IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人三重大学の特許一覧

特許7332150合成樹脂の切断加工方法及び切断加工装置
<>
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図1
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図2
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図3
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図4
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図5
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図6
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図7
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図8
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図9
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図10
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図11
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図12
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図13
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図14
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図15
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図16
  • 特許-合成樹脂の切断加工方法及び切断加工装置 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-15
(45)【発行日】2023-08-23
(54)【発明の名称】合成樹脂の切断加工方法及び切断加工装置
(51)【国際特許分類】
   B26D 7/08 20060101AFI20230816BHJP
   B26D 1/04 20060101ALI20230816BHJP
   B26D 3/00 20060101ALI20230816BHJP
   B26F 1/00 20060101ALI20230816BHJP
   B26F 1/44 20060101ALI20230816BHJP
【FI】
B26D7/08 A
B26D1/04 Z
B26D3/00 601A
B26F1/00 H
B26F1/44 J
【請求項の数】 13
(21)【出願番号】P 2019183302
(22)【出願日】2019-10-03
(65)【公開番号】P2020075349
(43)【公開日】2020-05-21
【審査請求日】2022-07-04
(31)【優先権主張番号】P 2018188581
(32)【優先日】2018-10-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】304026696
【氏名又は名称】国立大学法人三重大学
(74)【代理人】
【識別番号】110001966
【氏名又は名称】弁理士法人笠井中根国際特許事務所
(74)【代理人】
【識別番号】100103252
【弁理士】
【氏名又は名称】笠井 美孝
(74)【代理人】
【識別番号】100147717
【弁理士】
【氏名又は名称】中根 美枝
(72)【発明者】
【氏名】中西 栄徳
【審査官】石川 健一
(56)【参考文献】
【文献】特開2018-134858(JP,A)
【文献】特開平07-227799(JP,A)
【文献】特開2014-030889(JP,A)
【文献】特開2012-187687(JP,A)
【文献】特開2015-035580(JP,A)
【文献】特開2016-140964(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B26D 7/08
B26D 1/04
B26D 3/00
B26F 1/00
B26F 1/44
(57)【特許請求の範囲】
【請求項1】
合成樹脂からなる加工対象物を切断加工するに際して、
加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、
該加工対象物の耐力低下の程度に対応する該指標として、該超音波振動を与える超音波発振器の負荷信号を利用することを特徴とする合成樹脂の切断加工方法。
【請求項2】
前記超音波発振器の負荷信号に所定幅の目標レンジを設定し、該負荷信号が該目標レンジ内にとどまるように前記加工対象物に対する前記切刃の切断方向への相対的な送り量を変化させる制御を行う請求項に記載の合成樹脂の切断加工方法。
【請求項3】
合成樹脂からなる加工対象物を切断加工するに際して、
加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、
該加工対象物が熱硬化性樹脂であることを特徴とする合成樹脂の切断加工方法。
【請求項4】
合成樹脂からなる加工対象物を切断加工するに際して、
加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、
該加工対象物に対する切断加工の後に、該加工対象物から該加工工具を引き抜くに際して、該超音波振動を与える超音波発振器の出力を切断加工時よりも小さくすることを特徴とする合成樹脂の切断加工方法。
【請求項5】
前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開し、
切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引抜速度を大きくする請求項に記載の合成樹脂の切断加工方法。
【請求項6】
前記合成樹脂が繊維強化樹脂である請求項1~5の何れか一項に記載の合成樹脂の切断加工方法。
【請求項7】
前記加工対象物の補強繊維がカーボンファイバーである請求項に記載の合成樹脂の切断加工方法。
【請求項8】
前記加工工具が、先端周縁に前記切刃を備えた筒状の打抜工具であり、該打抜工具の軸方向と周方向との少なくとも一方向において、前記超音波振動を加える請求項1~の何れか一項に記載の合成樹脂の切断加工方法。
【請求項9】
前記加工工具が、送り方向の前方に前記切刃を備えた板状の切断工具であり、該切断工具の板面に沿った方向において、前記超音波振動を加える請求項1~の何れか一項に記載の合成樹脂の切断加工方法。
【請求項10】
合成樹脂からなる加工対象物の切断加工装置であって、
超音波振動を発生する超音波発振器と、
前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、
前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、
該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構と
を、有すると共に、
該加工対象物から該加工工具を引き抜くに際して、該超音波発振器の出力を切断加工時よりも低下させる引抜用制御部を備えていることを特徴とする合成樹脂の切断加工装置。
【請求項11】
合成樹脂からなる加工対象物の切断加工装置であって、
超音波振動を発生する超音波発振器と、
前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、
前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、
該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構と
を、有すると共に、
前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開する引抜用停止制御部と、
切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引き抜き速度を大きくする引抜用制御部と、
を備えていることを特徴とする合成樹脂の切断加工装置。
【請求項12】
合成樹脂からなる加工対象物の切断加工装置であって、
超音波振動を発生する超音波発振器と、
前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、
前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、
該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構と
を、有すると共に、
前記送り制御機構が、前記加工対象物の耐力低下の程度に対応する前記指標として、前記超音波振動を与える超音波発振器の負荷信号を利用することを特徴とする合成樹脂の切断加工装置。
【請求項13】
前記合成樹脂が繊維強化樹脂である請求項10~12の何れか一項に記載の合成樹脂の切断加工装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、合成樹脂の切断加工方法及び切断加工装置に係り、例えば、切断に伴う残渣の発生を抑えることのできる、繊維強化樹脂を含む各種合成樹脂の新規な切断加工方法及び切断加工装置に関するものである。
【背景技術】
【0002】
従来から、合成樹脂と繊維との複合材料である繊維強化樹脂が知られており、一般に金属材料よりも軽量で比強度の大きい部材を得ることが容易であること、合成樹脂と繊維の各材質の組み合わせによって多様な特性を付与することが容易である等の理由から、建築分野や車両、航空機、船舶、遊具、電気部品など各種分野での利用が検討されている。例えば、補強繊維としてガラス繊維を採用するGFRPや、アラミド繊維を採用するAFRP、ボロン繊維を採用するBFRP、カーボン繊維を採用するCFRPなどが挙げられる。
【0003】
ところで、繊維強化樹脂を各種分野の部品等に用いるに際しては、成形による一次加工の後に、目的とする形状や寸法を実現するために、外周カット加工や穴あけ加工、溝入れ加工、ダイシング加工などの二次加工を必要とする場合が多い。なお、本明細書では、溝入れ加工や有底穴の穿孔加工など、未切断部を残す加工を含めて「切断加工」と総称する。
