IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ナイルワークスの特許一覧

特許7333947ドローン、ドローンの制御方法、および、ドローンの制御プログラム
<>
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図1
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図2
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図3
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図4
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図5
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図6
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図7
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図8
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図9
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図10
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図11
  • 特許-ドローン、ドローンの制御方法、および、ドローンの制御プログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-18
(45)【発行日】2023-08-28
(54)【発明の名称】ドローン、ドローンの制御方法、および、ドローンの制御プログラム
(51)【国際特許分類】
   B64C 27/08 20230101AFI20230821BHJP
   B64D 25/00 20060101ALI20230821BHJP
   B64D 27/24 20060101ALI20230821BHJP
   G05D 1/10 20060101ALI20230821BHJP
   G05D 1/02 20200101ALI20230821BHJP
   B64U 10/14 20230101ALI20230821BHJP
   B64U 20/94 20230101ALI20230821BHJP
   B64U 20/96 20230101ALI20230821BHJP
【FI】
B64C27/08
B64D25/00
B64D27/24
G05D1/10
G05D1/02 R
B64U10/14
B64U20/94
B64U20/96
【請求項の数】 8
(21)【出願番号】P 2019159605
(22)【出願日】2019-09-02
(65)【公開番号】P2021037816
(43)【公開日】2021-03-11
【審査請求日】2022-04-07
(73)【特許権者】
【識別番号】515019537
【氏名又は名称】株式会社ナイルワークス
(74)【代理人】
【識別番号】100103872
【弁理士】
【氏名又は名称】粕川 敏夫
(74)【代理人】
【識別番号】100139778
【弁理士】
【氏名又は名称】栗原 潔
(74)【代理人】
【識別番号】100149456
【弁理士】
【氏名又は名称】清水 喜幹
(74)【代理人】
【識別番号】100194238
【弁理士】
【氏名又は名称】狩生 咲
(72)【発明者】
【氏名】和氣 千大
(72)【発明者】
【氏名】柳下 洋
【審査官】山本 賢明
(56)【参考文献】
【文献】特表2018-511136(JP,A)
【文献】特許第6475898(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B64C 27/08
B64D 25/00
B64D 27/24
G05D 1/10
G05D 1/02
B64U 10/14
B64U 20/94
B64U 20/96
(57)【特許請求の範囲】
【請求項1】
筐体と、前記筐体の外部に配置される回転翼と、を有するドローンであって、
前記筐体内の温度を計測する温度計測部と、
前記温度が閾値以上であるか否かを判定する温度判定部と、
前記温度が前記閾値以上であるとき、着陸を含む退避行動をとらせる飛行制御部と、
着陸した状態において前記回転翼を回転させる冷却部と、
を備え、
前記冷却部は、前記温度計測部に計測される前記温度と前記閾値の差に基づいて、前記閾値との差が大きいほど前記回転翼の回転数を大きくする、
ドローン。
【請求項2】
前記冷却部は、前記ドローンが離陸しない回転数で前記回転翼を回転させる、
請求項1記載のドローン。
【請求項3】
前記退避行動は、その場で着陸する通常の着陸動作、最短の経路で直ちに所定の帰還地点まで移動する緊急帰還、および最短とは異なる経路で前記帰還地点まで移動する通常帰還の少なくとも1つを含む、
請求項1又は2記載のドローン。
【請求項4】
前記退避行動を開始した地点を中断地点として記憶する中断地点記憶部をさらに備え、
前記ドローンは、前記冷却部の稼働後、前記中断地点から飛行を再開する、
