IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ モービルアイ ビジョン テクノロジーズ リミテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-21
(45)【発行日】2023-08-29
(54)【発明の名称】自動運転車両システム用交差視野
(51)【国際特許分類】
   H04N 23/90 20230101AFI20230822BHJP
   G01C 3/06 20060101ALI20230822BHJP
   H04N 7/18 20060101ALI20230822BHJP
   H04N 23/52 20230101ALI20230822BHJP
   G08G 1/16 20060101ALI20230822BHJP
【FI】
H04N23/90
G01C3/06 110V
H04N7/18 J
H04N23/52
G08G1/16 C
【請求項の数】 28
(21)【出願番号】P 2019553322
(86)(22)【出願日】2018-05-10
(65)【公表番号】
(43)【公表日】2020-07-30
(86)【国際出願番号】 US2018032087
(87)【国際公開番号】W WO2018209103
(87)【国際公開日】2018-11-15
【審査請求日】2021-05-06
(31)【優先権主張番号】62/504,504
(32)【優先日】2017-05-10
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515168961
【氏名又は名称】モービルアイ ビジョン テクノロジーズ リミテッド
【住所又は居所原語表記】P.O.B. 45157,13 HARTOM STREET, HAR HOTZVIM, JERUSALEM, 9777513 ISRAEL
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】シュタイン、ギデオン
(72)【発明者】
【氏名】エイタン、オリ
(72)【発明者】
【氏名】ベルマン、エフィム
(72)【発明者】
【氏名】ケイティー、モーセ
【審査官】高野 美帆子
(56)【参考文献】
【文献】特表2015-532714(JP,A)
【文献】特開2016-143308(JP,A)
【文献】特開2004-201489(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 23/90
G01C 3/06
H04N 7/18
H04N 23/52
G08G 1/16
(57)【特許請求の範囲】
【請求項1】
車両用の撮像システムであって、
撮像モジュールと、
前記撮像モジュールに結合された第1のカメラであって、第1の視野及び第1の光軸を有する第1のレンズを含む第1のカメラと、
前記撮像モジュールに結合された第2のカメラであって、第2の視野及び第2の光軸を有する第2のレンズを含む第2のカメラであり、前記第2の視野は前記第1の視野とは異なり、前記第1のレンズは前記第2のレンズより広角を有する、第2のカメラと、
前記第1のカメラ及び前記第2のカメラが同じ高さに位置するとともに前記第1のカメラ及び前記第2のカメラが前記車両に対して外側に面するように、前記車両のリアサイドウィンドウの内面に前記撮像モジュールを取り付けるように構成されたマウントアセンブリとを備え、
前記第1の光軸は、交差面の交差点で前記第2の光軸と交差し、
前記第1のカメラは、前記交差面の前記交差点を越えて第1の水平距離に焦点が合わされ、前記第2のカメラは、前記交差面の前記交差点を越えて第2の水平距離に焦点が合わされ、
前記第1の視野及び前記第2の視野は、少なくとも部分的に重複し、組み合わされた視野を形成し、前記第1の視野は前記車両の中央の長手方向軸に対して実質的に垂直である、撮像システム。
【請求項2】
前記第1の光軸は、水平面内で前記第2の光軸と交差する、請求項1に記載の撮像システム。
【請求項3】
前記第1の光軸は、垂直面内で前記第2の光軸と交差する、請求項1に記載の撮像システム。
【請求項4】
前記第1の光軸は、水平面及び垂直面の両方の面内で、前記第2の光軸と交差する、請求項1に記載の撮像システム。
【請求項5】
前記第1の水平距離及び前記第2の水平距離は等しい距離である、請求項1~4の何れか一項に記載の撮像システム。
【請求項6】
前記第1の水平距離及び前記第2の水平距離は、異なる距離である、請求項1~4の何れか一項に記載の撮像システム。
【請求項7】
前記交差面の前記交差点は、前記リアサイドウィンドウと前記第1のカメラ及び前記第2のカメラとの間に配置されている、請求項1~6の何れか一項に記載の撮像システム。
【請求項8】
前記交差面の前記交差点は、前記リアサイドウィンドウの外面から予め定められた距離に配置されている、請求項1~6の何れか一項に記載の撮像システム。
【請求項9】
前記組み合わされた視野は、前記車両の前方の少なくとも180度を有する、請求項1~6の何れか一項に記載の撮像システム。
【請求項10】
前記第1のカメラ及び前記第2のカメラの前記第1の視野及び前記第2の視野から障害を取り除くように構成された少なくとも1つのワイヤブレードを有するワイパーアセンブリを、さらに備える、請求項1~9の何れか一項に記載の撮像システム。
【請求項11】
前記撮像モジュールは、半円の円弧に沿って前記第1のカメラ及び前記第2のカメラを配置するように構成されている、請求項1~10の何れか一項に記載の撮像システム。
【請求項12】
前記交差面の前記交差点は、前記第1のカメラのレンズと前記第2のカメラのレンズとの最短距離の1倍から4倍までの範囲の離間距離で、前記第1のカメラ及び前記第2のカメラから離れている、請求項1~11の何れか一項に記載の撮像システム。
【請求項13】
前記リアサイドウィンドウは、前記リアサイドウィンドウを透過させて光が前記撮像モジュールまで到達することを可能にする比較的小さい透過エリアを囲むグレアシールドを含む、請求項1~12のいずれか一項に記載の撮像システム。
【請求項14】
前記比較的小さい透過エリアは、前記第1のカメラ及び第2のカメラへの開口部を提供するように構成され、それによって、前記第1のカメラの被写界深度と前記第2のカメラの被写界深度とを増大させ、広範囲の距離の複数の異なる対象物に焦点が合ったままとすることができる、請求項13に記載の撮像システム。
【請求項15】
前記交差面の前記交差点は、前記比較的小さい透過エリアの中心にある、請求項13又は14に記載の撮像システム。
【請求項16】
比較的小さい透過エリアは、前記第1のカメラ及び前記第2のカメラの前記組み合わされた視野と実質的に等しい広角の視野を有する広角カメラによって獲得されるであろう比較透過エリアより小さい、請求項1315の何れか一項に記載の撮像システム。
【請求項17】
車両用の撮像システムであって、
撮像モジュールと、
前記撮像モジュールに結合された第1のカメラであって、第1の視野及び第1の光軸を有する第1のレンズを含む第1のカメラと、
前記撮像モジュールに結合された第2のカメラであって、第2の視野及び第2の光軸を有する第2のレンズを含む第2のカメラであり、前記第2の視野は前記第1の視野とは異なる、第2のカメラと、
前記撮像モジュールに結合された第3のカメラであって、第3の視野及び第3の光軸を有する第3のレンズを含む第3のカメラであり、前記第3の視野は前記第1の視野とは異なり、前記第3のレンズは前記第1のレンズ及び前記第2のレンズより広角を有する、第3のカメラと、
前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラが前記車両に対して外側に面するように、前記車両のリアサイドウィンドウの内面に前記撮像モジュールを取り付けるように構成されたマウントアセンブリとを備え、
前記第1の光軸は、第1の交差面の第1の交差点で前記第2の光軸と交差し、
前記第1の光軸は、第2の交差面の第2の交差点で前記第3の光軸と交差し、
前記第2の光軸は、第3の交差面の第3の交差点で前記第3の光軸と交差し、
前記第1の視野及び前記第2の視野は、前記第3の視野と少なくとも部分的に重なり、前記第1の視野、前記第2の視野、及び前記第3の視野は、組み合わされた視野を形成し、前記第の視野は前記車両の中央の長手方向軸に対して実質的に垂直であり、前記第3のカメラは、前記第1のカメラより前記リアサイドウィンドウに近く、前記第3のカメラは、前記第2のカメラより前記リアサイドウィンドウに近い、撮像システム。
【請求項18】
前記第1の光軸は、水平面内で前記第2の光軸と交差し、前記第1の光軸は、水平面内で前記第3の光軸と交差し、前記第2の光軸は、水平面内で前記第3の光軸と交差する、請求項17に記載の撮像システム。
【請求項19】
前記第1の光軸は、垂直面内で前記第2の光軸と交差し、前記第1の光軸は、垂直面内で前記第3の光軸と交差し、前記第2の光軸は、垂直面内で前記第3の光軸と交差する、請求項17に記載の撮像システム。
【請求項20】
前記第1の光軸は、水平軸及び垂直軸の両方において、前記第2の光軸と交差し、前記第1の光軸は、水平軸及び垂直軸の両方において、前記第3の光軸と交差し、前記第2の光軸は、水平軸及び垂直軸の両方において、前記第3の光軸と交差する、請求項17に記載の撮像システム。
【請求項21】
前記第1の交差面の前記第1の交差点、前記第2の交差面の前記第2の交差点、及び前記第3の交差面の前記第3の交差点は、互いに一致し、同時交差面の同時交差点を形成する、請求項17に記載の撮像システム。
【請求項22】
前記同時交差面の前記同時交差点は、何れの前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラ間の最短距離の1倍から4倍までの範囲の離間距離によって、前記第1のカメラ、前記第2のカメラ、及び第3のカメラから離れている、請求項21に記載の撮像システム。
【請求項23】
前記第3のカメラは、前記長手方向軸に平行な方向に関して、前記第1のカメラ及び前記第2のカメラ間の中心にほぼ等間隔で配置される、請求項17に記載の撮像システム。
【請求項24】
前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラの前記視野から障害を取り除くように構成された少なくとも1つのワイヤブレードを有するワイパーアセンブリをさらに備える、請求項1723の何れか一項に記載の撮像システム。
【請求項25】
前記撮像モジュールは、半円の円弧に沿って、前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラを配置するように構成されている、請求項1724の何れか一項に記載の撮像システム。
【請求項26】
前記リアサイドウィンドウの内面は、前記リアサイドウィンドウの内面を透過させて光が前記撮像モジュールまで到達することを可能にする比較的小さいエリアを囲むグレアシールドを含み、前記比較的小さいエリアは、前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラへの開口を提供するように構成され、これにより、前記第1のカメラの被写界深度、前記第2のカメラの被写界深度、及び前記第3のカメラの被写界深度を増大させ、複数の異なる対象物を広範囲の距離で焦点が合ったままとすることができる、請求項1725のいずれか一項に記載の撮像システム。
【請求項27】
同時交差面の同時交差点が、比較的小さい透過エリアの中心エリアに一致する、請求項26に記載の撮像システム。
【請求項28】
前記比較的小さい透過エリアは、前記第1のカメラ、前記第2のカメラ、及び前記第3のカメラの組み合わされた視野と等しい広角視野を有する広角カメラによって必要とされるであろう比較透過エリアより小さい、請求項26に記載の撮像システム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願への相互参照]
この出願は、2017年5月10日に出願された米国仮特許出願第62/504,504の優先権の利益を請求する。前述の出願は、その全体を参照することにより本明細書に組み込まれる。
【0002】
本開示は、概して自動運転車両用カメラシステムに関する。他の態様において、本開示は、概して交差視野を有するカメラシステムに関する。
【背景技術】
【0003】
自動運転車両は、様々な要因を考慮し、それらの要因に基づいて意図した目的地に安全かつ正確に到着するように適切な決断を下す必要があるかもしれない。また、例えば、目的地へナビゲートするために、自動運転車両は、その道路内の位置を識別し(例えば、複数車線のうちの特定の車線)、他の車両の横をナビゲートし、障害物及び歩行者を回避し、信号機及び道路標識を観察し、適切な交差点又はインターチェンジである一の道路から他の道路へ移動する必要があるかもしれない。その目的地まで移動する車両である自動運転車両によって収集された莫大な量の情報の利用及び解釈は、多くの設計課題をもたらす。自動運転車両が分析、アクセス、及び/又は、格納する必要があるかもしれない、完全な量のデータ(例えば、キャプチャされた画像データ、地図データ、GPSデータ、センサデータ等)は、実際には、自律ナビゲーションを制限し、あるいは、悪影響を与えることができる課題をもたらす。例えば、収集されたデータの一部として、自動運転車両は、視覚情報(例えば、車両の個別の位置に配置された多数のカメラからキャプチャされた情報)を処理及び解釈する必要があるかもしれない。各カメラは特定の視野を有してもよい。複数のカメラがともに使用される例では、カメラの視野は、ある状況において、重なり及び/又は冗長でもよい。
【発明の概要】
【0004】
本開示に相当する実施形態は、自動運転車両ナビゲーション用システム及び方法を提供する。開示される実施形態は、自動運転車両ナビゲーション機能を提供するためにカメラを使用することができる。例えば、開示される実施形態に相当する本開示のシステムは、車両の環境をモニタする1つ、2つ、3つ、又はそれ以上のカメラを含むことができる。各カメラの視野は、他のカメラ、あるいは複数のカメラと重複してもよい。本開示のシステムは、例えば、カメラの1又は複数によってキャプチャされた画像の分析に基づくナビゲーション応答を提供することができる。また、ナビゲーション応答は、例えば、グローバルポジショニングシステム(GPS)データ、センサデータ(例えば、加速度計、速度センサー、サスペンションセンサー等から)、及び/又は他の地図データを含む他のデータを考慮に入れてもよい。
【0005】
一実施形態において、撮像システムは車両用に提供される。撮像システムは、撮像モジュールと、撮像モジュールに結合された第1のカメラとを含んでもよい。第1のカメラは、第1の視野及び第1の光軸を有してもよい。また、撮像システムは、撮像モジュールに結合された第2のカメラを含んでもよい。第2のカメラは、第2の視野及び第2の光軸を有してもよい。また、撮像システムは、第1及び第2のカメラが、車両に対して外向きに面するように、車両に撮像モジュールを取り付けるように構成されたマウントアセンブリを含んでもよい。さらに、第1の光軸は、交差面の少なくとも1つの交差点で第2の光軸と交差してもよい。さらに、第1のカメラは、交差面の交差点を越えて第1の水平距離に焦点が合わされてもよく、第2のカメラは、交差面の交差点を越えて第2の水平距離に焦点を合わされてもよく、第1の視野及び第2の視野は、組み合わされた視野を形成してもよい。
【0006】