【0004】
ところが、繊維強化樹脂では、合成樹脂からなる母材と繊維からなる補強材との機械的特性が相異なる等の理由から、機械的な二次加工が難しいという問題があり、そのために繊維強化樹脂の適用が制限される場合もあった。特に、母材として熱可塑性樹脂を採用する繊維強化樹脂に比して、母材として熱硬化性樹脂を採用する繊維強化樹脂では、一般に難削性のために二次加工がより困難であった。
【0005】
具体的には、繊維強化樹脂の機械的切断加工法として、例えば「バンドソー・ダイヤモンドディスク等による切断加工」、「エンドミル加工」、「ドリル加工」、「AWJ加工」の適用が実用段階にあり、「レーザー加工」、「EDMワイヤー加工」、「ブラスト加工」などの適用も検討されている。しかしながら、「レーザー加工」は設備が高価格になることに加えて被加工物への熱影響が避けられない問題がある。また、「AWJ加工」や「ブラスト加工」は設備費用の問題に加えて被加工物の加工面にテーパが生じやすく加工精度に問題がある。さらに「EDMワイヤー加工」は水中加工になることから加工設備や乾燥などの後工程に負担が避けられない等といった問題がある。また、「バンドソー・ダイヤモンドディスク等による切断加工」、「エンドミル加工」、「ドリル加工」は、設備費用を比較的安価に抑えることが可能であるものの、母材と補強材との間にデラミネーションが発生したり、ケバが発生することも多く、その制御が難しいことに加えて、切削加工による切り屑の粉塵化が避け難く作業者の健康被害などの環境問題に至るおそれもあった。
【0006】
なお、特開2016-140964号公報(特許文献1)には、繊維強化樹脂の二次加工方法として、単に母材の熱変形温度付近まで昇温させた状態で打ち抜き加工する方法が開示されている。しかし、かかる特許文献1に記載の発明は、そもそも熱可塑性樹脂を前提とした加工技術に過ぎず、たとえ熱可塑性樹脂であっても、単に昇温状態下で打ち抜き加工するだけでは、母材と補強材との間にデラミネーションが発生したり、ケバが発生することが多く、温度や打ち抜き速度などの設定が難しいために、実際の現場での採用には未だ障害があった。
【0007】
ところで、加工対象物が繊維強化されていない合成樹脂であっても、本発明が有意に適用され得る。即ち、繊維強化されていない合成樹脂の切断加工にも、上述の各種の加工方法が適用されるが、例えば良好な加工精度と加工速度とを両立し得る加工条件の設定は、充分な知識と経験が必要とされる程に難しかった。特に適切な加工条件は、合成樹脂の材質や形状、部材厚さなどに加えて、加工工具の材質や形状、状態などの他、加工温度などの多様な状況によって異なる。
【0008】
具体的には、加工対象物を効率的に切断加工するには、切断の速度を上げる必要がある。しかし、切断速度を上げると被加工物にケバや割れなどの加工不良が発生しやすく、加工工具が損傷するおそれもあった。そのために、たとえ熟練した加工者であっても、安全を見込んで低い速度で切断加工することとなり、十分な加工効率の実現が実現されていないのが現状であった。特に加工対象物が新規な材質の場合や、切断方向で厚さが変化するような場合などは、効率的な加工条件の設定を含む加工の制御が一層難しかった。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2016-140964号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
ここにおいて、本発明は上述の事情を背景に為されたものであって、その解決課題とするところは、合成樹脂からなる加工対象物の切断に際して、良好な加工条件を容易に設定することのできる、新規な切断加工方法及び切断加工装置を提供することにある。
【0011】
また、本発明の特定の態様(下位請求項記載の発明)は、各種の繊維強化樹脂の二次加工に広く適用され得ると共に、切削屑の発生も抑えることのできる、繊維強化樹脂の新規な切断加工方法及び切断加工装置を提供することも、解決課題とする。
【課題を解決するための手段】
【0012】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される各構成要素は、可能な限り任意の組み合わせで採用可能である。
【0013】
すなわち、本発明の第一の態様は、合成樹脂からなる加工対象物を切断加工するに際して、加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、該加工対象物の耐力低下の程度に対応する該指標として、該超音波振動を与える超音波発振器の負荷信号を利用する合成樹脂の切断加工方法を、特徴とする。
【0014】
本態様の切断加工方法に従えば、超音波振動させた切刃を小さい送り速度で加工対象物に押し付けることで母材である合成樹脂を効率的に加熱して耐力を低下させることができ、その後に大きな送り速度で当該切刃を押し付けることで加工対象物を効率的に切断加工することが可能になる。
【0015】
なお、本態様における加工対象物は、繊維強化の有無に拘わらない。例えば補強繊維を有しない合成樹脂からなる加工対象物の場合には、加工対象物における靱性などの性状が不明な場合や、加工工具の性能や切刃の状態などが不明な場合などであっても、適当な超音波振動を加工工具に加えることで、切刃の送りが自動的に適切に調節されて加工が行われる。それ故、高度な知識や経験などを必要とすることなく、各種の合成樹脂材を適切な加工効率と良好な加工精度をもって切断加工することが可能になる。
また、本態様の切断加工方法に従えば、超音波加振された切刃を加工対象物に押し付けて切断加工するに際して、加工対象物の耐力低下の程度に対応して切刃の超音波加振抵抗が変化することで超音波発振器の負荷が変動することを利用して、超音波発振器の負荷信号を、加工対象物の耐力低下の程度に対応する指標として採用することができる。そして、超音波発振器の負荷信号を、加工対象物の耐力低下の程度に対応する指標として採用することで、後述の実施形態からも判るように、簡易な設備で安定した切断加工を実施し得る制御が実現可能になる。
【0023】
本発明の第の態様は、前記第の態様に従う合成樹脂の切断加工方法において、前記超音波発振器の負荷信号に所定幅の目標レンジを設定し、該負荷信号が該目標レンジ内にとどまるように前記加工対象物に対する前記切刃の切断方向への相対的な送り量を変化させる制御を行うものである。
【0024】
本態様の切断加工方法に従えば、後述の実施形態からも判るように、超音波発振器の負荷信号に目標レンジ幅を設定するだけで、被加工物と切刃の相対的な送り速度や被加工物の状態などによって大きな影響を受けることなく、目的とする切断加工を安定して行うことが可能になる。
【0025】
本発明の第の態様は、合成樹脂からなる加工対象物を切断加工するに際して、加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、該加工対象物が熱硬化性樹脂である合成樹脂の切断加工方法を、特徴とする。
【0026】
本態様の切断加工方法に従えば、加工対象物が熱硬化性樹脂の場合でも、切刃の押付部位が超音波で加熱される領域が限定的であり、且つ、切刃の小さな送り速度下での加工対象物の局所的な加熱による耐力低下と、大きな送り速度での加工対象物の速やかな切断とを、繰り返すことによって、加工対象物の過度の加熱による損傷等を回避しつつ効率的な切断加工が実現可能となるのである。なお、前記第二の態様と組み合わされて、合成樹脂が繊維強化樹脂である場合には、繊維強化樹脂の母材が熱硬化性樹脂とされる。
【0031】
本発明の第の態様は、合成樹脂からなる加工対象物を切断加工するに際して、加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御し、且つ、該加工対象物に対する切断加工の後に、該加工対象物から加工工具を引き抜くに際して、超音波振動を与える超音波発振器の出力を切断加工時よりも小さくする合成樹脂の切断加工方法を、特徴とする。
【0032】
本態様の切断加工方法に従えば、超音波により加熱された加工対象物から加工工具を引き抜く際に、超音波発振器の出力を切断加工時よりも小さくすることで、加工対象物からの加工工具の引き抜きを容易に行うことが可能になると共に、加工対象物が加工工具と共に引き抜き方向へ引き上げられて加工対象物の表面に盛り上がるように残るなどの不具合も抑えられ得る。なお、本態様において、「切断加工の後」とは、「切断加工の完了」の他、「切断加工の中断等」を含む。
【0033】
本発明の第の態様は、前記第の態様に従う合成樹脂の切断加工方法において、前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開し、切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引抜速度を大きくするものである。
【0034】
本態様の切断加工方法に従えば、加工工具の超音波振動を引き抜く直前に一旦停止させることで、加工対象物の過度の軟化等を抑えて、加工工具と共に引き抜き方向へ引き上げられる加工対象物を抑えることが可能になる。なお、本態様は、前記第の態様と組み合わせることにより、加工工具と共に加工対象物が引き抜き方向へ引き上げられることをより効果的に抑えることが可能である。
また、本発明の第六の態様は、前記第一~五の何れかの態様に従う合成樹脂の切断加工方法において、前記合成樹脂が繊維強化樹脂であるものである。
本態様の切断加工方法に従えば、切刃を常に超音波振動させることで、加熱により耐力が低下した樹脂の存在下において繊維強化樹脂を切断することができ、デラミネーション(層間はく離)やケバ(表面がこすれたりしてできる細かい毛状のもの)やバリ(材料を加工する際に発生する突起)の発生も抑えられ得ると共に、切削屑の発生も可及的に回避され得る。
本発明の第七の態様は、前記第六の態様に従う合成樹脂の切断加工方法において、前記加工対象物の補強繊維がカーボンファイバーとされるものである。
本態様の切断加工方法に従えば、超音波振動により母材の耐力が低下せしめられることでカーボンファイバーに対して切刃が効率的に押し付けられると共に、カーボンファイバーにおける切刃の押付部位の両側が耐力の低下していない母材で固定的に支持されてカーボンファイバーに張力が与えられることから、カーボンファイバーに対して超音波加振された切刃による切断作用が効率的に及ぼされ得る。
本発明の第八の態様は、前記第一~七の何れかの態様に従う合成樹脂の切断加工方法において、前記加工工具が、先端周縁に前記切刃を備えた筒状の打抜工具であり、該打抜工具の軸方向と周方向との少なくとも一方向において、前記超音波振動を加えるものである。
