されている。
【0023】
<軸受とブラケット>
第1軸受41は、回転子3のシャフト35の一端側(出力側)を支持している。第2軸受42は、回転子3のシャフト35の他端側(反出力側)を支持している。第1軸受41および第2軸受42は、例えば、ボールベアリングが用いられる。
【0024】
第1ブラケット51は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の一端側すなわちシャフト35の出力側に配置されている。この第1ブラケット51は、第1軸受41を収容するための第1軸受収容部511と、第1軸受収容部511の開放端から周りに広がるフランジ部512を有する。第1軸受収容部511は、シャフト35を通すための貫通穴が設けられた底部を有する円筒形状に形成されており、第1ブラケット51のフランジ部512は、モータ外郭6の成形時にインサート成形され、モータ外郭6と一体になっている。
【0025】
この第1軸受収容部511の内面に第1軸受41の外輪が圧入され、この第1軸受41の内輪に支持されたシャフト35の出力側が、第1軸受収容部511の底部の中央に形成された貫通穴から外部に突出されている。
【0026】
第2ブラケット52は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の他端側すなわちシャフト35の反出力側に固定されている。この第2ブラケット52は、円板状のブラケット本体部521と、モータ外郭6の反出力側の端部を閉塞する外縁部520と、第2軸受42を収容するための第2軸受収容部522とを有する。
【0027】
第2ブラケット52は、外縁部520がモータ外郭6の反出力側の端部にねじ留めされている。第2軸受収容部522は、ブラケット本体部521の中央部に、モータ外郭6側(出力側)から凹設された円形の底面を有する穴として形成されている。
【0028】
第1軸受41は、第1ブラケット51に設けられた第1軸受収容部511に収容され、第2軸受42は、第2ブラケット52に設けられた第2軸受収容部522に収容されている。そして、第1軸受41と第1軸受収容部511、第2軸受42と第2軸受収容部522はそれぞれ電気的に導通している。
【0029】
第2ブラケット52は、径方向において第2軸受収容部522と外縁部520との間にヒートシンクを一体的に備える。これにより、電動機1の省スペース化を図ることができる。
第2ブラケットは、ヒートシンクとして、シャフト35の反出力側に、外方へ向けて立設した放熱フィン523を備え、伝熱部材71を介し、電動機1を制御するための回路基板72(特に、回路基板72に搭載された電子部品721)からの熱が、放熱フィン523によって効率的に放熱されるようになっている。
【0030】
<本発明に係る回転子の構造、作用および効果>
次に、本実施形態における永久磁石電動機1において、
図2乃至
図10を用いて、本発明に係る回転子3の構造やその作用および効果について説明する。
永久磁石電動機1では、第1軸受41や第2軸受42に電食が生じないようにするため、
図1に示すように、回転子3の一部に絶縁部材33を備えている。以下、回転子3の具体的構成について説明する。
【0031】
回転子3は、
図1乃至
図11に示すように、外径側から内径側に向かって、永久磁石31と、外周側鉄心32と、絶縁部材(連結部)33と、内周側鉄心34と、シャフト35を備えている。
【0032】
永久磁石31は、
図1,11及び
図12に示すように、N極とS極が円周方向に等間隔に交互に表れるように複数(例えば8または10個)の永久磁石片311で環状に形成されている。なお、永久磁石31は、磁石粉末を樹脂で固めることで環状に形成されたプラスチックマグネットを用いてもよい。
【0033】
外周側鉄心32は、
図2に示すように、環状に形成されており、
図11および
図12に示すように、永久磁石31の内径側に位置している。外周側鉄心32には、後述する絶縁部材33との回り止めの機能を確保するために、内周面(