請求項1乃至3のいずれかに記載のドローン。
【請求項5】
前記温度計測部は、前記冷却部の稼働中および稼働後の少なくともいずれかにおいて前記温度を計測し、前記温度判定部は、当該温度が前記閾値以上であるか否か判定する、
請求項1乃至4のいずれかに記載のドローン。
【請求項6】
前記温度計測部は、着陸している状態において前記温度を計測し、当該温度が閾値以上であるとき、前記冷却部を稼働させ、
前記冷却部の稼働後、前記温度計測部は再度前記温度を計測し、当該温度が閾値以上であるときは前記冷却部を稼働させ、当該温度が前記閾値以下であるときは離陸をする、
請求項1乃至5のいずれかに記載のドローン。
【請求項7】
筐体と、前記筐体の外部に配置される回転翼と、を有するドローンの制御方法であって、
前記筐体内の温度を計測する温度計測ステップと、
前記温度が閾値以上であるか否かを判定する温度判定ステップと、
前記温度が前記閾値以上であるとき、前記ドローンに着陸を含む退避行動をとらせる飛行制御ステップと、
着陸した状態において前記回転翼を回転させる冷却ステップと、
を含み、
前記冷却ステップは、前記温度計測ステップに計測される前記温度と前記閾値の差に基づいて、前記閾値との差が大きいほど前記回転翼の回転数を大きくする、
ドローンの制御方法。
【請求項8】
筐体と、前記筐体の外部に配置される回転翼と、を有するドローンの制御プログラムであって、
前記筐体内の温度を計測する温度計測命令と、
前記温度が閾値以上であるか否かを判定する温度判定命令と、
前記温度が前記閾値以上であるとき、前記ドローンに着陸を含む退避行動をとらせる飛行制御命令と、
着陸した状態において前記回転翼を回転させる冷却命令と、
をコンピュータに実行させ、
前記冷却命令は、前記温度計測命令に計測される前記温度と前記閾値の差に基づいて、前記閾値との差が大きいほど前記回転翼の回転数を大きくする、
ドローンの制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、ドローン、ドローンの制御方法、および、ドローンの制御プログラムに関する。
【背景技術】
【0002】
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
【0003】
圃場を連続飛行するとバッテリ周辺等に熱が発生し、故障の原因になる。特に農業用ドローンの筐体は防水防塵加工で密封されており、筐体内の温度が上昇しやすい。筐体内部の温度が高温になると、内部機器の故障の原因になるおそれがあった。
【0004】
特許文献2には、回転翼の回転によりUAV筐体に気流が導入され、UAV筐体内の複数のモータ及び電気コンポーネントが冷却されるUAVが開示されている。特許文献3には、モータに設置されたESC(Electrical Speed Controller)に温度センサが取り付けられ、ESCやモータの温度上昇などの異常に基づいて、飛行計画作成装置により無人飛行体を緊急着陸させる飛行制御システムが開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許公開公報 特開2001-120151
【文献】特許公開公報 特表2017-526564
【文献】特許公開公報 特開2019-121405
【発明の概要】
【発明が解決しようとする課題】
【0006】
ドローン筐体内部の温度を監視し、自律飛行を継続することができる。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の一の観点に係るドローンは、筐体と、前記筐体の外部に配置される回転翼と、を有するドローンであって、前記筐体内の温度を計測する温度計測部と、前記温度が閾値以上であるか否かを判定する温度判定部と、前記温度が閾値以上であるとき、着陸を含む退避行動をとらせる飛行制御部と、着陸した状態において前記回転翼を回転させる冷却部と、を備える。
【0008】
前記冷却部は、前記ドローンが離陸しない回転数で前記回転翼を回転させるものとしてもよい。
【0009】
前記退避行動は、その場で着陸する通常の着陸動作、最短の経路で直ちに所定の帰還地点まで移動する緊急帰還、および最短とは異なる経路で前記帰還地点まで移動する通常帰還の少なくとも1つを含むものとしてもよい。
【0010】
前記退避行動を開始した地点を中断地点として記憶する中断地点記憶部をさらに備え、前記ドローンは、前記冷却部の稼働後、前記中断地点から飛行を再開するものとしてもよい。
【0011】
前記温度計測部は、前記冷却部の稼働中および稼働後の少なくともいずれかにおいて前記温度を計測し、前記温度判定部は、当該温度が閾値以上であるか否か判定するものとしてもよい。
【0012】
前記温度計測部は、着陸している状態において前記温度を計測し、当該温度が閾値以上であるとき、前記冷却部を稼働させるものとしてもよい。
【0013】
上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、筐体と、前記筐体の外部に配置される回転翼と、を有するドローンの制御方法であって、前記筐体内の温度を計測する温度計測ステップと、前記温度が閾値以上であるか否かを判定する温度判定ステップと、前記温度が閾値以上であるとき、前記ドローンに着陸を含む退避行動をとらせる飛行制御ステップと、着陸した状態において前記回転翼を回転させる冷却ステップと、を含む。
【0014】
