IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電産株式会社の特許一覧

<>
  • 特許-位置推定装置及び位置推定方法 図1
  • 特許-位置推定装置及び位置推定方法 図2
  • 特許-位置推定装置及び位置推定方法 図3
  • 特許-位置推定装置及び位置推定方法 図4
  • 特許-位置推定装置及び位置推定方法 図5
  • 特許-位置推定装置及び位置推定方法 図6
  • 特許-位置推定装置及び位置推定方法 図7
  • 特許-位置推定装置及び位置推定方法 図8
  • 特許-位置推定装置及び位置推定方法 図9
  • 特許-位置推定装置及び位置推定方法 図10
  • 特許-位置推定装置及び位置推定方法 図11
  • 特許-位置推定装置及び位置推定方法 図12
  • 特許-位置推定装置及び位置推定方法 図13
  • 特許-位置推定装置及び位置推定方法 図14
  • 特許-位置推定装置及び位置推定方法 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-15
(45)【発行日】2023-08-23
(54)【発明の名称】位置推定装置及び位置推定方法
(51)【国際特許分類】
   H02P 6/16 20160101AFI20230816BHJP
【FI】
H02P6/16
【請求項の数】 6
(21)【出願番号】P 2020553823
(86)(22)【出願日】2019-10-24
(86)【国際出願番号】 JP2019041597
(87)【国際公開番号】W WO2020090595
(87)【国際公開日】2020-05-07
【審査請求日】2022-09-27
(31)【優先権主張番号】P 2018203232
(32)【優先日】2018-10-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000232302
【氏名又は名称】ニデック株式会社
(72)【発明者】
【氏名】石上 翔太
(72)【発明者】
【氏名】藤田 淳
(72)【発明者】
【氏名】▲徳▼永 智久
【審査官】保田 亨介
(56)【参考文献】
【文献】国際公開第2016/104378(WO,A1)
【文献】特開2017-143612(JP,A)
【文献】特開2015-211593(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P6/00-6/34
(57)【特許請求の範囲】
【請求項1】
回転子角が1回転未満の範囲において回転子の3箇所以上の磁界強度の検出値を取得し、前記回転子の極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択し、選択された前記セクションに応じた前記磁界強度の検出値の組み合わせに基づいて前記磁界強度の波形の複数の特徴量を算出する特徴量算出部と、
予め学習された前記複数の特徴量の大小関係と算出された前記複数の特徴量の大小関係とが一致するか否かを、選択された前記セクションに対応付けられたセグメントごとに判定し、前記大小関係が一致する前記セグメントに対応付けられた前記極対番号を前記回転子の回転位置と推定する推定部と
を備える位置推定装置。
【請求項2】
前記複数の特徴量は、前記磁界強度の波形の各交点の推定値である、請求項1に記載の位置推定装置。
【請求項3】
前記磁界強度の波形を補正する補正部を更に備え、
前記特徴量算出部は、補正された前記磁界強度の波形の前記複数の特徴量を算出する、
請求項1又は請求項2に記載の位置推定装置。
【請求項4】
前記推定部は、予め学習された前記複数の特徴量と算出された前記複数の特徴量との差が最小となる前記セグメントに対応付けられた前記極対番号を、前記回転子の回転位置と推定する、請求項1から請求項3のいずれか一項に記載の位置推定装置。
【請求項5】
前記特徴量算出部は、前記磁界強度の検出値に倍率を乗算することによって、前記複数の特徴量を算出する、請求項1から請求項4のいずれか一項に記載の位置推定装置。
【請求項6】
位置推定装置が実行する位置推定方法であって、
回転子角が1回転未満の範囲において回転子の3箇所以上の磁界強度の検出値を取得し、前記回転子の極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択し、選択された前記セクションに応じた前記磁界強度の検出値の組み合わせに基づいて前記磁界強度の波形の複数の特徴量を算出するステップと、
予め学習された前記複数の特徴量の大小関係と算出された前記複数の特徴量の大小関係とが一致するか否かを、選択された前記セクションに対応付けられたセグメントごとに判定し、前記大小関係が一致する前記セグメントに対応付けられた前記極対番号を前記回転子の回転位置と推定するステップと
を含む位置推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、位置推定装置及び位置推定方法に関する。
【背景技術】
【0002】
従来、光学エンコーダ等の位置センサを用いて、モータの回転子の回転位置を推定する方法が知られているが、モータの小型化及び低コスト化のため、位置センサを用いることなくモータの回転子の回転位置を推定する方法が求められている。特許文献1には、位置センサを用いることなくモータの回転子の回転位置を推定する方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】日本国特許公報:特許第6233532号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、位置センサを用いずに回転子の回転位置を推定する場合、回転子角が1回転未満の範囲では回転子の回転位置を推定することができない場合があった。
【0005】
上記事情に鑑み、本発明は、回転子角が1回転未満である場合でも回転子の回転位置を推定することが可能である位置推定装置及び位置推定方法を提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明の一態様は、回転子角が1回転未満の範囲において回転子の3箇所以上の磁界強度の検出値を取得し、前記回転子の極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択し、選択された前記セクションに応じた前記磁界強度の検出値の組み合わせに基づいて前記磁界強度の波形の複数の特徴量を算出する特徴量算出部と、予め学習された前記複数の特徴量の大小関係と算出された前記複数の特徴量の大小関係とが一致するか否かを、選択された前記セクションに対応付けられたセグメントごとに判定し、前記大小関係が一致する前記セグメントに対応付けられた前記極対番号を前記回転子の回転位置と推定する推定部とを備える位置推定装置である。
【0007】
本発明の一態様は、位置推定装置が実行する位置推定方法であって、回転子角が1回転未満の範囲において回転子の3箇所以上の磁界強度の検出値を取得し、前記回転子の極対番号に予め定められた複数のセクションのうちから、前記磁界強度の検出値に基づいて前記セクションを選択し、選択された前記セクションに応じた前記磁界強度の検出値の組み合わせに基づいて前記磁界強度の波形の複数の特徴量を算出するステップと、予め学習された前記複数の特徴量の大小関係と算出された前記複数の特徴量の大小関係とが一致するか否かを、選択された前記セクションに対応付けられたセグメントごとに判定し、前記大小関係が一致する前記セグメントに対応付けられた前記極対番号を前記回転子の回転位置と推定するステップとを含む位置推定方法である。
