IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ メディカル ワイヤレス センシング リミテッドの特許一覧

<>
  • 特許-調整可能なメタマテリアルデバイス 図1
  • 特許-調整可能なメタマテリアルデバイス 図2
  • 特許-調整可能なメタマテリアルデバイス 図3
  • 特許-調整可能なメタマテリアルデバイス 図4
  • 特許-調整可能なメタマテリアルデバイス 図5
  • 特許-調整可能なメタマテリアルデバイス 図6A
  • 特許-調整可能なメタマテリアルデバイス 図6B
  • 特許-調整可能なメタマテリアルデバイス 図6C
  • 特許-調整可能なメタマテリアルデバイス 図7
  • 特許-調整可能なメタマテリアルデバイス 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-16
(45)【発行日】2023-08-24
(54)【発明の名称】調整可能なメタマテリアルデバイス
(51)【国際特許分類】
   A61B 5/055 20060101AFI20230817BHJP
   G01N 24/00 20060101ALI20230817BHJP
   G01R 33/34 20060101ALI20230817BHJP
【FI】
A61B5/055 350
A61B5/055 355
G01N24/00 580Y
G01R33/34
【請求項の数】 19
(21)【出願番号】P 2021529523
(86)(22)【出願日】2019-08-01
(65)【公表番号】
(43)【公表日】2021-12-09
(86)【国際出願番号】 EP2019070838
(87)【国際公開番号】W WO2020025776
(87)【国際公開日】2020-02-06
【審査請求日】2022-07-06
(31)【優先権主張番号】1812703.5
(32)【優先日】2018-08-03
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】516254289
【氏名又は名称】メディカル ワイヤレス センシング リミテッド
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】カロス、エフティミオス
(72)【発明者】
【氏名】サハ、シムル、チャンドラ
【審査官】田中 洋介
(56)【参考文献】
【文献】特表2018-520777(JP,A)
【文献】実開平06-017703(JP,U)
【文献】特開2009-148556(JP,A)
【文献】米国特許出願公開第2010/0127707(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
G01N 24/00-24/14
G01R 33/20-33/64
H01Q 1/00-3/46
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
MRIシステム内でRF信号の磁場を集中させるデバイスであって、
アレイ内に配置された複数の導電部品と、
前記導電部品の2つの箇所の間に接続された複数の半導体デバイスと、
制御器と、を備え、
前記アレイは、外部のRF受信器が、外部のRF送信器からRF信号を受信するときに、共鳴RF周波数におけるRF放射の電場と磁場との間でエネルギーを再分布するように構成され
前記制御器は、前記RF送信器から受信したRF信号に対応して、前記各半導体デバイスのバイアス電圧を変えるように制御し、これにより前記アレイの共鳴周波数を制御し、
前記RF信号は、前記各導電部品の長さより長いRF波長を持つことを特徴とするデバイス。
【請求項2】
前記各半導体デバイスは前記導電部品のそれぞれのペアの間に接続され、これにより前記各半導体デバイスが導電状態にあるとき、前記それぞれのペアは短絡することを特徴とする請求項1に記載のデバイス。
【請求項3】
各々が前記各導電部品と列をなして配置された1つ以上の導電部品エクステンションを備え、
前記各半導体デバイスが導電状態のとき前記各導電部品の有効長を延長するために、前記各半導体デバイスが、前記各導電部品とこれに対応する各導電部品エクステンションとの間に接続されていることを特徴とする請求項1に記載のデバイス。
【請求項4】
前記各導電部品は、細長く、前記共鳴周波数に相当する波長の半分の長さを持ち、
前記導電部品は、実質的に互いに平行であるように構成されることを特徴とする請求項1から3のいずれかに記載のデバイス。
【請求項5】
前記導電部品は、1つ以上の曲線状部品を備え、
前記曲線状部品は、1つ以上の分割リング、分割ループまたはスイスロール状部品を備え、
前記各半導体デバイスは、前記曲線状部品の各端部の間に接続されることを特徴とする請求項1に記載のデバイス。
【請求項6】
前記導電部品は、曲線状ワイヤ部品を備え、
前記各半導体デバイスは、前記曲線状ワイヤ部品の隣接するワイヤのペアの間に接続されることを特徴とする請求項1に記載のデバイス。
【請求項7】
前記制御器は、
前記RF信号を受信するように構成された受信部品と、
前記受信部品が前記RF信号を受信するとき前記各半導体デバイスのバイアス電圧を変えるために、前記RF信号をクロック信号に変換するように構成された変換器と、を備え
ことを特徴とする請求項1から6のいずれかに記載のデバイス。
【請求項8】
前記変換器は、
前記RF信号をデジタル化するための比較器と、
前記RF信号の周波数を低下させるための周波数分割器と、
前記RF信号を固有周波数にまでさらに低下させるマルチバイブレータと、を備えることを特徴とする請求項に記載のデバイス。
【請求項9】
前記各半導体デバイスは、トランジスタまたはバラクタであり、
前記制御器は、前記アレイの共鳴周波数を変えるために、前記各トランジスタまたは前記各バラクタのバイアス電圧を制御するように構成された可変DC電圧供給器を備えることを特徴とする請求項1から8のいずれかに記載のデバイス。
【請求項10】
前記各半導体デバイスは、MOSFETまたはダイオードであることを特徴とする請求項1から9のいずれかに記載のデバイス。
【請求項11】
前記各導電部品は、誘電体材料によって支持されることを特徴とする請求項1から10のいずれかに記載のデバイス。
【請求項12】
前記各導電部品は、非磁性金属から作られることを特徴とする請求項1から11のいずれかに記載のデバイス。
【請求項13】
画像化対象を受け入れるように構成された画像化領域と、
前記画像化領域内に静磁場を生成するように構成された磁場生成器と、
前記画像化対象にRF信号を照射するように構成されたRF送信器と、
前記画像化対象からの帰還RF信号を受信するように構成されたRF受信器と、
前記画像化領域と前記RF送信器または前記RF受信器のいずれかとの間に配置された請求項1から12のいずれかに記載のデバイスと、を備えることを特徴とするMRシステム。
【請求項14】
送信制御器をさらに備え、
前記デバイスの前記制御器は、前記RF信号の送信に適合するように前記半導体デバイスのバイアス電圧を変えるために、前記送信制御器からの制御信号を受信するように構成されることを特徴とする請求項13に記載のMRシステム。
【請求項15】
MRシステム内の画像化対象にRF信号の磁場を集中させる方法であって、
アレイ内に配置された複数の導電部品を備えるデバイスを前記画像化対象の近辺に置くステップと、
前記デバイスおよび前記画像化対象に前記RF信号を照射するステップと、
前記導電部品および前記画像化対象からの帰還RF信号を受信するステップと、
前記導電部品の共鳴周波数を変えるために、受信したRF信号に対応して、前記導電部品に接続された複数の半導体デバイスの各々のバイアス電圧を変えるように制御するステップと、を備え、
前記アレイは、前記各導電部品の長さより長いRF波長を持つRF信号を受信するときに、共鳴RF周波数におけるRF放射の電場と磁場との間でエネルギーを再分布するように構成されることを特徴とする方法。
【請求項16】
前記半導体デバイスのバイアス電圧は、
前記導電部品および前記画像化対象に前記RF信号を照射するときは、前記画像化対象内で前記RF信号の磁場を集中させず、
前記導電部品および前記画像化対象から前記帰還RF信号を受信するときは、前記RF信号の磁場を集中させるように制御されることを特徴とする請求項15に記載の方法。