一実施形態において、撮像システムは車両用に提供される。撮像システムは、撮像モジュールと、撮像モジュールに結合された第1のカメラとを含んでもよい。第1のカメラは、第1の視野及び第1の光軸を有してもよい。また、撮像システムは、撮像モジュールに結合された第2のカメラを含んでもよい。第2のカメラは、第2の視野及び第2の光軸を有してもよい。また、撮像システムは、撮像モジュールに結合された第3のカメラを含んでもよい。第3のカメラは、第3の視野及び第3の光軸を有してもよい。また、撮像システムは、第1のカメラ、第2のカメラ、及び第3のカメラが、車両に対して外向きに面するように、車両のウィンドウの内面に撮像モジュールを取り付けるように構成されたマウントアセンブリを含んでもよい。さらに、第1の光軸は、第1の交差面の少なくとも1つの第1の交差点において、第2の光軸と交差することができ、第1の光軸は、第2の交差面の少なくとも1つの第2の交差点において、第3の光軸と交差することができ、第2の光軸は、第3の交差面の少なくとも1つの第3の交差点において、第3の光軸と交差することができる。さらに、第1の視野、第2の視野、及び第3の視野は、組み合わされた視野を形成してもよい。
【0007】
一実施形態において、撮像システムは、車両用に提供される。撮像システムは、半円の円弧に沿って複数のカメラを配置するように構成された撮像モジュールを含んでもよい。複数のカメラは、半円の半径に向かって方向付けされてもよい。また、撮像システムは、複数のカメラが車両に対して外向きに面するように、車両のウィンドウの内面に撮像モジュールを取り付けるように構成されたマウントアセンブリを含んでもよい。さらに、複数のカメラのうちのそれぞれのカメラは、単一の比較的小さい透過開口部の外側に投影されるそれぞれの視野及びそれぞれの光軸を有することができる。さらに、それぞれの視野は、半円の半径、及び単一の比較的小さい透過開口部の中心となる位置に配置された半円の半径と、少なくとも部分的に重なってもよい。さらに依然として、それぞれの光軸は、それぞれの交差面の少なくとも1つのそれぞれの交差点において、他の全てのそれぞれの光軸と交差し、それぞれの視野の全ては、組み合わされた視野を形成する。
【0008】
前述の一般的な説明及び以下の詳細な説明は、例示及び説明のみであり、特許請求の範囲を限定しない。
【図面の簡単な説明】
【0009】
本開示に組み込まれ、本開示の一部を構成する添付図面は、開示される様々な実施形態を示す。図面は以下の通りである。
【0010】
図1】開示される実施形態と一致する例示的なシステムの概略図である。
【0011】
図2A】開示される実施形態と一致するシステムを含む例示的な車両の概略側面図である。
【0012】
図2B】開示される実施形態と一致し、図2Aに示される車両及びシステムの概略平面図である。
【0013】
図2C】開示される実施形態と一致するシステムを含む他の実施形態の車両の概略平面図である。
【0014】
図2D】開示される実施形態と一致するシステムを含むさらに他の実施形態の車両の概略平面図である。
【0015】
図2E】開示される実施形態と一致するシステムを含むさらに他の実施形態の車両の概略平面図である。
【0016】
図2F】開示される実施形態と一致する例示的な車両制御システムの概略図である。
【0017】
図3A】バックミラー、及び開示される実施形態と一致する車両撮像システム用ユーザーインターフェースを含む車両の室内の概略図である。
【0018】
図3B】開示される実施形態と一致する車両のフロントガラスに対しバックミラーの背後に配置されるように構成されたカメラマウントの例を示す図である。
【0019】
図3C】開示される実施形態に一致し、図3Bに示されるカメラマウントを異なる視点から示す図である。
【0020】
図3D】開示される実施形態と一致する車両のフロントガラスに対しバックミラーの背後に配置されるように構成されたカメラマウントの例を示す図である。
【0021】
図4】開示される実施形態と一致する1又は複数の動作を実行するための命令を格納するように構成されたメモリの例示的なブロック図である。
【0022】
図5A】開示される実施形態と一致する単眼画像解析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセスを示すフローチャートである。
【0023】
図5B】開示される実施形態と一致する画像のセットにおいて、1又は複数の車両及び/又は歩行者を検出するための例示的なプロセスを示すフローチャートである。
【0024】
図5C】開示される実施形態と一致する画像のセットにおいて、道路マーク及び/又は車線形状情報を検出するための例示的なプロセスを示すフローチャートである。
【0025】
図5D】開示される実施形態と一致する画像のセットにおいて、信号機を検出するための例示的なプロセスを示すフローチャートである。
【0026】
図5E】開示される実施形態と一致する車両経路に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセスを示すフローチャートである。
【0027】
図5F】開示される実施形態と一致し、先頭車両が車線変更しているかどうかを決定するための例示的なプロセスを示すフローチャートである。
【0028】
図6】開示される実施形態と一致し、ステレオ画像解析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセスを示すフローチャートである。
【0029】
図7】開示される実施形態と一致し、3セットの画像の分析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセスを示すフローチャートである。
【0030】
図8】開示される実施形態と一致する撮像システムの実施形態の概略図である。
【0031】
図9】単一のカメラ広視野撮像システムの概略図である。
【0032】
図10】開示される実施形態と一致する撮像システムの他の実施形態の概略図である。
【0033】
図11A】開示される実施形態と一致する組み合わされた視野を有する例示的な撮像システムの概略平面図である。
【0034】
図11B】開示される実施形態と一致する組み合わされた視野を有する例示的な撮像システムの概略平面図である。
【0035】
図12A】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0036】
図12B】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0037】
図13】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0038】
図14】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0039】
図15】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの斜視図である。
【0040】
図16】開示される実施形態と一致する図15の撮像システムの斜視図である。
【0041】
図17】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの斜視図である。
【0042】
図18】開示される実施形態と一致する図17の撮像システムの斜視図である。
【0043】
図19】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0044】
図20】開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの概略平面図である。
【0045】
図21】開示される実施形態と一致する他の例示的な撮像システムの立面図である。
【0046】
図22】開示される実施形態と一致する撮像システムを含む例示的な車両の斜視図である。
【0047】
図23】開示される実施形態と一致する撮像システムを含む例示的な車両の側面図である。
【0048】
図24】開示される実施形態と一致する図23の概略平面図である。
【0049】
図25】開示される実施形態と一致する撮像システムの概略平面図である。
【発明を実施するための形態】
【0050】
以下の詳細な説明において、添付図面を参照する。可能な限り、図面又は以下の説明で同じ又は類似の部品を指すために同じ参照番号が使用される。いくつかの例示的な実施形態が本明細書で説明されているが、修正、適合、及び他の実装が可能である。例えば、図面に示された構成要素に置換、追加、又は変更を行うことができ、本明細書で説明する例示的な方法は、開示された方法の段階を置換、並べ替え、削除、又は追加することによって変更することができる。従って、以下の詳細な説明は、開示される実施形態及び実施例に限定されない。代わりに、適切な範囲は添付の特許請求の範囲によって定義されます。
【0051】
自動運転車両の概要
【0052】
本開示を通じて使用される「自動運転車両」という用語は、運転者の入力なしで少なくとも1つのナビゲーションの変更を実行することができる車両を指す。ナビゲーションの変更は、車両のステアリング、ブレーキ、又は加速の1又は複数における変更を指す。自律的であるためには、車両は完全に自動(例えば、運転者なしの、又は運転者の入力なしの完全な動作)である必要はない。むしろ、自動運転車両には、特定の期間中、運転者の制御下で、他の期間中、運転者の制御なしで動作できるものが含まれる。また、自動運転車両は、車両ナビゲーションのステアリング操作のようないくつかの態様のみを制御する車両を含むことができ(例えば、車線制約の間で車両のコースを維持するように)、しかし、他の態様を運転者に残してもよい(例えば、ブレーキ)。ある場合において、自動運転車両は、車両のブレーキ、速度制御、及び/又は、ステアリングのいくつか又は全ての態様を扱うことができる。
【0053】
通常、人間の運転者は、車両を制御するために、視覚的指示及び観察順序に頼っているので、それに応じて、交通インフラストラクチャーは構築され、車線表示、交通標識、及び信号機は、全て、運転者に視覚情報を提供するように設計されている。交通インフラストラクチャーのこれらの設計特性を考慮して、自動運転車両は、カメラと、車両の環境からキャプチャされた視覚情報を分析する処理ユニットとを含むことができる。例えば、視覚情報は、運転者によって観測可能な交通インフラストラクチャーの構成要素(例えば、車線表示、交通標識、信号機等)、及び他の障害物(例えば、他の車両、歩行者、破片等)を含むことができる。さらに、自動運転車両は、例えば、ナビゲーションしているときに、車両の環境のモデルを提供する情報等、格納された情報を使用することもできる。例えば、車両は、車両が走行している間、GPSデータ、センサデータ(例えば、加速度計、速度センサ、サスペンションセンサー等から)、及び/又は、その環境に関する情報を提供する他の地図データを使用することができ、車両(他の車両と同様に)は、モデル上でそれ自体を位置特定するための情報を使用することができる。
【0054】
本開示におけるいくつかの実施形態において、自動運転車両は、ナビゲートの間に得られた情報を使用することができる(例えば、カメラ、GPSデバイス、加速度計、速度センサー、サスペンションセンサー等から)。他の実施形態において、自動運転車両は、ナビゲートの間、過去のナビゲーションから車両によって(又は他の車両によって)得られた情報を使用することができる。さらに他の実施形態において、自動運転車両は、ナビゲートの間に得られた情報、及び過去のナビゲーションから得られた情報の組み合わせを使用することができる。以下のセクションは、開示される実施形態と一致するシステムの概要を提供し、続いて、前方を向く撮像システム及びシステムに一致する方法の概要を提供する。以下のセクションでは、自動運転車両ナビゲーション用の点在する地図を構成、使用、及び更新するためのシステム及び方法を開示する。
【0055】
本開示を通じて使用される「視野」という用語は、カメラが3次元において視認できる全てのエリアを指す。本開示が単一の角度を参照して視野を説明する場合、その単一の角度は、2次元の水平視野を指す。本開示を通じて使用される「光軸」という用語は、カメラの視野の中心軸線を指す。言い換えれば、「光軸」とは、カメラの視認可能なエリアの投影中心のベクトルである。別の言い方をすれば、「光軸」は、対称に方向付けられるカメラの視野についての軸である。
【0056】
システムの概要
【0057】
図1は、開示される例示的な実施形態と一致するシステム100のブロック図である。システム100は、特定の実施の要件に応じて様々なコンポーネントを含むことができる。いくつかの実施形態において、システム100は、処理ユニット110、画像取得ユニット120、位置センサー130、1又は複数のメモリユニット140,150、地図データベース160、ユーザーインターフェース170、及び無線送受信機172を含むことができる。処理ユニット110は、1又は複数の処理デバイスを含むことができる。いくつかの実施形態において、処理ユニット110は、アプリケーションプロセッサ180、イメージプロセッサ190、又は任意の他の適切な処理デバイスを含むことができる。類似して、画像取得ユニット120は、特定の用途の要件に応じて、任意の数の画像捕捉デバイス及び構成要素を含むことができる。いくつかの実施形態において、画像取得ユニット120は、画像キャプチャデバイス122、画像キャプチャデバイス124、及び画像キャプチャデバイス126等の1又は複数の画像キャプチャデバイス(例えば、カメラ)を含むことができる。また、システム100は、処理デバイス110を画像捕捉デバイス120に通信可能に接続するデーターインターフェイス128を含むことができる。例えば、データーインターフェース128は、画像捕捉デバイス120によって取得された画像データを処理ユニット110に送信ための任意の有線及び/又は無線のリンク又は複数のリンクを含むことができる。
【0058】
無線送受信機172は、無線周波数、赤外線周波数、磁場、又は電場を使用することによって、エアーインターフェースを通じて1又は複数のネットワーク(例えば、セルラー、インターネット等)に伝送交換するように構成された1又は複数のデバイスを含んでもよい。無線送受信機172は、データを送信及び/又は受信するために任意の知られた標準を使用することができる(例えば、Wi-Fi、ブルートゥース(登録商標)、ブルートゥーススマート、802.15.4、ジグビー等)。そのような伝送は、ホスト車両から1又は複数の遠隔配置サーバへの通信を含むことができる。また、そのような伝送は、ホスト車両(例えば、ホスト車両の環境内の対象車両を考慮して、又は対象車両とともにホスト車両のナビゲーションの連携を容易にするため)の環境において、ホスト車両と1又は複数の対象車両との通信(一方向又は双方向)、あるいは、送信車両の近くにおいて、不特定の受信者へのブロードキャスト送信を含むことができる。
【0059】
アプリケーションプロセッサ180及びイメージプロセッサ190の両方は、様々な種類の処理デバイスを含むことができる。例えば、アプリケーションプロセッサ180及びイメージプロセッサ190の何れか又は両方は、マイクロプロセッサ、プリプロセッサ(画像プリプロセッサ等)、グラフィック処理装置(GPU)、中央処理装置(CPU)、サポート回路、デジタルシグナルプロセッサ、集積回路、メモリ、又はアプリケーションの動作に適し、画像処理及び画像解析に適した任意の他の種類のデバイスを含むことができる。いくつかの実施形態において、アプリケーションプロセッサ180及び/又はイメージプロセッサ190は、任意の種類のシングル又はマルチコアプロセッサ、モバイルデバイス、マイクロコントローラー、中央処理装置等を含むことができる。様々な処理デバイスは、例えば、インテル(登録商標)、AMD(登録商標)等の製造業者から入手可能なプロセッサ、又はNVIDIA(登録商標)、ATI(登録商標)等のような製造業者から入手可能なGPU等を含み、使用されることができ、様々なアーキテクチャ(例えば、x86プロセッサー、ARM(登録商標)等)を含むことができる。
【0060】