上記目的を達成するため、本発明のさらに別の観点に係るドローンの制御プログラムは、筐体と、前記筐体の外部に配置される回転翼と、を有するドローンの制御プログラムであって、前記筐体内の温度を計測する温度計測命令と、前記温度が閾値以上であるか否かを判定する温度判定命令と、前記温度が閾値以上であるとき、前記ドローンに着陸を含む退避行動をとらせる飛行制御命令と、着陸した状態において前記回転翼を回転させる冷却命令と、をコンピュータに実行させる。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
【発明の効果】
【0015】
ドローン筐体内部の温度を監視し、自律飛行を継続することができる。
ができる。
【図面の簡単な説明】
【0016】
図1】本願発明に係るドローンの平面図である。
図2】上記ドローンの正面図である。
図3】上記ドローンの右側面図である。
図4】上記ドローンの背面図である。
図5】上記ドローンの斜視図である。
図6】上記ドローンを含む薬剤散布システムの全体概念図である。
図7】上記ドローンを含む薬剤散布システムの別の例を示す全体概念図である。
図8】上記ドローンを含む薬剤散布システムのさらに別の例を示す全体概念図である。
図9】上記ドローンの制御機能を表した模式図である。
図10】上記ドローンが有する機能ブロック図である。
図11】上記ドローンが筐体内が高温であることを検知して退避行動を行うフローチャートである。
図12】上記ドローンが冷却動作及び離陸を行うフローチャートである。
【発明を実施するための形態】
【0017】
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
【0018】
まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
【0019】
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。
【0020】
回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
【0021】
回転翼101は、回転軸から端部に伸びる各羽において、強度の異なる部分を有している。強度とは、例えば降伏強度又は破断強度である。特に、回転翼101は、一部強度が弱くなっていて、回転翼101に人や物を含む異物が干渉すると、当該強度の弱い部分が変形もしくは破断することで、人に危害を加えたり、物を破損させたりしづらい。怪我に至らない十分弱い衝撃にて、回転翼101を積極的に破断させることで、人への切傷を防止することができる。
【0022】
当該強度の弱い部分は、回転軸に近い部分であるとよく、例えば、回転軸から端部に伸びる長さ方向において中央より回転軸寄りに形成されている。また、強度の弱い部分は、1箇所でも複数箇所でもよい。強度の弱い部分は、他の部分とは異なる材質で形成されていてもよいし、形状によって強度が弱くなるように構成されていてもよい。
【0023】
また、回転翼101は、回転軸から端部に伸びる各羽において弾性力の異なる部分を有していて、異物との干渉時に当該部分が弾性変形するようになっていてもよい。当該部分は、回転軸に近い部分であると良く、例えば、回転軸から端部に伸びる長さ方向において中央より回転軸寄りに形成されている。また、回転翼101は、全体が弾性体で形成されていてもよい。
【0024】
上述のような構成によれば、異物と干渉しても回転翼101が変形もしくは破断し、人への危害や物の破損を起こしづらく、より安全性の高いドローンを実現することができる。このような構成の場合、プロペラガード115-1,115-2,115-3,115-4はなくてもよい。プロペラガード115が不要となることで、より軽量かつ低コストなドローンを実現することができる。
【0025】
回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
【0026】
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。
【0027】
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
【0028】
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
【0029】
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a、基地局404は、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。
【0030】
操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。
【0031】
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
【0032】
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。
【0033】
営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
【0034】
小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100の動作を変更してもよい。
【0035】