図2参照)から外径側に凹み、回転子3の軸Oの方向(以下、軸方向)に延びた複数(例えば円周方向に5個)の内周側凹部321を備えている。すなわち、内周側凹部321が、絶縁部材33に対する回り止めを行うキー溝(回転する部材との間での滑りを防止する溝。キー溝により部材間の締結力が向上し、動力の伝達効率を高めることができる)として機能する。さらに外周側鉄心32には、永久磁石31の位置決めをするために、外周面から外径側に突出する複数(例えば円周方向に10個)の外周側突起322を備えている。
【0034】
複数の内周側凹部321は、絶縁部材33の端面から軸方向に延びるとともに、円周方向に等間隔に配置されている。本実施形態では、内周側凹部321は、軸方向において、外周側鉄心32の両端部からそれぞれ延びるように2個配置される。これにより、外周側鉄心32は、軸方向に隣接する内周側凹部321同士の間に隔壁323(抜止部)が存在し、この隔壁323によって絶縁部材33(連結部)の(両軸方向への)抜け止めを行うことができる。
【0035】
複数の外周側突起322は、それぞれ軸方向に延びるとともに、円周方向に等間隔に配置されている。また、各々の外周側突起322は、軸方向において、外周側鉄心32の一端から他端まで延びるように配置される。
【0036】
内周側鉄心34は、
図3に示すように、環状に形成されており、
図5乃至
図10に示すように、外周側鉄心32の内径側に位置している。内周側鉄心34には、後述する絶縁部材33との回り止めの機能を確保するために、外周面(
図3参照)から内径側に凹み、軸方向に延びた複数(例えば円周方向に6個)の外周側凹部341を備えている。すなわち、外周側凹部341が、絶縁部材33に対する回り止めを行うキー溝として機能する。
【0037】
複数の外周側凹部341は、軸方向に延びるとともに円周方向に等間隔に配置されている。本実施形態では、外周側凹部341は、軸方向の中央に配置される隔壁344(抜止部)により区画されている。そのため、外周側凹部341は、内周側鉄心34の両端部からそれぞれ延びるように2個配置される。これにより、内周側鉄心34は、軸方向に隣接する外周側凹部341同士の間に隔壁344が存在し、この隔壁344(抜止部)によって絶縁部材33(連結部)の(両軸方向への)抜け止めを行うことができる。
【0038】
そして、内周側鉄心34の中心には、軸方向に貫通する貫通穴343を備えている。内周側鉄心34の貫通穴343にはシャフト35が通され、シャフト35と内周側鉄心34とが連結される。なお、内周側鉄心34は、この貫通穴343と内周側鉄心34の外周面との間に、重量を軽くするための肉抜き用の複数の貫通穴342を備えてもよい。これらの複数の貫通穴342は、軸方向から見て、貫通穴342が形成された内周側鉄心34の形状がスポーク状になるように、円周方向に等間隔に配置されている。
【0039】
絶縁部材33は、PBT(ポリブチレンテレフタレート)やPET(ポリエチレンテレフタレート)などの誘電体の樹脂で形成されており、外周側鉄心32と内周側鉄心34の間に位置している。絶縁部材33は、外周側鉄心32と内周側鉄心34の間に樹脂が充填されるインサート成形により、外周側鉄心32と内周側鉄心34と一体に成形されている。この絶縁部材33は、外周側鉄心32と内周側鉄心34の間の静電容量(固定子2の巻線23とシャフト35の間の静電容量の一部)を小さくしており、第1軸受41および第2軸受42の内輪側の電位を下げることで内輪側と外輪側の電位差が小さくなるよう調整されている。
【0040】
図4に示すように、絶縁部材33は、外周面に、上述した外周側鉄心32の内周側凹部321と係合する(複数の)外周側凸部338を備える。また、絶縁部材33は、内周面に、内周側鉄心34の外周側凹部341と係合する(複数の)内周側凸部339を備える。
【0041】
ここで、外周側鉄心32と絶縁部材(連結部)33との間に設けられ、外周側鉄心32と絶縁部材33との間での回り止めを行う係合部(内周側凹部321および外周側凸部338)を第1の凹凸係合部とし、絶縁部材33と内周側鉄心34との間に設けられ、絶縁部材33と内周側鉄心34との間での回り止めを行う係合部(内周側凸部339および外周側凹部341)を第2の凹凸係合部と呼ぶこととする。上述のように、本実施形態では、外周側鉄心32および内周側鉄心34に、凹凸係合部(第1の凹凸係合部および第2の凹凸係合部)の凹部を形成し、絶縁部材(連結部)33に、凹凸係合部の凸部を形成した場合を例示した。