いくつかの実施形態において、アプリケーションプロセッサ180及び/又はイメージプロセッサ190は、Mobileye(登録商標)から入手可能な任意のEyeQシリーズのプロセッサチップを含むことができる。これらプロセッサ設計は、それぞれ、ローカルメモリ及び命令セットを有する複数の処理ユニットを含む。そのようなプロセッサは、複数のイメージセンサーから画像データを受信するためのビデオ入力を含むことができ、また、ビデオ出力機能を含むことができる。一例において、EyeQ2(登録商標)は、332Mhzで動作する90nm-ミクロン技術を使用する。EyeQ2(登録商標)アーキテクチャは、2つの浮動小数点、ハイパースレッド32-ビットRISC CPU(MIPS32(登録商標) 34K(登録商標) コア)、5つのVision-Computing-Engines(VCE)、3つのVector-Microcode Processor(VMP(登録商標))、Denali-64ビットモバイルDDRコントローラーで構成されています、128-ビットの内部Sonics-Interconnect、16ビットのデュアルビデオ入力及び18ビットのビデオ出力コントローラー、16チャネルDMA、及びいくつかの周辺機器から成る。MIPS34K CPUは、他の周辺機器と同様に、5つのVCE、3つのVMP及びDMA、第2MIPS34K CPU及びマルチチャネルDMAを管理する。5つのVCE、3つのVMP(登録商標)、及びMIPS34K CPUは、多機能バンドルアプリケーションによって、必要な集中的なビジョン計算を実行することができる。他の例では、第3世代プロセッサであり、EyeQ2(登録商標)よりも6倍強力なEyeQ3(登録商標)は、開示される実施形態において使用され得る。他の例では、EyeQ4(登録商標)及び/又はEyeQ5(登録商標)は、開示される実施形態において使用され得る。また、言うまでもなく、開示される実施形態とともに、任意の最新又は将来のEyeQ処理デバイスは、使用され得る。
【0061】
本明細書に開示される何れの処理デバイスも、特定の機能を実行するように構成され得る。何れかの説明されたEyeQプロセッサ又は他のコントローラ又はマイクロプロセッサのような処理デバイスを特定の機能を実行するように構成することは、コンピューター実行可能命令のプログラミングと、処理デバイスの動作中に、実行のためにそれらの命令を処理デバイスで利用可能にすることが含まれ得る。いくつかの実施形態において、処理デバイスを構成することは、アーキテクチャ命令で処理デバイスを直接的にプログラミングすることを含んでもよい。例えば、フィールドプログラマブルゲートアレイ(FPGAs)、特定用途向け集積回路(ASICs)等のような処理デバイスは、例えば、1又は複数のハードウェア記述言語(HDLs)を使用して構成され得る。
【0062】
他の実施形態において、処理デバイスを構成することは、動作中に処理デバイスにアクセス可能なメモリに、実行可能な命令を格納することを含んでもよい。例えば、処理デバイスは、動作中に格納された命令を取得及び実行するために、メモリにアクセスすることができる。どちらの場合にも、本明細書で開示される検知、画像解析、及び/又はナビゲーション機能を実行するように構成された処理デバイスは、ホスト車両の複数のハードウェアベースのコンポーネントの制御における特化したハードウェアベースのシステムを表す。
【0063】
図1は、処理ユニット110に含まれる2つの別個の処理デバイスを示しているが、より多く又はより少ない処理デバイスが用いられてもよい。例えば、いくつかの実施形態において、単一処理デバイスは、アプリケーションプロセッサ180及びイメージプロセッサ190のタスクを達成するために使用されてもよい。他の実施形態において、これらタスクは、2以上の処理デバイスによって実行されてもよい。さらに、いくつかの実施形態において、システム100は、画像取得ユニット120のような他のコンポーネントを含まない処理ユニット110の1又は複数を含んでもよい。
【0064】
処理ユニット110は、様々な種類のデバイスを備えることができる。例えば、処理ユニット110は、コントローラ、画像プリプロセッサ、中央処理装置(CPU)、グラフィック処理装置(GPU)、サポート回路、デジタルシグナルプロセッサ、集積回路、メモリ、又は任意の他の種類の画像処理及び画像解析用デバイス等の様々なデバイスを含むことができる。画像プリプロセッサは、イメージセンサからの画像を、キャプチャ、デジタル化、及び処理するためビデオプロセッサを含むことができる。CPUは、任意の数のマイクロコントローラー又はマイクロプロセッサを備えることができる。また、GPUは、任意の数のマイクロコントローラー又はマイクロプロセッサを備えることができる。サポート回路は、キャッシュメモリ、電力供給、クロック、及び入力-出力回路を含む、この技術分野で一般的によく知られている任意の数の回路でもよい。メモリは、プロセッサによる実行時に、システムの動作を制御するソフトウェアを格納することができる。メモリは、データベース及び画像処理ソフトウェアを含むことができる。メモリは、任意の数のRAM、ROM、フラッシュメモリ、ディスクドライブ、光記憶装置、テープストレージ、リムーバブルストレージ、及び他の種類の記憶装置を備えることができる。一例として、メモリは、処理ユニット110から分離されていてもよい。他の例として、メモリは、処理ユニット110に統合されていてもよい。
【0065】
各メモリ140、150は、プロセッサ(例えば、アプリケーションプロセッサ180及び/又はイメージプロセッサ190)による実行時に、様々な態様のシステム100の動作を制御することができるソフトウェア命令を含んでもよい。これらメモリユニットは、例えば、ニューラルネットワーク又はニューラルネットワークのような訓練されたシステムだけでなく、様々なデータベース及び画像処理ソフトウェアも含むことができる。メモリユニットは、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、フラッシュメモリ、ディスクドライブ、光記憶装置、テープストレージ、リムーバブルストレージ、及び/又は任意の他の種類の記憶装置を含むことができる。いくつかの実施形態において、メモリユニット140、150は、アプリケーションプロセッサ180及び/又はイメージプロセッサ190から分離されていてもよい。他の実施形態において、これらのメモリユニットは、アプリケーションプロセッサ180及び/又はイメージプロセッサ190に統合されていてもよい。
【0066】
位置センサー130は、システム100の少なくとも1つの構成要素と関連する位置を決定するのに適した任意の種類のデバイスを含むことができる。いくつかの実施形態において、位置センサー130は、GPS受信機を含むことができる。そのような受信器は、グローバルポジショニングシステム衛星によってブロードキャストされた信号を処理することによって、ユーザの位置及び速度を決定することができる。位置センサー130からの位置情報は、アプリケーションプロセッサ180及び/又はイメージプロセッサ190で利用できるようにされてもよい。
【0067】
いくつかの実施形態において、システム100は、車両200の速度を測定するための速度センサ(例えば、回転速度計、速度計等)、及び/又は車両200の加速度を測定するための加速度計(単一軸又は複数軸何れか)のような構成要素を含むことができる。
【0068】
ユーザーインターフェース170は、システム100の1又は複数のユーザへの情報の提供、又は1又は複数のユーザからの入力の受信に適した任意のデバイスを含むことができる。いくつかの実施形態において、ユーザーインターフェース170は、例えば、タッチスクリーン、マイク、キーボード、ポインタデバイス、トラックホイール、カメラ、つまみ、ボタン等を含むユーザ入力デバイスを含むことができる。そのような入力デバイスを使用して、ユーザは、命令又は情報をタイピングすることによって、音声コマンドを提供することによって、ボタン、ポインタ、又は視線追跡機能を用いてスクリーン上のメニューオプションを選択することによって、又はシステム100への情報通信のための任意の他の適切な技術を通して、情報入力又はコマンドをシステム100に提供することができる。
【0069】
ユーザーインターフェース170は、ユーザーとの間で情報を提供及び受信するように構成され、例えば、アプリケーションプロセッサ180による使用のための情報を処理するように構成された1又は複数の処理デバイスに搭載されてもよい。いくつかの実施形態において、そのような処理デバイスは、目の動きの認識及び追跡、音声コマンドの受信及び解釈、タッチスクリーンでなされたタッチ及び/又はジェスチャーの認識及び解釈、キーボード入力又はメニュー選択に対する応答等のための命令を実行することができる。いくつかの実施形態において、ユーザーインターフェース170は、ディスプレイ、スピーカー、触覚デバイス、及び/又は、出力情報をユーザに提供するための任意の他のデバイスを含んでもよい。
【0070】
地図データベース160は、システム100において有用な地図データを格納するために、任意の種類のデータベースを含むことができる。いくつかの実施形態において、地図データベース160は、道路を含み、水域的特徴、地理的特徴、ビジネス、興味を起こさせるポイント、レストラン、給油所等、様々なアイテムの、基準座標系における位置に関するデータを含んでもよい。地図データベース160は、そのようなアイテムの位置だけでなく、例えば、格納される特徴の何れかと関連する名前を含むアイテムに関する記述子もまた格納することができる。いくつかの実施形態において、地図データベース160は、システム100の他のコンポーネントと共に物理的に配置されてもよい。代替的又は追加的に、地図データベース160又はそれらの部分は、システム100の他のコンポーネントに対して遠隔的に配置されてもよい(例えば、処理ユニット110)。そのような実施形態において、地図データベース160からの情報は、有線又は無線データ接続ネットワーク(例えば、セルラーネットワーク及び/又はインターネット等を介して)を介してダウンロードできる。いくつかの場合において、地図データベース160は、特定の道路特徴(例えば、車線表示)又はホスト車両のターゲット軌跡の多項式表現を含む点在するデータモデルを格納することができる。そのような地図を生成するシステム及び方法は、図8図19を参照して、以下に述べる。
【0071】
画像キャプチャデバイス122、124及び126は、環境からの少なくとも1つの画像を撮像するのに適した任意の種類のデバイスをそれぞれ含んでもよい。さらに、任意の数の画像キャプチャデバイスは、イメージプロセッサへ入力用の画像を捕捉するために使用されることができる。ある実施形態は、単一画像キャプチャデバイスのみを含むことができ、しかし一方、他の実施形態は、2つ、3つ、あるいは4つ、又はそれより多くの画像キャプチャデバイスを含むことができる。さらに、画像キャプチャデバイス122、124及び126は、図2B図2Eを参照して以下に説明される。
【0072】
システム100、又はそれらの様々なコンポーネントは、様々な異なるプラットフォームに組み込れてもよい。いくつかの実施形態において、システム100は、図2Aに示されるように、車両200に含まれてもよい。例えば、車両200は、図1に関し上述したように、処理ユニット110及びシステム100の任意の他のコンポーネントを装備することができる。 いくつかの実施形態において、車両200は、単一画像キャプチャデバイス(例えば、カメラ)のみを搭載することができるが、図2B図2Eに関連して述べられたそれらのような他の実施形態において、複数の画像キャプチャデバイスが用いられてもよい。例えば、図2Aに示されるように車両200の画像キャプチャデバイス122及び124の何れかは、ADAS(Advanced Driver Assistance Systems、高度運転者支援システム)撮像セットの一部でもよい。
【0073】
画像取得ユニット120の一部として車両200に含まれた画像キャプチャデバイスは、任意の好適な位置に配置されていてもよい。図2A図2E及び図3A図3Cに示されるように、いくつかの実施形態において、画像キャプチャデバイス122は、バックミラーの近くに配置されてもよい。この位置は、運転者に見えるもの及び見えないものを決定することを支援できる車両200の運転者の視界に類似する視線を提供してもよい。画像キャプチャデバイス122は、バックミラーの近くの任意の位置に配置されてもよいが、ミラーの運転者側に画像キャプチャデバイス122を配置することは、さらに、運転者の視野及び/又は視線を表す画像の取得を支援することができる。
【0074】
また、画像取得ユニット120の画像キャプチャデバイスのための他の場所が、使用されてもよい。例えば、画像キャプチャデバイス124は、車両200のバンパーの上又は内部に配置されてもよい。そのような位置は、広い視野を有する画像キャプチャデバイスに、特に適していてもよい。バンパーに配置された画像キャプチャデバイスの視線は、運転者の視線と異なることができ、従って、バンパー画像キャプチャデバイス及び運転者は、常に同じ対象物を見ないかもしれない。また、画像キャプチャデバイス(例えば、画像キャプチャデバイス122、124及び126)は、他の場所に配置されてもよい。例えば、画像キャプチャデバイスは、車両200の1つ又は両方のサイドミラー上又は内部に、車両200のルーフ上に、車両200のボンネットに、車両200のトランクに、車両200の側部に、配置され、車両200の任意のウィンドウに取り付けられ、の背後に配置され又は前面に配置され、車両200の正面及び/又は背面のライト外観に又はの近く等に取り付けられてもよい。
【0075】
画像キャプチャデバイスに加えて、車両200は、システム100の様々な他のコンポーネントを含むことができる。例えば、処理ユニット110は、車両のエンジン制御ユニット(ECU)と統合され又は分離されて、車両200に含まれていてもよい。また、車両200は、GPS受信機等の位置センサー130を搭載してもよく、また、地図データベース160及びメモリユニット140及び150を含んでもよい。
【0076】
先に述べたように、無線送受信機172は、1又は複数のネットワーク(例えば、セルラーネットワーク、インターネット等)を介してデータを、送信及び/又は受信してもよい。例えば、無線送受信機172は、システム100によって収集されたデータを1又は複数のサーバにアップロードしてもよく、1又は複数のサーバからデータをダウンロードしてもよい。無線送受信機172を介して、システム100は、例えば、地図データベース160、メモリ140、及び/又はメモリ150に格納されたデータに対する定期的な又は必要に応じたアップデート情報を受信してもよい。類似して、無線送受信機172は、任意のデータ(例えば、画像取得ユニット120によってキャプチャされた画像、位置センサー130又は他のセンサによって受信されたデータ、車両制御システム等)を、システム100によって及び/又は処理ユニット110によって処理された任意のデータから、1又は複数のサーバにアップロードできる。
【0077】
システム100は、プライバシーレベル設定に基づいて、サーバに(例えばクラウドに)データをアップロードしてもよい。例えば、システム100は、車両、及び/又は車両の運転者/所有者を一意に識別可能なサーバに送信されるデータ(メタデータを含む)のタイプを調節又は制限するために、プライバシーレベル設定を実装することができる。そのような設定は、例えば無線送受信機172を介してユーザによって設定されてもよく、工場出荷時のデフォルト設定、又は無線送受信機172によって受信したデータによって、初期化され得る。
【0078】