【発明の効果】
【0008】
本発明により、回転子角が1回転未満である場合でも回転子の回転位置を推定することが可能である。
【図面の簡単な説明】
【0009】
図1図1は、第1実施形態における、モータユニットの構成の例を示す図である。
図2図2は、第1実施形態における、極対番号とセクションとセグメントとの対応関係の例を示す図である。
図3図3は、第1実施形態における、磁界強度の波形の学習値の例を示す図である。
図4図4は、第1実施形態における、補正波形の学習値の例を示す図である。
図5図5は、第1実施形態における、補正波形の特徴点の例を示す図である。
図6図6は、第1実施形態における、交点の算出処理の例を示すフローチャートである。
図7図7は、第1実施形態における、大小比較処理の例を示すフローチャートである。
図8図8は、第1実施形態における、極対番号の算出処理の例を示すフローチャートである。
図9図9は、第2実施形態における、モータユニットの構成の例を示す図である。
図10図10は、第2実施形態における、波形の特徴点の検出値の例を示す図である。
図11図11は、第2実施形態における、波形の最大値及び最小値の学習値の例を示す図である。
図12図12は、第2実施形態における、波形の交点の学習値の例を示す図である。
図13図13は、第2実施形態における、検出値の取得処理の例を示すフローチャートである。
図14図14は、第2実施形態における、極対番号の算出処理の例を示すフローチャートである。
図15図15は、第3実施形態における、波形の特徴点の検出値の例を示す図である。
【発明を実施するための形態】
【0010】
本発明の実施形態について、図面を参照して詳細に説明する。
(第1実施形態)
図1は、モータユニット1の構成の例を示す図である。モータユニット1は、モータの回転子の回転位置を推定するシステムである。モータユニット1は、モータ2と、増幅装置3と、位置推定装置4と、制御装置5と、駆動装置6とを備える。
【0011】
モータ2は、電動機であり、例えば、ブラシレスモータ、ステッピングモータである。
モータ2は、インナーロータ型モータでもよいし、アウターロータ型モータでもよい。図1に示されたモータ2は、一例として、インナーロータ型モータである。モータ2は、固定子20と、回転子21と、検出装置22とを備える。
【0012】
固定子20は、U相、V相及びW相の複数スロットの巻線を備える。図1では、固定子20は、4スロットのU相の巻線と、4スロットのV相の巻線と、4スロットのW相の巻線との計12スロットの巻線を備える。固定子20には、120度ずつ位相がずれている三相電流が、駆動装置6から入力される。固定子20は、U相、V相及びW相の各巻線に入力される三相電流によって、回転子21及び検出装置22の位置に磁界を発生させる。
【0013】
回転子21は、固定子20の磁力を受けることによって中心軸回りに回転する。回転子21は、1個以上の磁極対(N極及びS極)を備える。図2では、回転子21は、一例として、4個の磁極対を備える。回転子21は、磁極対が磁力を固定子20から受けることによって回転する。磁極対には、極対番号が割り当てられている。極対番号には、セクションとセグメントとが対応付けられている。
【0014】
図2は、極対番号とセクションとセグメントとの対応関係の例を示す図である。極対番号には、セクション番号群が対応付けられている。セクション番号の個数は、検出装置22の3個のセンサ220の出力信号の大小関係と中間信号の正負(ゼロクロス)とを含めた12通りの論理の数に等しい。図2では、極対番号「0」には、「0」から「11」までのセクション番号が対応付けられている。セグメント番号は、回転子21の機械角の絶対値を表す固有番号である。例えば、極対番号「0」のセクション番号「0」から「11」までには、セグメント番号「0」から「11」までが対応付けられている。例えば、極対番号「1」のセクション番号「0」から「11」までには、セグメント番号「12」から「23」までが対応付けられている。図2に示された対応関係を表すデータテーブルは、例えば、記憶装置42に予め記憶される。
【0015】
検出装置22は、磁界強度を検出する装置である。検出装置22は、回転子21の近傍の3箇所以上の磁界強度を検出する。検出装置22は、3個以上の磁界センサを備える。
図1では、検出装置22は、センサ220-Uと、センサ220-Vと、センサ220-Wとを備える。磁界センサは、例えば、ホール素子、リニアホールIC(integrated circuit)、磁気抵抗センサである。本実施形態では、磁界センサがホール素子であるとして説明する。
【0016】
センサ220-Uは、U相の磁界強度を検出するセンサである。センサ220-Uは、U相の磁界強度を表す差動信号であるU相差動信号を、増幅装置3に出力する。センサ220-Vは、V相の磁界強度を検出するセンサである。センサ220-Vは、V相の磁界強度を表す差動信号であるV相差動信号を、増幅装置3に出力する。センサ220-Wは、W相の磁界強度を検出するセンサである。センサ220-Wは、W相の磁界強度を表す差動信号であるW相差動信号を、増幅装置3に出力する。
【0017】
増幅装置3は、差動信号の波形の振幅を増幅する装置である。増幅装置3は、差動増幅器30-Uと、差動増幅器30-Vと、差動増幅器30-Wとを備える。差動増幅器30-Uは、U相差動信号に対して増幅処理を実行することによって、アナログのU相信号Huを生成する。差動増幅器30-Vは、V相差動信号に対して増幅処理を実行することによって、アナログのV相信号Hvを生成する。差動増幅器30-Wは、W相差動信号に対して増幅処理を実行することによって、アナログのW相信号Hwを生成する。
【0018】
位置推定装置4は、モータの回転子の回転位置を推定する情報処理装置である。位置推定装置4は、アナログのU相信号HuとアナログのV相信号HvとアナログのW相信号Hwとを、増幅装置3から取得する。位置推定装置4は、U相信号HuとV相信号HvとW相信号Hwとの各波形の複数の特徴量を算出する。位置推定装置4は、算出された各波形の複数の特徴量に基づいて、モータ2の回転子21の回転位置を推定する。位置推定装置4は、回転位置の推定結果(極対番号)を、制御装置5に出力する。
【0019】
制御装置5は、制御信号を生成する情報処理装置である。制御装置5は、指示信号に基づいて制御信号を生成する。制御信号は、例えば、指示された回転方向(CW: clockwise、CCW: counterclockwise)に応じたレジスタ値を表す信号、駆動装置6から固定子20に出力される電流の電流値を表す信号である。制御信号は、例えば、モータ2の検出装置22の電源に供給される電流信号でもよい。制御装置5は、検出装置22の電源に供給される電流量を制御することによって、各センサ220の電源を制御可能である。
【0020】
駆動装置6は、モータの回転子を駆動する装置である。駆動装置6には、制御信号が制御装置5から入力される。駆動装置6は、制御信号によって表される電流値の三相電流を、固定子20の各巻線に入力する。駆動装置6は、固定子20の各巻線に三相電流を入力することによって、回転子21を回転させることができる。詳細は後述するが、第1実施形態では、固定子20の各巻線に駆動装置6が三相電流を入力しない状態で回転子21の位置推定が行われる。すなわち、第1実施形態では、位置推定装置4は停止中の回転子21の回転位置を推定する。なお、位置推定装置4は、回転中の回転子21の回転位置を推定してもよい。