本態様の切断加工方法に従えば、合成樹脂に対する穴あけの二次加工が実現され得る。また、一般に打抜加工に際しての切刃の送り方向は、加工対象物の厚さ方向とされることから、特に前記第七の態様のように、合成樹脂が、カーボンファイバー等の連続繊維を補強繊維として採用する繊維強化樹脂である場合には、加工対象物の面と平行となる補強繊維の走行方向に対して、切刃の送り方向である切断方向が常に略直交することとなり、補強繊維に対してより良好な切断面が安定して実現可能になる。
本発明の第九の態様は、前記第一~七の何れかの態様に従う合成樹脂の切断加工方法において、前記加工工具が、送り方向の前方に前記切刃を備えた板状の切断工具であり、該切断工具の板面に沿った方向において、前記超音波振動を加えるものである。
本態様の切断加工方法に従えば、板状の切断工具として、例えばナイフ状の加工工具が採用可能であり、超音波振動を効率よく加工対象物に加えることもできたり、加工工具を加工対象物に刺し通すこともできて、加工対象物の中間部分からでも当該刺し通した点を起点として加工対象物の切断加工を行うことも可能となる。また、穴あき加工だけでなく、加工対象物を直線状や曲線状に切断することも可能となる。なお、本態様は、樹脂成形品の外形のトリミング加工や仕上加工など、加工の目的や工程、種類等に拘わらずに、適用され得る。
【0035】
本発明の第の態様は、合成樹脂からなる加工対象物の切断加工装置であって、(a)超音波振動を発生する超音波発振器と、(b)前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、(c)前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、(d)該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構とを、有すると共に、(e)該加工対象物から該加工工具を引き抜くに際して、該超音波発振器の出力を切断加工時よりも低下させる引抜用制御部を備えていることを特徴とする合成樹脂の切断加工装置である。
【0036】
本発明に従う構造とされた切断加工装置では、前述の如き本発明方法に従う合成樹脂の切断加工を実行することができる。
【0040】
また、本態様の切断加工装置に従えば、加工対象物から加工工具を引き抜くに際して、超音波発振器の出力を切断加工時よりも小さくすることで、加工対象物からの加工工具の引き抜きをスムーズに行うことが可能になると共に、加工対象物が加工工具と共に引き抜き方向へ引き上げられて加工対象物の表面に盛り上がるように残るなどの不具合も抑えられ得る。
【0041】
本発明の第十一の態様は、合成樹脂からなる加工対象物の切断加工装置であって、(a)超音波振動を発生する超音波発振器と、(b)前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、(c)前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、(d)該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構とを、有すると共に、(e)前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開する引抜用停止制御部と、切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引き抜き速度を大きくする引抜用制御部と、を備えていることを特徴とする合成樹脂の切断加工装置である。
【0042】
本態様の切断加工装置に従えば、加工対象物から加工工具を引き抜く前に、加工工具の超音波加振を停止させることで、加工対象物が過度に軟化等されることが回避され得る。それ故、加工対象物から加工工具の引抜きを可能にする程度に超音波加振によるエネルギーを与えつつ、加工工具につられて引き上げられて加工対象物の表面に盛り上がるように残るなどの加工精度上の不具合も抑えられ得る。
また、本発明の第十二の態様は、合成樹脂からなる加工対象物の切断加工装置であって、(a)超音波振動を発生する超音波発振器と、(b)前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、(c)前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、(d)該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構とを、有すると共に、(e)前記送り制御機構が、前記加工対象物の耐力低下の程度に対応する前記指標として、前記超音波振動を与える超音波発振器の負荷信号を利用することを特徴とする合成樹脂の切断加工装置である。
本発明の第十三の態様は、前記第十~十二の何れかの態様に従う合成樹脂の切断加工装置において、前記合成樹脂が繊維強化樹脂であるものである。
本態様の切断加工装置に従えば、切断加工の難しい繊維強化樹脂であっても、切断面を大きく荒らすことなく、且つ切削屑の発生を抑えつつ切断することができる。
【発明の効果】
【0043】
本発明によれば、加工対象物への切刃の送り速度(送り量)が適切に制御されて、切刃の損傷や加工速度が遅くなることが防止され得る。
【0044】
また、加工対象物が繊維強化樹脂とされる前記第二の態様や前記第十三の態様では、従来の回転工具などによって生ずる切削屑の発生を回避することができると共に、デラミネーションやケバの発生が抑えられた良好な切断面をもって、繊維強化樹脂の切断加工を実施することが可能になる。
【図面の簡単な説明】
【0045】
図1】本発明方法を実施するための本発明に従う構造とされた切断加工装置の第一の実施形態を示す装置構造図。
図2図1の切断加工装置に装着されている加工工具としての穴あけ用工具の切刃の部分を拡大して示す説明図。
図3図1の切断加工装置における送り機構の本発明に従う制御態様の一例を説明するためのモデル的な説明図。
図4図1の切断加工装置を用いて、PC母材のCFRP板に穴あけ加工を施す実験(実施例1)を行った結果の実測データの一つとして荷重の経時的変化を示すグラフ。
図5図4に示された実験(実施例1)で得られた加工対象物の加工面状態を示す説明写真であって、(a)は切刃の入口側の平面写真、(b)は穴の内周面のSEM写真。
図6図4に示された実験(実施例1)に際して、切刃と加工対象物との押し当て速度を異ならせて穴あけ加工に要する時間を実測した結果を示すグラフ。
図7図1の切断加工装置を用いて、EP母材のCFRP板に穴あけ加工を施す実験(実施例2)を行った結果の実測データの一つとして荷重の経時的変化を示すグラフ。
図8図7に示された実験(実施例2)で得られた加工対象物の加工面状態を示す説明写真であって、(a-1)は切刃の入口側の平面写真、(a-2)は切刃の出口側の平面写真、(b)は穴の内周面のSEM写真。
図9】切断片対策の一例を施した穴あけ用工具の切刃の部分を拡大して示す説明図。
図10】本発明方法を実施するための本発明に従う構造とされた切断加工装置の第二の実施形態を示す装置構造図。
図11図10に示された切断加工装置において切断工具により加工対象物を切断する状態を説明するための説明図であって、(a)は要部を拡大して示す部分断面図、(b)は切断工具の具体的な一例を示す平面図、(c)は切断工具の別の具体的な一例を示す平面図。
図12図10に示された切断加工装置に装着され得る切断工具の別の態様を示す部分断面図。
図13図11の切断工具を装着した図1に示された切断加工装置を用いて、加工対象物を切断した状態を説明するための説明図。
図14図11の切断工具を装着した図1に示された切断加工装置を用いて、PC母材のCFRP板に切断加工を施す実験(実施例3)を行った結果の実測データの一つとして荷重の経時的変化を示すグラフ。
図15図11の切断工具を装着した図1に示された切断加工装置を用いて、EP母材のCFRP板に切断加工を施す実験(実施例4)を行った結果の実測データの一つとして荷重の経時的変化を示すグラフ。
図16図1に示された切断加工装置を用いてPCの板材に穴あけ加工を施した場合において加工開始直前から終了後に切断工具を完全に抜くまで超音波振動を常に付加した際の穴の内周面のSEM写真であって、(a)が超音波発振器の出力を150Wとした場合、(b)が超音波発振器の出力を200Wとした場合、(c)が超音波発振器の出力を300Wとした場合。
図17図1に示された切断加工装置を用いてPCの板材に穴あけ加工を施した場合において加工終了直前に超音波振動を一度止め、再び工具に超音波を付加しながら高速で引き抜いた際の穴の内周面のSEM写真であって、(a)が超音波発振器の出力を150Wとした場合、(b)が超音波発振器の出力を200Wとした場合、(c)が超音波発振器の出力を300Wとした場合。
【発明を実施するための形態】
【0046】
以下、本発明の実施形態について、図面を参照しつつ説明する。
【0047】
先ず、図1には、本発明方法を実施するための本発明に従う構造とされた切断加工装置の第一の実施形態として、加工対象物をプレート状の繊維強化樹脂として、リベットやボルト挿通孔等としての利用を想定した円形の貫通穴を穴あけ加工する切断加工装置10の構造が概略的に示されている。かかる切断加工装置10は、送り機構としての電動シリンダ14により基台12に対して昇降駆動されるワークテーブル16を備えている。また、ワークテーブル16の上方には、振動子18が、基台12に立設された支柱20の支持アーム22によって固定的に支持されていると共に、振動子18にはホーン24を介して加工工具としての切断工具26が取り付けられている。そして、超音波発振器28で振動子18が加振されて、切断工具26が超音波加振されるようになっている。
【0048】
なお、本実施形態では、切断工具26として、図2に示されているように、下方のワークテーブル16に向かって突出する筒状の打抜刃を備えた打抜工具が採用されており、打抜刃の先端周縁には、先鋭形状の断面を有する環状の切刃30が設定されている。また、筒状の打抜刃の上方には、打抜片を排出するための排出窓が側方に開口して設けられることで、連続した打抜加工が実現可能となっている。
【0049】
そして、ワークテーブル16上に加工対象物32を固定的に載置せしめて電動シリンダ14を上昇駆動させて、超音波加振された切断工具26に向けて加工対象物32を接近移動させることで、加工対象物32の上面から切刃30を押し当てることで、穴あけ加工を行うようになっている。なお、穴あけ加工によって加工対象物32を貫通した切刃30の保護等を目的として、加工対象物32は、補助板34を介して、ワークテーブル16上で適切なジグで固定されることが望ましい。
【0050】