いくつかの実施形態において、システム100は、プライバシーレベル「高」に従って、設定された設定の下でデータをアップロードでき、システム100は、特定の車両、及び/又は運転者/所有者について詳細がないデータ(例えば、ルートに関する位置情報、キャプチャされた複数の画像、等)を送信することができる。例えば、プライバシー設定「高」に従ってデータをアップロードする場合、システム100は、車両識別番号(VIN)、又は車両の運転者又所有者の名前を含まなくてもよく、代わりに、キャプチャされた複数の画像及び/又はルートに関する制限された位置情報等のデータを送信してもよい。
【0079】
他のプライバシーレベルが考慮される。例えば、システム100は、プライバシーレベル「中」に従ってサーバにデータを送信でき、プライバシーレベル「高」のもとでは含まれない、車両のメーカー及び/又はモデル、及び/又は車両タイプ等の(例えば、乗用車、スポーツ用多目的車、トラック等)追加情報を含むことができる。いくつかの実施形態において、システム100は、プライバシーレベル「低」に従ってデータをアップロードできる。プライバシーレベル設定「低」に従って、システム100は、データをアップロードすることができ、特定の車両、所有者/運転者、及び/又は、車両が移動するルートの一部又は全部を、一意に識別するための十分な情報を含むことができる。そのようなプライバシーレベル「低」のデータは、例えば、VIN、運転者/所有者の名前、出発前の車両の起点、車両の目的地、車両のメーカー及び/又はモデル、車両のタイプ等の1又は複数を含んでもよい。
【0080】
図2Aは、開示される実施形態と一致する例示的な車両撮像システムの概略側面図である。図2Bは、図2Aに示される実施形態の概略平面図である。図2Bに示されるように、開示される実施形態は、車両200のバックミラー及び/又は運転者の近くに配置された第1の画像キャプチャデバイス122と、車両200のバンパー領域(例えば、バンパー領域210の1つ)又は内部に配置された第2の画像キャプチャデバイス124と、処理ユニット110とを備えたシステム100をその本体に含む車両200を含んでもよい。
【0081】
図2Cに示されるように、画像キャプチャデバイス122及び124は、両方とも、バックミラーの近くに、及び/又は車両200の運転者の近くに配置されてもよい。さらに、2つの画像キャプチャデバイス122及び124が、図2B及び図2Cに示されているが、他の実施形態において、2より多くの画像キャプチャデバイスを含んでもよいことが理解されるべきである。例えば、図2D及び図2Eに示される実施形態において、第1、第2及び第3の画像キャプチャデバイス122、124及び126は、車両200のシステム100に含まれる。
【0082】
図2Dに示されるように、画像キャプチャデバイス122は、バックミラーの近くに、及び/又は車両200の運転者の近くに配置されていてもよく、画像キャプチャデバイス124及び126は、車両200のバンパー領域(例えば、バンパー領域210の1つ)又は内部に配置されていてもよい。そして、図2Eに示されるように、画像キャプチャデバイス122、124及び126は、バックミラーの近くに、及び/又は、車両200の運転者シートの近くに配置されてもよい。開示される実施形態は、画像キャプチャデバイスの任意の特定の数及び構成に限定されず、画像キャプチャデバイスは、車両200の内部及び/又は車両200上の任意の適当な位置に配置されてもよい。
【0083】
開示される実施形態は車両に限定されず、他の状況で適用され得ることを理解されたい。 また、開示される実施形態は特定のタイプの車両200に限定されず、自動車、トラック、トレーラ及び他の種類の車両を含む全ての種類の車両に適用可能でもよいことを理解されたい。
【0084】
第1の画像キャプチャデバイス122は、任意の好適なタイプの画像キャプチャデバイスを含むことができる。画像キャプチャデバイス122は、光軸を含むことができる。一例として、画像キャプチャデバイス122は、グローバルシャッター付きのAptina M9V024 WVGAセンサーを含むことができる。他の実施形態において、画像キャプチャデバイス122は、1280x960ピクセルの解像度を提供することができ、ローリングシャッタを含むことができる。画像キャプチャデバイス122は、様々な光学素子を含むことができる。いくつかの実施形態において、1又は複数のレンズは、例えば、画像キャプチャデバイスのための所望の焦点長さ及び視野を提供するように含まれてもよい。いくつかの実施形態において、画像キャプチャデバイス122は、6mmレンズ又は12mmレンズに関連づけられることができる。いくつかの実施形態において、画像キャプチャデバイス122は、図2Dに示されるように、所望の視野(FOV)202を有する画像をキャプチャするように構成されていてもよい。例えば、画像キャプチャデバイス122は、46度のFOV、50度のFOV、52度のFOV、又はそれより大きいものを含む40度から56度までの範囲内等の規則的なFOVを有するように構成されていてもよい。代替的に、画像キャプチャデバイス122は、28度のFOV又は36度のFOV等の23度から40度までの範囲の狭い視野を有するように構成されていてもよい。加えて、画像キャプチャデバイス122は、100度から180度までの範囲の広い視野を有するように構成されていてもよい。いくつかの実施形態において、画像キャプチャデバイス122は、広角のバンパーカメラ又は最大180度のFOVのものを含むことができる。いくつかの実施形態において、画像キャプチャデバイス122は、約100度の水平FOVで、アスペクト比が約2:1であり、7.2Mピクセルの画像キャプチャデバイスでもよい(例えば、HxV=3800x1900ピクセル)。そのような画像キャプチャデバイスは、3つの画像キャプチャデバイス構成の代わりに用いられてもよい。著しいレンズ歪みに起因して、そのような画像キャプチャデバイスの垂直FOVは、画像キャプチャデバイスが放射対称性レンズを使用する実装において、50度より大幅に小さくてもよい。例えば、そのようなレンズは、100度の水平FOVで50度より大きい垂直FOVを許容するであろう放射対称性ではなくてもよい。
【0085】
第1の画像キャプチャデバイス122は、車両200に関連するシーンに関する複数の第1の画像を捕捉できる。複数の第1の画像のそれぞれは、ローリングシャッタを用いてキャプチャされ得る一連の画像スキャンラインとして捕捉されてもよい。各スキャンラインは、複数のピクセルを含むことができる。
【0086】
第1の画像キャプチャデバイス122は、第1の一連の画像スキャンラインのそれぞれの取得と関連するスキャンレートを有することができる。スキャンレートは、特定のスキャンラインに含まれる各ピクセルに関連する画像データをイメージセンサが捕捉することができる速度を指してもよい。
【0087】
画像キャプチャデバイス122、124及び126は、例えば、CCDセンサ又はCMOSセンサを含む任意の好適なタイプ及び数のイメージセンサを含むことができる。一実施形態において、CMOSイメージセンサは、一列の各ピクセルが同時に読み込まれるように、列のスキャニングは、画像フレーム全体がキャプチャされるまで列ごとに進行するように、ローリングシャッタと連動して使用されてもよい。いくつかの実施形態において、列は、フレームに対して上から下まで順次キャプチャされてもよい。
【0088】
いくつかの実施形態において、本明細書に開示される画像キャプチャデバイス(例えば、画像キャプチャデバイス122、124及び126)の1又は複数は、高解像度を構成するものでもよく、5Mピクセル、7Mピクセル、10Mピクセルより大きく、又はより大きい解像度を有してもよい。
【0089】
ローリングシャッタの使用は、異なる時間で露光されキャプチャされた異なる列内のピクセルをもたらす可能性があり、キャプチャされた画像フレームにスキュー及び他の画像アーチファクトを発生させるかもしれない。一方、グローバルシャッター又は同期シャッターで動作するように構成された画像キャプチャデバイス122の場合、全てのピクセルは、同じ時間の長さの間、共通の露光時間中に露光されてもよい。結果として、グローバルシャッタを採用するシステムから収集されたフレーム内の画像データは、特定の時間のFOV全体(FOV202等)のスナップショットを表現する。その一方、ローリングシャッタの適用において、フレーム内の各列は露光され、データは異なる時間にキャプチャされる。したがって、移動する対象物は、ローリングシャッタを有する画像キャプチャデバイスにおいて歪んで見えるかもしれない。この現象は、以下でより詳細に説明される。
【0090】
第2の画像キャプチャデバイス124及び第3の画像キャプチャデバイス126、任意の種類の画像キャプチャデバイスでもよい。同様に、第1の画像キャプチャデバイス122、画像キャプチャデバイス124及び126のそれぞれは、光軸を含んでもよい。一実施形態において、それぞれの画像キャプチャデバイス124及び126は、グローバルシャッターを有するAptina M9V024 WVGAセンサーを含むことができる。代替的に、それぞれの画像キャプチャデバイス124及び126は、ローリングシャッターを含んでもよい。同様に、画像キャプチャデバイス122、画像キャプチャデバイス124及び126は、様々なレンズ及び光学素子を含むように構成されていてもよい。いくつかの実施形態において、画像キャプチャデバイス124及び126に関連するレンズは、画像キャプチャデバイス122に関連するFOV(FOV202等)と同じ又はより狭いFOV(FOV204及び206等)を提供することができる。例えば、画像キャプチャデバイス124及び126は、40度、30度、26度、23度、20度、又はより小さいFOVを有することができる。
【0091】
画像キャプチャデバイス124及び126は、車両200に関連するシーンに関する複数の第2及び第3の画像を捕捉することができる。複数の第2の画像及び第3の画像のそれぞれは、ローリングシャッタを使用してキャプチャされ得る画像スキャンラインの第2のシリーズ及び第3のシリーズとして取得できる。各スキャンライン又は列は、複数のピクセルを有してもよい。画像キャプチャデバイス124及び126は、第2のシリーズ及び第3のシリーズに含まれる各画像スキャンラインの取得に関連する第2のスキャンレート及び第3のスキャンレートを有することができる。
【0092】
各画像キャプチャデバイス122、124及び126は、車両200に対して任意の適切な位置及び向きに配置されていてもよい。画像キャプチャデバイス122、124、及び126の相対的な配置は、画像キャプチャデバイスから取得された情報をともに融合するのを支援するために選択されてもよい。例えば、いくつかの実施形態において、画像キャプチャデバイス124に関連するFOV(FOV204等)は、画像キャプチャデバイス122に関連するFOV(FOV202等)及び画像キャプチャデバイス126に関連するFOV(FOV206等)と部分的又は完全に重なり得る。
【0093】
画像キャプチャデバイス122、124及び126は、任意の好適な相対的な高さで車両200に配置されていてもよい。一例として、ステレオ分析可能な十分な視差情報を提供できる画像キャプチャデバイス122、124及び126間の高さの差があってもよい。例えば、図2Aに示されるように、2つの画像キャプチャデバイス122及び124は異なる高さである。また、例えば、処理ユニット110によるステレオ分析のための追加の視差情報を与える画像キャプチャデバイス122、124及び126間の横方向の位置の差があってもよい。図2C及び図2Dに示されるように、横方向の位置の差は、dで示すことができる。いくつかの実施形態において、前後のずれ(例えば、ずれ範囲)は、画像キャプチャデバイス122、124及び126間に存在してもよい。例えば、画像キャプチャデバイス122は、画像キャプチャデバイス124及び/又は画像キャプチャデバイス126の後方、0.5メートルから2メートル又はそれ以上に配置されていてもよい。このタイプのずれは、画像キャプチャデバイスの1つが、他の画像キャプチャデバイスの潜在的な死角をカバーを可能にするかもしれない。
【0094】
画像キャプチャデバイス122は、任意の好適な解像度機能(例えば、イメージセンサに関連するピクセルの数)を有してもよく、画像キャプチャデバイス122に関連するイメージセンサの解像度は、画像キャプチャデバイス124及び126に関連するイメージセンサの解像度より高くてもよく、より低くてもよく、同じでもよい。いくつかの実施形態において、画像キャプチャデバイス122及び/又は画像キャプチャデバイス124及び126に関連するイメージセンサは、640x480、1024x768、1280x960の解像度、又は任意の他の適切な解像度を有してもよい。
【0095】
フレームレート(例えば、画像キャプチャデバイスが次の画像フレームに関連するピクセルデータをキャプチャするために、移動前に1つの画像フレームのピクセルデータのセットを捕捉するレート)は、制御可能でもよい。画像キャプチャデバイス122に関連するフレームレートは、画像キャプチャデバイス124及び126に関連するフレームレートより高くてもよく、より低くてもよく、同じでもよい。画像キャプチャデバイス122、124及び126に関連するフレームレートは、フレームレートのタイミングに影響を与えるかもしれない様々な要因に依存するかもしれない。例えば、画像キャプチャデバイス122、124及び126の1又は複数は、画像キャプチャデバイス122、124及び/又は126内のイメージセンサの1又は複数のピクセルに関連する画像データの取得前又は取得後に課される選択可能なピクセル遅延時間を含むことができる。概して、各ピクセルに対応する画像データは、デバイス(例えば、クロックサイクルにつき1ピクセル)のためのクロックレートに従って取得することができる。さらに、ローリングシャッタを含む実施形態において、画像キャプチャデバイス122、124及び126の1又は複数は、画像キャプチャデバイス122、124及び/又は126内のイメージセンサの1列のピクセルに関連する画像データの取得前又は取得後に課される選択可能な水平方向のブランキング期間を含むことができる。さらに、画像キャプチャデバイス122、124及び/又は126の1又は複数は、画像キャプチャデバイス122、124及び/又は126の画像フレームに関連する画像データの取得前又は取得後に課される選択可能な垂直方向のブランキング期間を含むことができる。
【0096】
これらのタイミング制御は、それぞれのラインスキャンレートが異なる場合でも、画像キャプチャデバイス122、124及び126に関連するフレームレートの同期を可能にし得る。さらに、以下でより詳細に説明するように、これらの選択可能なタイミング制御は、他の要因間で(例えば、イメージセンサ解像度、最大ラインスキャンレート等)、画像キャプチャデバイス122の視野が画像キャプチャデバイス124及び126のFOVと異なる場合でも、画像キャプチャデバイス122のFOVが画像キャプチャデバイス124及び126の1又は複数のFOVと重なるエリアから画像キャプチャの同期を可能としてもよい。
【0097】
画像キャプチャデバイス122、124及び126におけるフレームレートタイミングは、イメージセンサに関連する解像度に依存してもよい。例えば、両方のデバイスで類似のラインスキャンレートを想定することは、1つのデバイスが、640x480の解像度を有するイメージセンサを含み、他のデバイスが1280x960の解像度を有するイメージセンサを含むとすると、そのとき、より高い解像度を有するセンサーから画像データのフレームを捕捉するためにより多くの時間が必要になる。
【0098】