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。発着地点406は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。
【0036】
なお、図7に示す例のように、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。
【0037】
また、図8に示す例のように、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。
【0038】
図9に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
【0039】
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
【0040】
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
【0041】
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
【0042】
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。侵入者検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。
温度センサー108は、ドローン100の筐体110内部の温度を計測する手段である。筐体110には、PMU(Power Management Unit)およびECU(Electronic Control Unit)等が収容されている。筐体110は、防水防塵加工で密封されている。温度センサー108は、筐体110内部におけるPMU又はECUの温度を計測する。
これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
【0043】
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
【0044】
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
【0045】
●機能部
図10に示すように、ドローン100は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、飛行制御部21、飛行経路記憶部22、中断地点記憶部23、温度計測部24、温度判定部25および冷却部26を有する。
【0046】
飛行制御部21は、ドローン100が有するモーター102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラー501の機能によって実現される。
【0047】
飛行経路記憶部22は、ドローン100が自律的に飛行する飛行経路を記憶する機能部である。ドローン100は、例えば圃場内を撮影、又は圃場内に薬剤散布するために、圃場内を網羅的に飛行する飛行経路の情報を有している。飛行経路は、例えば営農クラウド405から受信してもよいし、ドローン100が有する演算装置により生成されてもよい。ドローン100は、圃場内において、飛行経路に沿って飛行する。
【0048】
中断地点記憶部23は、飛行経路上においてドローン100が飛行を中断した地点を記憶する機能部である。中断地点記憶部23は、例えば、RTK-GNSSを用いて中断地点を特定し、記憶している。ドローン100は、飛行経路に沿う飛行中、異常や故障を検知すると、飛行を中断し、退避行動をとることがある。本実施形態においては、特に、筐体110内の温度が高温であるとき、中断地点を記憶した上で、当該中断地点において退避行動を開始する。
【0049】
退避行動は、例えば、中断地点にその場で着陸する通常の着陸動作や、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめドローン100に記憶されている地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。また、退避行動は、最短とは異なる経路、例えば最適化された経路で所定の帰還地点まで移動する「通常帰還」であってもよい。最適化された経路とは、例えば、退避行動をとる前に圃場内を飛行した経路を参照して算出される経路である。例えば、ドローン100は、まだ飛行していない経路を経由して、撮影又は薬剤散布をしながら所定の帰還地点まで移動する。
【0050】
温度計測部24は、温度センサー108によりドローン100の筐体110内部の温度を計測する機能部である。温度計測部24は、ドローン100の飛行中において定期的に又は連続的に温度計測を行う。また、温度計測部24は、着陸状態においても温度計測を行ってもよい。
【0051】
温度判定部25は、温度計測部24により計測される温度が、所定の温度、すなわち閾値以上となっているか否か判定する機能部である。この閾値は、筐体110内部の構成が故障するおそれのある温度である。温度判定部25は、飛行中において定期的に又は連続的に温度計測を行い、筐体110内の温度が閾値以上となっているとき、飛行制御部21を通じてドローン100に退避行動をとらせる。ドローン100は、連続飛行すると、主にバッテリ周辺に熱が発生し、PMUやEMUが過熱され、故障の原因になる。特に、筐体110は農業用ドローンとしての使用に耐えるため、防水防塵加工で密封されているため、筐体110内の温度は上昇しやすい。そこで、温度計測部24により筐体110内の温度を監視し、高温である場合は退避行動をとって飛行を中断することで、筐体110内部が長時間高温になるのを防ぎ、ひいては故障を防止することができる。