このような切断加工装置10において、加工対象物32へ穴あけ加工を施すに際しては、電動シリンダ14による加工対象物32の切刃30に対する穴あけ方向の送り速度が、加工対象物32の耐力低下の程度を指標として増減を繰り返す態様で制御される。即ち、加工対象物32は、超音波加振された切刃30が押し付けられることで摩擦発熱することとなるが、加工対象物32の耐力が低下する温度に至るまでは送り速度を小さくすることで効率的に昇温させる一方、加工対象物32の耐力が低下する温度に達した後は送り速度を大きくすることで耐力が低下した領域を切刃30で切断する。また、切刃30の摩擦熱による加工対象物32の耐力が低下した領域は、平面方向だけでなく深さ方向にも限定的であることから、切刃30の刃先が深さ方向で耐力が低下していない領域にまで達すると、再び送り速度を小さくして加工対象物32を切刃30で超音波で加熱させ、加工対象物32の耐力が低下した後に送り速度を大きくして切断するように、工程を繰り返すように制御する。
【0051】
なお、加工対象物32の切刃30に対する送り速度の増減は、その増減幅や増減態様について限定されるものでなく、加工対象物32の材質や切刃30の性状、超音波発振器28のパワーなどに応じて適宜に設定され得る。また、増減される送り速度は、原則としてマイナス(後退)を設定されることはないが、低速において0(停止)を採用することもできる。更にまた、ワークテーブル16を昇降駆動する電動シリンダ14の送り制御機構としての駆動制御装置36は、移動速度の上限を設定できるものを採用することが望ましいが、特に限定されるものでなく、加工対象物32の切刃30に対する穴あけ方向の送り速度が加工対象物32の耐力低下の程度を指標として制御され得れば良い。
【0052】
本実施形態では、後述するように、加工対象物32の耐力低下の程度を指標として切断方向の移動速度が略一定の範囲内で増減を繰り返す態様をもって制御される。ここで、加工対象物32の耐力低下の程度を特定し得る指標として例えば超音波発振器28の負荷信号を採用し、超音波発振器28から駆動制御装置36に当該負荷信号Sを送信することで、自動制御のループを構成することができる。自動制御ループでは常時連続的に負荷信号を把握し、一定の範囲内に収まるように制御するものであっても良い。または、0.5秒おきなど一定時間毎に負荷信号を受信し、一定範囲内に収めるように制御するものであっても良い。
【0053】
具体的な送り速度の制御態様としては、例えば超音波発振器28の出力レベル、換言すれば振動子18の負荷の大きさについて、所定幅の目標レンジを設定して当該目標レンジ内にとどまるように、駆動制御装置36により電動シリンダ14の移動速度をフィードバック制御する態様が挙げられる。即ち、振動子18は、切刃30を備えた切断工具26に加わる負荷によって振動の状況が変化し、小さい負荷に対しては良く振動するが、大きな負荷に対しては殆ど振動しなくなる。なお、本実施形態の超音波発振器28では、特定の閾値以上の過大な負荷が加わると停止するようになっている。
【0054】
それ故、例えば図3に例示されているように、超音波発振器に対して、当該閾値に対して特定割合(例えば70%)の制御基準値を設定し、例えば上下に±10%のレンジを設けて、負荷が制御基準値の+10%となった時に電動シリンダ14の上昇駆動を減速(停止を含む)させる一方、負荷が制御基準値の-10%となった時に電動シリンダ14を予め設定された速度で上昇駆動させる制御を行うことにより、加工対象物32の切刃30に対する穴あけ方向の送り速度(送り量)が加工対象物32の耐力低下の程度を指標として増減を繰り返す態様での制御が実施され得る。なお、図3は、横軸に電動シリンダ14による加工対象物32の送り量をとってあり、送り速度はグラフの傾き(微分値)で把握される。
【0055】
上述の如き切断加工装置10を用いて、母材が熱可塑性樹脂である繊維強化樹脂に対して穴あけ加工を行った結果を実施例1として、また、母材が熱硬化性樹脂である繊維強化樹脂に対して穴あけ加工を行った結果を実施例2として、それぞれ、以下に示す。
【0056】
なお、切断加工装置10における超音波発振器28,振動子18及びホーン24としては、それぞれ、株式会社SONOTEC製のSH-3510(商品名)およびSF-3110(商品名)を使用した。ホーン24の先端に取り付けた工具は、材質がSK95で、外径(Do):6.5mm、内径(Di):5.5mm,刃付け角(θ):15°としたものを採用した。また、ワークテーブル16を昇降駆動する電動シリンダ14及び駆動制御装置36としては、株式会社IAI製のEC-R7(商品名)を採用し、荷重検出用のロードセルを介してワークテーブル16に駆動力を及ぼした。
【0057】
また、実施例1の熱可塑性繊維強化樹脂からなる加工対象物32としては、平織状のカーボン繊維に母材としてのポリカーボネート樹脂(PC)を含浸させて硬化させた板厚2mmの平板形状の成形品を採用した。一方、実施例2の熱硬化性繊維強化樹脂からなる加工対象物32としては、実施例1と同様の平織状のカーボン繊維に母材としてのエポキシ樹脂(EP)を含浸させたプリプレグをオートクレーブ成形した板厚2mmの平板形状の成形品を採用した。
【0058】
[実施例1]
加工対象物32として前述した熱可塑性樹脂を母材とした繊維強化複合樹脂を対象として超音波発振器28の制御基準値を、超音波発振器28の最大出力レベルの80%とし、上下に±5%のレンジを設けて、負荷が制御基準値の+5%となった時に電動シリンダ14を停止させる一方、負荷が制御基準値の-5%となった時に電動シリンダ14を上昇速度:8.75mm/sの設定で駆動させることで穴あけ加工を行った。かかる加工時に、ロードセルで測定された荷重の時間変化を図4に示す。
【0059】
なお、電動シリンダ14の設定速度が8.75mm/sであることから、板厚が2mmの打ち抜きは約0.2sで完了するはずであるが、実際には3.4sかかった。これは、図4に示されているように、電動シリンダ14が上昇して加工対象物32が切刃30に接触し、0~1sの時刻に荷重は増加しているが、この段階では加工対象物32の中に切刃30が押し込まれていない状態にあり、切刃30の超音波振動で加工対象物32に摩擦熱が及ぼされて樹脂の耐力が低下し始めることで切刃30の押し込みによる切断が開始され、その後、図3で説明したように、樹脂の耐力低下の程度に対応して電動シリンダ14の上昇と停止が繰り返されて切刃30による加工対象物32の切断加工が進行することによる。
【0060】
本実施例1によれば、加工対象物32に対して良好な状態で穴あけ加工を施すことができた。得られた加工対象物32における穴あけ加工部位について、切刃30の入口側から見た平面写真を図5(a)に示すと共に、あけられた穴の内周面を拡大して示す走査電子顕微鏡(SEM)写真を図5(b)に示す。図5(a)から、焼けやデラミネーション、ケバ、バリなどの不具合の発生がなく良好な表面性状であることが判る。また、図5(b)から、穴あけ方向(図中の上下方向)に対して垂直に炭素繊維が走っており、その全面に亘って溶融した樹脂が覆っていることから、超音波振動により溶融した熱可塑性樹脂が切刃30で切断されていることが判る。
【0061】
さらに、加工の安定性および加工効率の検討等を目的として、本実施例1に際して、切刃30と加工対象物32との押し当て速度(電動シリンダ14の設定速度)を異ならせて穴あけ加工に要する時間を実測した。その結果を、図6のグラフに示す。
【0062】
具体的には、超音波発振器28の制御基準値を20%,40%,60%,80%とする4種類について、それぞれ上下に±5%のレンジを設け、実施例1と同様に、負荷が制御基準値の+5%となった時に電動シリンダ14を停止させる一方、負荷が制御基準値の-5%となった時に電動シリンダ14を上昇駆動させた。また、電動シリンダ14の設定速度を1.75mm/s~15.75mm/sの範囲内で9段階の異なる値に設定した。各設定条件下で、穴あけ加工に要した時間を実測した結果を、図6に示す。
【0063】
図6に示されているように、電動シリンダ14による切刃30の加工対象物32への押し当て速度を大きくしても、振動子18に加わる負荷が大きくなり、すぐに超音波発振器28が制御基準値に到って電動シリンダ14の上昇駆動が停止するために、加工時間はほとんど短くならなかった。一方、超音波発振器28の制御基準値を大きくした場合には加工時間が短くなった。その理由は、振動子18への負荷の許容範囲が大きくなることで大きな荷重を加えることができ,切刃30の超音波振動によって加工対象物32に発生する摩擦熱の量も多くなり、耐力低下に至るまでの時間が短縮されるからであると考えられる。
【0064】
尤も、上述の各種条件下においても、加工時間にばらつきが発生するものの、加工対象物32へ施された穴あけ加工は良好なものであった。それ故、電動シリンダ14の設定速度に拘わらず、目的とする穴あけ加工が安定して実施可能であることが判る。
【0065】
[実施例2]
実施例1と同様に、前述した熱硬化性樹脂を母材とした繊維強化複合樹脂を対象として超音波発振器28の制御基準値を80%とし、上下に±5%のレンジを設けて、負荷が制御基準値の+5%となった時に電動シリンダ14を停止させる一方、負荷が制御基準値の-5%となった時に電動シリンダ14を上昇速度:7.00mm/sの設定で駆動させることで穴あけ加工を行った。かかる加工時に、ロードセルで測定された荷重の時間変化を図7に示す。
【0066】
実施例1と同様に、電動シリンダ14が上昇して加工対象物32が切刃30に接触して押し付けられることで荷重が増加しても、最初の段階では加工対象物32の中に切刃30が押し込まれないが、切刃30の超音波振動で加工対象物32に摩擦熱が及ぼされて樹脂の耐力が低下し始めることで切刃30の押し込みによる切断が開始された。その後、図3で説明したように、樹脂の耐力低下の程度に対応して電動シリンダ14の上昇と停止が繰り返されて切刃30による加工対象物32の切断加工が進行した。
【0067】
実施例の母材であるエポキシ樹脂が熱硬化性樹脂で耐熱性が高く、実施例1に比して耐力が低下する温度が高いことから電動シリンダ14の上昇が頻々に停止して加工時間が長くなったものの最終的には穴が打ち抜かれて、目的とする穴あけ加工をすることが完了できた。
【0068】
本実施例2によって得られた加工対象物32における穴あけ加工部位について、切刃30の入口側から見た平面写真を図8(a-1)に示すと共に、切刃30の出口側から見た平面写真を図8(a-2)に示す。また、あけられた穴の内周面を拡大して示す走査電子顕微鏡(SEM)写真を図8(b)に示す。
【0069】