画像キャプチャデバイス122、124および126において、画像データ取得のタイミングに影響を与えるかもしれたない他の要因は、最大ラインスキャンレートである。例えば、画像キャプチャデバイス122、124および126に含まれるイメージセンサからの画像データの列の取得には、ある最小時間長さが必要になる。追加されるピクセル遅延時間がないと仮定すると、画像データの列の取得のためのこの最小時間長さは、特定のデバイスのための最大ラインスキャンレートに関係するであろう。より高い最大ラインスキャンレートを提供するデバイスは、より低い最大ラインスキャンレートをともなうデバイスより高いフレームレートを提供するポテンシャルを有する。いくつかの実施形態において、画像キャプチャデバイス124および126の1又は複数は、画像キャプチャデバイス122に関連する最大ラインスキャンレートより高い最大ラインスキャンレートを有することができる。いくつかの実施形態において、画像キャプチャデバイス124及び/又は126の最大ラインスキャンレートは、画像キャプチャデバイス122の最大ラインスキャンレートの1.25倍、1.5倍、1.75倍、又は2倍又はそれより多くてもよい。
【0099】
別の実施形態において、画像キャプチャデバイス122、124および126は、同じ最大ラインスキャンレートでもよく、しかし、画像キャプチャデバイス122は、その最大スキャンレート未満又は等しいスキャンレートで運転されてもよい。システムは、画像キャプチャデバイス122のラインスキャンレートと等しいラインスキャンレートで、画像キャプチャデバイス124および126の1又は複数を運転するように構成されてもよい。他の例において、システムは、画像キャプチャデバイス124及び/又は画像キャプチャデバイス126のラインスキャンレートが、画像キャプチャデバイス122のラインスキャンレートの1.25倍、1.5倍、1.75倍、又は2倍又はそれより多くてもよいように構成され得る。
【0100】
いくつかの実施形態において、画像キャプチャデバイス122、124および126は非対称的でもよい。つまり、それらは、異なる視野(FOV)及び焦点長を有するカメラを含んでもよい。画像キャプチャデバイス122、124および126の視野は、例えば車両200の環境に関する任意の所望のエリアを含むことができる。いくつかの実施形態において、画像キャプチャデバイス122、124および126の1又は複数は、車両200の前方、車両200の後方、車両200の側方、又はそれらの組み合わせの環境から画像データを捕捉するように構成され得る。
【0101】
さらに、各画像キャプチャデバイス122、124及び/又は126に関連する焦点長は、各デバイスが車両200に対して所望の距離範囲で対象物の画像を捕捉するように選択可能でもよい(例えば、適切なレンズ等を含むことによって)。例えば、いくつかの実施形態において、画像キャプチャデバイス122、124および126は、車両から数メートルの範囲内でクローズアップ対象物の画像を捕捉してもよい。また、画像キャプチャデバイス122、124および126は、車両からより遠い範囲(例えば、25m、50m、100m、150m、又はそれ以上)で対象物の画像を捕捉するように構成されていてもよい。さらに、画像キャプチャデバイス122、124および126の焦点長は、1つの画像キャプチャデバイス(例えば、画像キャプチャデバイス122)が車両に比較的近い(例えば、10mの範囲、又は20mの範囲)対象物の画像を捕捉できるように、一方、他の画像キャプチャデバイス(例えば、画像キャプチャデバイス124および126)は、車両200からより遠い(例えば、20m、50m、100m、150mより大きい、等)対象物の画像を捕捉できるように、選択されてもよい。
【0102】
いくつかの実施形態によれば、1又は複数の画像キャプチャデバイス122、124および126のFOVは、広角を有することができる。例えば、特に、車両200の近くのエリアの画像をキャプチャするために使用され得る画像キャプチャデバイス122、124および126については、140度のFOVを有することが有利であるかもしれない。例えば、画像キャプチャデバイス122は、車両200の右又は左のエリアの画像をキャプチャするために使用されてもよく、そのような実施形態において、画像キャプチャデバイス122が広い視野(例えば、少なくとも140度)を有することが望ましいかもしれない。
【0103】
各画像キャプチャデバイス122、124および126に関連する視野は、それぞれの焦点長に依存していてもよい。例えば、焦点長が増えると、対応する視野が減る。
【0104】
画像キャプチャデバイス122、124および126は、任意の好適な視野を有するように構成されていてもよい。ある特定の例において、画像キャプチャデバイス122は、46度の水平FOVを有してもよく、画像キャプチャデバイス124は、23度の水平FOVを有してもよく、画像キャプチャデバイス126は、23度と46度との間の水平FOVを有してもよい。他の例としては、52度の水平FOVを有してもよく、画像キャプチャデバイス124は、26度の水平FOVを有してもよく、画像キャプチャデバイス126は、26度と52度との間の水平FOVを有してもよい。いくつかの実施形態において、画像キャプチャデバイス122のFOVと、画像キャプチャデバイス124及び/又は画像キャプチャデバイス126のFOVとの比は、1.5から2.0まで変化し得る。他の実施形態において、この比は、1.25と2.25との間で変化し得る。
【0105】
システム100は、画像キャプチャデバイス122の視野が、画像キャプチャデバイス124及び/又は画像キャプチャデバイス126の視野と、少なくとも部分的又は完全に、重なるように構成されていてもよい。いくつかの実施形態において、システム100は、画像キャプチャデバイス124および126の視野が、例えば、画像キャプチャデバイス122の視野の範囲内にあり(例えば、より狭い)、当該視野の共通の中心を共有するように構成されていてもよい。他の実施形態において、画像キャプチャデバイス122、124および126は、隣接するFOVをキャプチャしてもよく、又はそれらのFOVにおいて、部分的な重複を有していてもよい。いくつかの実施形態において、画像キャプチャデバイス122、124および126の視野は、より狭いFOV画像キャプチャデバイス124及び/又は126の中心がより広いFOVデバイス122の視野の下半分に配置され得るように位置合わせされていてもよい。
【0106】
図2Fは、開示される実施形態と一致する例示的な車両制御システムの概略図である。図2Fに示されるように、車両200は、スロットルシステム220、ブレーキシステム230、及びステアリングシステム240を含むことができる。システム100は、データを送信するための1又は複数のデータリンク(例えば、任意の有線及び/又は無線のリンク又は複数のリンク)を介したスロットルシステム220、ブレーキシステム230、及びステアリングシステム240の1又は複数への入力(例えば、制御信号)を提供してもよい。例えば、画像キャプチャデバイス122、124及び/又は126によって取得された画像の解析に基づき、システム100は、車両200をナビゲートするスロットルシステム220、ブレーキシステム230、及びステアリングシステム240(例えば、加速、曲がり、車線変更等を生じさせることによって)の1又は複数へ制御信号を提供することができる。さらに、システム100は、車両200の運転条件(例えば、速度、車両200がブレーキ及び/又はターンするかどうか、等)を指示するスロットルシステム220、ブレーキシステム230、及びステアリングシステム240の1又は複数から入力を受信してもよい。さらなる詳細は、図4図7に関連して、以下に提供される。
【0107】
また、図3Aに示されるように、車両200は、車両200の運転者又は搭乗者と相互作用するためのユーザーインターフェース170を含むことができる。例えば、車両用途におけるユーザーインターフェース170は、タッチスクリーン320、ノブ330、ボタン340、及びマイク350を含んでもよい。また、車両200の運転者又は搭乗者は、システム100とやりとりするためのハンドル(例えば、例えば、方向指示器、ハンドルを含む車両200のステアリングコラムに又は近くに配置された)、ボタン(例えば、車両200のステアリングホイールに配置され)等を使用することができる。いくつかの実施形態において、マイク350は、バックミラー310に隣接して配置されていてもよい。類似して、いくつかの実施形態において、画像キャプチャデバイス122は、バックミラー310の近くに配置されていてもよい。また、いくつかの実施形態において、ユーザーインターフェース170は、1又は複数のスピーカー360を含んでもよい(例えば、車両オーディオシステムのスピーカー)。例えば、システム100は、スピーカー360を介して、様々な通知(例えば、警告)を提供することができる。
【0108】
図3B図3Dは、開示される実施形態に一致し、バックミラー(例えば、バックミラー310)の背後に、車両のフロントガラスに対して配置されるように構成された例示的なカメラマウント370の図である。図3Bに示されるように、カメラマウント370は、画像キャプチャデバイス122、124および126含んでもよい。画像キャプチャデバイス124および126は、車両のフロントガラスに対して面一であり、フィルム及び/又は反射防止材の構成を含むことができるグレアシールド380の後方に配置されていてもよい。例えば、グレアシールド380は、シールドが、一致する傾きを有する車両のフロントガラスに対して整列するように、配置されていてもよい。いくつかの実施形態において、画像キャプチャデバイス122、124および126のそれぞれは、例えば図3Dに示されるように、グレアシールド380の後方に配置されていてもよい。開示される実施形態は、画像キャプチャデバイス122、124および126及びカメラマウント370、及びグレアシールド380の任意の特定の構成に限定されない。図3Cは、図3Bに示されるカメラマウント370を正面から示す図である。
【0109】
本開示の利益を有する当業者によって理解されるように、前述の開示された実施形態に対して多数の変形及び/又は修正を行うことができる。例えば、全ての構成要素がシステム100の動作のために重要というわけではない。さらに、任意の構成要素は、システム100の任意の適当な一部に配置されていてもよく、構成要素は、開示される実施形態の機能を提供しながら、様々な構成に再配置され得る。従って、前述構成は例であり、上述の構成にかかわらず、システム100は、車両200の周囲を分析し、分析に応じて、車両200をナビゲートするために、幅広い機能を提供できる。
【0110】
以下に詳細に説明し、開示される様々な実施形態と一致するように、システム100は、自動運転及び/又は運転者アシスト技術に関する様々な特徴を提供することができる。例えば、システム100は、画像データ、位置データ、(例えば、GPS位置情報)、地図データ、速度データ、及び/又は車両200に含まれるセンサからのデータを分析することができる。システム100は、例えば、画像取得ユニット120、位置センサー130、及び他のセンサから、分析用データを収集できる。さらに、システム100は、車両200が特定の動作を取るべきか否かを決定するために、収集されたデータを分析することができ、その後、自動的に、人の介在なく、決定された動作を取ることができる。例えば、車両200が人の介在なくナビゲートする場合、システム100は、自動的に、車両200のブレーキ、加速、及び/又はステアリングを制御することができる(例えば、スロットルシステム220、ブレーキシステム230、及びステアリングシステム240の1又は複数に制御信号を送信することによって)。さらに、システム100は、収集されたデータを分析することができ、収集されたデータの分析に基づいて、車両の乗員に、警告を発行し、及び/又は注意を喚起することができる。システム100によって提供される様々な実施形態に関する追加の詳細が以下に提供される。
【0111】
前方を向くマルチ撮像システム
【0112】
上述のように、システム100は、マルチカメラシステムを使用するドライブアシスト機能を提供することができる。マルチカメラシステムは、車両の前方を向いている1又は複数のカメラを使用することができる。他の実施形態において、マルチカメラシステムは、車両の側方、又は車両の後方を向いている1又は複数のカメラを含んでもよい。例えば、一実施形態において、システム100は、第1のカメラ及び第2のカメラが(例えば、画像キャプチャデバイス122および124)、車両(例えば、車両200)の前部及び/又は側部に配置され得る2つのカメラ撮像システムを使用することができる。第1のカメラは、第2のカメラの視野より大きい、より小さい、又は部分的に重複する視野を有してもよい。加えて、第1のカメラは、第1のカメラによって提供された画像の単眼画像解析を実行する第1のイメージプロセッサに接続されていてもよく、第2のカメラは、第2のカメラによって提供された画像の単眼画像解析を実行する第2のイメージプロセッサに接続されていてもよい。第1及び第2のイメージプロセッサの出力(例えば、処理された情報)は、組み合わされていてもよい。いくつかの実施形態において、第2のイメージプロセッサは、ステレオ分析を実行するために、第1のカメラ及び第2のカメラの両方から画像を受信することができる。別の実施形態において、システム100は、それぞれのカメラが異なる視野を有する3つのカメラ撮像システムを使用することができる。従って、そのようなシステムは、車両の前方及び側方の両方の様々な距離にある対象物から導出された情報に基づいて決定することができる。単眼画像解析への言及は、画像解析が単一の視点から(例えば、単一のカメラから)キャプチャされた画像に基づいて実行される例を指すことができる。ステレオ画像解析は、画像キャプチャパラメータの1又は複数の変化を有してキャプチャされた2つ又はそれより多くの画像に基づいて画像解析が実行された例を指すことができる。例えば、ステレオ画像解析の実行に適したキャプチャされた複数の画像は、2つ又はそれより多くの異なる位置から、異なる視野から、異なる焦点長を用いて、視差情報等に連動して、キャプチャされた画像を含むことができる。
【0113】
例えば、一実施形態において、システム100は、画像キャプチャデバイス122、124および126を使用する3つのカメラ構成を実装することができる。そのような構成において、画像キャプチャデバイス122は、狭い視野(例えば、34度、又は約20度から45度までの範囲から選択された他の値、等)を提供することができ、画像キャプチャデバイス124は、広視野(例えば、150度、又は約100度から約180度までの範囲から選択された他の値)を提供することができ、画像キャプチャデバイス126は、中視野(例えば、46度又は約35から約60度までの範囲から選択された他の値)を提供することができる。いくつかの実施形態において、画像キャプチャデバイス126は、メイン又は最上位のカメラとして動作することができる。画像キャプチャデバイス122、124および126は、バックミラー310の背後に配置され、実質的に並んで(例えば、6cm離れて)配置されていてもよい。さらに、いくつかの実施形態において、上述のように、画像キャプチャデバイス122、124および126の1又は複数は、車両200のフロントガラスに対して面一であるグレアシールド380の後方に取り付けていてもよい。そのような遮蔽は、画像キャプチャデバイス122、124および126に対する車内からのあらゆる反射の影響を最小化するように動作し得る。
【0114】
別の実施形態において、上述のように、図3Bおよび3C関連して、広視野カメラは(例えば、上記の例において、画像キャプチャデバイス124)、狭い視野カメラ及びメイン視野カメラ(例えば、上記の例において、画像デバイス122および126)より低く取り付けられていてもよい。この構成は、広視野カメラから自由な視線を提供することができる。反射を減らすために、カメラは、車両200のフロントガラスに接近して取り付けられていてもよく、反射光を弱めるために、カメラに偏光子を含んでもよい。
【0115】