【0042】
なお、凹凸係合部における凹部と凸部のそれぞれを、回転子鉄心(32、34)と絶縁部材33のどちらに配置するかは、上述の場合と逆になってもよい。例えば、凹凸係合部の凸部を、外周側鉄心32および内周側鉄心34に設け、凹凸係合部の凹部を、絶縁部材33に設けてもよい。
【0043】
この第1の凹凸係合部321、338および第2の凹凸係合部339、341は、
図2~4及び
図7、8に示されるように、軸方向において隣接する内周側凹部321同士の間に隔壁323(抜止部)が形成され、軸方向において隣接する外周側凹部341同士の間に隔壁344(抜止部)が形成されているため、外周側鉄心32および内周側鉄心34に対する絶縁部材33の抜け止めを行うことができる。よって、上述のように、第1の凹凸係合部321、338および第2の凹凸係合部339、341は、各凹凸の係合で回り止めと抜け止めの機能を併せ持つことができる。
【0044】
ここで、回転子3の回転時に、キー(回転体を軸に締結する機械要素)として機能する凹凸係合部が受けるせん断応力について考える。大きさがT[N・m]のトルクを伝達する軸において、凹凸係合部(キー)が配置される位置が中心軸Oから半径r[m]の位置とすると、凹凸係合部の形状が一様であると仮定したときに凹凸係合部に働くせん断応力τ[Pa]は、τ=α×T/r(α:比例定数)で表すことができる。また、外周側鉄心32と絶縁部材33との間に設けられた第1の凹凸係合部の径方向位置(すなわち外周側鉄心32の内径)r1と、絶縁部材33と内周側鉄心34との間に設けられた第2の凹凸係合部の径方向位置(すなわち内周側鉄心34の外径)r2とを比較すると、常にr1>r2が成り立つ。さらに、外周側鉄心32と絶縁部材33の間で伝達されるトルクと、絶縁部材33と内周側鉄心34の間で伝達されるトルクは等しいと見做すことができる。そのため、外径側の部材間(外周側鉄心32と絶縁部材33との間の第1の凹凸係合部)に働くせん断応力τ1よりも、内径側の部材間(内周側鉄心34と絶縁部材33の間の第2の凹凸係合部)に働くせん断応力τ2の方が、常に大きくなる(すなわち常にτ1<τ2が成り立つ)。そこで、円周方向における第2の凹凸係合部339、341の個数を、円周方向における第1の凹凸係合部321、338の個数よりも多くすることで、内径側の部材間に設けられた個々の第1の凹凸係合部321、338に働くせん断応力を小さくし、絶縁部材33の回り止めをさらに強固にすることができる。
【0045】
シャフト35は、内周側鉄心34が備える貫通穴343に通され、圧入やカシメなどによって内周側鉄心34に固着されている。
【0046】
空気調和機に搭載される送風ファンを回転駆動するために用いられる永久磁石電動機1は、PWM方式のインバータで駆動されるため、巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧に起因して、永久磁石電動機1の内部の浮遊容量によって、第1軸受41や第2軸受42の外輪と内輪の間に電位差(軸電圧)が発生する。この軸電圧が軸受内部油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受内部に電食を発生させる。
【0047】
上記の回転子3において、絶縁部材33は、
図4乃至
図10に示すように、円筒形状に形成され、回転子3の静電容量を低減させるために、軸方向の一端に第1軸方向穴331が形成され、軸方向の他端に同様に回転子3の静電容量を低減させるための第2軸方向穴332が形成されている。これらの第1軸方向穴331および第2軸方向穴332は、円周方向に等間隔に複数(例えば10個)形成されている。複数の第1軸方向穴331のそれぞれの間、および、複数の第2軸方向穴332のそれぞれの間には、隔壁334が一様に形成され、円周方向に隣接する第1軸方向穴331同士、および、円周方向に隣接する第2軸方向穴332同士を区切っている。ここで、回転子3の平面図および底面図は同一である。隔壁334は、絶縁部材33(連結部)の機械的強度を高めており、回転子3が回転する際、内周側鉄心34と外周側鉄心32間で回転運動の動力を十分に伝達させることができる。