【0021】
外部装置7は、回転子の回転方向及び回転速度等の指示信号を生成する情報処理装置である。外部装置7は、指示信号を制御装置5に出力する。
【0022】
次に、位置推定装置4の構成例の詳細を説明する。
位置推定装置4は、変換装置40と、演算装置41と、記憶装置42とを備える。変換装置40は、アナログ信号をデジタル信号に変換する装置である。変換装置40は、変換部400-Uと、変換部400-Vと、変換部400-Wとを備える。
【0023】
変換部400は、アナログ信号をデジタル信号に変換するデバイスである。変換部400-Uは、差動増幅器30-Uから取得されたアナログのU相信号を、デジタルのU相信号に変換する。変換部400-Vは、差動増幅器30-Vから取得されたアナログのU相信号を、デジタルのV相信号に変換する。変換部400-Wは、差動増幅器30-Wから取得されたアナログのW相信号を、デジタルのV相信号に変換する。
【0024】
演算装置41は、演算処理を実行する装置である。演算装置41の一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、メモリに展開されたプログラムを実行することにより実現される。演算装置41の一部又は全部は、例えば、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。
【0025】
演算装置41は、切替部410と、補正部411と、特徴量算出部412と、推定部413とを備える。なお、位置推定の精度を向上させる目的で補正部411が備えられているので、補正部411は必須の構成ではない。
【0026】
切替部410は、変換装置40に対して、特徴量算出部412及び補正部411のいずれか一方を接続する。補正されていない波形に基づいて推定部413が回転子21の回転位置を推定する場合、切替部410は、変換装置40から取得されたU相信号Hu、V相信号Hv及びW相信号Hwを、特徴量算出部412に出力する。
【0027】
補正された波形(以下「補正波形」という。)に基づいて推定部413が回転子21の回転位置を推定する場合、切替部410は、変換装置40から取得されたU相信号Hu、V相信号Hv及びW相信号Hwを、補正部411に出力する。補正部411は、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の波形を補正する。これによって、補正部411は、補正されていない波形に基づいて回転子21の回転位置を推定部413が推定する精度と比較して、回転子21の回転位置を推定部413が推定する精度を向上させることができる。
【0028】
特徴量算出部412は、回転子21の3箇所以上の磁界強度の検出値を取得する。補正されていない波形に基づいて推定部413が回転子21の回転位置を推定する場合、特徴量算出部412は、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の波形を、切替部410から取得する。補正波形に基づいて推定部413が回転子21の回転位置を推定する場合、特徴量算出部412は、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の補正波形を、補正部411から取得する。
【0029】
推定部413は、予め学習された複数の特徴量(各学習値)の大小関係と、算出された複数の特徴量(各推定値)の大小関係とが一致するか否かを、選択されたセクションに対応付けられたセグメントごとに判定する。推定部413は、回転位置の推定結果(極対番号)を、制御装置5に出力する。
【0030】
記憶装置42は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記録媒体(非一時的な記録媒体)が好ましい。記憶装置42は、RAM(Random Access Memory)などの揮発性の記録媒体を備えてもよい。記憶装置42は、プログラム、学習値等のデータテーブルを記憶する。
【0031】
次に、学習動作について説明する。
図3は、磁界強度の波形の学習値の例を示す図である。磁界強度の波形の学習値は、事前に生成される。波形の学習値の事前生成処理は、例えば、モータユニット1の出荷前に実施される。波形の学習値の事前生成処理は、例えば、回転子21に外部位置センサを接続した状態で回転子21を一定速度で回転させ、検出装置22から出力される波形を検出することにより行われる。
【0032】
図3に示された波形は、波形の学習値の事前生成処理において回転子21が回転している場合における、回転子21の回転子角に応じた磁界強度の補正波形である。各磁界強度の波形における特徴点(交点)の学習値とセクションとの対応関係を表すデータテーブルは、例えば記憶装置42に予め記憶される。
【0033】
図3には、U相信号Huの波形の学習値と、V相信号Hvの波形の学習値と、W相信号Hwの波形の学習値と、セクションとの対応関係が、各磁界強度の波形の学習値とセクションとの対応関係の例として示されている。正値である振幅のデジタル値は、一例として、N極の磁界強度のデジタル値を表す。負値である振幅のデジタル値は、一例として、S極の磁界強度のデジタル値を表す。
【0034】
図4は、補正波形の学習値の例を示す図である。磁界強度の補正波形の学習値は、推定部413が位置推定を実行する前に生成される。図4に示された補正波形は、補正波形の学習値の事前生成処理において回転子21が回転している場合における、回転子21の回転子角に応じた磁界強度の補正波形である。各磁界強度の補正波形における特徴点(交点)の学習値とセクションとの対応関係を表すデータテーブルは、例えば、記憶装置42に予め記憶される。図4では、各磁界強度の波形は補正(三角波)されている。回転子21の磁極が4極対であるため4通りの補正係数のうちから適切な補正係数が用いられることによって、各磁界強度の波形の最大値及び最小値の近傍は、波形の最大値及び最小値の近傍が平坦にならないように尖頭化される。
【0035】
図4には、U相信号Huの補正波形の学習値と、V相信号Hvの補正波形の学習値と、W相信号Hwの補正波形の学習値と、セクションとの対応関係が、各磁界強度の補正波形の学習値とセクションとの対応関係の例として示されている。正値である振幅のデジタル値は、一例として、N極の磁界強度のデジタル値を表す。負値である振幅のデジタル値は、一例として、S極の磁界強度のデジタル値を表す。
【0036】
補正波形に基づいて推定部413が回転子21の回転位置を推定する場合、補正部411は、各磁界強度の波形を補正波形(三角波)にする。すなわち、補正部411は、各磁界強度の波形の最大値及び最小値の近傍が平坦にならないように、回転子21の磁極が4極対であるため4通りの補正係数のうちから適切な補正係数を用いることによって、波形の最大値及び最小値の近傍を尖頭化させる。補正部411は、同じ振幅の各磁界強度の補正波形を生成する。これらの補正によって、補正波形の各特徴点の識別性が向上する。
【0037】
なお、補正部411は、例えば、日本国公開公報特開2018-029469号公報と、日本国公開公報特開2018-029470号公報と、日本国公開公報特開2018-029471号公報とのいずれかに記載された補正手順及び温度補償手順のうちの少なくとも一つを実行してもよい。
【0038】
次に、位置推定装置4の動作例を説明する。