図8(a-1,2)から、焼けやデラミネーション、ケバなどの不具合の発生がなく良好な表面性状であることが判る。また、(b)から、穴あけ方向(図中の上下方向)に対して垂直に走っている炭素繊維の束が脆性的に破断している様子が見てとれる。また、炭素繊維の間に含浸されていた樹脂は摩擦熱による耐力低下のために延性的に打ち抜かれていることがわかる。このことから、熱硬化性樹脂を母材とする繊維強化樹脂を加工対象物とする場合であっても、本発明に従えば、母材の耐力が低下する温度にまで超音波加熱した後に速やかに、且つ超音波で局所的に加熱して耐力が低下した領域にだけ切断加工を施すことで、焼けやデラミネーション、ケバ、バリなどの不具合の発生がなく良好な表面性状をもって切断加工可能であることが理解できる。
【0070】
なお、切断工具26については、要求される切断形態などに応じて、円筒形状に限らず、多角柱状、平刃状など種々の形態が可能である。一方、先に説明したように殆ど切削屑を出さないということは、切断片が円筒状などの切断工具内に留まる可能性が高いことを意味している。量産化に際しての対策としては、例えば図9に示すように切断工具の一部に空気穴31を設け、切断後に工具を基材から離した段階で空気穴31から圧縮エアー等を注入して切断片や切削屑を切刃先端の開口部から吹き出して取り除く機構を採用することができる。更に、切断加工時にも、空気穴31に微量のエアーを流入させることで、加工時間が遅くなる可能性もあるが切断面の平滑度を向上させる等として利用することもできる。
【0071】
次に、図10には、本発明方法を実施するための本発明に従う構造とされた切断加工装置の第二の実施形態として、切断加工装置40が示されている。本実施形態の切断加工装置40において、前記第一の実施形態の切断加工装置10と実質的に同一の部材及び部位には、図中に、前記第一の実施形態と同一の符号を付すことにより詳細な説明を省略する。
【0072】
本実施形態では、前記第一の実施形態に比べて、先ず切断工具の形状が異ならされている。本実施形態の切断工具は、図11(a),(b)に示されるように、全体として上下方向に延びる長手プレート状又は略板状のカッターナイフ42が採用されている。かかるカッターナイフ42は、切断方向の前方側となる端縁部分に切刃44を有している。なお、図11(b)に示す如き片刃の切刃44であっても良いし、図11(c)に示す如き両刃の切刃48であっても良い。何れにしても、カッターナイフ42は、切断方向の前方端において、上下方向に直線的に連続して延びる先鋭の刃先を備えている。図11,12では、切刃44,52の部分を灰色で示す。
【0073】
また、本実施形態の切断加工装置40では、ワークテーブル16にチャック45を備えており、加工対象物32の外周部分をチャック45でワークテーブル16上に把持して固定可能とされている。かかるチャック45は、図10の紙面に垂直な面方向だけでなく、それに直交する上下方向に対しても、加工対象物32をワークテーブル16に対して固定することが望ましい。
【0074】
また、前記実施形態では、加工対象物32に対する切断方向が上下方向とされており、電動シリンダ14を駆動させることでワークテーブル16及び加工対象物32を上方移動させて切断工具26(切刃30)を加工対象物32に対して上下に押し当て可能とされていたが、本実施形態では、加工対象物32に対する切断方向が水平方向とされており、X,Y,Zの直交3軸方向で加工対象物32を移動制御可能とされていると共に、上下方向のZ軸回りでカッターナイフ42を加工対象物32に対して回動制御可能とされている。
【0075】
具体的には、例えば電動シリンダ14zを駆動することで、加工対象物32を把持したワークテーブル16を上下方向(Z軸方向)に移動制御可能とされていると共に、水平電動シリンダ14x,14yを駆動することで、加工対象物32を把持したワークテーブル16を水平直交2方向(前後左右方向)となるX軸,Y軸方向に移動制御可能とされている。また、カッターナイフ42をチャッキングして支持するホーン24及び振動子18が、垂直軸(Z軸)回りで回動可能に支持されており、電動シリンダ14rを駆動することで、カッターナイフ42がZ軸回りで向きを変更制御可能とされて、カッターナイフ42の切刃44の刃先の向きを変更可能とされている。
【0076】
なお、カッターナイフ42と加工対象物32との相対的なX,Y,Zの直交3軸方向の移動及びZ軸回りの回動を実現するための具体的な機構は限定されない。例えば、直交3軸方向の移動を切断工具26側で実現したり、Z軸回りの回動をワークテーブル16側で実現しても良い。また、X,Y,Zの直交3軸方向の移動及びZ軸回りの回動からなる4自由度の制御の他、直線的な切断可能だけであればX方向の移動からなる1自由度の制御であっても良いし、立体形状の切断などの場合には傾動を含む5自由度以上の制御も採用され得る。また、これらの各移動や回動は、例えばプログラミング可能な数値制御機構によって実現されることが望ましい。
【0077】
このような構造とされた本実施形態の切断加工装置40では、例えば超音波発振器28により振動子18が加振されることで、カッターナイフ42が、カッターナイフ42の板面に沿った方向、即ち本実施形態では、図11中の紙面に平行な方向(例えば、図11中の上下方向や左右方向、斜め方向等)に超音波加振されるようになっている。そして、カッターナイフ42と加工対象物32とを相対移動させて、加工対象物32の端部に対して、超音波加振されたカッターナイフ42の切刃44の刃先を押し当てることで、切断加工を行う。
【0078】
かかる切断加工は、第一の実施形態と同様に、超音波による加熱により加工対象物32の耐力が低下させられ、その都度、先鋭状とされた切刃44により加工対象物32が切断方向に送られて切断されることで進行する。即ち、本実施形態では、カッターナイフ42における切断方向の前方に切刃44が設けられており、加工対象物32に対してカッターナイフ42が切断方向に送られることで加工対象物32が切断加工され得る。
【0079】
なお、図11(b)は、加工対象物32をカッターナイフ42により切断する状態を上方から示しているが、切断された加工対象物32において、図11(b)では、カッターナイフ42よりも上方が製品側とされていると共に、カッターナイフ42よりも下方が廃棄とされることが望ましい。即ち、片刃構造のカッターナイフ42では、図11(b)中の上面側32aの方が、刃面側とされる下面側32bよりも、切断縁が良好な表面性状とされ得る。
【0080】
また、図11(c)に示すカッターナイフ46のように、両刃の切刃48は、片刃の切刃44に比して、先端の刃先角度(両面の交角)を小さくすることが可能であり、例えば軟質の合成樹脂材をより効率的に切断加工することも容易になる。
【0081】
さらに、本実施形態において採用される切断工具は、図12に示すカッターナイフ50のように、側面視において下端が先細形状とされることで刃先が切断方向に対する直交方向(上下方向)から傾斜して、鋭角の先端角αを有する切刃52であっても良い。
【0082】
先端角αを有する切刃52を用いると、例えば加工対象物32に対して超音波加振したカッターナイフ50の尖った下端を上方から押し当てることで、加工対象物32を貫通させることもできる。その後に、カッターナイフ50を超音波加振させつつ加工対象物32に対して水平方向へ移動させることによって、加工対象物32を切断加工することができる。これにより、加工対象物32の端縁部から切断を開始する必要がなくなり、例えば加工対象物32の板面の中央部分をくり抜くように穴開け加工すること等も可能になる。なお、切刃52の下端は、アール形状や角取り形状などであっても良く、実質的に尖っているような形状であれば良い。
【0083】
また、図12に示されたカッターナイフ50において、図12中の下端の傾斜部に代えて、又は加えて、図12中の左方の端縁部において(図11に示された上下方向に延びる切刃44のように)上下方向に延びる切刃が設けられていてもよい。かかる場合には、カッターナイフ50を加工対象物32に対して図12中の左方に送ることで、図12中の右方に代えて、又は加えて、図12中の左方を切断方向とすることができる。
【0084】
以上の如き構造とされた本実施形態の切断加工装置40では、前記第一の実施形態のような穴あけ加工以外にも、加工対象物32を線状(直線状や曲線状を含む)に切断することが可能である。なお、曲線状に切断加工するに際しては、カッターナイフ42,50と加工対象物32とをZ軸回りで相対回転させることにより、切刃44の刃先の向く方向を切断方向前方とするように制御することが望ましい。
【0085】
特に、図11に示されるカッターナイフ42に比べて図12に示されるカッターナイフ50の方が、加工対象物32を貫通して位置する部分の刃幅(図11,12中の左右方向幅寸法)を小さくできる。それ故、加工対象物32を曲線状に切断する場合には、図12に示すカッターナイフ50の方が曲率半径の小さい切断線を描くことができる。また、加工対象物32の切断面が傾斜することから、加工対象物32と切刃44の刃先との接触(当接)面が大きく確保され得て、効率的な切断加工にも対応可能になる。
【0086】
一方、加工対象物32を貫通して位置する部分の刃幅を大きくできる図11に示されるカッターナイフ42では、カッターナイフの損傷が効果的に防止されて、大きなパワーで超音波加振することも可能になる。また、切刃44を上下方向に長く設定できることから、肉厚の加工対象物32にも容易に適用できるし、加工対象物32へ当接する部位を順次に移動させることで、カッターナイフ42の上下長さ方向に長く設けられた切刃44の全体を効率的に活用することも可能になる。
【0087】
また、例えばカッターナイフ42,50を上下方向に超音波加振する場合、図12に示されるカッターナイフ50は加工対象物32の切断面から瞬間的に離隔することとなるが、図11に示されるカッターナイフ42は超音波加振が行われている間中、加工対象物32の切断面に当接することとなる。それ故、カッターナイフ42,50が上下方向に超音波加振される場合には、図11に示されるカッターナイフ42の方が、加工対象物32を効率的に加熱することが可能になる。
【0088】
尤も、カッターナイフ50を、切刃52の傾斜した刃先と略平行な方向に加振することで、カッターナイフ50の刃先の加工対象物32への接触状態を向上させることも可能である。また、何れのカッターナイフ42,50であっても、上下方向に加えて又は代えて左右方向(切断方向)に超音波加振しても良い。
【0089】
[実施例3]
上述の第二の実施形態に記載のカッターナイフ42を用いて、加工対象物32を直線状に切断できることを確認した。なお、切断加工装置及び加工工具としては、便宜上等の理由から、第一の実施形態に記載の切断加工装置10及び切断工具26を採用した。即ち、図2に示される切断工具26は、図11(a),(b)に示されるカッターナイフ42が周方向の全周に亘って連続するものと把握されることから、第一の実施形態に記載の切断工具26を用いて穴あけではなく、加工対象物32を直線状に切断する態様において使用した。換言すれば、円筒形状の切断工具26も、加工対象物32へ接触して切断する部分だけも取り出せば、多少は湾曲しているものの加工対象物32の厚さ方向へ略直線的に延びるプレート状の切刃53(径方向で対向位置する一対のプレート状の切刃)を有する切断工具として把握することができる。