【0048】
さらに、
図7に示すように、第1軸方向穴331と第2軸方向穴332は、軸方向で互いに対向しており、絶縁部材33の軸方向の中央(軸方向に対向する第1軸方向穴331と第2軸方向穴332の間)には、互いの穴の深さが同じになるように区切る壁部333が設けられている。壁部333は、絶縁部材33(連結部)の機械的強度を高めており、回転子3が回転する際、内周側鉄心34と外周側鉄心32間で回転運動の動力を十分に伝達させることができる。また、この壁部333が設けられることで、壁部333の一端側には第1軸方向穴331の底部335cが形成され、壁部333の他端側には第2軸方向穴332の底部335cが形成されている。そして、第1軸方向穴331と第2軸方向穴332のそれぞれの底部335cから軸方向に沿って側壁335aおよび側壁335bが形成されている。
【0049】
このように、第1軸方向穴331と第2軸方向穴332は、壁部333が形成されることによって、両端面から軸方向に沿う方向に深さを有する構造になっている。また、第1軸方向穴331と第2軸方向穴332は、
図6乃至
図9に示すように、軸方向から見た端面形状が円周方向に沿う円弧状に形成されているとともに、それぞれが等間隔に複数(例えば円周方向に10個)形成されている。
【0050】
ここで、例えば、半径が小さく軸方向に厚い回転子3に対して第1軸方向穴331と第2軸方向穴332を形成するときは、回転子3の半径が小さいので、第1軸方向穴331と第2軸方向穴332の半径方向の長さ(幅)Rも小さく制限される。
【0051】
また、本実施形態における絶縁部材33は、PBTやPETなどの誘電体の樹脂を外周側鉄心32および内周側鉄心34とともに一体成型することで形成されるため、第1軸方向穴331と第2軸方向穴332の成型時の金型の抜き勾配を考慮すると、第1軸方向穴331および第2軸方向穴332の半径方向の長さ(幅)Rを大きくすることができない。
【0052】
このような回転子3の静電容量を低減させるためには、例えば、第1軸方向穴331と第2軸方向穴332の深さを深くすることが考えられる。しかしながら、第1軸方向穴331と第2軸方向穴332の深さを深くしすぎると、第1軸方向穴331と第2軸方向穴332を区切る壁部333の厚さが薄くなり、絶縁部材33の機械的強度が低下することから、機械的強度を確保するためには適当な厚さの壁部333が必要となる。ここでは機械的強度を高めるため、外周側鉄心32の隔壁323(抜止部)の軸方向厚さ、および、内周側鉄心34の隔壁344(抜止部)の軸方向厚さを、壁部333の(軸方向)厚さに概ね等しくしている。
【0053】
また、本実施形態では、上述したように、第1軸方向穴331と第2軸方向穴332は、
図6乃至
図9に示すように、軸方向から見た際の端面形状を円周方向に沿う円弧状に形成している。すなわち、第1軸方向穴331および第2軸方向穴332の半径方向の長さ(幅)Rを円周方向で一定にすることで、穴の大きさを限られた空間内で大きくし、かつ、回転子3の静電容量を低減させることができる。
【0054】
上述のように、第1軸方向穴331および第2軸方向穴332の大きさや形状は、回転子3の静電容量の低減と機械的強度の確保の両方を考慮して決定される。
【0055】
ところで、一般的に、樹脂の線膨張係数は、金属の線膨張係数に比較して10倍以上大きい。そのため、樹脂製の絶縁部材33は、温度上昇時の膨張量や温度降下時の収縮量が、金属製の外周側鉄心32および内周側鉄心34に比較して大きくなる。
【0056】
そして、絶縁部材33は、
図6乃至
図8に示すように、側壁335a、335bが、半径方向に薄く、軸方向に厚い。そのため、絶縁部材33における側壁335a、335bの膨張量や収縮量は、半径方向に比較して軸方向の方が大きくなる。