図5は、補正波形の特徴点の例を示す図である。図5では、回転子21の回転が停止している状態で、検出装置22は通電されている。図5に示された符号「kT」は、補正波形における検出値が特徴量算出部412によってサンプリングされた時刻における、回転子21の回転子角(回転位置)を表す。特徴量算出部412には、V相信号Hvの補正波形のサンプル点100の検出値が入力される。特徴量算出部412には、W相信号Hwの補正波形のサンプル点110の検出値が入力される。特徴量算出部412は、U相信号Huの補正波形のサンプル点120の検出値が入力される。
【0039】
特徴量算出部412は、図2に示された極対番号に予め定められた複数のセクションのうちから、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の検出値に基づいてセクションを選択する。図5では、特徴量算出部412は、サンプル点100の検出値とサンプル点110の検出値とサンプル点120の検出値との大小関係と、サンプル点110の正負とに基づいて、セクション番号「8」を選択する。
【0040】
特徴量算出部412は、選択されたセクションに応じた磁界強度の検出値の組み合わせに基づいて、磁界強度の波形又は補正波形の複数の特徴量を算出する。複数の特徴量とは、例えば、磁界強度の波形又は補正波形の各交点の推定値である。
【0041】
特徴量算出部412は、検出値が1番目に大きいサンプル点と2番目に大きいサンプル点との組み合わせに基づいて、磁界強度の波形又は補正波形の特徴量を算出する。図5では、特徴量算出部412は、セクション番号「8」における補正波形の検出値の大小関係に基づいて、サンプル点100及びサンプル点110を組み合わせる。サンプル点100及びサンプル点110の組み合わせに基づいて、特徴量算出部412は、V相信号Hv及びW相信号Hwの特徴点210の推定値を算出する。特徴点210の推定値は、サンプル点100の検出値とサンプル点110の検出値との平均値である。
【0042】
特徴量算出部412は、検出値が2番目に大きいサンプル点と3番目に大きいサンプル点との組み合わせに基づいて、磁界強度の波形又は補正波形の特徴量を算出する。図5では、特徴量算出部412は、セクション番号「8」における補正波形の検出値の大小関係に基づいて、サンプル点110及びサンプル点120を組み合わせる。サンプル点110及びサンプル点120の組み合わせに基づいて、特徴量算出部412は、U相信号Hu及びW相信号Hwの特徴点200の推定値を算出する。特徴点200の推定値は、サンプル点110の検出値とサンプル点120の検出値との平均値である。
【0043】
図6は、交点の算出処理の例を示すフローチャートである。位置推定装置4は、図6図7及び図8の各フローチャートに示された動作を、例えば予め定められた周期で繰り返し実行する。特徴量算出部412は、波形が補正されたU相信号Hu[kT]、V相信号Hv[kT]及びW相信号Hw[kT]を、各磁界強度の検出値として、補正部411から取得する。特徴量算出部412は、波形が補正されていないU相信号Hu[kT]、V相信号Hv[kT]及びW相信号Hw[kT]を、切替部410から取得してもよい(ステップS101)。
【0044】
特徴量算出部412は、例えば図3に示されたデジタル値とセクションとの対応関係に基づいて、セクション番号を各磁界強度の検出値から算出する。例えば、特徴量算出部412は、図3に示されたセクション番号「8」を、図5に示されたサンプル点100、サンプル点110及びサンプル点120の検出値から算出する(ステップS102)。
【0045】
特徴量算出部412は、算出されたセクション番号「Section」に基づいて、仮のセグメント番号「Nseg」を、式(1)のように算出する。
Nseg=Np_tmp×Section …(1)
ここで、極対番号「Np_tmp」の初期値は0である。図1に示されたモータ2では、図2に示されているように、極対番号は0から3までの番号である(ステップS103)。
【0046】
特徴量算出部412は、特徴点200の推定値「Est_CP[Nseg]」の2倍値を、U相信号Hu[kT]及びW相信号Hw[kT]の波形の特徴量として、式(2)のように算出する。すなわち、特徴量算出部412は、図5に示すサンプル点120の検出値とサンプル点110の検出値とに基づいて、特徴点200の推定値の2倍値を、磁界強度の波形の特徴量として式(2)のように算出する(ステップS104)。
2×Est_CP[Nseg]=(Hw[kT]+Hu[kT])…(2)
【0047】
特徴量算出部412は、特徴点210の推定値「Est_CP[Nseg+1]」の2倍値を、V相信号Hv[kT]及びW相信号Hw[kT]の波形の特徴量として、式(3)のように算出する。すなわち、特徴量算出部412は、サンプル点120の検出値とサンプル点110の検出値とに基づいて、特徴点210の推定値の2倍値を、磁界強度の波形の特徴量として式(3)のように算出する。
2×Est_CP[Nseg+1]=(Hv[kT]+Hw[kT])…(3)
特徴量算出部412が2倍値を算出する理由は、桁落ちを防止するためである(ステップS105)。
【0048】
推定部413は、仮のセグメント番号「Nseg」の特徴点200の学習値の2倍値(=2×Stu_CP[Nseg])を取得する。推定部413は、仮のセグメント番号「Nseg+1」の特徴点210の学習値の2倍値(=2×Stu_CP[Nseg+1])を取得する(ステップS106)。
【0049】
図7は、大小比較処理の例を示すフローチャートである。位置推定装置4は、図6に示された交点の算出処理に続けて、大小比較処理を実行する。
【0050】
推定部413は、特徴点200の推定値の2倍値と特徴点210の推定値の2倍値との大小関係を判定する。すなわち、推定部413は、式(4)が成立するか否かを判定する。
2×Est_CP[Nseg]<2×Est_CP[Nseg+1]…(4)
【0051】
推定部413は、特徴点200の学習値の2倍値と特徴点210の学習値の2倍値との大小関係を判定する。すなわち、推定部413は、式(5)が成立するか否かを判定する。
2×Stu_CP[Nseg]<2×Stu_CP[Nseg+1]…(5)
【0052】
推定部413は、特徴点200の推定値の2倍値及び特徴点210の推定値の2倍値の大小関係と、特徴点200の学習値の2倍値及び特徴点210の学習値の2倍値の大小関係とが一致しているか否かを判定する。例えば、図2図4及び図5において、推定部413は、図4において特徴点200及び特徴点210に相当する第1交点及び第2交点の各学習値の大小関係と、図5における特徴点200及び特徴点210の各推定値の大小関係とが一致するか否かを、図2におけるセクション番号「8」に対応付けられたセグメント番号「8」、「20」「32」及び「44」について判定する(ステップS107)。
【0053】
大小関係が一致している場合(ステップS107:TRUE)、推定部413は、累積誤差の変数「TotalDiff[Np_tmp]」に、特徴点200の推定値の2倍値と特徴点200の学習値の2倍値との誤差を、式(6)のように加算する(ステップS108)。
TotalDiff[Np_tmp]
+=(2×Est_CP[Nseg]-2×Est_CP[Nseg])…(6)
【0054】
推定部413は、累積誤差の変数「TotalDiff[Np_tmp]」に、特徴点210の推定値の2倍値と特徴点210の学習値の2倍値との誤差を、式(7)のように加算する(ステップS109)。