【0052】
温度判定部25は、着陸状態において、温度計測部24により計測される温度が閾値以上となっているか否か判定してもよい。着陸状態で温度が所定以上であるとき、温度判定部25は離陸を不許可とし、後述する冷却部26により筐体110内部を冷却する処理を開始させる。
【0053】
着陸状態における閾値は、飛行中の判定における閾値と同じであってもよいし、異なっていてもよい。例えば、飛行を開始するとバッテリの放電により筐体110内部の温度上昇が起こる可能性が高い。そこで、着陸状態の閾値は、飛行中の閾値よりも低く設定されていて、筐体110内の温度が十分低い時に離陸を許可するものとしてもよい。
【0054】
冷却部26は、筐体110内の温度を下げる機能部である。冷却部26は、ドローン100の着陸状態において稼働する。冷却部26は、本実施形態においては、ドローン100が離陸しない程度の回転数でモーター102を回転させ、回転翼101により風を発生させる。この風が筐体110に吹き付けることで、筐体110内部の温度を下げる。この構成によれば、冷却のための特別な構成を有さずに、既存の構成で筐体110の冷却を行うことができる。
【0055】
冷却部26により駆動されるモーター102の回転数は、固定であってもよいし、変動してもよい。例えば、温度計測部24により計測される温度と閾値との差に基づいて、差が大きいほど回転数を大きくしてもよい。冷却部26は着陸状態において稼働するため、飛行時における回転翼の気流を導入する構成とは異なり、必要な冷却の程度に基づいてモーター102の回転数を調整することができる。必要な冷却の程度に基づいてモーター102の回転数を調整する構成によれば、モーター102の不要な回転を防ぎ、省力化することができる。
【0056】
●高温を検知して退避行動を行うフローチャート
図11に示すように、まず、ドローン100は、圃場403の飛行を開始する(S11)。温度計測部24は、圃場403の飛行中に定期的又は連続的に筐体110内の温度を計測する(S12)。温度判定部25は、筐体110内の温度が閾値以上か否かを判定し(S13)、閾値以上ではないとき、ステップS12に戻る。ステップS13において筐体110内の温度が閾値以上であるとき、中断地点記憶部23は中断地点を記録し(S14)、退避行動をとる(S15)。なおこのとき、退避行動をとる理由を、操作器401又は小型携帯端末401aに表示してもよい。また、ドローン100が有するLEDやブザー等の構成により報知してもよい。また、退避行動が、その場に着陸する通常の着陸動作である場合、中断地点の記憶ステップS14は省略されてもよい。
【0057】
●冷却動作及び離陸を行うフローチャート
図12に示すように、着陸状態において、温度計測部24は、筐体110内の温度を計測する(S21)。次いで、温度判定部25は、筐体110内の温度が所定以上であるか判定し(S22)、温度が所定以上ではないとき、冷却動作は行わずに離陸が許可され、適宜の処理を経て離陸に至る(S26)。ステップS22において筐体110内の温度が所定以上であるとき、冷却部26は、冷却動作として、ドローン100が離陸しない程度の回転数で回転翼101を回転させる(S23)。温度計測部24は、再度筐体110内の温度を計測する(S24)。なおこのとき、温度計測部24は、冷却動作中に定期的又は連続的に温度を計測してもよいし、冷却動作は所定時間実行するごとに停止するように構成した上で、冷却動作の停止中に温度を計測するようになっていてもよい。
【0058】
温度判定部25は、計測される温度が所定の閾値未満であるか判定し(S25)、閾値未満ではないとき、ステップS23に戻り、冷却動作を再開又は継続する。計測される温度が所定の閾値以上であるとき、離陸が許可され、適宜の処理を経て離陸に至る(S26)。ドローン100は、中断地点記憶部23に中断地点の情報が記憶されているとき、中断地点まで移動し、飛行経路に沿う飛行を再開する。なお、上述の各処理の状況を、操作器401又は小型携帯端末401aに表示させてもよい。
【0059】
なお、ステップS21乃至S26の処理は、退避行動の後に行ってもよいし、退避行動とは独立して、作業の開始時や、バッテリ交換後の再離陸時、薬剤補充後の再離陸時等に行ってもよい。また、退避行動は、筐体110内が高温であることによる退避行動でなくてもよく、他の異常や故障の検知、強風等の外乱の検知により退避行動を行った場合であっても、再離陸時に上述の処理を行ってよい。
【0060】
上述のように、筐体110内部が高温になると飛行を中断し、自動的に冷却動作を行った上で再離陸を行うことができる構成によれば、筐体110内部が高温になる状況を含む飛行であっても、自律飛行を継続することができる。
【0061】
なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作するドローンに適用可能である。
【0062】
(本願発明による技術的に顕著な効果)
本発明にかかるドローンにおいては、ドローン筐体内部の温度を監視し、自律飛行を継続することができる。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12