3つのカメラシステムは、特定の動作特性を提供することができる。例えば、いくつかの実施形態は、他のカメラからの検出結果に基づいて、1つのカメラによる対象物の検出の妥当性を確認する能力を含むことができる。上述の3つのカメラ構成において、例えば、処理ユニット110は、画像キャプチャデバイス122、124および126の1又は複数によってキャプチャされた画像を処理するための専用の各処理デバイスを有する3つの処理デバイス(例えば、上述のように3つのEyeQシリーズのプロセッサチップ)を含むことができる。
【0116】
3つのカメラシステムにおいて、第1の処理装置は、メインカメラ及び狭い視野カメラの両方から画像を受信することができ、例えば、他の車両、歩行者、車線マーク、交通標識、信号機、及び他の道路対象物を検出するために狭い視野カメラの視覚処理を実行することができる。さらに、第1の処理装置は、メインカメラ及び狭いカメラからの画像間のピクセルの視差を算出することができ、車両200の環境の3D再構成を作成することができる。次に、第1の処理装置は、他のカメラからの情報に基づいて算出された3D地図データ又は3D情報を有する3D再構成を組み合わせることができる。
【0117】
第2の処理デバイスは、メインカメラから画像を受信することができ、他の車両、歩行者、車線マーク、交通標識、信号機、及び他の道路対象物を検出する視覚処理を実行することができる。さらに、第2の処理デバイスは、カメラの変位を算出し、変位に基づいて、算出することができ、連続的画像間のピクセルの視差を算出することができ、シーン(例えば、動きから構造)の3D再構成を作成することができる。第2の処理デバイスは、ステレオ3D画像と組み合わされるように、3D再構成に基づく動きから構造を第1の処理装置に送信することができる。
【0118】
第3の処理装置は、広い視野カメラから画像を受信することができ、車両、歩行者、車線マーク、交通標識、信号機、及び他の道路対象物を検出するために、画像を処理することができる。さらに、第3の処理装置は、画像を分析する追加の処理命令を実行することができ、車線変更する車両、歩行者等のような、画像内で移動する対象物を識別することができる。
【0119】
いくつかの実施形態において、キャプチャされ、独立して処理される画像に基づく情報のストリームを有することは、システムにおいて、冗長性を提供するための機会を提供することができる。例えば、そのような冗長性は、少なくとも第2の画像キャプチャデバイスからの画像情報をキャプチャし処理することによって得られた情報を検証及び/又は捕捉するために、第1の画像キャプチャデバイス、及びそのデバイスによって処理された画像を使用することを含むことができる。
【0120】
いくつかの実施形態において、システム100は、車両200のためのナビゲーション支援の提供において、2つの画像キャプチャデバイス(例えば、画像キャプチャデバイス122および124)を使用することができ、冗長性を提供し、他の2つの画像キャプチャデバイスから受信したデータの分析を検証するために、第3の画像キャプチャデバイス(例えば、画像キャプチャデバイス126)を使用することができる。例えば、そのような構成において、画像キャプチャデバイス122および124は、車両200をナビゲートするために、システム100によるステレオ分析用の画像を提供することができ、一方、画像キャプチャデバイス126は、画像キャプチャデバイス122及び/又は画像キャプチャデバイス124からキャプチャされた画像に基づいて得られた情報の冗長性及び検証を提供するためにシステム100による単眼分析用画像を提供することができる。つまり、画像キャプチャデバイス126(及び対応する処理デバイス)画像キャプチャデバイス122および124(例えば、自動緊急ブレーキ(AEB)システムを提供するため)から導出された分析に関する確認を提供するための冗長サブシステムを提供することを考慮することができる。さらに、いくつかの実施形態において、受信したデータの冗長性及び検証は、もう1つのセンサ(例えば、レーダー、ライダー、音響センサ、車両の外部の1又は複数の送受信機から受信した情報等)から受信された情報に基づいて補完されてもよい。
【0121】
当業者は、上記のカメラ構成、カメラの配置、カメラの数、カメラの位置等が単なる例であることを認識するであろう。これらの構成要素及びシステム全体に関して説明された他の構成要素は、開示される実施形態の範囲から逸脱することなく様々な異なる構成で組み立てられ使用されることができる。運転者アシスト及び/又は自動運転機能を提供するためのマルチカメラシステムの使用についてのさらなる詳細は以下の通りである。
【0122】
図4は、開示される実施形態と一致する1又は複数の動作を実行するための命令を格納/プログラムすることができるメモリ140及び/又は150の例示的な機能ブロック図である。以下にメモリ140について言及するが、当業者は、命令がメモリ140及び/又は150に格納され得ることを認識するであろう。
【0123】
図4に示されるように、メモリ140は、単眼画像解析モジュール402、ステレオ画像解析モジュール404、速度及び加速度モジュール406、及びナビゲーション応答モジュール408を格納することができる。開示される実施形態は任意の特定の構成のメモリ140に限定されない。さらに、アプリケーションプロセッサ180及び/又はイメージプロセッサ190は、メモリ140に含まれる任意のモジュール402、404、406および408に格納された命令を実行することができる。当業者は、以下の議論における処理ユニット110への言及がアプリケーションプロセッサ180及びイメージプロセッサ190を個別に又は集合的に指してもよいことを理解するであろう。従って、以下の処理の任意の段階が、1又は複数の処理デバイスによって実行され得る。
【0124】
一実施形態において、単眼画像解析モジュール402は、処理ユニット110による実行時に、画像キャプチャデバイス122、124および126の1つによって取得された画像のセットの単眼画像解析を実行する命令(コンピュータビジョンソフトウェア等)を格納することができる。いくつかの実施形態において、処理ユニット110は、単眼画像解析を実行するために、追加の知覚情報(例えば、レーダー、ライダー等からの情報)を有する画像のセットからの情報を組み合わせることができる。以下の図5A図5Dに関連して説明されるように、単眼画像解析モジュール402は、車線表示、車両、歩行者、道路標識、高速道路出口ランプ、信号機、危険物、及び車両の環境に関連する任意の他の特徴等、画像セット内の特徴セットを検出ための命令を含むことができる。分析に基づいて、システム100(例えば、処理ユニット110を用いて)は、ナビゲーション応答モジュール408に関連して、以下で述べるように、ターン、車線変更、加速度の変更等のような、1又は複数のナビゲーション応答を車両200に引き起こすことができる。
【0125】
一実施形態において、ステレオ画像解析モジュール404は、処理ユニット110による実行時に、任意の画像キャプチャデバイス122、124および126から選択された画像キャプチャデバイスの組み合わせによって取得された第1及び第2の画像セットのステレオ画像解析を実行する命令(コンピュータビジョンソフトウェア等)を格納することができる。いくつかの実施形態において、処理ユニット110は、ステレオ画像解析を実行するために、追加の知覚情報(例えば、レーダーからの情報)を有する第1及び第2の画像セットからの情報を組み合わせることができる。例えば、ステレオ画像解析モジュール404は、画像キャプチャデバイス124によって取得された第1の画像のセット及び画像キャプチャデバイス126によって取得された第2の画像のセットに基づいてステレオ画像解析を実行するためのための命令を含むことができる。以下の図6に関連して説明されるように、ステレオ画像解析モジュール404は、車線表示、車両、歩行者、道路標識、高速道路出口ランプ、信号機、危険物等のような、第1及び第2の画像セット内の特徴セットを検出ための命令を含むことができる。分析に基づいて、処理ユニット110は、ナビゲーション応答モジュール408に関連して、以下で述べるように、ターン、車線変更、加速度の変更等のような、1又は複数のナビゲーション応答を車両200に引き起こすことができる。さらに、いくつかの実施形態において、ステレオ画像解析モジュール404は、キャプチャされ処理された知覚情報から環境内の対象物を検出及び/又は分類するためのコンピュータビジョンアルゴリズムを使用するように構成され得るシステム等、訓練されたシステム(ニューラルネットワーク又はディープニューラルネットワーク等)又は訓練されていないシステムに関連する技術を実装することができる。一実施形態において、ステレオ画像解析モジュール404及び/又は他の画像処理モジュールは、訓練されたシステム及び訓練されていないシステムの組み合わせを使用するように構成され得る。
【0126】
一実施形態において、速度及び加速度モジュール406は、車両200の速度及び/又は加速度に変更を生じさせるように構成された車両200内の1又は複数のコンピューティング及び電気機械式デバイスから受信したデータを分析するように構成されたソフトウェアを格納することができる。例えば、処理ユニット110は、単眼画像解析モジュールの実行402及び/又はステレオ画像解析モジュール404によって導出されたデータに基づく車両200の目標速度を算出するために、速度及び加速度モジュール406に関連付けられた命令を実行することができる。例えば、そのようなデータは、目標位置、速度、及び/又は加速度、近くの車両に関係する車両200の位置及び/又は速度、歩行者、又は道路対象物、道路の車線表示に関係する車両200のための位置情報等を含むことができる。加えて、処理ユニット110は、感覚入力(例えば、レーダーからの情報)、及び車両200のスロットルシステム220、ブレーキシステム230、及び/又はステアリングシステム240等の車両200の他のシステムからの入力に基づいた車両200のための目標速度を算出することができる。 算出された目標速度に基づいて、処理ユニット110は、例えば、物理的に、車両200のブレーキを押し下げ又はアクセルを緩めることによって、速度及び/又は加速度に変更をもたらすために車両200のスロットルシステム220、ブレーキシステム230、及び/又はステアリングシステム240に対して、電子信号を送信することができる。
【0127】
一実施形態において、ナビゲーション応答モジュール408は、単眼画像解析モジュール402及び/又はステレオ画像解析モジュール404の実行から導出されたデータに基づいて、処理ユニット110によって、所望のナビゲーション応答を決定することを実行可能なソフトウェアを格納することができる。そのようなデータは、近くの車両、歩行者、及び道路対象物に関連する位置及び速度情報、車両200のための目標位置情報等を含むことができる。さらに、いくつかの実施形態において、ナビゲーション応答は、地図データ、車両200の所定の位置、及び/又は、単眼画像解析モジュール402及び/又はステレオ画像解析モジュール404の実行から検出された1又は複数の対象物と車両200との間の相対速度又は相対加速度に基づく(部分的又は完全に)ことができる。また、ナビゲーション応答モジュール408は、感覚入力(例えば、レーダーからの情報)、及び車両200のスロットルシステム220、ブレーキシステム230、及びステアリングシステム240等の車両200の他のシステムからの入力に基づいた所望のナビゲーション応答を決定することができる。所望のナビゲーション応答に基づいて、処理ユニット110は、例えば、車両200のステアリングホイールの回転によって、所定の角度の回転を実現するための所望のナビゲーション応答をもたらすために車両200のスロットルシステム220、ブレーキシステム230、及びステアリングシステム240に対して、電子信号を送信することができる。いくつかの実施形態において、処理ユニット110は、車両200の速度の変更を算出するために、速度及び加速度モジュール406の実行ための入力として、ナビゲーション応答モジュール408(例えば、所望のナビゲーション応答)の出力を使用することができる。
【0128】
さらに、本明細書に開示されるモジュール(例えば、モジュール402、404および406)の何れは、訓練されたシステム(ニューラルネットワーク又はディープニューラルネットワーク等)、又は訓練されていないシステムに関連する技術を実装することができる。
【0129】
図5Aは、開示される実施形態に一致する単眼画像解析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセス500Aを示すフローチャートである。段階510では、処理ユニット110は、処理ユニット110と画像取得ユニット120との間で、データーインターフェース128を経由した複数の画像を受信することができる。例えば、画像取得ユニット120(視野202を有を有する画像キャプチャデバイス122等)に含まれるカメラは、車両200の前方のエリアの複数の画像を(又は、例えば、車両の側方又は後方の)キャプチャすることができ、それらをデータ接続(例えば、デジタル、有線、USB、無線、ブルートゥース等)を介して、処理ユニット110に送信することができる。段階520では、処理ユニット110は、図5B図5Dに関連して、以下にさらに詳細に説明されるように、複数の画像を解析するために単眼画像解析モジュール402を実行することができる。解析を実行することによって、処理ユニット110は、車線表示、車両、歩行者、道路標識、高速道路出口ランプ、信号機等のような画像セット内の特徴セットを検出することができる。
【0130】
また、処理ユニット110は、段階520において、例えば、トラックのタイヤ、落下した道路標識、緩んだ貨物、小動物等の部分のような様々な道路障害物を検出するために、単眼画像解析モジュール402を実行することができる。道路障害物は、そのような障害物の検出をより困難にさせるかもしれない構造、形状、サイズ、及び色において変化し得る。いくつかの実施形態において、処理ユニット110は、道路障害物を検出するように複数の画像に関してマルチフレーム分析を実行するための単眼画像解析モジュール402を実行することができる。例えば、処理ユニット110は、連続する複数の画像フレーム間のカメラ動きを推定することができ、道路の3D地図を構築するためにフレーム間のピクセルにおける視差を算出することができる。次に、処理ユニット110は、路面の上方に存在する障害物と同様に、路面を検出するために3D地図を使用することができる。
【0131】
段階530では、処理ユニット110は、段階520で実行される分析、及び図4に関連した上述の技術に基づいて、1又は複数のナビゲーション応答を車両200に引き起こすために、ナビゲーション応答モジュール408を実行することができる。ナビゲーション応答は、例えば、ターン、車線変更、加速度の変更等を含むことができる。いくつかの実施形態において、処理ユニット110は、1又は複数のナビゲーション応答を引き起こすために、速度及び加速度モジュール406の実行から導出されたデータ使用することができる。さらに、複数のナビゲーション応答は、同時に、順番に、又はそれらの任意の組み合わせで、発生し得る。例えば、処理ユニット110は、例えば、車両200のステアリングシステム240及びスロットルシステム220に制御信号を順次に送信することによって、車両200をある車線に変更させ、その後加速させることができる。代替的に、処理ユニット110は、車両200のブレーキシステム230及びステアリングシステム240に、例えば、同時に制御信号を送信することによって、同時に車線を変更しながら車両200にブレーキを動作させることができる。
【0132】