TotalDiff[Np_tmp]
+=(2×Est_CP[Nseg+1]-2×Est_CP[Nseg+1])…(7)
【0055】
大小関係が一致していない場合(ステップS107:FALSE)、推定部413は、セグメントNsegごとの誤差の評価値であるエラーポイント「ErrorPoint[Np_tmp]」の値をインクリメントする(ステップS110)。
【0056】
図8は、極対番号の算出処理の例を示すフローチャートである。位置推定装置4は、図7に示された大小比較処理に続けて、極対番号の算出処理を実行する。
【0057】
推定部413は、大小比較処理の実行回数を表す変数の値をインクリメントする(ステップS111)。推定部413は、大小比較処理の実行回数を表す変数の値が設定回数以上であるか否かを判定する(ステップS112)。実行回数を表す変数の値が設定回数未満である場合(ステップS112:FALSE)、推定部413は、極対番号「Np_t
mp」の値をインクリメントする(ステップS113)。
【0058】
実行回数を表す変数の値が設定回数以上である場合(ステップS112:TRUE)、推定部413は、複数個のエラーポイントのうちで、最小のエラーポイント「Min(ErrorPoint[Np_tmp])」の個数を判定する(ステップS114)。最小のエラーポイントの個数が1個である場合(ステップS114:1個)、推定部413は、ステップS116に処理を進める。このように、推定部413は、大小関係が一致するセグメントに対応付けられた極対番号を、回転子21の回転位置と推定する。
【0059】
最小のエラーポイントの個数が複数個である場合(ステップS114:複数個)、推定部413は、累積誤差が最小の極対番号「Np_tmp」を取得する(ステップS115)。推定部413は、極対番号「Np_tmp」を、正しい極対番号を表す変数「Np」に代入する。推定部413は、正しい極対番号を表す変数「Np」を、回転位置の検出結果(機械角の絶対値)として制御装置5に出力する。このように、推定部413は、各学習値と各推定値との誤差を、セグメントごとに算出する。推定部413は、各学習値の絶対値と各推定値の絶対値との誤差を、セグメントごとに算出してもよい。推定部413は、各学習値と各推定値との誤差が最小であるセグメントの極対番号を、回転子21の回転位置と推定する(ステップS116)。
【0060】
以上のように、第1実施形態の位置推定装置4は、特徴量算出部412と、推定部413とを備える。特徴量算出部412は、回転子角が1回転未満の範囲において、回転子21の3箇所以上の磁界強度の検出値を取得する。特徴量算出部412は、回転子21の極対番号に予め定められた複数のセクションのうちから、磁界強度の検出値に基づいてセクションを選択する。特徴量算出部412は、選択されたセクションに応じた磁界強度の検出値の組み合わせに基づいて、磁界強度の波形の複数の特徴量を算出する。推定部413は、予め学習された複数の特徴量の大小関係と、算出された複数の特徴量の大小関係とが一致するか否かを、選択されたセクションに対応付けられたセグメントごとに判定する。推定部413は、大小関係が一致するセグメントに対応付けられた極対番号を、回転子21の回転位置と推定する。
【0061】
これによって、第1実施形態の位置推定装置4は、回転子角が0度である場合でも回転子21の回転位置を推定することが可能である。制御装置5は、モータ2又は制御装置5の電源投入時に回転子21の回転位置の原点を調整しなくてもよい。推定部413は、各学習値と各推定値との大小関係に基づいて回転子21の回転位置を推定するので、センサ220の出力が経年劣化及び環境温度等に応じて変化した場合でも回転子21の回転位置を推定することが可能である。
【0062】
(第2実施形態)
第2実施形態では、回転子角が「電気角の半周期」以下の範囲、例えば回転子角が「8分の1(機械角)」回転以下の範囲において、位置推定装置4が回転子21の回転位置を推定する点が、第1実施形態と相違する。第2実施形態では、第1実施形態との相違点を説明する。
【0063】
図9は、モータユニット1の構成の例を示す図である。第2実施形態では、駆動装置6は、回転子角が「8分の1(機械角)」回転以下の範囲において、回転子21を回転させる。切替部410は、変換装置40から取得されたU相信号Hu、V相信号Hv及びW相信号Hwを、特徴量算出部412に出力する。第2実施形態では、補正部411による磁界強度の波形の補正処理は実行されない。補正処理が施されていない波形に基づいてモータユニット1が位置推定を実行する場合、モータユニット1は、波形の各特徴点のパターンの識別性を向上させることが可能である。なお、補正部411は、波形に対するノイズリダクション処理等を実行してもよい。
【0064】
図10は、波形の特徴点の検出値の例を示す図である。特徴量算出部412は、回転子21の3箇所以上の磁界強度の検出値を、回転子21の回転子角に応じて切替部410から取得する。図10では、特徴量算出部412は、8分の1回転(機械角)の範囲における、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の波形を、切替部410から取得する。特徴量算出部412は、磁界強度の検出値に基づいて、磁界強度の波形の複数の特徴量を算出する。複数の特徴量とは、例えば、磁界強度の波形の各交点の検出値の絶対値と、磁界強度の波形の最大値又は最小値の検出値の絶対値とである。
【0065】
特徴量算出部412は、各磁界強度の波形の検出値のうちの少なくとも一つの正負が変化した場合、磁界強度の波形の最大値又は最小値の検出値の絶対値を算出する。例えば、セクション「0」の途中からセクション「1」までの間、U相信号HuとV相信号HvとW相信号Hwとのいずれの波形も、値が0である基準線50を通過(ゼロクロス)していない。この場合、V相信号Hvの波形における特徴点130の位置が定まらない場合があるので、特徴量算出部412は、特徴点130の検出値の絶対値を算出しなくてよい。
【0066】
例えば、セクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、複数の特徴量とは、第1交点である特徴点230の検出値の絶対値と、第2交点である特徴点240の検出値の絶対値と、第3交点である特徴点250の検出値の絶対値と、最大値である特徴点140の検出値の絶対値と、最小値である特徴点150の検出値の絶対値とである。
【0067】
例えば、セクション「2」の途中からセクション「7」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、複数の特徴量とは、第1交点である特徴点240の検出値の絶対値と、第2交点である特徴点250の検出値の絶対値と、第3交点である特徴点260の検出値の絶対値と、最大値である特徴点160の検出値の絶対値と、最小値である特徴点150の検出値の絶対値とである。
【0068】
特徴量算出部412は、磁界強度の検出値に倍率を乗算することによって、複数の特徴量を算出してもよい。これによって、特徴量算出部412は、検出値の演算処理における桁落ちの発生を防止することが可能である。
【0069】