【請求項17】
前記半導体デバイスのバイアス電圧は、
前記導電部品および前記画像化対象に前記RF信号を照射するときは、前記画像化対象内で前記RF信号の磁場を集中させ、
前記導電部品および前記画像化対象から前記帰還RF信号を受信するときは、前記RF信号の磁場を集中させないように制御されることを特徴とする請求項15に記載の方法。
【請求項18】
前記半導体デバイスのバイアス電圧は、前記デバイスの共鳴周波数をRF信号周波数に調整するように制御されることを特徴とする請求項15に記載の方法。
【請求項19】
前記デバイスは、請求項1から12のいずれかに記載のデバイスであることを特徴とする請求項15から18のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、磁気共鳴(MR)システム内の信号の磁場を集中させるデバイスおよび方法ならびにこのようなデバイスを含むMRシステムまたは前述の方法を実行するためのシステムに関する。
【背景技術】
【0002】
核磁気共鳴画像法(MRI)は、脳信号活動の測定、癌細胞の早期検出、生物学的構造ナノスケール画像化、流体力学の制御、および機能的循環器系画像化を可能とする唯一の方法である。MRIスキャンの需要は常に増している。その結果、機器の数が限られることに起因する待ち時間が延びている。より高解像度の画像への需要が増加していることにより、より強い静磁場(3T以上)のスキャナーが開発されているが、これは一層高価なものとなる。より高品質の画像およびMRIスキャン量への需要が時間ととともに増加しているため、国民皆健康保険制度は、既存の設備、リソースおよび予算制約線における待ちリストの短縮を強いられる。従って、医療画像および診断の改善のために、こうした条件下でのMRIスクリーニングの効率向上が必要となる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
国際出願公開第2017/007365号(2017年1月12日)は、MRIシステムにおける信号帯雑音比(SNR)を改善し、比吸収率(SAR)を低減するメタマテリアルデバイスを開示する。このデバイスは電磁場集中器として機能し、被検対象物近辺にラジオ周波数電場の局所的再分布を生成する。これは、電磁場集中器内の各導電体の長さが半波長共鳴の出現条件を満足するという事実に基づく。このデバイスは、特に比較的低パワーのMRIシステムに向く。このデバイスによって電磁(EM)場の著しい集中のためのポテンシャルが与えられると、高パワーシステムでは、RF信号が許容不可能なレベルのSARにまで集中するリスクが生じる。さらなる問題として、画像化対象がMRIシステムの内部にあるとき、対象の誘電性が当該MRIシステムの送信コイルまたは受信コイルを離調させるということがある。離調量は、対象の個々の特性による。コイルがラーモア周波数から離れることから、この離調はコイルの動作が最適から外れることを意味する。
【課題を解決するための手段】
【0004】
第1の態様では、MRシステム内でRF信号の磁場を集中させるデバイスは、アレイ内に配置された複数の導電部品を備える。導電部品のアレイは、導電部品の長さより長いRF波長を持つRF信号を受信するときに、共鳴RF周波数におけるRF放射の電場と磁場との間でエネルギーを再分布するように構成される。エネルギーの再分布は、アレイの第1の場所におけるRF信号の局所的磁場の強さを強めることと、アレイの第1の場所におけるRF信号の局所的電場の強さを弱めることと、を含んでもよい。この再分布により、RF信号の磁場が、第1の場所に効果的に「集中」する。原子の磁気モーメントに対する入射RF信号パルスの効果は磁場の強さに依存するので、この再分布によりRF信号の効果が改善される。さらに、第1の場所における電場の減少により、画像化対象の望まれない加熱を低減することができる。従って画像化対象を第1の場所の近辺に置くことにより、MRIシステムの信号帯雑音比を改善し、比吸収率を低減することができる。
【0005】
RF放射の電場と磁場との間でのエネルギーの再分布は、一部は、共鳴RF周波数におけるアレイ内の導電部品の共鳴に依存する。すなわち再分布は、共鳴周波数で起こる現象である。この周波数を含むRF信号を受信するとき、アレイ内の導電部品は共鳴する。RF信号は、当該RF信号が画像化対象に到達する前に、RF送信器から受信されてもよいし。あるいはRF信号は、画像化対象が照射された後に、当該画像化対象から(すなわち、帰還RF信号として)受信されてもよい。RF信号は、各導電部品の長さより長いRF信号波長を持つ。言い換えれば、導電部品は「サブ波長」の長さを持つ。
【0006】
デバイスは、導電部品の2つの箇所の間に接続された複数の半導体デバイスをさらに備える。この2つの箇所は、単一の導電部品の2つの箇所であってもよい。代替的に、第1の箇所は第1の導電部品上にあり、第2の箇所は第2の導電部品上にあってもよい。言い換えれば、各半導体デバイスは、単一の導電部品に接続されてもよいし、複数の導電部品に接続されてもよい。アレイの共鳴周波数は、各半導体デバイスの導電状態および/またはキャパシタンスに依存する。これは、半導体デバイスのバイアス電圧によって決定する。導電状態は、半導体デバイスが2つの箇所の間に電気を通すか、あるいはどれだけの量の電気を通すか、を表す。例えば、半導体デバイスが2つの箇所の間に電気を通すとき、導電状態は「オン」または「閉」と呼ぶことができる。逆に、半導体デバイスが2つの箇所の間に電気を通さないとき、導電状態は「オフ」または「開」と呼ぶことができる。一般に半導体デバイスは、完全に絶縁であることも、完全に導電であることもない。しかし導電/非導電状態は、実質的に2つの箇所の間を短絡/遮断する。特に「非導通状態」は、接続されていない導電部品を持てば、アレイの共鳴周波数と実質的に等しい共鳴周波数を生む。同様に、「導通状態」は、抵抗の無視できるコンダクタで接続された導電部品を持てば、アレイの共鳴周波数と実質的に等しいアレイの共鳴周波数を生む。バイアス電圧は、半導体デバイスの電気的特性を制御するために、半導体デバイスの2つの箇所の間に与えることのできる電圧である。例えばトランジスタのバイアス電圧は、トランジスタゲートとトランジスタソースとの間にある。これに対しバラクタダイオードのバイアス電圧は、当該バラクタダイオードのアノードとカソードとの間にある。半導体が順バイアスされると、バイアス電圧は半導体デバイスの導電状態を決定する。代替的に半導体が逆バイアスされると、バイアス電圧は半導体デバイスのキャパシタンスを決定する。導電部品間で導電状態またはキャパシタンスを制御することにより、当該導電部品のアレイの共鳴周波数を制御することができる。
【0007】
デバイスは、各半導体デバイスのバイアス電圧を制御する制御器をさらに備える。一般に制御器は、各半導体デバイスのバイアス電圧を独立に制御してよいし、あるいはすべての半導体デバイスのバイアス電圧をまとめて制御してもよい。共鳴周波数は半導体デバイスのバイアス電圧(これは、半導体デバイスの導電状態またはキャパシタンスを与える)に依存するので、バイアス電圧を制御することにより、共鳴周波数を選択的に変える(すなわち、「調整」または「離調」する)ことができる。例えば共鳴周波数は、RF信号の周波数に合致するように「調整」することができる。これによりデバイスは、前述のような電場と磁場の間でのエネルギーを再分布をする。代替的に、共鳴周波数は、RF信号の周波数から「離調」することができる。これによりデバイスは、前述のような電場と磁場の間でのエネルギーの再分布をしない。例えば、RF信号が「離調された」共鳴周波数を含まない場合(あるいは少なくとも、そのスペクトルが共鳴周波数を多く含まない場合)、これは共鳴しない。
【0008】
従って第1の態様に係るデバイスは、有利なことに、RF信号の磁場の再分布/集中が起こるか否かを制御することができる。例えば、RF信号の磁場の再分布/集中の現象が、MRシステムのRFパルスサイクルの特定の位相においてのみ起こるように制御することができる。
【0009】