図5Bは、開示される実施形態と一致する画像のセットにおいて、1又は複数の車両及び/又は歩行者を検出するための例示的なプロセス500Bを示すフローチャートである。処理ユニット110は、処理500Bを実行するために単眼画像解析モジュール402を実行することができる。段階540では、処理ユニット110は、車両及び/又は歩行者の可能性を表す対象物候補のセットを決定することができる。例えば、処理ユニット110は、1又は複数の画像をスキャンすることができ、その画像を1又は複数の予め定められたパターンと比較することができ、それぞれの画像内で、関心がある対象物を含むかもしれない可能性がある位置を識別することができる(例えば、車両、歩行者、又はそれらの部分)。予め定められたパターンは、高い割合の「誤ったヒット」及び低い割合の「当て損ない」を達成するような方法で設計されていてもよい。例えば、処理ユニット110は、車両又は歩行者の可能性があるような対象物候補を識別するために、予め定められたパターンと類似性が低い閾値を使用することができる。そうすることにより、処理ユニット110が車両又は歩行者を表す対象物候補を見逃す(例えば、識別しない)確率を減らすことができる。
【0133】
段階542では、処理ユニット110は、分類基準に基づいて特定の候補(例えば、無関係又はあまり関係がない対象物)を排除するために、対象物候補のセットをフィルタにかけることができる。そのような基準は、データベース(例えば、メモリ140に格納されたデータベース)に格納された対象物タイプに関連付けられた様々な特性から導出され得る。特性は、対象物の形状、面積、構造、位置(例えば、車両200に対して)等を含むことができる。したがって、処理ユニット110は、対象物候補のセットからの誤った候補を拒絶するための1又は複数の基準のセットを使用することができる。
【0134】
段階544では、処理ユニット110は、車両及び/又は歩行者を表す対象物候補のセット内の対象物であるかどうかを決定するために、画像の複数のフレームを分析することができる。例えば、処理ユニット110は、連続したフレームにわたって、検出された対象物候補を追跡することができ、検出された対象物(例えば、車両200に対するサイズ、位置等)に関連するフレームごとのデータを蓄積することができる。さらに、処理ユニット110は、検出された対象物に関するパラメータを推定することができ、対象物のフレームごとの位置データと予測され位置とを比較することができる。
【0135】
段階546では、処理ユニット110は、検出された対象物のための測定結果のセットを構築することができる。そのような測定結果は、例えば、検出された対象物に関連づけられた位置、速度、及び加速度値(車両200に対する)を含んでもよい。いくつかの実施形態において、処理ユニット110は、カルマンフィルタ又は線形二次推定(LQE)等の一連の時間ベースの観測を使用する推定技術に基づいて、及び/又は異なる対象物タイプ(例えば、自動車、トラック、歩行者、自転車、道路標識等)に関して入手可能なモデリングデータに基づいて、測定結果を構築することができる。カルマンフィルタは、対象物の等級測定に基づくことができ、ここで、等級測定は、衝突までの時間(例えば、車両200が対象物に到達までの時間の長さ)に比例する。したがって、段階540~546を実行することによって、処理ユニット110は、キャプチャ画像のセット内に現れる車両及び歩行者を識別することができ、車両及び歩行者に関連する情報(例えば、位置、速度、サイズ)を導出することができる。識別及び導出された情報に基づいて、処理ユニット110は、図5Aに関連して、上で説明されたように、1又は複数のナビゲーション応答を車両200に引き起こすことができる。
【0136】
段階548では、処理ユニット110は、「誤ったヒット」の検出及び車両又は歩行者を表す対象物候補の見逃しの確率を減らすために1又は複数の画像のオプティカルフロー分析を実行することができる。例えば、オプティカルフロー分析は、他の車両及び歩行者に関連し、路面の動きと異なる1又は複数の画像内の車両200に対する動きのパターンを分析することを指すことができる。処理ユニット110は、異なる時間にキャプチャされた複数の画像フレームにわたり、対象物の異なる位置を観察することによって、対象物候補の動きを算出することができる。処理ユニット110は、対象物候補の動きの算出のために、数学モデルへの入力として、位置及び時間の値を使用することができる。したがって、オプティカルフロー分析は、車両200の近くに存在する車両及び歩行者の他の検出方法を提供することができる。処理ユニット110は、段階540~546を組み合わせて、オプティカルフロー分析を実行することができ、車両及び歩行者を検出するための冗長性を提供し、システム100の信頼性を向上させることができる。
【0137】
図5Cは、開示される実施形態と一致し、画像のセット内の道路マーク及び/又は車線形状情報を検出するための例示的なプロセス500Cを示すフローチャートである。処理ユニット110は、処理500Cを実行するために単眼画像解析モジュール402を実行することができる。段階550では、処理ユニット110は、1又は複数の画像のスキャニングによって、対象物セットを検出することができる。車線表示、車線形状情報、及び関係がある他の道路マークのセグメントを検出するために、処理ユニット110は、対象物セットをフィルタにかけることができ、無関係であると決定されたそれらのもの(例えば、主要でない穴、小さい岩等)を排除することができる。段階552では、処理ユニット110は、同じ道路マーク又は車線マークに属し、段階550で検出されたセグメントを一緒に分類することができる。分類に基づいて、処理ユニット110は、数学モデル等、検出されたセグメントを表すためのモデルを開発することができる。
【0138】
段階554では、処理ユニット110は、検出されたセグメントに関連する測定結果のセットを構築することができる。いくつかの実施形態において、処理ユニット110は、検出されたセグメントの画像平面から実世界平面上への投影を作成することができる。投影は、検出された道の位置、傾き、曲率、及び曲率導関数のような物理特性に対応する係数を有する3次多項式を使用して特徴づけられることができる。投影の生成において、処理ユニット110は、車両200に関連するピッチ及びロール割合と同様に、路面の変化を考慮に入れることができる。加えて、処理ユニット110は、路面上に存在する位置及び動きのきっかけを分析することによって、道路高度をモデル化することができる。さらに、処理ユニット110は、1又は複数の画像内の特徴点のセットをトラッキングすることによって、車両200に関連するピッチ及びロール割合を推定することができる。
【0139】
段階556では、処理ユニット110は、例えば、連続する複数の画像フレームにわたって検出されたセグメントをトラッキングすることによって、及び検出されたセグメントに関連してフレームごとのデータを蓄積することによって、マルチフレーム分析を実行することができる。処理ユニット110は、マルチフレーム分析を実行するので、段階554では、構築された測定結果のセットは、より信頼できるようになり、ますます高い信頼レベルに関連づけられるかもしれない。したがって、段階550、552、554および556を実行することによって、処理ユニット110は、キャプチャ画像のセット内に現れる道路マークを識別することができ、車線形状情報を導出することができる。識別及び導出された情報に基づいて、処理ユニット110は、図5Aに関連して、上で説明されたように、1又は複数のナビゲーション応答を車両200に引き起こすことができる。
【0140】
段階558では、処理ユニット110は、周囲の状況における車両200のための安全モデルをさらに開発するために、追加の情報源を考慮することができる。処理ユニット110は、安全な方法で、車両200の自律制御を実行することができるシステム100の状況を定義する安全モデルを使用することができる。安全モデルを開発するために、いくつかの実施形態において、処理ユニット110は、他の車両の位置及び動き、検出された道路の端及びフェンス、及び/又は、地図データ(地図データベース160からのデータ等)から抽出された一般的な道路形状描写を考慮してもよい。追加の情報源を考慮することによって、処理ユニット110は、道路マーク及び車線の幾何学形状を検出するための冗長性を提供することができ、システム100の信頼性を向上させることができる。
【0141】
図5Dは、開示される実施形態に一致し、画像のセット内の信号機を検出するための例示的なプロセス500Dを示すフローチャートである。処理ユニット110は、処理500Dを実行するために単眼画像解析モジュール402を実行することができる。段階560では、処理ユニット110は、画像のセットをスキャンすることができ、信号機を含みそうな画像内の位置に現れる対象物を識別することができる。例えば、処理ユニット110は、信号機に対応する可能性が低いそれらの対象物を除外して、対象物候補のセットを構築するために、識別された対象物をフィルタにかけることができる。フィルタリングは、形状、面積、構造、位置(例えば、車両200に対する)等のような、信号機に関連する様々な特性に基づいて行われることができる。そのような特性は、信号機及び交通制御信号の複数の例に基づくことができ、データベースに格納されることができる。いくつかの実施形態において、処理ユニット110は、信号機の可能性を反映する対象物候補のセットに関して、マルチフレーム分析を実行することができる。例えば、処理ユニット110は、連続する複数の画像フレームにわたって対象物候補を追跡することができ、対象物候補の実世界の位置を推定することができ、移動する(信号機の可能性が低い)それらの対象物を除外することができる。いくつかの実施形態において、処理ユニット110は、対象物候補に関する色分析を実行することができ、信号機の可能性があるもの内部に現れる検出された色の相対位置を識別することができる。
【0142】
段階562では、処理ユニット110は、ジャンクションの幾何学形状を分析できる。分析は、(i)車両200の両側で検出された車線の数、(ii)道路上で検出されたマークキング(矢印マーク等)、及び(iii)地図データから抽出されたジャンクションの説明(地図データベース160からのデータ等)の任意の組み合わせに基づくことができる。処理ユニット110は、単眼画像解析モジュール402の実行によって導出された情報を使用する分析を指揮することができる。加えて、処理ユニット110は、段階560で検出された信号機と車両200の近くに現れる車線との間の対応を決定することができる。
【0143】
車両200がジャンクションに近づくと、段階564では、処理ユニット110は、分析されたジャンクションの幾何学形状及び検出された信号機に関連する信頼レベルを更新することができる。例えば、ジャンクションで実際に現れる数と比較して、ジャンクションで見えると推定される信号機の数は、信頼レベルに影響を与えるかもしれない。したがって、信頼レベルに基づいて、処理ユニット110は、安全な条件を改善するために、車両200の運転者に制御を委任することができる。段階560、562および564を実行することによって、処理ユニット110は、キャプチャ画像のセット内に現れる信号機を識別することができ、ジャンクションの幾何学形状情報を分析することができる。識別及び分析に基づいて、処理ユニット110は、図5Aに関連して、上で説明されたように、1又は複数のナビゲーション応答を車両200に引き起こすことができる。
【0144】
図5Eは、開示される実施形態に一致し、車両経路に基づいて、車両200に1又は複数のナビゲーション応答を生じさせるための例示的なプロセス500Eを示すフローチャートである。段階570では、処理ユニット110は、車両200に関連する初期車両経路を構築することができる。車両経路は、座標(x,z)で表現されるポイントのセットを使用して表されてもよく、ポイントのセット内の2つのポイント間の距離dは、1メートルから5メートルまでの範囲内に収まるかもしれない。一実施形態において、処理ユニット110は、左右の道路多項式等、2つの多項式を使用する初期車両経路を構築することができる。処理ユニット110は、2つの多項式間の幾何学的中間点を算出することができ、もしあれば、予め定められたオフセット(例えば、スマート車線オフセット)による車両経路の結果に含まれる各ポイントを弱めることができる(ゼロのオフセットは、車線の中央での移動に対応することができる)。オフセットは、車両経路内の任意の2つの地点間のセグメントに対して垂直な方向でもよい。別の実施形態において、処理ユニット110は、予め定められたオフセット(例えば、スマート車線オフセット)を加えた半分の推定車線幅で、車両経路の各ポイントを弱めるために、1つの多項式及び推定車線幅を使用することができる。
【0145】
段階572では、処理ユニット110は、段階570で構築された車両経路を更新することができる。処理ユニット110は、上で説明された距離d未満である車両経路を表すポイントのセット内の2つのポイント間の距離dkのような、より高い解像度を使用して段階570で構築された車両経路を再構成することができる。例えば、距離dは、0.1メートルから0.3メートルまでの範囲内に収まるかもしれない。処理ユニット110は、車両経路の全長(すなわち、車両経路を表すポイントのセットに基づく)に対応する累積距離ベクトルSをもたらすことができる放物線スプラインアルゴリズムを使用する車両経路を再構成することができる。
【0146】
段階574では、処理ユニット110は、段階572で構築され、更新された車両経路に基づく先読みポイント((座標(x,z)で表現される)を決定することができる。処理ユニット110は、累積距離ベクトルSからの先読みポイントを抽出することができ、先読みポイントは、先読み距離及び先読み時間に関連づけられることができる。10メートルから20メートルまでの範囲の下限を有することができる先読み距離は、車両200の速度及び先読み時間の産物として算出することができる。例えば、車両200の速度が減るとき、先読み距離もまた減少してもよい(例えば、下限に到達するまで)。0.5秒から1.5秒までの範囲でもよい先読み時間は、制御ループ追跡機首方位誤差等、車両200にナビゲーション応答を生じさせることに関連する1又は複数の制御ループのゲインに反比例してもよい。例えば、制御ループ追跡機首方位誤差のゲインは、ヨーレートループ、ステアリングアクチュエータループ、自動車横方向ダイナミクス等の処理能力に依存してもよい。したがって、制御ループ追跡機首方位誤差のゲインが高くなれば高くなるほど、先読み時間がより短くなる。
【0147】
段階576では、処理ユニット110は、段階574で決定された先読みポイントに基づいて、機首方位誤差及びヨーレートコマンド決定することができる。処理ユニット110は、例えば、アークタンジェント(X/Z)等、先読みポイントの逆正接を算出することによって、機首方位誤差を決定することができる。処理ユニット110は、機首方位誤差及びハイレベル制御ゲインの産物として、ヨーレートコマンドを決定することができる。先読み距離が下限にない場合、ハイレベル制御ゲインは、(2/先読み時間)と等しくてもよい。そうでなければ、ハイレベル制御ゲインは、(2*車両200の速度/先読み距離)と等しくてもよい。
【0148】
図5Fは、開示される実施形態と一致し、先頭車両が車線変更しているかどうかを決定するための例示的なプロセス500Fを示すフローチャートである。段階580では、処理ユニット110は、先頭車両(例えば、車両200の前方を走行する車両)に関連するナビゲーション情報を決定することができる。例えば、処理ユニット110は、図5Aおよび5Bに関連して、上述された技術を使用して、先頭車両の位置、速度(例えば、方向及び速度)、及び/又は加速度を決定することができる。また、処理ユニット110は、図5Eに関連して、上述された技術を使用して、1又は複数の道路多項式、先読みポイント(車両200に関連して)、及び/又は、スネイルトレイル(例えば、先頭車両によって利用された経路に描写されているポイントのセット)を決定することができる。