推定部413は、予め学習された複数の特徴量(学習値)の大小関係のパターンと、算出された複数の特徴量(検出値)の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。推定部413は、大小関係のパターンが一致する極対番号を、回転子21の回転位置と推定する。推定部413は、各学習値と各検出値との大小関係に基づいて回転子21の回転位置を推定するので、センサ220の出力が経年劣化及び環境温度等に応じて変化した場合でも回転子21の回転位置を推定することが可能である。推定部413は、予め学習された複数の特徴量(学習値)と、算出された複数の特徴量(検出値)との差に基づいて、回転子21の回転位置を推定してもよい。例えば、推定部413は、学習値と検出値との差が最小となる極対番号を、回転子21の回転位置と推定してもよい。
【0070】
図11は、波形の最大値及び最小値の学習値の例を示す図である。図11では、波形の最大値の学習値と、波形の最小値の学習値と、極対番号とが、互いに対応付けられている。特徴点140(max)の検出値の絶対値の2倍値は、例えば「7660」である。特徴点150(min)の検出値の絶対値の2倍値は、例えば「7410」である。この場合、最大値及び最小値の大小関係のパターンは、特徴点140の検出値の絶対値が、特徴点150の検出値の絶対値よりも大きいというパターンである。
【0071】
推定部413は、最大値及び最小値の各学習値の絶対値の大小関係のパターンと、特徴点140及び特徴点150の検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。
【0072】
図11では、推定部413は、極対番号「0」に対応付けられた最大値及び最小値の大小関係のパターンと、特徴点140及び特徴点150の検出値の絶対値の大小関係のパターンとが一致していると判定する。極対番号「1」についても同様である。推定部413は、各検出値と各学習値との誤差を、大小関係の各パターンが一致している極対番号ごとに加算する。
【0073】
図11では、推定部413は、極対番号「2」に対応付けられた最大値及び最小値の大小関係のパターンと、特徴点140及び特徴点150の検出値の絶対値の大小関係のパターンとが一致していないと判定する。極対番号「3」についても同様である。推定部413は、大小関係の各パターンが一致していない極対番号のエラーポイントに値を加算する。
【0074】
なお、大小関係の各パターンが一致している極対番号のエラーポイントには推定部413が値を加算しないので、大小関係の各パターンが一致している極対番号のエラーポイントの値は、最小値「0」である。
【0075】
図12は、波形の交点の学習値の例を示す図である。図12では、波形の第1交点の学習値と、波形の第2交点の学習値と、波形の第3交点の学習値と、極対番号とが、互いに対応付けられている。特徴点230(第1交点)の検出値の絶対値の2倍値は、例えば「3888」である。特徴点240(第2交点)の検出値の絶対値の2倍値は、例えば「3779」である。特徴点250(第3交点)の検出値の絶対値の2倍値は、例えば「3881」である。この場合、各交点の大小関係のパターンは、特徴点230の検出値の絶対値の2倍値が、特徴点240の検出値の絶対値の2倍値よりも大きいというパターンである。特徴点230の検出値の絶対値の2倍値が、特徴点250の検出値の絶対値の2倍値よりも大きいというパターンである。特徴点240の検出値の絶対値の2倍値が、特徴点250の検出値の絶対値の2倍値よりも小さいというパターンである。
【0076】
推定部413は、3個の交点の各学習値の絶対値の大小関係のパターンと、特徴点230、特徴点240及び特徴点250の各検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。
【0077】
図12では、推定部413は、極対番号「0」に対応付けられた3個の交点の各学習値
の絶対値の大小関係のパターンと、特徴点140及び特徴点150の各検出値の絶対値の大小関係のパターンとが一致していると判定する。極対番号「1」についても同様である。推定部413は、各検出値と各学習値との誤差を、大小関係の各パターンが一致している極対番号ごとに加算する。
【0078】
図12では、推定部413は、極対番号「2」に対応付けられた3個の交点の各学習値の絶対値の大小関係のパターンと、特徴点140及び特徴点150の各検出値の絶対値の大小関係のパターンとが一致していないと判定する。極対番号「3」についても同様である。推定部413は、大小関係の各パターンが一致していない極対番号のエラーポイントに値を加算する。
【0079】
推定部413は、各検出値と各学習値との累積誤差を、極対番号ごとに取得する。推定部413は、最小の累積誤差の1個の極対番号を、正しい極対番号を表す1個の変数に代入する。推定部413は、各極対番号のうちから、最小のエラーポイントの極対番号を取得してもよい。推定部413は、最小のエラーポイントの1個の極対番号を、正しい極対番号を表す1個の変数に代入してもよい。
【0080】
次に、位置推定装置4の動作例を説明する。
図13は、検出値の取得処理の例を示すフローチャートである。位置推定装置4は、図13及び図14の各フローチャートに示された動作を、例えば予め定められた周期で繰り返し実行する。特徴量算出部412は、磁界強度の波形の第1交点から第3交点までの各学習値と、磁界強度の波形の最大値及び最小値の各学習値とが記憶装置42に記憶されているか否かを判定する。例えば、特徴量算出部412は、特徴点230、特徴点240及び特徴点250の各学習値と、特徴点140及び特徴点150の各学習値とが記憶装置42に記憶されているか否かを判定する(ステップS201)。
【0081】
各学習値が記憶装置42に記憶されていない場合(ステップS201:NO)、特徴量算出部412は、特徴点の学習値を算出する処理(学習処理)を実行する。特徴量算出部412は、算出された特徴点の学習値と極対番号とを、記憶装置42に記憶されているデータテーブルに記録する。特徴量算出部412は、算出された特徴点の学習値とセグメント番号とを、データテーブルに記録してもよい(ステップS202)。
【0082】
各学習値が記憶装置42に記憶されている場合(ステップS201:YES)、特徴量算出部412は、回転位置(機械角の絶対値)の推定が完了しているか否かを判定する(ステップS203)。回転位置の推定が完了している場合(ステップS203:NO)、位置推定装置4は、予め定められた通常処理を実行する(ステップS204)。
【0083】
特徴量算出部412は、磁界強度の波形の第1交点から第3交点までの各検出値を算出する処理を実行する。特徴量算出部412は、磁界強度の波形の最大値及び最小値の各検出値を算出する処理を実行する。特徴量算出部412は、各検出値の取得が完了したか否かを判定する(ステップS205)。
【0084】
各検出値の取得が完了していない場合(ステップS205:NO)、特徴量算出部412は、回転子21の回転方向が一定であるか否かを、磁界強度の波形に基づいて判定する(ステップS206)。回転子21の回転方向が一定でない場合(ステップS206:NO)、位置推定装置4は、図13に示された処理を終了する。
【0085】
回転子21の回転方向が一定である場合(ステップS206:YES)、位置推定装置4の電源投入後にU相信号HuとV相信号HvとW相信号Hwとのいずれか波形が基準線50(ゼロ・クロス)を通過したか否かを判定する。
【0086】