デバイスは、複数の半導体デバイスの各々が、導電材料の各ペアの間に接続されるように構成されてもよい。これにより、各半導体デバイスが導電状態にあるとき、各ペアの導電部品は短絡する。例えば半導体デバイスの2つの箇所が、導電部品のペアを接続する。これにより、半導体デバイスが「非導電状態」にあるとき、当該ペアは電気的に絶縁される。逆に半導体デバイスが「導電状態」にあるとき、当該ペアは電気的に接続される(または短絡する)。導電部品のペアは、アレイ内の導電部品に隣接してもよい。任意の個々の導電部品は、1つ以上の対をなしてもよい。例えば半導体デバイスは、複数の半導体デバイスが「導電状態」のときすべての(または大半の)導電部品が電気的に接続されるように、導電部品を接続してもよい。
【0010】
デバイスは、各々が各導電部品と列をなして配置された(すなわち、各導電部品と平行かつ同一線上に配置され、各導電部品の一端に配置された)1つ以上の導電部品エクステンションを備えてもよい。この構成では、複数の半導体デバイスの各々は、各導電部品と、対応する導電部品エクステンションとの間に接続する。これにより、各半導体デバイスが導電状態にあるとき、各導電部品の有効長が延びる。一般に、共鳴周波数(従って、エネルギーの再分布の効果)は、導電部品の長さまたは有効長に依存する。従って、導電部品の有効長を延ばす(さもなければ、変える)ことにより、デバイスを調整/離調することができる。
【0011】
各導電部品は、細長くてもよい。すなわちこの場合、各導電部品の第1の次元(長さ)は、第2および第3の次元より数倍長い。例えば導電部品は、ワイヤであってもよい。細長い導電部品の各々は、共鳴周波数に相当する波長の約半分の長さを持つ。これにより、導電部品の長さ方向の中点付近で、磁場が局所的に強くなる(これに対応して、電場が弱くなる)ように電場と磁場との間でエネルギーが再分布する。細長い導電部品は、実質的に互いに平行に(すなわち、導電部品の長さ方向が実質的に平行となるように)配置される。実質的に平行とは、例えば、各導電部品におけるエネルギーの再分布現象が協働した結果、局所的に磁場が増加し電場が減少した画像化ターゲット領域が生まれるのに十分なほど平行であることを意味する。導電部品は、当該導電部品の長さ方向と直行する方向に、互いに離れてもよい。
【0012】
アレイは、1次元(単一の列内で並んで配置される)、2次元(積層された層または列内に配置される)または3次元(2次元アレイの積層に配置される)であってよい。
【0013】
導電部品は、1つ以上の曲線状部品を備え、当該1つ以上の曲線状部品は、1つ以上の分割リング、分割ループまたはスイスロール状部品を備えてもよい。この場合、各半導体デバイスは、曲線状部品の各端部の間に接続される。従って、導電部品が「導電状態」にあるとき、曲線状部品の端部は短絡する。従って、共鳴周波数が変わる。
【0014】
導電部品は、曲線状ワイヤ部品を備えてもよい。この場合、各半導体デバイスは、曲線状ワイヤ部品の隣接するワイヤのペアの間に接続される。導電部品が「導電状態」にあるとき、曲線状ワイヤ部品の対は短絡する。従って、共鳴周波数が変わる。
【0015】
制御器は、受信したRF信号に対応して、各半導体デバイスのバイアス電圧を変えるように構成されてもよい。例えば制御器は、RF信号が受信されていると当該制御器が判断したとき各半導体デバイスの導電状態を「導電」とし、その逆のとき「非導電」とするように、バイアス電圧を制御してもよい。同様に制御器は、所定の電力閾値より高いRF信号が受信されていると当該制御器が判断したとき各半導体デバイスの導電状態を「導電」とし、その逆のとき「非導電」とするように、バイアス電圧を制御してもよい。代替的に制御器は、RF信号が受信されていると当該制御器が判断したとき各半導体デバイスの導電状態を「非導電」とし、その逆のとき「導電」とするように、バイアス電圧を制御してもよい。同様に制御器は、所定の電力閾値より高いRF信号が受信されていると当該制御器が判断したとき各半導体デバイスの導電状態を「非導電」とし、その逆のとき「導電」とするように、バイアス電圧を制御してもよい。RF信号の受信に応じて各半導体デバイスのバイアス電圧を変えるための基準として、他にも多くのものが考えられる。
【0016】
制御器は、RF信号を受信するように構成された受信部品(例えば、アンテナまたはインダクタ)を備えてもよい。制御器は、受信部品がRF信号を受信するとき、各半導体デバイスのバイアス電圧を変えるために、RF信号をクロック信号に変換するように構成された変換器をさらに備えてもよい。変換器は、RF信号をデジタル化する(すなわち、アナログRF信号をデジタル信号に変換する)ための比較器を備えてもよい。変換器は、RF信号の周波数を低下させるための周波数分割器と、RF信号を固有周波数にまでさらに低下させるマルチバイブレータと、をさらに備えてもよい。固有周波数は、RC回路によって決定されてよい。
【0017】
複数の半導体デバイスの1つまたはいくつかは、トランジスタ、ダイオードまたはバラクタであってよい。そして制御器は、アレイの共鳴周波数を変えるために、各トランジスタまたは各バラクタのバイアス電圧を制御するように構成された可変DC電圧供給器を備えてもよい。従って可変DC電圧供給器は、半導体デバイスが順バイアスされているとき半導体デバイスの導電状態を決定し、半導体デバイスが逆バイアスされているとき半導体デバイスのキャパシタンスを決定することができる。可変DC電圧供給器は、DC電源からのDC電圧を受信し、トランジスタまたはバラクタに可変DC電圧を供給するように構成されたポテンショメータであってもよい。
【0018】
各半導体デバイスは、MOSFETまたはダイオードであってもよい。すべての半導体デバイスが同じタイプであってもよいし、複数の半導体デバイスの中に互いに異なるものがあってもよい。
【0019】
各導電部品は、誘電体材料によって支持されてもよい。誘電体材料は、導電部品同士が(位置および方向に関して)互いに動かないように、導電部品を支えてもよい。例えば導電部品は、誘電体材料内に埋め込まれてもよいし、誘電体材料の表面上に固定されてもよい。
【0020】
各導電部品は、非磁性金属から作られてもよい。例えば非磁性金属は、1テスラ以上3テスラ未満または7テスラまでの磁場に置かれたとき安全であるのに十分なほど非磁性であってよい。例えば、典型的には相当量の鉄またはニッケルを含む金属材料は不適であるのに対し、銅、真鍮、銀などは好適である。
【0021】
本開示の別の態様のMRシステムは、画像化対象を受け入れるように構成された画像化領域と、画像化領域内に静磁場を生成するように構成された磁場生成器と、を備える。生成される静磁場は、傾斜磁場であってもよい。MRシステムは、画像化対象にRF信号を照射するように構成されたRF送信器と、画像化対象からの帰還RF信号を受信するように構成されたRF受信器と、をさらに備える。MRシステムは、前述のMRシステム内で、RF信号の磁場を集中させるデバイスをさらに備える。このデバイスは、RF信号のRF周波数に合致する共鳴周波数を持ってもよい。RF信号は、各導電部品の各寸法より長い波長を持つ。このデバイスは、画像化領域とRF送信器またはRF受信器のいずれか(もしくはその両方)との間に配置される。このようにしてデバイスは、RF信号を受信する画像化領域内で、電場と磁場との間でエネルギーを再分布することができる。従ってデバイスは、画像化対象が置かれる画像化領域のすべてまたは一部にわたって、RF信号の磁場を局所的に強めてもよい。代替的または追加的に、デバイスは、RF受信器で、帰還RF信号の磁場を強めてもよい。
【0022】
システムは、RF送信器を制御するように構成された送信制御器をさらに備えてもよい。送信制御器は、RF信号の周波数、パルス持続時間またはパワー、あるいはRF送信器によって定められるその他の任意のパラメータを制御してもよい。デバイスの制御器(これは、デバイス内で各半導体デバイスのバイアス電圧を制御するように配置される)は、RF信号の送信に適合するように半導体デバイスのバイアス電圧を変えるために、送信制御器からの制御信号を受信するように構成されてもよい。例えば制御器は、RF信号が送信中であることを制御信号が示すとき「導電状態」とし、RF信号が送信中でないことを制御信号が示すとき「非導通状態」とするように半導体デバイスを制御してもよい。あるいはその逆でもよい。制御器は、送信制御器からの制御信号を無線で受信してもよい。
【0023】