【0090】
具体的には、図13に示されるように、平板形状の加工対象物32を、切断加工装置10のワークテーブル16上に立てた状態で固定的に配置して固定すると共に、切断工具26(カッターナイフ42)を、上下方向の中心軸(Z軸)回りの回転方向に超音波加振させつつ、加工対象物32の上端縁部に対して切断方向となる上方から下方に向けて押し付けた。実質的に、加工対象物32は、切断加工装置10のワークテーブル16上に水平に載置した状態と同様となる。
【0091】
なお、本実施例3においては、加工対象物32としては、平織状のカーボン繊維に母材としてのポリカーボネート樹脂(PC)を含浸させて硬化させた板厚2mmの平板形状の成形品を採用した。また、定格出力が500Wである超音波発振器28を用いて、超音波発振器28の制御基準値を最大出力レベルの90%となる450Wとし、上下に±5%のレンジを設けて、負荷が制御基準値の+5%となった時に電動シリンダ14の上昇による加工対象物32に対する切刃52の切断方向への前進を停止(前進速度:0)させる一方、負荷が制御基準値の-5%となった時に切断工具26を前進速度:1mm/sの設定で切断方向へ駆動させることで切断加工を行った。即ち、前進を開始した切断工具26は、超音波発振器28の負荷が95%となった時点で再び停止し、負荷が85%になると再び前進することとなる。これにより、加工対象物32の耐力の程度を反映した超音波発振器28の出力レベルを指標として、切断工具26による切断速度が能動的(アクティブ)且つ自動的に制御されることとなり、特別に高度な経験や知識を必要とすることなく良好な精度の切断加工が十分な加工効率をもって実行され得る。
【0092】
その結果、図13に示されるように、加工対象物32には、上端から下方に延びる溝状の切断部54が二つ形成された。即ち、本実施例3では、切断方向が下方であり、図11(a)に示される片刃構造のカッターナイフ42に相当する切断工具を用いて加工対象物32を直線状に切断可能であることを確認できた。本実施例における切断部54の切込深さ(切断加工長)は、4.6mmであった。本実施例での切断加工に際して、ロードセルで測定された切断方向におけるカッターナイフ42の加工対象物32に対する当接荷重(加工荷重)の時間変化を図14に示す。
【0093】
図14に示されたグラフから、加工荷重は10N前後であった。尤も、本実施例3では、実質的に同一の切断部54が二箇所に同一条件下で形成されていることから、一箇所あたりの加工荷重は5N前後であると考えられる。また、切断開始から終了までの時間は、およそ4.9sであった。それ故、切断加工中の平均切断速度は、およそ0.9837mm/sであり、設定された切断工具26の前進速度(1mm/s)と大きな違いはなかった。切断工具26と加工対象物32との接触面積が実施例1の穴開け加工に比して十分に小さくされていることもあり、ほとんど工具の前進停止の制御が入らなかったものと推定できる。
【0094】
[実施例4]
上述の実施例3と同様の切断加工試験を、加工対象物32の母材をポリカーボネート樹脂からエポキシ樹脂に変更して行った。なお、超音波発振器を含む加工装置や試験条件は実施例3と同じである。
【0095】
その結果、熱硬化性樹脂を加工対象物とした本実施例4においても、図13に示される如き切断部54,54が形成される切断加工が可能であった。即ち、加工対象物32の樹脂の母材が熱硬化性樹脂であっても、熱可塑性樹脂と同様な装置を用いて同様な制御により、加工対象物32に対する切断加工を行うことのできることを確認し得た。本実施例における切断部54の切込深さ(切断加工長)は、3.6mmであった。本実施例での切断加工に際して、ロードセルで測定された切断方向におけるカッターナイフ42の加工対象物32に対する当接荷重(加工荷重)の時間変化を図15に示す。
【0096】
図15に示されたグラフから、加工荷重は40N前後であった。従って、実施例3と同様に、一箇所の切断部54あたりの加工荷重は20N前後であると考えられる。また、切断開始から終了までの時間は、およそ3.9秒であった。それ故、切断加工中の平均切断速度は、およそ0.923mm/sであり、上述の実施例3よりも遅かった。これは、母材であるエポキシ樹脂が、ポリカーボネート樹脂よりも耐熱性が高く、実施例3に比べて耐力の低下する温度が高いことから、切断工具26(カッターナイフ42)の送り移動に制御がより入ったものと考えられる。
【0097】
なお、上述の実施例1~4からも明らかなように、送り速度の設定値には大きな悪影響がない。送り速度が小さいと大きい場合よりも連続的に切断が進行し、大きいとより断続的に進行する。結果として、切断加工の完了に要する時間には大きな影響がない。現場において通常は、例えばある程度の予測値よりも大きめの送り速度を設定しておけば足りることになる。
【0098】
また、超音波発振器に設定される出力も限定されないし、大きな悪影響はない。即ち、本発明では、超音波発振器の出力が小さくても、無理に切刃が前進することはなく、加工対象物の耐力が低下するまでは切刃の前進が控えられることで損傷等が回避され得る。一方、超音波発振器の出力が大きい場合でも、加工対象物の耐力が低下するまでに要する切刃の押し当ての時間が短くなって切刃が切断方向へ速やかに前進されることで、過度の樹脂変形等も回避され得る。
【0099】
ところで、前記第一の実施形態の如き穴あけ加工や、前記第二の実施形態の如き直線状や曲線状の切断加工において、加工終了(加工の中断を含む)の後に、加工対象物32から切断工具26を引き抜くに際して、加工対象物32において形状精度上の問題が発生しやすいことがわかった。具体的には、切断加工の終了後に、超音波加振された切断工具26をそのまま単に引き抜くだけでは、加熱されて軟化等した樹脂が切断工具26と共に引き上げられて、加工穴の開口側の縁部に樹脂が盛り上がって土手状になることで、製品における加工精度上の不具合が発生しやすい。なお、加工工具を切断加工時の前進方向に対して逆向きの後進方向に引き抜く場合だけでなく、例えば加工工具であるカッターナイフ42を板面に沿った方向へ前進させて切断加工を施した後に、板面に垂直な方向へカッターナイフ42を引き抜くような場合などであっても、同様な問題が発生する。
【0100】
因みに、前記第1の実施形態と同様な加工工具を採用して、超音波加振による穴あけ加工するに際して、超音波振動をそのまま継続しつつ、加工後に加工対象物32から切断工具26を引き抜くことによって得られた加工対象物32の状態を、拡大写真によって図16に示す。なお、加工対象物32は、ポリカーボネート樹脂の板材(板厚2mm、繊維補強なし)であり、切断加工の開始から切断工具26の引抜完了に至るまで超音波発信器の出力は略一定に保持した。また、切断加工の終了後に切断工具26を加工対象物32から後退させて引き抜く際の引抜速度は略2mm/sとした。超音波発振器28の出力を150W、200W、300Wにそれぞれ設定することによって得られた加工対象物の加工後の状態を、図16の(a),(b),(c)に示す。
【0101】
一方、加工穴の形成後、切断工具26を引き抜く前に超音波振動を停止(超音波発振器28の出力を略0)すると、切断工具26に対して加工対象物32が固着状態となってしまい、切断工具26を引き抜くことが困難であった。
【0102】
前述の実施形態における切断加工装置10,40は、超音波発振器28の出力や切断工具26の引抜速度を、切断工具26による加工段階に応じて調節する引抜用制御部及び/又は引抜用停止制御部としての引抜用超音波制御部56(図10参照)を備えていることが好ましい。
【0103】
かかる引抜用超音波制御部56は、切断加工の終了後、切断工具26を引き抜く前に超音波発振器28の出力を下げて、切断工具26の超音波加振を実質的に停止させると共に、切断工具26の引き抜きの開始の直前には再び超音波発振器28を稼働させて切断工具26を超音波加振させつつ、切断工具26の加工対象物32からの引き抜きを完了させる引抜用停止制御部としての機能を有する。
【0104】
切断工具26の引抜き前に超音波加振を実質的に停止させることで、切断加工を十分な超音波加振のパワーをもって効率的に実施することを可能としつつ、切断加工時の超音波加振による加工対象物32の切断加工部位における切断工具26の引抜きに際しての過度の軟化等を回避することができる。その結果、切断工具26の引抜きに際して超音波加振を再開しても、切断工具26の引抜時には加工対象物32に対して切断工具26が押し付けられている状態でないことも相俟って、加工対象物32が過度に軟化等して加工工具によって引き上げられることに起因する加工品質の低下が有効に抑えられ得る。
【0105】
また、かかる引抜用超音波制御部56は、上述の如き引抜用停止制御部としての機能に加えて又は代えて、切断加工の終了後に切断工具26を引き抜く際に超音波発振器28の出力を低下させて、切断工具26の超音波加振のパワーを少なくとも切断加工時よりも小さくしたパワー低下状態で、切断工具26を超音波加振させつつ、切断工具26の加工対象物32からの引き抜きを実行させる引抜用制御部としての機能を有していても良い。更に、この引抜用制御部は、切断加工後の切断工具26の引抜速度を調節するようになっていてもよく、当該引抜用制御部により、切断加工時の切断工具26の前進速度に比して、切断加工終了後の切断工具26の引抜速度が大きくされてもよい。
【0106】
切断工具26の引抜き工程では、切断工程に比して超音波加振のパワーを低下させることで、切断加工を十分な超音波加振のパワーをもって効率的に実施することを可能としつつ、加工対象物32の切断加工部位における軟化状態を、切断加工時よりも抑えつつ、切断工具26を引き抜くことができる。それ故、切断工具26の低いパワーでの超音波加振によって加工対象物の固着を回避しつつ切断工具26を引き抜くことができると共に、加工対象物32が過度に軟化等して加工工具によって引き上げられることに起因する加工品質の低下も有効に抑えられ得る。
【0107】
なお、引抜用停止制御部による引抜開始前の停止時間や、引抜用制御部による引抜工程中での低下パワーは、加工対象物の材質や大きさ、形状の他、切断工具26の材質や形状、特性などによっても異なることから、限定されるものでない。即ち、超音波発振器28の出力の低下は、加工対象物32の材質や引抜距離、引抜速度等にもよるが、例えば切断加工の際の-5%~-90%の範囲内で設定され得る。