例えば、図10に示されたセクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、セクション「0」の途中からセクション「1」までの間、U相信号HuとV相信号HvとW相信号Hwとのいずれの波形も、基準線50を通過していない。すなわち、セクション「0」の途中からセクション「1」までの間、U相信号HuとV相信号HvとW相信号Hwとのいずれの波形でも、デジタル値の正負が変わっていない。デジタル値の正負が変わっていない場合、セクション「0」の途中からセクション「1」までの間のV相信号Hvの最小値を表す特徴点130の検出値は取得されなくてもよい。V相信号Hvの波形における特徴点130の位置が定まらないために、特徴量算出部412が特徴点130の検出値を正確に算出できない場合があるためである。
【0087】
例えば、図10に示されたセクション「2」の途中からセクション「7」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、同様の理由によって、セクション「2」の途中からセクション「7」までの間のU相信号Huの波形の最大値を表す特徴点140の検出値は取得されなくてもよい(ステップS207)。
【0088】
いずれの波形も基準線50を通過していない場合(ステップS207:NO)、位置推定装置4は、図13に示された処理を終了する。
【0089】
回転子21の回転に応じていずれか波形が基準線50を通過した場合(ステップS207:YES)、特徴量算出部412は、磁界強度の波形の第1交点から第3交点までの各検出値を算出する処理と、磁界強度の波形の最大値及び最小値の各検出値を算出する処理とを実行する。例えば、図10に示されたセクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、特徴量算出部412は、特徴点230、特徴点240及び特徴点250の各検出値を算出する処理と、特徴点140及び特徴点150の各検出値を算出する処理とを実行する(ステップS208)。
【0090】
図14は、極対番号の算出処理の例を示すフローチャートである。位置推定装置4は、図13に示された検出値の取得処理に続けて、極対番号の算出処理を実行する。
【0091】
図13に示されたステップS205において各検出値の取得が完了した場合(ステップS205:YES)、推定部413は、第1交点から第3交点までの各検出値の大小関係のパターンと、第1交点から第3交点までの各学習値の大小関係のパターンとを照合する。推定部413は、最大値及び最小値の各検出値の絶対値の大小関係のパターンと、最大値及び最小値の各学習値の絶対値の大小関係のパターンとを照合する。
【0092】
例えば、図10に示されたセクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、推定部413は、特徴点230、特徴点240及び特徴点250の各検出値の大小関係のパターンと、特徴点230、特徴点240及び特徴点250の各学習値の大小関係のパターンとを照合する。推定部413は、特徴点140及び特徴点150の各検出値の絶対値の大小関係のパターンと、特徴点140及び特徴点150の各学習値の絶対値の大小関係のパターンとを照合する(ステップS209)。
【0093】
推定部413は、大小関係の各パターンが一致しているか否かを判定する。すなわち、推定部413は、最大値の検出値の絶対値と最小値の検出値の絶対値との大小関係と、第1交点の検出値と第2交点の検出値との大小関係と、第1交点の検出値と第3交点の検出値との大小関係と、第2交点の検出値と第3交点の検出値との大小関係とがいずれも一致しているか否かを判定する。
【0094】
例えば、図10に示されたセクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて回転子21の回転位置を推定する場合、推定部413は、特徴点140の検出値の絶対値と特徴点150の検出値の絶対値との大小関係と、特徴点230の検出値と特徴点240の検出値との大小関係と、特徴点230の検出値と特徴点250の検出値との大小関係と、特徴点240の検出値と特徴点250の検出値との大小関係とがいずれも一致しているか否かを判定する。
【0095】
例えば、図10に示されたセクション「2」の途中からセクション「7」までの「8分の1回転(機械角)」の範囲に基づいて回転子21の回転位置を推定する場合、推定部413は、特徴点160の検出値の絶対値と特徴点150の検出値の絶対値との大小関係と、特徴点240の検出値と特徴点250の検出値との大小関係と、特徴点240の検出値と特徴点260の検出値との大小関係と、特徴点260の検出値と特徴点260の検出値との大小関係とがいずれも一致しているか否かを判定する(ステップS210)。
【0096】
大小関係の各パターンが一致している場合(ステップS210:YES)、推定部41
3は、各検出値と各学習値との誤差を、大小関係の各パターンが一致している極対番号ごとに加算する。これによって、推定部413は、各検出値と各学習値との累積誤差を、極対番号ごとに取得する(ステップS211)。大小関係の各パターンが不一致である場合(ステップS210:NO)、推定部413は、大小関係の各パターンが一致していない極対番号のエラーポイントに値を加算する(ステップS212)。
【0097】
推定部413は、各極対番号のうちから、最小のエラーポイントの極対番号を取得する。推定部413は、取得された1個以上の極対番号を、正しい極対番号を表す1個以上の変数に代入する(ステップS213)。推定部413は、最小のエラーポイントの極対番号の個数が複数個であるか否かを判定する(ステップS214)。最小のエラーポイントの極対番号の個数が1個である場合(ステップS214:NO)、推定部413は、ステップS216に処理を進める。最小のエラーポイントの極対番号の個数が複数個である場合(ステップS214:YES)、推定部413は、最小の累積誤差の1個の極対番号を、正しい極対番号を表す1個の変数に代入する(ステップS215)。推定部413は、正しい極対番号を表す1個の変数を、回転位置の検出結果(機械角の絶対値)として制御装置5に出力する(ステップS216)。
【0098】
以上のように、第2実施形態の位置推定装置4は、特徴量算出部412と、推定部413とを備える。特徴量算出部412は、回転子角が1回転未満の範囲において、回転子21の3箇所以上の磁界強度の検出値を、回転子角に応じて取得する。特徴量算出部412は、磁界強度の検出値に基づいて、磁界強度の波形の複数の特徴量を算出する。推定部413は、予め学習された複数の特徴量の大小関係のパターンと、算出された複数の特徴量の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。推定部413は、大小関係のパターンが一致する極対番号を、回転子21の回転位置と推定する。
【0099】
これによって、第2実施形態の位置推定装置4は、回転子角が「8分の1(機械角)」回転以下でも回転子21の回転位置を推定することが可能である。なお、2個の交点と最大値又は最小値の特徴点との計3個の特徴点の検出値に基づいて推定部413が回転子21の回転位置を推定する場合、推定部413は、5個に対して少ない3個の特徴量を特徴量算出部412が算出できるので、回転子角が「16分の1(機械角)」回転以下でも回転子21の回転位置を推定することが可能である。
【0100】
なお、第2実施形態の位置推定装置4は、第1実施形態に示された位置推定方法を実行した後で、位置推定結果の位置推定結果のパラメータ値を引き継いで、第2実施形態に示された位置推定方法を実行してもよい。第2実施形態の位置推定装置4は、第2実施形態に示された位置推定方法を実行した後で、位置推定結果の位置推定結果のパラメータ値を引き継いで、特許文献1に示された位置推定方法を実行してもよい。