本開示の別の態様の方法は、MRシステム内の画像化対象にRF信号の磁場を集中させる方法である。この方法は、アレイ内に配置された複数の導電部品を備えるデバイスを画像化対象の近辺に置くステップを備える。アレイは、各導電部品の長さより長いRF波長を持つRF信号を受信するときに、共鳴RF周波数におけるRF放射の電場と磁場との間でエネルギーを再分布するように構成される。導電部品およびアレイは、前述のMRシステム内でRF信号の磁場を集中させるデバイスに関して説明したものであってよい。この方法は、導電部品および画像化対象にRF信号を照射するステップを備える。RF信号は、画像化対象により帰還RF信号を生じさせる。この方法は、対象を画像化するために、帰還RF信号を受信するステップを備える。この方法は、導電部品の共鳴周波数を変えるために、導電部品に接続された複数の半導体デバイスの各々のバイアス電圧を制御するステップをさらに備える。
【0024】
複数の半導体デバイスのバイアス電圧を制御するステップは、導電部品および画像化対象にRF信号(「送信信号」とも呼ばれる)を照射するときは、画像化対象内でRF信号の磁場を集中させないものであってもよい。制御するステップはまた、導電部品および画像化対象から帰還RF信号を受信するときは、RF信号の磁場を集中させるものであってもよい。代替的に、複数の半導体デバイスのバイアス電圧を制御するステップは、導電部品および画像化対象から帰還RF信号を受信するときは、画像化対象内でRF信号の磁場を集中させないものであってもよい。あるいは複数の半導体デバイスのバイアス電圧を制御するステップは、導電部品および画像化対象にRF信号を照射するときは、画像化対象内でRF信号の磁場を集中させるものであってもよい。
【0025】
複数の半導体デバイスのバイアス電圧を制御するステップは、デバイスの共鳴周波数をRF信号周波数に調整するものであってもよい。例えば共鳴周波数は、信号周波数を変える画像化対象の誘電率および/または透磁率に応じて、RF信号となるように調整されてもよい。
【0026】
前述の方法におけるデバイスは、上記で説明した任意のデバイスであってよい。
【図面の簡単な説明】
【0027】
以下、図面を参照しながら、特定の実施の形態を例示により説明する。
図1】MRシステム内でRF信号の磁場を集中させるデバイスの等角図である。
図2図1のデバイスのスイッチ回路を示す図である。
図3図1のデバイスの制御回路を示す図である。
図4図1のデバイスのスイッチ回路を示す図である。
図5図1のデバイスのスイッチ回路を示す図である。
図6A】導電部品の3つの代替的な形状を示す図である。
図6B】導電部品の3つの代替的な形状を示す図である。
図6C】導電部品の3つの代替的な形状を示す図である。
図7】磁気共鳴システムを示す図である。
図8】MRシステム内で画像化対象のRF信号の磁場を集中させる方法を示す図である。
【発明を実施するための形態】
【0028】
全体を通して本開示は、RF場を再分布させ、ある領域(例えば、MRIシステム内で診断を受ける患者の近辺の領域)に入射するRF信号の磁場を拡大するように構成された、調整可能なデバイスに関する。
デバイスがRF磁場を拡大するときの共鳴周波数は、入射RF信号の周波数に(または入射RF信号の周波数から)調整することができる。これによりデバイスは、MRI RF信号が連続する間、選択的に、有利な回数のみ動作する。
【0029】
MRI場集中デバイスの概論
図1を参照すると、MRIシステム内でRF信号の磁場を集中させるのに適したデバイス10は、アレイ14に配置された複数のワイヤ12を備える。ワイヤ12は、誘電体層16によって支持される。これらのワイヤは細長い導電体部品であり、第1の方向に幅方向および高さ方向より大分長い長さを持つ。これらのワイヤは、非磁性金属または非鉄金属で作られる。ワイヤ12の各縦軸は、実質的に互いに平行である。
【0030】
ワイヤ12は、2次元の周期的アレイ14で構成される。アレイ14は、デバイス10の高さおよび幅に沿った2次元方向に、間隔を置いて均等に配置されたワイヤ12を備える。図1に示されるように、アレイ14は、14本のワイヤ12からなる2つの列を備える。ワイヤ12のアレイ14は、誘電体層16内に埋め込まれる。誘電体層16は、ワイヤ12をアレイ内に支持し、ワイヤ12の各々を互いに配置する。
【0031】
アレイ14およびアレイのワイヤ12は、RF信号がアレイ14に入射したとき、当該ワイヤ12が、各ワイヤ12の長さ方向の中点の近辺でRF電磁場を変化させるように配置される。
【0032】
場の再分布現象を生成するために、各ワイヤの長さは、MRIシステムの動作周波数における第1固有モードに関するファブリ-ペロー条件を満足するように選択される。このときのワイヤの長さが動作周波数の媒体内におけるほぼ半波長に相当することから、この条件は半波長共鳴としても知られる。例えば1.5Tの機器の場合、動作周波数は63.8MHzである。デバイス10のワイヤ12の長さは、以下の式を用いて選ぶことができる。
【数1】
ここで、εはワイヤ周辺の環境の誘電率、Lは各ワイヤの長さ、cは光速、fは周波数である。ワイヤの環境の誘電率は、主にワイヤが埋め込まれる物質の誘電率の影響を受けるが、他の近辺の物質の影響も受ける。比誘電率が81の媒体内の周波数が63.8MHzの場合、これは26.1cmのワイヤ長に相当する。これは、動作周波数(すなわち、デバイスが磁場を集中させるように構成されるときのRF信号の周波数)に相当する波長より短いことに注意する。この部品は細長いので、幅および高さもまたサブ波長である。与えられた周波数に関し、およその長さは式(1)に代えて、実験またはシミュレーションにより決定することもできる。
【0033】
本開示によれば、第1ファブリ-ペローモードに関し、最大となる磁場はデバイス10の中央部に局在化され、電場はワイヤ12の縁部近辺に局所化される。ワイヤ間の近接場相互カップリングに起因して、第1ファブリ-ペローモードは変化する。しかし、半波長共鳴周波数に関し、アレイのモード構造は単一のワイヤのモード構造に極めて近い。特に、磁場の最大値は中央付近に存在し、電場の最大値はワイヤ12の端部付近に局在化される。
【0034】
上記のデバイスは、対象の画像化のためのRF信号を改善するために、磁気共鳴(MR)システム(MRIシステムおよび磁気共鳴スペクトロスコピー(MRS)を含む)内で使うことができる。これは、画像化対象領域における磁場の増加によりSNRが増加し、当該領域における電場の減少によりSARが減少することによる。本明細書で開示される特定の実施の形態は主にMRIシステムの文脈で説明されるが、MRSシステムにも同様に適用可能である。
【0035】
図1のデバイスの構成は、磁場および電場を再分布するデバイスの特定の一例である。しかしこのデバイスには、同等の仕方で動作する多くの変形がある。例えば、分割リング、ループ、スイスロール状、曲線状ワイヤといった、ワイヤ以外の導電体部品が使われてもよい。代替的な構成では、周期的なアレイに代えて、非周期的な(すなわち、不規則な間隔で配置された)アレイが使われてもよい。さらに、図1に示される2次元のアレイに代えて、1次元または3次元のアレイが使われてもよい。設計上、特定の応用からの要求に応じて、アレイは、場の再分布現象を生成するのに必要な数より多いまたは少ない導電体部品を備えてもよい。
【0036】
デバイス10による場の再分布現象の上記の説明は第1ファブリ-ペローモードに相当する半波長共鳴に沿って説明したが、MRIシステム内でRF信号の磁場を集中させるために、デバイスを調整または離調するための開示された構成は、任意の場の再分布メカニズムに当てはまる。例えば導電体部品の他のアレイが、特定の動作周波数で入射する放射をフォーカスまたは操作してもよい。入射放射に特定の操作を行うためにアレイ状に配置されたサブ波長の導電体部品の集合は、一般にメタマテリアルとして知られる。本明細書で開示された原理は、MRシステム内のMR信号の磁場を集中させるために使われる任意のメタマテリアルに適用できる。
【0037】
RF信号の磁場を集中させるための調整可能なデバイス
デバイス10(または、MRシステム内のMR信号の磁場を集中させるための他のデバイス)の共鳴周波数を変えるために、デバイス10には、以下で図2を参照して説明される構成が与えられる。
【0038】