【0057】
また、絶縁部材33の壁部333および隔壁334の膨張量や収縮量は、半径方向の成分と軸方向の成分に分けられるが、半径方向への膨張や収縮は外周側鉄心32および内周側鉄心34によって規制されるので、半径方向の膨張量や収縮量に比べて軸方向の膨張量や収縮量の方が大きくなりやすい。
【0058】
ここで、
図7および
図8に示される、外周側鉄心32と内周側鉄心34とに挟まれた絶縁部材33は、膨張や収縮による軸方向での変位(位置の変化)が、膨張や収縮する前に軸方向のどの位置にあったかによって変動する。すなわち、絶縁部材33は、軸方向の中央部分を境として両軸方向に向かってそれぞれ膨張または収縮するため、絶縁部材33において軸方向の中央部分から遠い箇所程、変位が大きくなる。例えば、軸方向の中央部分(壁部333付近)は、膨張前後での軸方向の変位は殆どない。一方、軸方向の端部(端部335d付近)は、膨張前後で軸方向の変位が大きい。なお、絶縁部材33は、径方向の幅が小さい上に、径方向への膨張及び収縮が規制されているため、膨張及び収縮による径方向での変位は、軸方向の位置に依らず殆ど変わらない。
【0059】
また、絶縁部材33において半径方向への膨張や収縮が外周側鉄心32および内周側鉄心34によって規制される箇所は、熱応力が集中しやすい。そのため、本実施形態においては、絶縁部材33の壁部333および隔壁334に熱応力が集中してしまう。
【0060】
このように、絶縁部材33の側壁335a、335b、壁部333、隔壁334の温度上昇による膨張を考えたときに、半径方向への膨張に比べて軸方向への膨張量が大きくなりやすい上に、膨張が規制された箇所や変位量が大きい箇所に特に熱応力が集中する。
【0061】
そして、この絶縁部材33の膨張の影響により、
図7に示される壁部333と側壁335aおよび335bとが交わる部分に熱応力が集中するが、第1軸方向穴331および第2軸方向穴332(第1の凹部)が設けられていることにより、この第1の凹部側に力を逃がすことができ、熱応力を緩和できる。
加えて、絶縁部材33の膨張の影響により、側壁335aおよび335bの軸方向の端部に熱応力が集中するが、上述の第1の凹部が設けられていることにより、この第1の凹部側に力を逃がすことができ、熱応力を緩和できる。
【0062】
一方、
図8に示される隔壁334は、径方向への膨張を外周側鉄心32と内周側鉄心34とに規制されるとともに、軸方向の端部335d付近の膨張による変位量が特に大きくなる。そのため、絶縁部材33の膨張の影響により、特に、外周側鉄心32および内周側鉄心34の内側および外側の縁部に被さっている絶縁部材33の軸方向の端部335d付近が割れやすい。
【0063】
そこで、絶縁部材33は、上述した熱割れを防止するために、
図6および
図8に示すように、環状に配置されている第1軸方向穴331同士の間および第2軸方向穴332同士の間となる位置において、軸方向の一端に第3軸方向穴336が形成され、軸方向の他端に同様に第4軸方向穴337が形成されるようにした。これらの第3軸方向穴336および第4軸方向穴337(第2の凹部336,337)は、第1軸方向穴331および第2軸方向穴332(第1の凹部331、332)と同一円周上に形成されるとともに、円環状に配置されている。
また、第3軸方向穴336および第4軸方向穴337(第2の凹部)は、第1軸方向穴331および第2軸方向穴332と同様に、円周方向に等間隔に複数(例えば10個)形成されている。さらに、各々の第3軸方向穴336および第4軸方向穴337は、上述した隔壁334と軸方向に重なるように配置されている。また、第3軸方向穴336と第4軸方向穴337は、
図6乃至
図9に示すように、軸方向から見た際の端面形状を円周方向に沿う円弧状に形成されている。また、第3軸方向穴336や第4軸方向穴337が、第1軸方向穴331や第2軸方向穴332と連続することで、絶縁部材33の軸方向の両端面には環状の凹溝部が形成されている。すなわち、第1軸方向穴331および第2軸方向穴332を第1の凹部とし、第3軸方向穴336および第4軸方向穴337を第2の凹部としたとき、絶縁部材(連結部)33の軸方向の両端面に、環状に形成された環状の凹溝部(331、336、および、332、337)が設けられる。この環状の凹溝部は、両端面における径方向の長さ(幅)Rを円周方向で一定にすることで、円周方向で均一に力を分散することができる。