【0101】
(第3実施形態)
第3実施形態では、より多くの特徴点に基づいて位置推定装置4が回転子21の回転位置を推定する点が、第2実施形態と相違する。第3実施形態では、第2実施形態との相違点を説明する。
【0102】
図15は、波形の特徴点の検出値の例を示す図である。特徴量算出部412は、回転子21の3箇所以上の磁界強度の検出値を、回転子21の回転子角に応じて切替部410から取得する。図15では、特徴量算出部412は、8分の1回転(機械角)の範囲における、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の波形を、切替部410から取得する。
【0103】
特徴量算出部412は、磁界強度の検出値に基づいて、磁界強度の波形の複数の特徴量を算出する。複数の特徴量とは、例えば、磁界強度の波形の各交点の検出値の絶対値と、磁界強度の波形の最大値又は最小値の検出値の絶対値と、磁界強度の波形が基準線50を通過した際の他の各波形の検出値の絶対値とである。
【0104】
特徴量算出部412は、U相信号HuとV相信号HvとW相信号Hwとのいずれの波形が基準線50を通過した際、他の各波形の検出値の絶対値を算出する。図15では、特徴量算出部412は、W相信号Hwの波形が基準線50を通過した際、U相信号Huの特徴点270の検出値の絶対値と、V相信号Hvの特徴点280の検出値の絶対値とを算出する。特徴量算出部412は、V相信号Hvの波形が基準線50を通過した際、U相信号Huの特徴点290の検出値の絶対値と、W相信号Hwの特徴点300の検出値の絶対値とを算出する。特徴量算出部412は、U相信号Huの波形が基準線50を通過した際、V相信号Hvの特徴点310の検出値の絶対値と、W相信号Hwの特徴点320の検出値の絶対値とを算出する。
【0105】
例えば、セクション「0」の途中からセクション「5」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、複数の特徴量とは、第1交点である特徴点230の検出値の絶対値と、第2交点である特徴点240の検出値の絶対値と、第3交点である特徴点250の検出値の絶対値と、最大値である特徴点140の検出値の絶対値と、最小値である特徴点150の検出値の絶対値と、特徴点270、特徴点280、特徴点290及び特徴点300の各検出値の絶対値とである。
【0106】
例えば、セクション「2」の途中からセクション「7」までの「8分の1回転(機械角)」の範囲に基づいて推定部413が回転子21の回転位置を推定する場合、複数の特徴量とは、第1交点である特徴点240の検出値の絶対値と、第2交点である特徴点250の検出値の絶対値と、第3交点である特徴点260の検出値の絶対値と、最大値である特徴点160の検出値の絶対値と、最小値である特徴点150の検出値の絶対値と、特徴点290、特徴点300、特徴点310及び特徴点320の各検出値の絶対値とである。
【0107】
推定部413は、最大値及び最小値の各学習値の絶対値の大小関係のパターンと、特徴点140及び特徴点150の検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。
【0108】
推定部413は、3個の交点の各学習値の絶対値の大小関係のパターンと、特徴点230、特徴点240及び特徴点250の各検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。
【0109】
推定部413は、基準線50及び各波形に応じた4個の特徴点の各学習値の絶対値の大小関係のパターンと、特徴点270、特徴点280、特徴点290及び特徴点300の各検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。
【0110】
推定部413は、各検出値と各学習値との累積誤差を、極対番号ごとに取得する。推定部413は、最小の累積誤差の1個の極対番号を、正しい極対番号を表す1個の変数に代入する。推定部413は、各極対番号のうちから、最小のエラーポイントの極対番号を取得してもよい。推定部413は、最小のエラーポイントの1個の極対番号を、正しい極対番号を表す1個の変数に代入してもよい。
【0111】
以上のように、第3実施形態の位置推定装置4は、推定部413を備える。推定部413は、基準線50及び各波形に応じた4個以上の特徴点の各学習値の絶対値の大小関係のパターンと、4個以上の特徴点の各検出値の絶対値の大小関係のパターンとが一致するか否かを、回転子21の極対番号ごとに判定する。推定部413は、大小関係のパターンが一致する極対番号を、回転子21の回転位置と推定する。
【0112】
これによって、第3実施形態の位置推定装置4は、回転子角が「8分の1(機械角)」回転以下でも、回転子21の回転位置を推定する精度を更に向上させることが可能である。
【0113】
なお、第3実施形態の位置推定装置4は、第1実施形態に示された位置推定方法を実行した後で、位置推定結果のパラメータ値を引き継いで、第3実施形態に示された位置推定方法を実行してもよい。第3実施形態の位置推定装置4は、第3実施形態に示された位置推定方法を実行した後で、位置推定結果のパラメータ値を引き継いで、特許文献1に示された位置推定方法を実行してもよい。
【0114】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【0115】
モータ2の設計において、センサ220-Uとセンサ220-Vとセンサ220-Wとの取り付け位置の精度は、意図的にばらつかせるように設計されてもよい。これによって、U相信号Hu、V相信号Hv及びW相信号Hwの各波形の振幅等が互いに異なる値となるので、波形の識別性は向上する。波形の識別性の向上によって、位置推定装置4は、量産されたモータ2の回転子21の回転位置を推定する精度を更に向上させることが可能である。
【0116】
なお、本発明における位置推定装置の機能を実現するためのプログラムを不図示のコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各処理の手順を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
【0117】
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【符号の説明】
【0118】
1…モータユニット、2…モータ、3…増幅装置、4…位置推定装置、5…制御装置、6…駆動装置、7…外部装置、20…固定子、21…回転子、22…検出装置、30…差動増幅器、40…変換装置、41…演算装置、42…記憶装置、50…基準線、100…サンプル点、110…サンプル点、120…サンプル点、130…特徴点、140…特徴点、150…特徴点、160…特徴点、200…特徴点、210…特徴点、220…センサ、230…特徴点、240…特徴点、250…特徴点、260…特徴点、270…特徴点、280…特徴点、290…特徴点、300…特徴点、310…特徴点、320…特徴点、400…変換部、410…切替部、411…補正部、412…特徴量算出部、413…推定部、500…特徴点
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15