図2を参照すると、デバイス10はスイッチ回路20を備える。スイッチ回路20は、ワイヤ12に接続された複数のトランジスタ22を含む。トランジスタ22の各々は、隣接するワイヤのペアの間に接続される。各トランジスタ22のソース22Sは当該ペアの一方に接続され、ドレイン22Dは当該ペアの他方に接続される。例えば図1に示される2つの導電体部品の列を持つアレイでは、トランジスタ22の各々は、同じ列内で隣接するワイヤ12の間に接続される。図2は模式的であり、すべてのトランジスタを示すものではない。これらのトランジスタに関し、全部でN個のワイヤのペアを持つアレイ14の第1のペアに接続されるものは「1」、第2のペアに接続されるものは「2」といったように番号付けがされる。他の構成では、ワイヤ12の各々は、2個以上のトランジスタを介して他のワイヤに接続されてもよい。この場合すべてのワイヤ12は、トランジスタを介して互いに電気的に接続される。
【0039】
制御回路で生成されたクロック信号24が、各トランジスタ22のゲート22Gに与えられ、各トランジスタ22のソース22Sにインダクタ26を介して与えられる。クロック信号は、各トランジスタ22のゲート電圧を決定し、従って当該トランジスタのソース-ドレイン接続の導電性を決定する。クロック信号24がオンのとき、各トランジスタはソースとドレインとの間が接続される。その結果、隣接するワイヤ12の間は接続されたペアで短絡され、デバイスの共鳴周波数が変わる。例えば、動作周波数でトランジスタソース22Sとワイヤ12とを互いに絶縁するために、インダクタ26が含まれる。これは、動作周波数(例えば63.8MHz)では高インピーダンスを持ち、バイアスを可能とするためのDC電圧に関しては低インピーダンスを持つ。従ってこのインダクタのインダクタンスは、動作周波数でワイヤを絶縁するのに十分なほど大きく、10kHzオーダの周波数の単一クロック供給でトランジスタを起動するのに十分なほど小さい。各インダクタの典型的なインダクタンスは3.3μHである。各トランジスタは、クロック信号24に関し、ソースに与えられるポテンシャルよりも高いポテンシャルがゲートに与えられることにより、順バイアスされる。ゲート電圧が閾値電圧(Vth)に達すると、トランジスタは、ドレインとソースとの間に非常に低いインピーダンスを生む。一方、ゲート電圧が閾値電圧より低いときは、トランジスタは、ドレインとソースとの間に高いインピーダンスを持つ。トランジスタ22の各々は、MOSFET(金属酸化膜半導体電界効果トランジスタ)または他の任意の種類のトランジスタであってよい。同様に、トランジスタに代えて、バイアス電圧によって電気的に制御可能な導電状態を持つ任意の半導体デバイス、例えばダイオードが使われてもよい。アノードとカソードとの間にポテンシャルを与えることにより、クロック信号24を用いて、ダイオードの導電状態を制御することができる。
【0040】
スイッチ回路20は、デバイス10の誘電体層16の中で(または上で)支持されてもよい。代替的に、スイッチ回路20の一部(例えばトランジスタ22)が、誘電体層によって支持され、1つ以上の電気的接点を介してクロック信号に接続されてよい。
【0041】
図3を参照すると、第1の構成では、クロック信号24は、制御回路30を用いて生成される。制御回路30は、RF信号31を受信し、当該RF信号31をクロック信号24に変換する。制御信号30は、RF信号を受信するためのインダクタ32を有する。インダクタ32は、比較器34の入力に電気的に接続される。比較器34は、インダクタ32で受信した弱い正弦波を、レール・ツー・レール方形波に変換する(すなわち、参照電圧と比較することにより、アナログ信号をデジタル信号に変換する)。比較器は、MRIシステムの動作周波数(ラーモア周波数)と等しい速さで(またはそれより速く)RF信号を変換するのに十分なほど速い応答時間を持つ。比較器34の出力は、デジタル化されたRF信号をより低周波数に変換するように構成された周波数分割器36の入力に電気的に接続される。約64MHzのRF信号31適した周波数分割器36は、デジタル化されたRF信号31を数10kHzまたは数100kHz中間信号に変換する非同期カウンタ(8-12ビット)である。周波数分割器36の出力は、周波数分割器36からの信号を、マルチバイブレータ38のRC時定数により定まる特定の周波数の組にまでさらにダウンコンバートするように構成されたマルチバイブレータ38に電気的に接続される。好適なマルチバイブレータ38は、1kHzから10kHzの固定的な出力周波数と、80%より大きなデューティサイクルを持つ単安定マルチバイブレータである。言い換えれば単安定マルチバイブレータ38は入力信号を受信するが、1サイクルの80%以上の時間で比較的高い(オン)出力電圧を持ち、それ以外の時間で比較的低い(オフ)出力電圧を持つ。1サイクルの期間(すなわち、出力の立ち上がりのエッジ間の時間)は、固定された出力周波数で分割されることによって与えられる。デューティサイクルの値は、マルチバイブレータを特徴づけるRC回路によって定まる。マルチバイブレータ38の出力は、前述のスイッチ回路に供給されるクロック信号24である。
【0042】
図3を参照して説明した構成は、制御回路30の一例である。しかし、RF信号31からクロック信号を生成するために、別のおよび/または追加的な部品が含まれてもよい。例えばインダクタ32に代えて、アンテナその他の受信部品が使われてもよい。同様に、比較器34、周波数分割器36およびマルチバイブレータ38以外の部品であって、アナログRF信号31をより低周波数のデジタルクロック信号に変換する回路を提供できるものが存在する。代替的に、RF信号をデジタルクロック信号に変換しない制御回路が使われてもよい。例えばアナログ信号を維持し、2つのトランジスタ(その一方は、アナログ信号の各半サイクルのためのもの)を持つものである。RF信号周波数が回路部品の動作可能な周波数とどれだけ異なるかによっては、代替的に、制御回路はRF信号を低周波数に変換しなくてもよい。
【0043】
図4を参照すると、第2の構成では、ポテンショメータ44が、トランジスタ22のバイアス電圧を決定する信号を制御する。今度はこれが、導電部品間のトランジスタのキャパシタンスと、アレイ14の共鳴周波数を決定する。従って、図3に示される制御回路30に代えて、ポテンショメータ44が、図2に示されるスイッチ回路20の制御器として機能する。ポテンショメータ44を含むこととは別に、スイッチ回路20は、図2に示すものであり、任意の変形を有してもよい。ポテンショメータ44の一端はトランジスタの各ゲート22Gに接続され、他端はインダクタ26を介してトランジスタの各ソース22Sに接続される。ポテンショメータ44の高ポテンシャル端は、トランジスタ22を逆バイアスするために、トランジスタのソース22Sに適用される。ポテンショメータ44にDC電力が入力されることにより、ポテンショメータ44の制御された抵抗がトランジスタ22のゲート電圧を制御する。従って、DC電力入力を与えられたポテンショメータ44は、可変DC電圧供給器として機能する。ポテンショメータ44に代えて、代替的な可変DC電圧供給器が使われてもよい。トランジスタが逆バイアスされた場合、ゲート電圧を変えることによりバイアス電圧が変わるので、各トランジスタのドレインとソースとの間のキャパシタンスが変わる。これは今度は、トランジスタのインピーダンス(すなわち導電状態)を変える。このようにポテンショメータ44は、前述のトランジスタの導電状態を制御する。従ってポテンショメータ44の抵抗設定を制御することにより、デバイス10のアレイ14内のワイヤ12のキャパシタンスが制御され、これによりデバイス10の共鳴周波数が制御される。結論として、ポテンショメータ44の抵抗設定を変えることにより、デバイス10がMRIシステム内でRF信号の磁場を集中させるときの周波数を調整または離調することができる。ポテンショメータ44自体は、MRIシステム内でRF信号を受信する制御回路によって制御することができる。従って、RF信号が存在するか否かに応じて、あるいはRF信号の強さに応じて、デバイス10を自動的に調整/離調することができる。代替的に、ポテンショメータ44は、MRIシステム内の他の部品からの制御信号を用いて、無線でまたは電気的接続を介して、制御することができる。例えばMRIシステムは、RF受信コイルの離調をモニタし、デバイス10の共鳴周波数がラーモア周波数に戻るように調整するためにポテンショメータ44を制御してもよい。
【0044】