【0064】
なお、特に、第2の凹部(第3軸方向穴336、第4軸方向穴337)の底部(隔壁334の軸方向端部の位置)が、回転子鉄心(外周側鉄心32および内周側鉄心34)の軸方向の端面よりも軸方向中央部側となるように形成されるとき、絶縁部材33における熱応力の集中が抑制されることが確認されている。これを踏まえ、本実施形態においては、第3軸方向穴336および第4軸方向穴337の深さは、絶縁部材33の軸方向の端面から5.5mmの深さとなるよう形成されている。一方、第1軸方向穴331および第2軸方向穴332の深さは、絶縁部材33の軸方向の端面から16.5mmの深さとなるように形成されている。
【0065】
ここで、
図14および表1に示されるように、第1軸方向穴331および第2軸方向穴332の深さ(第1の凹部の深さ)をM[mm]、第3軸方向穴336および第4軸方向穴337の深さ(第2の凹部の深さ)をS[mm]、外周側鉄心32および内周側鉄心34の軸方向長さ(コア積厚)をL[mm]、壁部333の軸方向の厚さ(中央壁厚さ)をC[mm]とする。
このとき、第2の凹部(336、337)の底部が、回転子鉄心(32、34)の軸方向の端面よりも軸方向中央部側となる条件は、
図14からも分かるように、
2M+C-2S<L
となることである。回転子3は、この条件式を満たすように設計されることが望ましい。すなわち、この条件式を満たすことで、より確実に絶縁部材33の熱割れを防止することができる。なお、2M+Cは絶縁部材33の軸方向長さに一致する。
【0066】
【0067】
よって、第2の凹部である第3軸方向穴336および第4軸方向穴337の形成によって、絶縁部材33の軸方向の長さが大きい領域を減らして絶縁部材33の総体積を減少させることができ、絶縁部材33の軸方向への膨張量や収縮量を小さくすることができる。また、第2の凹部336、337が設けられていることにより、軸方向の端部335d付近にかかる力を第2の凹部側に逃がすことができ、熱応力の緩和を行い、熱応力の集中を抑制することができる。このため、絶縁部材33の熱応力の集中による耐久性の低下を抑制することができ、熱割れやクラックの発生を抑制して長寿命化することができる。
【0068】
すなわち、
図5乃至
図8に示されるように、これら複数の第3軸方向穴336(第2の凹部)は、環状に配置されている複数の第1軸方向穴331(第1の凹部)同士の間に配置されるとともに、円周方向に隣り合う第1軸方向穴331同士を繋ぐように形成されている。同様に、複数の第4軸方向穴337(第2の凹部)は、環状に配置されている複数の第2軸方向穴332(第1の凹部)同士の間に配置されるとともに、円周方向に隣り合う第2軸方向穴332同士を繋ぐように形成されている。これにより、熱応力の集中を抑制することができる。
【0069】
また、第3軸方向穴336および第4軸方向穴337の深さは、第1軸方向穴331および第2軸方向穴332の深さより小さく(浅く)形成されている。これにより、円周方向に隣り合う第1軸方向穴331同士の間、および円周方向に隣り合う第2軸方向穴332同士の間に、第2軸方向穴332同士を区画する隔壁334を形成することができ、絶縁部材33(連結部)の強度を高めることができる。
【0070】
また、第1軸方向穴331および第2軸方向穴332を第1の凹部とし、第3軸方向穴336および第4軸方向穴337を第2の凹部としたとき、絶縁部材(連結部)33の軸方向の両端面に、環状に形成された環状の凹溝部(331、336、および、332、337)が設けられる。これにより、絶縁部材33の軸方向の端部において、側壁335a,335bが径方向の環状の凹溝部側に膨張できるようになるので、熱応力の影響を更に緩和し、絶縁部材33の熱割れを防止できる。
【0071】