【0108】
因みに、図16に示した加工例と同じ条件下で切断加工を行い、切断加工の直後に超音波加振を一旦停止した(ここでは超音波発振器28の出力を0とした)後に、再び切断工具26に超音波加振を付加しながら、切断工具26を加工対象物から上方へ引き抜いた。図16に示した加工例と同様に、切断工具26の引抜速度は略2mm/sとし、引抜時における超音波発振器28の出力を150W、200W、300Wにそれぞれ設定することによって得られた加工対象物の加工後の状態を、図17の(a),(b),(c)に示す。
【0109】
図17の(a),(b),(c)を、各対応する図16の(a),(b),(c)と比較すると、加工穴の内周面の表面性状が良好であり、開口縁部の盛り上がりも小さく抑えられていることがわかる。
【0110】
また、図17の(c)→(b)→(a)の順で、加工穴の内周面の表面性状が良好になり、開口縁部の盛り上がりも小さくなっていることから、引抜時における切断工具26の超音波加振のパワーを小さく抑えることで、切断加工の寸法精度の向上が図られることもわかる。
【0111】
なお、上述の切断加工試験において、切断加工の終了後に超音波加振を停止した後に、超音波加振を再開した際には、超音波加振の停止によって切断工具26へ固着していた加工対象物32が、加工工具へ超音波振動を付加した瞬間に剥がれることが確認できた。このことから、加工工具の引抜工程では、切断加工時の数%程度の出力でも、加工工具を速やかに加工対象物から引き抜くことが可能であると考えられる。また、上述の如き切断加工試験の結果から、加工工具の引抜きの速度を調節することも、超音波加振される加工工具から加工対象物へのエネルギーの伝播を低下させる結果になることから、加工対象物32が過度に軟化等して加工工具によって引き上げられることに起因する加工品質の低下を抑えるのに有効であると考えられる。加工効率等を考慮すると、少なくとも切断加工に際しての加工工具の前進速度に比して、切断加工終了後の加工工具の引抜速度を大きくすることが望ましい。図17に示された態様では、ワークテーブル16を下から押し上げていた力を取り去ることで、ワークテーブル16の自重の自由落下による引抜きで引き抜いた。
【0112】
また、切断加工後、超音波加振を停止する(例えば、超音波発振器28の出力を0にする)時間は限定されない。極めて僅かな時間であっても、超音波による加熱作用を少なくするという効果は得られる。更に、長い時間の停止でも、その後の超音波加振によって切断工具26と加工対象物32との固着は速やかに解消され得る。一般には、作業効率を考慮して、例えば0.5~5秒の範囲内で設定され得る。
【0113】
尤も、かかる引抜用超音波制御部56は、加工対象物32への切断工具26の送り速度を、加工対象物32の耐力低下の程度を指標として制御するという思想とは、別個な思想に基づくものであり、前記第一及び第二の実施形態に記載の切断加工装置10,40において、或いは加工対象物の耐力低下の程度を指標とする速度制御を採用しない切断加工装置においても、採用され得る。
【0114】
以上、本発明の具体的な実施形態について実施例を示しつつ詳述してきたが、本発明はこれらの具体的な記載によって限定解釈されるものでない。
【0115】
例えば、前記第一の実施形態では、超音波加振される切刃30に対して、加工対象物32を接近方向に移動させることで切刃30が加工対象物32に押し付けられるようになっていたが、切刃30を加工対象物32に向けて接近方向に移動制御することも可能であり、切刃30と加工対象物32の両者を相対的に接近/離隔方向に移動させるようにしても良い。
【0116】
また、超音波振動の条件は限定されるものではなく、加工対象物の種類や材質、厚さ、工具のサイズや超音波振動のエネルギー量などに応じて適宜に設定可能である。即ち、前記実施形態や実施例1~4において使用した振動子に与える超音波は20~22kHzであったが、これに限定されることなく、15~100kHzの範囲であれば同様の加工が可能となる。更に、振幅は、例えば5~50μmの範囲内に設定されることが好適であり、前記実施形態や実施例1~4では略15μmとされていたが、これに限定されるものではない。
【0117】
更にまた、切断加工の具体的態様は限定されるものでなく、実施例1,2に記載の如き加工対象物の厚さ方向の打抜状の切断加工の他、例えば前記第二の実施形態や実施例3,4に記載したように、加工対象物の表面に沿った線状の切断加工にも、本発明は適用可能である。
【0118】
また、切刃に及ぼされる超音波加振の振動方向は特に限定されるものでないが、補強繊維に対して効率的な剪断力や破断力を及ぼすためには、切刃による剪断方向(前記第一の実施形態では上下方向)や切刃の刃先の延びる方向(前記第一の実施形態では切刃30の中心軸回りの周方向)に超音波加振の振動方向を設定することが望ましい。
【0119】
更にまた、本発明が適用される繊維強化樹脂の材質や形状などは限定されるものでない。例えば、母材としての合成樹脂として、ポリプロピレン,ポリエチレン,ポリエーテルエーテルケトンなどの熱可塑性樹脂や、エポキシ,ポリイミド,不飽和ポリエステル樹脂などの熱硬化性樹脂が何れも採用可能であり、熱可塑性樹脂と熱硬化性樹脂の混合樹脂も採用できる。また、補強繊維としても、カーボンやアラミド、ガラス、ボロンなどが何れも採用可能であり、各種補強繊維を組み合わせて採用することも可能である。更にまた、補強繊維として、短繊維や長繊維、線材などの繊維長が適宜に採用可能であり、一方向繊維や平織,綾織などのクロス繊維の態様としても採用可能である。更に、加工対象物である繊維強化樹脂は、その成形方法によって本発明の適用範囲が限定されるものでない。尤も、本発明が適用される合成樹脂は繊維強化樹脂に限定されるものではなく、例えば単一の樹脂材料により形成されてもよい。その他、本発明の合成樹脂は、狭義に解釈されるものではなく、天然樹脂に似た性質を持つ物質を石油や植物繊維等の原料から化学合成された樹脂と天然由来の樹脂とは同様な性質を持つこともあり、天然樹脂も含めて解釈され得る。
【0120】
また、前記実施形態では、超音波発振器28の負荷信号の一種としての出力パワーレベルを利用することで、加工対象物32の耐力が低下する具体的温度や加工圧力などを事前に把握して設定および制御する必要がないことから、切断加工に際しての制御の簡略化が実現可能であるという技術的利点があった。
【0121】
これは負荷が下がった点で材料(加工対象物)の耐力が低下したことを検知して制御することを意味するものである。ここで、加工対象物の耐力低下の程度に係る指標としての超音波発振器の負荷信号としては、超音波発振器において振動子に供給される電流または電圧、電力量を採用したり、振動子の電気抵抗値を採用することも可能である。また、加工対象物の耐力低下の程度に係る指標としては、超音波発振器の負荷信号の他、例えば振動子の振幅を採用することも可能である。蓋し、加工対象物の耐力が低下していない状態では振動子の振動抵抗が大きくなり、耐力低下の程度に応じて振動抵抗が小さくなるからである。そして、このような超音波発振器の負荷信号や振動子の振動抵抗などを制御用の指標として採用する場合であっても、前述の実施例1~4と同様に、所定幅の制御レンジを含み略一定になるように制御する事でも、同様の効果を得ることができる。なお、このように超音波発振器における電圧、電流、電力等の負荷信号や振動子の振幅などを用いて制御する大きな特徴の一つは、切断する加工対象物の材料の耐力が低下する温度の特性を正確に把握することなく安定した切断加工が可能になるという点である。
【0122】
尤も、例えば切刃の温度や加工対象物32の加工部位の温度を直接に検出した値を加工対象物の耐力低下の程度としての指標として採用し、検出温度に応じて送り制御装置を制御することも可能である。その場合は、熱可塑性か熱硬化性かを含む母材の種類を考慮して温度設定を変更することで実現できる。また、具体的な加工対象物32について超音波振動による加熱による耐力低下に伴う切断加工条件として、例えば図3に示されている如き加圧力の制御態様がわかっている場合には、所定の超音波加振と送り速度の条件下で、当該制御態様に従って加圧力を制御することも可能である。このような制御態様は、何れも、直接的乃至は間接的に、加工対象物の耐力低下の程度を指標として速度が増減を繰り返す態様での制御となることから、良好な切断加工が実現され得る。更に、速度の増減については先に説明した、80+5%-5%で示したヒステリシス量を+0.5%、-0.5%といった幅を減らすことによって、速度増減は低く抑えることができるものである。なお、加工対象物における耐力は、例えば外部エネルギーの作用による切断等の加工への抵抗力として把握することも可能である。具体的には、かかる耐力は、加工対象物の特性等に応じて、温度上昇による加工対象物における軟化(硬度の低下)や流動性の増大、降伏点の低下等として認識され得る。
【0123】
また、前述のように、超音波加振された切断工具による切断加工の終了後に、加工対象物から加工工具を引き抜くに際して、超音波振動を与える超音波発振器の出力を切断加工時よりも小さくすることで、及び/又は、加工工具の引抜前に一旦超音波加振を実質的に停止させることで、切断加工効率を確保しつつ加工工具の引抜きに際しての加工精度の低下を抑えるという技術思想は、加工対象物の耐力低下の程度を指標として切断加工を速度制御するという本発明の技術思想とは別個なものとして把握することも可能であり、新規な課題と解決手段を有している。それ故、本明細書中には、本発明とは別の発明として、以下のそれぞれの発明が開示されている。
【0124】
本発明とは別の発明の一態様は、繊維補強の有無を問わずに合成樹脂からなる加工対象物を切断加工するに際して加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する切断加工の後、該加工対象物から該加工工具を引き抜くに際して、該超音波振動を与える超音波発振器の出力を切断加工時よりも小さくし、及び/又は、超音波振動を与える超音波発振器を実質的に一旦停止させて引抜きにあわせて再開する合成樹脂の切断加工方法である。なお、本態様において、「切断加工の後」とは、「切断加工の完了」の他、「切断加工の中断等」を含む。
【0125】
また、本発明とは更に別の発明の一態様は、合成樹脂からなる加工対象物の切断加工装置であって、超音波振動を発生する超音波発振器と、前記加工対象物に押し当てて切断する切刃を有しており、該超音波発振器の振動子に連結されて超音波加振される加工工具と、該加工対象物から該加工工具を引き抜くに際して該超音波発振器の出力を切断加工時よりも低下させる引抜用制御部、及び/又は、該加工対象物から該加工工具を引き抜く前に該超音波発振器を実質的に一旦停止させて引抜きにあわせて再開する引抜用停止制御部とを備えている合成樹脂の切断加工装置である。