前述のスイッチ回路20は、デバイス10のアレイ14の共鳴周波数を変えるために、ワイヤ12間の短絡を使う。しかしこれは、別の方法によっても実現できる。図5を参照すると、同じワイヤ12のアレイ14がワイヤエクステンション52を備える。ワイヤエクステンション52は、ワイヤ12と平行に配置される。各ワイヤは、各ワイヤ12の端部に配置されたワイヤエクステンション52を有する。ワイヤエクステンション52は、ワイヤ12と同じ縦軸を持つ。図5に示されるように、複数のワイヤエクステンション52が、各ワイヤ12の端部から列をなして配置される。しかしいくつかの構成では、ワイヤエクステンション52はワイヤ12ごとに1本であってもよい。ワイヤエクステンション52は、対応するワイヤ12と同じ幅および高さを持ち、同じ材料から作られる。しかしワイヤエクステンション52の長さは、ワイヤ12より短くてもよい。例えばワイヤエクステンション52の長さは、ワイヤの長さの10分の1であってもよい。しかし長さの比は、デバイスが要求する調整範囲の広さに依存するだろう。図5は理解を助けるための模式図であり、ワイヤ12とワイヤエクステンション52との相対的な長さは典型的なものにすぎない。さらに図5は、アレイ14に接続された、デバイス10のすべてのトランジスタを示してはいない。
【0045】
各トランジスタは、ワイヤ12と対応する第1のワイヤエクステンション52との間に接続される。このとき、ソース22Sはワイヤ12に接続され、ドレイン22Dは対応する第1のワイヤエクステンション52に接続される。追加的なトランジスタが、第1のワイヤエクステンション52と、同じワイヤ12に対応する第2のワイヤエクステンション52との間に接続される。このとき、ソース22Sは第1のワイヤエクステンション52に接続され、ドレイン22Dは対応する第2のワイヤエクステンション52に接続される。従ってワイヤ12は、各トランジスタによってワイヤエクステンション52に接続される。しかしワイヤ12およびワイヤエクステンション52の群は、他のワイヤ12およびそれに対応するワイヤエクステンション52からは絶縁される。
【0046】
スイッチ回路20の構成について図2を参照して説明したように、クロック信号24(制御回路30からの、またはポテンショメータ44を介してDC電源からの)は、各トランジスタ22のゲート22Gに、および各インダクタ26を介して各トランジスタのソース22Sに与えられる。クロック信号は、各トランジスタ22のゲート電圧を決定し、これによってトランジスタのソース-ドレイン接続の導電性を決定する。クロック信号24がオンのとき、各トランジスタのソースとドレインとの間は導電するので、各グループの各ワイヤ12と各ワイヤエクステンション52との間は短絡する。これによりワイヤ12の有効長が、ワイヤ12の長さと接続されたワイヤエクステンション52の長さとの和に変わる。デバイス10の共鳴周波数はワイヤ12の有効長に依存するので、結果として、デバイス10の共鳴周波数がシフトする。例えばワイヤ12は式(1)で定まる長さ(63.8MHzの周波数での概ね半波長)を持ってもよいが、トランジスタが導電状態のときは有効長の変化により共鳴周波数は約5MHzシフトする。共鳴周波数のシフト量は、異なる複数のパラメータ(例えば、トランジスタの特性、ワイヤの長さ、ワイヤ周辺の環境など)に依存する。従ってクロック信号は、どの周波数で、本デバイスがエネルギーをRF場の電場と磁場との間で再分布するかを制御する。そしてこれを、MRIシステムの動作周波数に/動作周波数から、調整/離調させることができる。
【0047】
図5に示されるスイッチ回路20は、図1-4の任意の変形(すなわち任意のタイプのトランジスタ、あるいはその他の半導体デバイスであって調整可能な導電状態またはバイアス電圧で決まるキャパシタンス状態を有するもの)を備えてもよい。同様に図5に示されるスイッチ回路20は、任意のタイプのクロック信号、任意の数のワイヤ12、等を備えてもよい。
【0048】
図6を参照すると、実施の形態のデバイス、システムおよび方法は、図1-5に示されるワイヤ12以外の導電部品のアレイにも適合する。図6A-Cを参照すると、いくつかの実施の形態では、ワイヤ12のアレイに代えて、RF信号の磁場を集中させるデバイスは、分割リング状アレイ61、スイスロール状アレイ63または分割ループ状アレイ67を備える。図2に示されるスイッチ回路20は、ワイヤ11その他の導電部品の場合と同様の方法で、分割リング状アレイ、スイスロール状アレイまたは分割ループ状アレイに使われてもよい。
【0049】
図6Aを参照すると、分割リング状アレイ61の各々は、当該分割リング状アレイ61の2つの端部の間(「分割部」)をまたいで電気的に接続された分割リングキャパシタ62を備える。トランジスタ22が、分割リングキャパシタ62のそれぞれの側に接続される。このとき、トランジスタのバイアス電圧が、分割リング状アレイ61の共鳴周波数を制御する。
【0050】
図6Bを参照すると、スイスロール状アレイ63は、導電性ワインディング65を備えた主軸64を備える。導電性ワインディング65は、主軸64の周囲を取り巻く。導電性ワインディング65は、主軸64の周囲を取り巻く複数の層を形成する。スイスロール状キャパシタ66が、主軸64と導電性ワインディング65の外部層との間に接続される。トランジスタ22が、スイスロール状キャパシタ66に接続される。トランジスタ22のバイアス電圧が、スイスロール状アレイ63の共鳴周波数を制御する。
【0051】
図6Cを参照すると、分割ループ状アレイ67は不完全ループを備える。この不完全ループは、当該不完全ループの2箇所に「分割部」を有する。分割ループ状アレイ67は、当該分割ループ状アレイ67の2つの端部の間(「分割部」)をまたいで電気的に接続された分割ループキャパシタ68を備える。トランジスタ22が、分割ループ状アレイ67に接続される。トランジスタ22のバイアス電圧が、分割ループ状アレイ67の共鳴周波数を制御する。代替的に導電部品のアレイが、曲線状ワイヤを備えてもよい。曲線状ワイヤは、図1に記載されたワイヤ12の代わりに配置されるが、ワイヤが曲線上である点でワイヤ12と異なる。
【0052】
代替的な導電部品(すなわち、分割リング状アレイ61、スイスロール状アレイ63、分割ループ状アレイ67、曲線状ワイヤなど)を持つ構成では、トランジスタは、図2-4に示される制御回路30内に含まれる。同様にこれらの構成は、図3に示される制御回路、または図4―5に示されるポテンショメータ44によって制御される。導電部品のアレイ14内の各トランジスタ22のゲート電圧および/またはバイアス電圧が各導電部品の共鳴周波数を制御するので、前述の任意の形状を有する導電部品を備えたデバイスの共鳴周波数を調整または離調するために、対応する方法を使うことができる。前述の技術は、さらなる導電部品の形状に適用することもできる。
【0053】
MRIシステム
図7を参照して、前述のデバイス10を備えたMRIシステムを説明する。
【0054】
MRIシステム70は、画像化対象(例えば、人体71Aまたは人間の手足71B)を受け入れるように構成された画像化領域71を備える。第1コイル72Aが、画像化領域71内に静磁場を生成する。動作中に傾斜磁場コイル72Bが、画像化領域71内で、静磁場に対する傾斜磁場を生成する。第1コイル72Aと傾斜磁場コイル72Bとは、ともに磁場生成器72である。システムはさらに、対象にRF信号(図示せず)を照射するためのRF送信コイル73を備える。RF送信コイル73は、RF信号をパルスとして伝え、パルス間に遅延を持たせるように構成される。この遅延の間に帰還RF信号が受信される。画像化対象を支持するために、テーブル74が、画像化領域71内に配置される。MRI前述のシステム70内のRF信号の磁場を集中させるデバイス10が、画像化領域71内における画像化対象の近辺に、または画像化対象の特定のターゲット領域75の近辺に配置される。このデバイスは、RF送信コイル73と対象との間に配置される。従って、RF信号周波数に調整されると、デバイス10は、RF送信コイル73からのRF信号の磁場を、ターゲット領域75の対象に集中させる。これによりSNRが向上する。前述のようにこれは、RF信号の電場と磁場との間でエネルギーを再分布することによる。すなわちこれは、磁場をターゲット領域75で増加させ、SARを低下させる電場をターゲット領域75で減少させるものである。
【0055】