上記説明では、永久磁石電動機1の使用環境や駆動状態で固定子2の巻線23での発熱によって絶縁部材33が熱膨張する場合について説明した。それだけでなく、永久磁石電動機1の使用環境や駆動状態によって温度降下する際の熱収縮時にも第1軸方向穴331および第2軸方向穴332の底部周辺や、絶縁部材33の端部周辺における熱応力の集中を緩和することができる。
本実施形態では、熱応力を抑制するために、絶縁部材33に、第1の凹部331、332と、第2の凹部336、337を設け、絶縁部材33の軸方向への厚み(および樹脂の体積)を小さくし、熱膨張時と熱収縮時の応力を下げ、絶縁部材33の熱割れを防止することができる。
【0072】
したがって、シャフト35を支持する第1軸受41および第2軸受42の電食を防止するために回転子3に絶縁部材33を配置し、絶縁部材33に第1軸方向穴331および第2軸方向穴332と、第3軸方向穴336および第4軸方向穴337とを形成した場合に、直径の小さな回転子3を製作する際に問題となる絶縁部材33に発生する熱応力の集中を緩和させることができる。
その結果、外周側鉄心32と内周側鉄心34との間の連結強度を保持しながら、この間のインピーダンスを高め、回転子3の静電容量を低減する小型の回転子3を製作することができる。また、回転子3を備える永久磁石電動機1も小型化することができる。
【0073】
ここで、第1軸方向穴331および第2軸方向穴332の少なくとも一方、または、第3軸方向穴336および第4軸方向穴337の少なくとも一方に、静電容量や耐久性を調整するための部材(樹脂、金属など)が取り付けられてもよい。
【0074】
また、上記各実施形態では、第1軸方向穴331および第2軸方向穴332と、第3軸方向穴336および第4軸方向穴337の、軸方向から見た際の端面形状が、円周方向に沿う円弧状に形成される場合を説明したが、各軸方向穴の形状はこれに限られない。また、第1軸方向穴331および第2軸方向穴332と、第3軸方向穴336および第4軸方向穴337のそれぞれの個数は、10個に限定されるものではなく、任意の個数とすることができる。
【0075】
また、上記各実施形態では、第1軸方向穴331および第2軸方向穴332を壁部333に対して対称形状に形成しているが、これに限定されるものではなく、第1軸方向穴331と第2軸方向穴332が壁部333に対して非対称形状(例えば軸方向から見てC型)に形成されてもよい。同様に、第3軸方向穴336および第4軸方向穴337が壁部333に対して非対称形状(例えば軸方向から見てC型)に形成されてもよい。
【0076】
さらに、上記各実施形態では、外周側鉄心32の外周面に永久磁石31を配置した表面磁石型の回転子3に本発明を適用した場合について説明したが、これに限定されるものではなく、外周側鉄心32の外周面に対する弦位置に軸方向に延長するスロットを形成し、このスロット内に永久磁石を配置した埋込磁石型の回転子にも本発明を適用することができる。
【符号の説明】
【0077】
1…永久磁石電動機
2…固定子
10…室外機
101…ベース
102…底板
103…上板
104…側板
21…固定子鉄心
22…インシュレータ
23…巻線
3…回転子
31…永久磁石
311…永久磁石片
32…外周側鉄心
321…内周側凹部(第1の凹凸係合部)
323…隔壁(抜止部)
33…絶縁部材(連結部)
33a…一端面
33b…他端面
331…第1軸方向穴(第1の凹部)
332…第2軸方向穴(第1の凹部)
333…壁部
334…隔壁
335a,335b…側壁
335c…底部
335d…端部
336…第3軸方向穴(第2の凹部)
337…第4軸方向穴(第2の凹部)
338…外周側凸部(第1の凹凸係合部)
339…内周側凸部(第2の凹凸係合部)
34…内周側鉄心
341…外周側凹部(第2の凹凸係合部)
343…貫通穴
344…隔壁(抜止部)
35…シャフト
41…第1軸受
42…第2軸受
51…第1ブラケット
511…第1軸受収容部
512…フランジ部
52…第2ブラケット
521…ブラケット本体部
522…第2軸受収容部
523…放熱フィン
6…モータ外郭
71…伝熱部材
72…回路基板
O…中心軸