【0126】
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
また、本発明は、もともと以下(i)~(xiv)に記載の各発明を何れも含むものであり、その構成および作用効果に関して、付記しておく。
本発明は、
(i) 合成樹脂からなる加工対象物を切断加工するに際して、加工工具の切刃を該加工対象物に押し当てて該加工工具に超音波振動を加えると共に、該加工対象物に対する該切刃の切断方向への相対的な送りを、該加工対象物の耐力低下の程度を指標として速度制御することを特徴とする合成樹脂の切断加工方法、
(ii) 前記合成樹脂が繊維強化樹脂である請求項1に記載の合成樹脂の切断加工方法、
(iii) 前記加工対象物の補強繊維がカーボンファイバーである請求項2に記載の合成樹脂の切断加工方法、
(iv) 前記加工対象物の耐力低下の程度に対応する前記指標として、前記超音波振動を与える超音波発振器の負荷信号を利用する請求項1~3の何れか一項に記載の合成樹脂の切断加工方法、
(v) 前記超音波発振器の負荷信号に所定幅の目標レンジを設定し、該負荷信号が該目標レンジ内にとどまるように前記加工対象物に対する前記切刃の切断方向への相対的な送り量を変化させる制御を行う請求項4に記載の合成樹脂の切断加工方法、
(vi) 前記加工対象物が熱硬化性樹脂である請求項1~5の何れか一項に記載の合成樹脂の切断加工方法、
(vii) 前記加工工具が、先端周縁に前記切刃を備えた筒状の打抜工具であり、該打抜工具の軸方向と周方向との少なくとも一方向において、前記超音波振動を加える請求項1~6の何れか一項に記載の合成樹脂の切断加工方法、
(viii) 前記加工工具が、送り方向の前方に前記切刃を備えた板状の切断工具であり、該切断工具の板面に沿った方向において、前記超音波振動を加える請求項1~6の何れか一項に記載の合成樹脂の切断加工方法、
(ix)前記加工対象物に対する切断加工の後に、該加工対象物から前記加工工具を引き抜くに際して、前記超音波振動を与える超音波発振器の出力を切断加工時よりも小さくする請求項1~8の何れか一項に記載の合成樹脂の切断加工方法、
(x)前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開し、
切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引抜速度を大きくする請求項9に記載の合成樹脂の切断加工方法、
(xi)合成樹脂からなる加工対象物の切断加工装置であって、超音波振動を発生する超音波発振器と、前記加工対象物を切断する切刃を備えており、前記超音波発振器の振動子に連結されて超音波加振される加工工具と、前記加工対象物に対して前記加工工具の前記切刃を押し当てて、該加工工具を該加工対象物に対して切断方向に相対的に移動せしめる送り機構と、該送り機構による前記加工対象物と前記加工工具との相対的な移動を、該加工対象物の耐力低下の程度を指標として速度制御する送り制御機構とを、有することを特徴とする合成樹脂の切断加工装置、
(xii)前記合成樹脂が繊維強化樹脂である請求項11に記載の合成樹脂の切断加工装置、
(xiii)前記加工対象物から前記加工工具を引き抜くに際して、前記超音波発振器の出力を切断加工時よりも低下させる引抜用制御部を備えている請求項11又は12に記載の合成樹脂の切断加工装置、
(xiv)前記加工対象物に対する切断加工の後、該加工対象物から前記加工工具を引き抜く前に、該加工工具の超音波加振を停止させてから超音波加振を再開する引抜用停止制御部と、切断加工に際しての該加工工具の前進速度に比して、切断加工終了後の該加工工具の引き抜き速度を大きくする引抜用制御部と、を備えている請求項11~13の何れか一項に記載の合成樹脂の切断加工装置
に関する発明を含む。
上記(i)に記載の発明では、超音波振動させた切刃を小さい送り速度で加工対象物に押し付けることで母材である合成樹脂を効率的に加熱して耐力を低下させることができ、その後に大きな送り速度で当該切刃を押し付けることで加工対象物を効率的に切断加工することが可能になる。なお、本態様における加工対象物は、繊維強化の有無に拘わらない。例えば補強繊維を有しない合成樹脂からなる加工対象物の場合には、加工対象物における靱性などの性状が不明な場合や、加工工具の性能や切刃の状態などが不明な場合などであっても、適当な超音波振動を加工工具に加えることで、切刃の送りが自動的に適切に調節されて加工が行われる。それ故、高度な知識や経験などを必要とすることなく、各種の合成樹脂材を適切な加工効率と良好な加工精度をもって切断加工することが可能になる。
上記(ii)に記載の発明では、切刃を常に超音波振動させることで、加熱により耐力が低下した樹脂の存在下において繊維強化樹脂を切断することができ、デラミネーション(層間はく離)やケバ(表面がこすれたりしてできる細かい毛状のもの)やバリ(材料を加工する際に発生する突起)の発生も抑えられ得ると共に、切削屑の発生も可及的に回避され得る。
上記(iii)に記載の発明では、超音波振動により母材の耐力が低下せしめられることでカーボンファイバーに対して切刃が効率的に押し付けられると共に、カーボンファイバーにおける切刃の押付部位の両側が耐力の低下していない母材で固定的に支持されてカーボンファイバーに張力が与えられることから、カーボンファイバーに対して超音波加振された切刃による切断作用が効率的に及ぼされ得る。
上記(iv)に記載の発明では、超音波加振された切刃を加工対象物に押し付けて切断加工するに際して、加工対象物の耐力低下の程度に対応して切刃の超音波加振抵抗が変化することで超音波発振器の負荷が変動することを利用して、超音波発振器の負荷信号を、加工対象物の耐力低下の程度に対応する指標として採用することができる。そして、超音波発振器の負荷信号を、加工対象物の耐力低下の程度に対応する指標として採用することで、後述の実施形態からも判るように、簡易な設備で安定した切断加工を実施し得る制御が実現可能になる。
上記(v)に記載の発明では、前述の実施形態からも判るように、超音波発振器の負荷信号に目標レンジ幅を設定するだけで、被加工物と切刃の相対的な送り速度や被加工物の状態などによって大きな影響を受けることなく、目的とする切断加工を安定して行うことが可能になる。
上記(vi)に記載の発明では、加工対象物が熱硬化性樹脂の場合でも、切刃の押付部位が超音波で加熱される領域が限定的であり、且つ、切刃の小さな送り速度下での加工対象物の局所的な加熱による耐力低下と、大きな送り速度での加工対象物の速やかな切断とを、繰り返すことによって、加工対象物の過度の加熱による損傷等を回避しつつ効率的な切断加工が実現可能となるのである。なお、前記第二の態様と組み合わされて、合成樹脂が繊維強化樹脂である場合には、繊維強化樹脂の母材が熱硬化性樹脂とされる。
上記(vii)に記載の発明では、合成樹脂に対する穴あけの二次加工が実現され得る。また、一般に打抜加工に際しての切刃の送り方向は、加工対象物の厚さ方向とされることから、特に前記(iii)の態様のように、合成樹脂が、カーボンファイバー等の連続繊維を補強繊維として採用する繊維強化樹脂である場合には、加工対象物の面と平行となる補強繊維の走行方向に対して、切刃の送り方向である切断方向が常に略直交することとなり、補強繊維に対してより良好な切断面が安定して実現可能になる。
上記(viii)に記載の発明では、板状の切断工具として、例えばナイフ状の加工工具が採用可能であり、超音波振動を効率よく加工対象物に加えることもできたり、加工工具を加工対象物に刺し通すこともできて、加工対象物の中間部分からでも当該刺し通した点を起点として加工対象物の切断加工を行うことも可能となる。また、穴あき加工だけでなく、加工対象物を直線状や曲線状に切断することも可能となる。なお、本態様は、樹脂成形品の外形のトリミング加工や仕上加工など、加工の目的や工程、種類等に拘わらずに、適用され得る。
上記(ix)に記載の発明では、超音波により加熱された加工対象物から加工工具を引き抜く際に、超音波発振器の出力を切断加工時よりも小さくすることで、加工対象物からの加工工具の引き抜きを容易に行うことが可能になると共に、加工対象物が加工工具と共に引き抜き方向へ引き上げられて加工対象物の表面に盛り上がるように残るなどの不具合も抑えられ得る。なお、本態様において、「切断加工の後」とは、「切断加工の完了」の他、「切断加工の中断等」を含む。
上記(x)に記載の発明では、加工工具の超音波振動を引き抜く直前に一旦停止させることで、加工対象物の過度の軟化等を抑えて、加工工具と共に引き抜き方向へ引き上げられる加工対象物を抑えることが可能になる。なお、本態様は、前記(ix)の態様と組み合わせることにより、加工工具と共に加工対象物が引き抜き方向へ引き上げられることをより効果的に抑えることが可能である。
上記(xi)に記載の発明では、前述の如き発明に従う合成樹脂の切断加工を実行することができる。
上記(xii)に記載の発明では、切断加工の難しい繊維強化樹脂であっても、切断面を大きく荒らすことなく、且つ切削屑の発生を抑えつつ切断することができる。
上記(xiii)に記載の発明では、加工対象物から加工工具を引き抜くに際して、超音波発振器の出力を切断加工時よりも小さくすることで、加工対象物からの加工工具の引き抜きをスムーズに行うことが可能になると共に、加工対象物が加工工具と共に引き抜き方向へ引き上げられて加工対象物の表面に盛り上がるように残るなどの不具合も抑えられ得る。
上記(xiv)に記載の発明では、加工対象物から加工工具を引き抜く前に、加工工具の超音波加振を停止させることで、加工対象物が過度に軟化等されることが回避され得る。それ故、加工対象物から加工工具の引抜きを可能にする程度に超音波加振によるエネルギーを与えつつ、加工工具につられて引き上げられて加工対象物の表面に盛り上がるように残るなどの加工精度上の不具合も抑えられ得る。
【符号の説明】
【0127】
10 切断加工装置
12 基台
14 電動シリンダ
14x,14y 水平電動シリンダ
14z,14r 電動シリンダ
16 ワークテーブル
18 振動子
20 支柱
22 支持アーム
24 ホーン
26 切断工具
28 超音波発振器
30 切刃
31 空気穴
32 加工対象物
32a 上面側
32b 下面側
34 補助板
36 駆動制御装置
40 切断加工装置
42 カッターナイフ(切断工具)
44 切刃
45 チャック
46 カッターナイフ(切断工具)
48 切刃
50 カッターナイフ(切断工具)
52 切刃
53 切刃
54 切断部
56 引抜用超音波制御部(引抜用制御部、引抜用停止制御部)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17