RF送信コイル73はまた、RF受信器としても機能する。これにより、対象を画像化するために、対象からの帰還信号が記録される。代替的にテーブル74は、RF受信器として機能する専用コイル(図示せず)を備えてもよい。この専用コイルは、対象を画像化するために帰還信号を受信する。いずれの構成においても、対象とRF受信器(RF信号に調整された)との間にデバイス10が配置されると、帰還信号が対象からRF受信器に送られたとき、デバイス10が当該帰還信号の磁場を集中させる。
【0056】
デバイス10は、テーブル74の上に固定されてもよいし、テーブル74内に組み込まれてもよい。あるいはデバイス10は、画像化対象が画像化領域内に入る前にテーブル74の上に設置されるマットであってもよい。代替的にデバイス10は、対象の上に配置されてもよい(例えば患者が着る衣服の中で)。
【0057】
前述のように、スイッチ回路30によって実現される調整/離調により、デバイス10は、送信RF信号または帰還信号のいずれか一方の磁場を選択的に集中させることができる。
【0058】
RF信号の磁場を集中させるデバイスを制御する方法
図8を参照すると、前述のMRIシステム内で画像化対象のRF信号の磁場を集中させる方法80は、MRIシステム70で画像化対象の近辺にデバイス10を置くステップを備える。デバイス10およびMRIシステム70は、図1-7に示されるものである。デバイス10の共鳴周波数は、MRIシステムの動作周波数に概ね合致するように選ばれる。デバイス10を画像化対象の近辺に置くステップは、デバイス10を、MRIシステム70の画像化領域内で、テーブル74の上に置くステップを含んでもよい。代替的にデバイスは、MRIシステム内にすでに置かれていてもよい。この場合デバイスを対象の近辺に置くステップは、画像化対象を、MRIシステム内であってデバイス10の近辺に運ぶステップを伴う。一例として図7を参照すると、デバイス10は、MRIシステムの画像化領域71の外部であって、人体71A(すなわち患者)の画像化されるべき膝の部分でテーブル74の上に置かれる。その後患者は、テーブル74の上に寝かされる。画像化プロセスが開始される前に、デバイス10の上に置かれた画像化対象の膝が、患者およびデバイス10とともに画像化領域内に置かれる。MRIシステムを使って画像化できる人体部位の他の例には、手首、脊髄等がある。実際にはMRIシステムは、体全体を画像化することもできる。MRIプロセスを開始するために、既知のMRI技術に従って、画像化領域内に静磁場が生成される。選択的に静磁場は、傾斜磁場を備えてもよい。
【0059】
方法80は、デバイスおよび対象をRF送信コイル73からのRF信号で照射するステップ82と、対象を画像化するために、対象からの帰還RF信号を受信するステップ83と、を備える。照射するステップは、RF信号をRFパルスとして送信するステップを備える。RF信号パルスは、デバイス10を介して画像化対象の画像化領域75に送られる。デバイスがRF信号パルスの周波数に調整されている場合、デバイスは、磁場を増加させ電場を減少させることにより、RF信号をターゲット領域75内に集中させる。ターゲット領域75に衝突した後、RF信号パルスは、帰還RF信号としてターゲット領域75から送信される。帰還RF信号は、再びデバイス10を通過し、検出とRFターゲット領域75の画像化のためにRF送信コイル73に向かう。デバイスがまだ帰還RF信号の周波数に調整されていれば、デバイスは、ターゲット領域75からの磁場を増加させ電場を減少させることにより、RF信号を集中させる。
【0060】
方法80は、複数のワイヤ12の共鳴周波数を変えるために、アレイ14内のワイヤ12に接続された複数のトランジスタ22のバイアス電圧を制御するステップ84を備える。例えば共鳴周波数は、MRI送信/受信シーケンスのある周期でRF信号に実質的に等しいものに変わってもよく、MRI送信/受信シーケンスの別の周期でRF信号と実質的に異なるものに再び変わってもよい。
【0061】
第1の代替例では、前述の調整可能なデバイス10は、RF送信コイル73によってRF信号が送信される間、デバイス10の共鳴周波数がRF信号31の周波数から離調されるように制御される。その後、画像化対象からのRF信号が受信されている間、デバイスの共鳴周波数は帰還RF信号の周波数に調整される。これは、前述の図2および3に示されるデバイスによって実行される。ここでスイッチ回路20は、RF信号31を受信するためのインダクタ32を持つ制御回路30によって制御される。RF送信コイル73によりRF信号が送信されている間、RF信号31がインダクタ32によって受信されているとき、これは、変換器34、36、38によってクロック信号24に変換される。クロック信号24は、ゲート電圧22Gを上げ、ワイヤ12を短絡させる。従って共鳴周波数は、通常の動作周波数から外れるように調整される。このとき、デバイス10のワイヤ12は磁場と電場との間のエネルギーの再分布を実行しない。MRIシステムの送信期間におけるデバイス10のこの離調の利点は、望まれない強い場が画像化対象に生成されることを防げることにある。例えば、RF送信中にデバイスを離調することにより、画像化対象内のSARを低減することができる。なぜなら、対象のターゲット領域75内の電場が減少するからである。
【0062】
RF信号31のパルスの送信が終わると、インダクタは信号を受信しなくなり、デジタル信号はクロック信号24を生成しなくなる。従ってトランジスタ22のゲート電圧はゼロになり(すなわち、バイアス電圧が低下し)、ワイヤ12は電気的に絶縁される。これは、デバイス10の共鳴周波数がMRIシステムの動作周波数に再び調整されることを意味する。従って、対象がRF信号を帰還RFパルスとして送信すると、デバイスは前述の信号の増幅を行う。これによりSNRが改善される。さらに、送信期間中の自動離調により高磁場MRIシステムを使うことができるので、デバイス10の磁場の集中によりSNRが改善される前であっても、帰還RF信号は高品質なものとなる。従って、ここに開示した実施の形態のデバイス及び方法は、MRIの画像品質を改善することができる、あるいはより短時間で同等の画像品質を実現することができる。
【0063】
さらなる注意点として、帰還RF信号自体は、ワイヤ12を短絡させるためにスイッチ回路20を起動しないということがある。なぜなら帰還RF信号はあまりに低パワーであるため、ワイヤを短絡するのに十分な程度にトランジスタ22のゲート電圧を上げることができるクロック信号を生成できないからである。信号がクロック信号を起動できる閾値は、前述の図3に示される比較器34の参照電圧を用いて設定することができる。受信された信号が、比較器の入力が参照電圧を超えないような低い電圧を持つ場合、比較器の出力は常にゼロでありクロック信号は生成されない。
【0064】
第1の代替例を実行するための別の方法は、前述の図5に示されるワイヤエクステンション52と図4に示される制御回路を使う。この場合、調整可能なデバイス10は、RF信号の送信中に離調され、対象からの帰還信号に対して再調整される。インダクタ32がRF信号31を受信するとき、トランジスタのゲート電圧はクロック信号24によって上げられる。各ワイヤ12の有効長は、接続されたワイヤエクステンション52により増加する。従って、パルス送信期間中は、デバイスの共鳴周波数はMRIシステムの動作周波数から離調され、デバイスは画像化対象内のRFパルスの磁場を集中させない。上記と同様に、送信RF信号パルスが止まると、ワイヤ12の有効長はMRIシステムの動作周波数に相当する波長の約半分に戻る。すなわち、帰還RF信号の共鳴周波数の基準が満たされる。従ってデバイスは、帰還RF信号の磁場を集中するように再調整される。
【0065】
第1の代替例を実行するための別の方法は、ポテンショメータ44を、前述の図4に示される制御回路として使う。この場合、調整可能なデバイス10は、RF信号の送信中に離調され、対象からの帰還信号に対して再調整される。ポテンショメータ44は、共鳴周波数を自由に調整/離調することができる。従って、ポテンショメータへの入力により、調整の正確なタイミングと範囲とを決定することができる。これは、図3に示される受動的制御回路か、MRIシステムの制御器からの制御信号のいずれかを使うことができる。例えば、RF信号の送信タイミングと、デバイス10の離調および帰還RF信号のためのデバイスの再調整のタイミングとを整合させるために、RFコイル送信制御器から制御信号を送ることができる。従ってこれにより、画像化対象からの帰還RF信号を受信中にデバイス10による増幅の利益を得つつ、デバイス10によって増幅された強い場から対象を保護するための能動的な方法を与えることができる。
【0066】
第2の代替例では、前述の調整可能なデバイス10は、RF送信コイル73によってRF信号を送信中に、デバイス10の共鳴周波数がRF信号31に調整されるように制御される。その後デバイスの共鳴周波数は、画像化対象からのRF信号を受信中に、帰還RF信号の周波数から離調される。これは、前述の図2および3に示されるデバイスによって実行することができる。この場合、スイッチ回路20は、RF信号31を受信するためのインダクタ32を持つ制御回路30によって制御される。しかし、調整された期間および離調された期間を入れ替えるために、制御回路は逆に配置される。これにより、クロック信号は、RF信号が受信されていないときに生成される。逆も然りである。これは、2入力1出力(2:1)多重化器(この多重化器は、第2入力論理が「0」のとき参照クロック信号を出力し、第2入力論理が「1」のとき「0」を出力するように構成される)の第1の入力に参照信号を使うことによって実現できる。第2入力選択論理は、再起動可能な単安定マルチバイブレータ(例えば、前述の図3に示される制御回路30に従うもの)によって生成される。代替的に第2入力は、マイクロ制御器からの信号によって制御されてもよい。この場合、当該信号はパルスを備える。このパルスは、送信コイルから受信されるRF信号が存在するとき、一定の持続時間とデューティサイクルを持つ。そしてこのパルスは、送信コイルから受信されるRF信号が存在しないとき、ゼロである。この逆制御回路30では、RF送信コイル73によるRF信号の送信中、RF信号31がインダクタ32によって受信されるとき、スイッチ回路20にクロック信号24が送信されない。
【0067】
しかし、RF信号が止まると、クロック信号(例えば、参照クロック信号)は、ゲート電圧22Gを上げるスイッチ回路に送られる。これによりバイアス電圧が上昇し、ワイヤ12が短絡する。従って共鳴周波数は、通常の動作周波数から外れてシフトする。そしてデバイス10のワイヤ12は、帰還信号のために、磁場と電場との間でのエネルギーの再分布を行わない。MRIシステムの帰還期間におけるデバイス10のこの離調の利点は、専用の受信コイルを使用した場合、この受信コイルはデバイスの集中現象によって最適されなくてもよい点にある。この場合、専用の受信回路は、RF信号の磁場の集中がなくても、より良好に動作することができる。従って、帰還信号のためにデバイスを離調することにより、受信コイルの性能を向上させることができる。
【0068】
第2の代替例を実行するための別の方法は、前述の図5に示されるワイヤエクステンション52および図4に示される制御回路を使う。この場合、調整可能はデバイス10は、RF信号を送信中、RF信号周波数に調整され、対象からの帰還信号のために離調される。例えば、(ワイヤ12の単独の長さでなく)ワイヤ12の長さとワイヤエクステンション52の長さとの和である有効長は、RF信号周波数の共鳴条件を満たすように設定することができる。インダクタ32がRF信号を受信するとき、トランジスタのゲート電圧はクロック信号24によって上げられる。このとき各ワイヤ12の有効長は、接続されたワイヤエクステンション52によって延長される。従ってパルス送信期間中、デバイスの共鳴周波数はMRIシステムの動作周波数に調整され、デバイスはRFパルスの磁場を対象内に集中させる。前述と同様に、RF信号パルスの送信が止まると、ワイヤ12の有効長は、MRIシステム動作周波数に相当する波長の半分未満に戻る。すなわちワイヤ12の有効長は、帰還RF信号の共鳴周波数基準を満たさなくなる。従ってデバイスは、RF信号の磁場を集中させないように離調される。別の例では、ワイヤ12およびワイヤエクステンションの新たな長さを選択することに代えて、調整期間/離調期間を交換するために、前述の逆配置された制御回路を使うことができる。
【0069】
第2の代替例を実行するための別の方法は、クロック信号24を制御するために、前述の図4に示されるポテンショメータ44を使う。この場合、調整可能なデバイス10は、RF信号の送信中、RF信号周波数に調整され、対象からの帰還RF信号のために離調される。ポテンショメータは、共鳴周波数を自由に調整および離調することができる。従って、ポテンショメータへの入力により、調整の正確なタイミングと範囲とを決定することができる。これは、図3に示される受動的制御回路か、MRIシステムの制御器からの制御信号のいずれかを使うことができる。例えば、RF信号の送信タイミングと、デバイス10の調整および帰還RF信号のためのデバイスの再調整のタイミングとを整合させるために、RFコイル送信制御器から制御信号を送ることができる。従ってこれにより、磁場の集中が受信コイルにとって不利となる場合、専用の受信コイルを最適化するための能動的な方法を与えることができる。
【0070】
第3の代替例では、調整可能なデバイス10の共鳴周波数を制御し、共鳴周波数がMRI信号のRF信号の動作周波数と実質的に等しいように保つことができる。例えばこれを実現する1つの方法は、前述の図2に示されるポテンショメータ44を使う。ポテンショメータ44の抵抗値は、制御することができる。従ってDC電源は、トランジスタ22に、調整可能範囲に任意の可変な値を持つゲート電圧を供給することができる。ゲート電圧(従って、バイアス電圧)の値を変化させることにより、トランジスタのキャパシタンスを変化させることができる。これは、逆バイアスが掛かったとき、トランジスタのキャパシタンスがバイアス電圧に依存するためである。バイアス電圧は、ゲート電圧によって制御することができる。これは今度は、デバイス10が持つことのできる共鳴周波数の調整可能範囲を生む。従って、ポテンショメータ44の連続的に可変な設定を共鳴周波数の中間値(すなわち、トランジスタが「導電」のときとも「非導電」のときとも異なる共鳴周波数の値)とすることができる。これにより、異なる画像化対象に応じて、デバイス10の共鳴周波数をMRIシステムの動作周波数に合致させることができるという利点が得られる。異なる画像化対象が異なると(すなわち、誘電率および/または透磁率が異なると)、RF送信コイル73の動作周波数およびデバイス10の共鳴周波数が影響を受ける。従って、動作周波数に合致するために、デバイス10の共鳴周波数を可調範囲で調整可能とすることにより、デバイス10およびMRIシステムの最適化が可能となる。
【0071】
第3の代替例を実行する(すなわち、共鳴周波数で可調範囲で調整する)ための別の方法は、前述の図5に示されるデバイス10を使う。デバイス10を調整可能とするために、各ワイヤ12に対応する複数のワイヤエクステンション52が配置される。第1のトランジスタが、各ワイヤ12と各第1のワイヤエクステンション52との間に配置される。そして第2のトランジスタが、各第2ワイヤエクステンション52と各第2ワイヤエクステンション52との間に配置される。実現可能な共鳴周波数の範囲を拡大するために、追加的なワイヤエクステンションとこれに対応するトランジスタが含まれてもよい。ワイヤ12の有効長を変えるために、第1のトランジスタおよび第2のトランジスタのゲート電圧は、独立にかつ連続的に制御可能である。例えば各トランジスタまたはトランジスタの群は、当該トランジスタのゲートとソースとの間にDC電力供給源を持ってもよい。代替的に、各トランジスタまたはトランジスタの群は、ゲート電圧を変えるための専用のポテンショメータを持ってもよい。第1のトランジスタおよび第2のトランジスタ22の両方が非導電状態にあるとき、ワイヤ12の長さが共鳴周波数を決定する。第1のトランジスタが導電状態にあり、第2のトランジスタが非導電状態にあるとき、ワイヤ12の長さと第1のワイヤエクステンションの長さの和が有効長を決定し、これにより異なる共鳴周波数が得られる。両方のトランジスタが導電状態にあるとき、ワイヤ12、第1のワイヤエクステンションおよび第2のワイヤエクステンションの長さの総和が有効長となり、これによりさらに異なる共鳴周波数が得られる。追加的なワイヤエクステンションとこれに対応するトランジスタがあれば、より広い範囲の共鳴周波数が得られる。
図1
図2
図3
図4
図5
図6A
図6B
図6C
図7
図8