【0149】
段階582では、処理ユニット110は、段階580で決定されたナビゲーション情報を分析できる。一実施形態において、処理ユニット110は、スネイルトレイルと道路多項式(例えば、軌跡に沿った)との間の距離を算出することができる。軌跡に沿ったこの距離の変動量が予め定められた閾値(例えば、直線道路に関して0.1メートルから0.2メートルまで、適度に曲った道路に関して0.3メートルから0.4メートルまで、急カーブを有する道路に関して、0.5メートルから0.6メートルまで)を超える場合、処理ユニット110は、先頭車両が車線変更しそうであることを決定することができる。複数の車両が車両200の前方を走行していることが検出された場合、処理ユニット110は、それぞれの車両に関連するスネイルトレイルを比較してもよい。比較に基づいて、処理ユニット110は、他の車両のスネイルトレイルと一致しないスネイルトレイルの車両は、車線変更しそうであると決定することができる。さらに、処理ユニット110は、(先頭車両に関連する)スネイルトレイルの曲率を、先頭車両が走行している道路セグメントの予測曲率と比較することができる。予測曲率は、地図データ(例えば、地図データベース160からのデータ)から、道路多項式から、他の車両のスネイルトレイルから、道路についての事前の情報等から、抽出されてもよい。スネイルトレイルの曲率と道路セグメントの予測曲率と差が、予め定められた閾値を超える場合、処理ユニット110は、先頭車両が車線変更しそうであると決定することができる。
【0150】
別の実施形態において、処理ユニット110は、特定の期間(例えば、0.5秒から1.5秒まで)を通して、(車両200に関連する)先読みポイントと先頭車両の瞬時位置を比較してもよい。特定の期間中、先頭車両の瞬時位置と先読みポイントとの間の距離が異なる場合、変化の合計の累積が予め定められた閾値(例えば、直線道路に関して0.3メートルから0.4メートルまで、適度なカーブ道路に関して0.7メートルから0.8メートルまで、急カーブを有する道路に関して1.3メートルから1.7メートルまで)を超える場合、処理ユニット110は、先頭車両が車線変更しそうであることを決定することができる。別の実施形態において、処理ユニット110は、軌跡に沿って移動した横方向の距離をスネイルトレイルの予測曲率と比較することによって、スネイルトレイルの幾何学形状を分析することができる。予測曲率半径は、(δ +δ )/2/(δ)の計算に従って決定されることができ、ここでで、δは移動した横方向の距離を表し、δzは、移動した長手方向の距離を表す。移動した横方向の距離と予測曲率との間の差が、予め定められた閾値(例えば、500メートルから700メートルまで)を超える場合、処理ユニット110は、先頭車両が車線変更しそうであることを決定することができる。別の実施形態において、処理ユニット110は先頭車両の位置を分析することができる。先頭車両の位置が道路多項式を分かりにくくする場合(例えば、先頭車両が、道路多項式の上に重ねられる)、次に、処理ユニット110は、先頭車両が車線変更しそうであることを決定することができる。他の車両が先頭車両の前方で検出されるような場合、及び2つの車両のスネイルトレイルが平行でない場合、先頭車両の位置がそのような場合、処理ユニット110は、(より近い)先頭車両が車線変更しそうであることを決定することができる。
【0151】
段階584では、処理ユニット110は、段階582で実行された分析に基づいて、先頭車両200が車線変更しているか否かを決定することができる。例えば、処理ユニット110は、段階582で実行された個々の分析の加重平均に基づいて、決定させることができる。例えば、そのようなスキームの下では、特定のタイプの分析に基づいて、先頭車両が車線変更しそうであるとの処理ユニット110による決定は、「1」の値が割り当てられることができる(先頭車両が車線変更しそうではない決定を表すために「0」)。段階582で実行された異なる分析は、異なる重みが割り当てられることができ、開示される実施形態は、分析及び重みの任意の特定の組み合わせに限定されない。
【0152】
図6は、開示される実施形態と一致し、ステレオ画像解析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセス600を示すフローチャートである。段階610では、処理ユニット110は、データーインターフェース128を経由した第1及び第2の複数の画像を受信することができる。例えば、画像取得ユニット120(視野202および204を有する画像キャプチャデバイス122および124等)に含まれるカメラは、車両200の前方のエリアの第1及び第2の複数の画像をキャプチャすることができ、それらをデジタル接続(例えば、USB、無線、ブルートゥース等)を経由して処理ユニット110に送信することができる。いくつかの実施形態において、処理ユニット110は、2つ又はそれより多くのデーターインターフェースを介して第1及び第2の複数の画像を受信することができる。開示される実施形態は、任意の特定のデーターインターフェース構成又はプロトコルに限定されない。
【0153】
段階620では、処理ユニット110は、車両の前方の道路の3D地図を作成するために、第1及び第2の複数の画像のステレオ画像解析を実行するためのステレオ画像解析モジュール404を実行することができ、車線表示、車両、歩行者、道路標識、高速道路出口ランプ、信号機、道路障害物等のような画像内の特徴を検出することができる。ステレオ画像解析は、図5A図5Dに関連して、上述した段階と同様の態様で実行することができる。例えば、処理ユニット110は、第1及び第2の複数の画像内の対象物候補(例えば、車両、歩行者、道路マーク、信号機、道路障害物等)を検出するためのステレオ画像解析モジュール404を実行することができ、様々な基準に基づいて対象物候補のサブセットを除外することができ、マルチフレーム分析を実行することができ、測定結果を構築することができ、残りの対象物候補ための信頼レベルを決定することができる。上の段階の実行において、処理ユニット110は、単独の画像のセットの1つからの情報よりむしろ、第1及び第2の複数の画像の両方からの情報を考慮することができる。例えば、処理ユニット110は、第1及び第2の複数の画像の両方に現れる対象物候補のためのピクセルレベルデータ(キャプチャされた複数の画像の2つのストリームの中からの他のデータサブセット)における差を分析することができる。他の例として、処理ユニット110は、複数の画像の1つに現れるが、他の画像には表れない対象物を観察することによって、又は2つの画像ストリームに現れる対象物に関連して存在することができる他の差に関連して、対象物候補(例えば、車両200に対する)の位置及び/又は速度を推定することができる。例えば、車両200に対する位置、速度、及び/又は加速度は、1又は両方の画像ストリームに現れる対象物に関連する特徴の軌跡、位置、移動特性等に基づいて決定されることができる。
【0154】
段階630では、処理ユニット110は、段階620で実行される解析、及び図4に関連した上述の技術に基づいて、1又は複数のナビゲーション応答を車両200に引き起こすために、ナビゲーション応答モジュール408を実行することができる。ナビゲーション応答は、例えば、ターン、車線変更、加速度の変更、速度の変更、ブレーキ動作等を含むことができる。いくつかの実施形態において、処理ユニット110は、1又は複数のナビゲーション応答を引き起こすために、速度及び加速度モジュール406の実行から導出されたデータ使用することができる。さらに、複数のナビゲーション応答は、同時に、順番に、又はそれらの任意の組み合わせで、発生し得る。
【0155】
図7は、開示される実施形態と一致し、3セットの画像の分析に基づく1又は複数のナビゲーション応答を生じさせるための例示的なプロセス700を示すフローチャートである。段階710では、処理ユニット110は、データーインターフェース128を経由した第1、第2、及び第3の複数の画像を受信することができる。例えば、(視野202、204および206を有する画像キャプチャデバイス122、124および126等)画像取得ユニット120に含まれるカメラは、車両200の前方及び/又は側方のエリアの第1、第2、及び第3の複数の画像をキャプチャすることができ、それらをデジタル接続(例えば、USB、無線、ブルートゥース等)を経由して、処理ユニット110に送信することができる。いくつかの実施形態において、処理ユニット110は、3つの又はそれ以上のデーターインターフェイスを経由して、第1、第2、及び第3の複数の画像を受信することができる。例えば、画像キャプチャデバイス122、124、126のそれぞれは、処理ユニット110へのデータ通信のための関連するデーターインターフェースを有することができる。開示される実施形態は、任意の特定のデーターインターフェース構成又はプロトコルに限定されない。
【0156】
段階720では、処理ユニット110は、車線表示、車両、歩行者、道路標識、高速道路出口ランプ、信号機、道路障害物等のような、画像内の特徴を検出するために、第1、第2、及び第3の複数の画像を分析することができる。分析は、図5A図5D及び図6に関連してして、上述した段階と同様の態様で実行することができる。例えば、処理ユニット110は、第1、第2、及び第3の複数の画像のそれぞれに関して、(例えば、単眼画像解析モジュール402の実行を用いて、及び図5A図5Dに関連して、上述した段階に基づいて、)単眼画像解析を実行することができる。代替的に、処理ユニット110は、第1及び第2の複数の画像、第2及び第3の複数の画像、及び/又は第1及び第3の複数の画像に関して、(例えば、ステレオ画像解析モジュール404の実行、及び図6に関連して、上述した段階に基づいて、)ステレオ画像解析を実行することができる。第1、第2、及び/又は第3の複数の画像の分析に対応する処理された情報は、組み合わされることができる。いくつかの実施形態において、処理ユニット110は、単眼及びステレオ画像解析の組み合わせを実行することができる。例えば、処理ユニット110は、第1の複数の画像に関して(例えば、単眼画像解析モジュール402の実行を用いて)単眼画像解析を実行することができ、第2及び第3の複数の画像に関して(例えば、ステレオ画像解析モジュール404の実行を用いて)ステレオ画像解析を実行することができる。それらのそれぞれの位置及び視野202、204および206を含む画像キャプチャデバイス122、124および126の構成は、第1、第2、及び第3の複数の画像について実施される分析のタイプに影響を与えることができる。開示される実施形態は、画像キャプチャデバイス122、124および126の特定の構成、又は第1、第2、及び第3の複数の画像について実施される分析のタイプに限定されない。
【0157】
いくつかの実施形態において、処理ユニット110は、段階710および720で取得され分析された画像に基づいてシステム100に関する試験を実行することができる。そのような試験は、画像キャプチャデバイス122、124および126の特定の構成についてシステム100の全体性能のインジケータを提供することができる。例えば、処理ユニット110は、「誤ったヒット」(例えば、システム100が車両又は歩行者の存在を間違って決定した場合)及び「当て損ない」の割合を決定することができる。
【0158】
段階730では、処理ユニット110は、第1、第2、及び第3の複数の画像のうちの2つから導出された情報に基づいて、1又は複数のナビゲーション応答を車両200に引き起こすことができる。第1、第2、及び第3の複数の画像のうちの2つの選択は、例えば、複数の画像のそれぞれにおいて検出された対象物の数、タイプ、及びサイズ等、様々な要因に依存することができる。また、処理ユニット110は、画質及び解像度、画像に反映された有効視野、キャプチャされたフレームの数、フレームにおいて1又は複数の関心がある対象物が実際に現れる範囲(例えば、対象物が現れるフレームの割合、それぞれのそのようなフレームにおいて現れる対象物の割合等)等に基づいて、選択させることができる。
【0159】
いくつかの実施形態において、処理ユニット110は、1つの画像ソースから導出された情報が他の画像ソースから導出された情報に一致する範囲を決定することによって、第1、第2、及び第3の複数の画像のうちの2つから導出される情報を選択することができる。例えば、処理ユニット110は、(単眼分析、ステレオ分析、又はこれらの2つの任意の組み合わせによるかどうか)画像キャプチャデバイス122、124および126のそれぞれから導出された処理された情報を組み合わせることができ、(例えば、車線表示、検出された車両及びその位置、及び/又は経路、検出された信号機等)画像キャプチャデバイス122、124および126のそれぞれからキャプチャされた画像にわたって一致する視覚インジケータを決定することができる。また、処理ユニット110は、(例えば、車線を変更する車両、車両200に近すぎる車両を示す車線モデル等)キャプチャされた複数の画像にわたって矛盾する情報を排除することができる。したがって、処理ユニット110は、一致する情報及び矛盾する情報の決定に基づいて、第1、第2、及び第3の複数の画像のうちの2つから導出された情報を選択することができる。
【0160】
ナビゲーション応答は、例えば、ターン、車線変更、加速度の変更等を含むことができる。処理ユニット110は、段階720で実行された分析及び図4に関連して上述したような技術に基づく1又は複数のナビゲーション応答を生じさせることができる。また、処理ユニット110は、1又は複数のナビゲーション応答を生じさせるめに、速度及び加速度モジュール406の実行から導出されたデータを使用することができる。いくつかの実施形態において、処理ユニット110は、車両200と、第1、第2、及び第3の複数の画像の何れか内で検出された対象物との間の相対位置、相対速度、及び/又は相対加速度に基づく1又は複数のナビゲーション応答を生じさせることができる。複数のナビゲーション応答は、同時に、順番に、又はそれらの任意の組み合わせで、発生し得る。
【0161】
交差視野を有する撮像システム
【0162】
いくつかの実施形態において、車両200は、撮像システム含むことができる。撮像システムは、車両200のような、例えば、自動運転車両であるホスト車両に又は内部に取り付けられるように構成された撮像モジュールを含むことができる。本明細書で用いられる用語「撮像モジュール」は、少なくとも1つのカメラを収容し正しい方向に向ける構造を指す。撮像モジュールは、使用されるカメラのタイプに応じて、他のハードウェア及び配線を含むことができる。次に、撮像モジュールは、撮像モジュール内に収容された少なくとも1つのカメラが、車両200のような車両に対して外向きに面するように、車両に撮像モジュールを取り付けるように構成されたマウントアセンブリに結合されることができる。本明細書で用いられる用語「マウントアセンブリ」は、車両200のような車両に、取り付けモジュールを結合するように構成された任意のハードウェア又はデバイスを指す。マウントアセンブリは、当業者によって理解されるようなマウントブラケット、取り付け吸引結合器、取り付けフレーム、取り付け接着剤、迅速な/接続結合器等を含むことができる。
【0163】
本開示全体を通して、用語「交差」は、カメラ及びカメラ光学の技術分野の当業者によって理解されるような特定の幾何学的意味を有する。例えば、用語「交差」は、実際の物理的な交点又は投影交差点を必ずしも指すものでなく、あるいは、むしろ、少なくとも1つの平面内の少なくとも2つの投影の重複を指す。これは、地面に平行であり、(地面から測定された)異なる高さであり、交互のソースに由来する光軸に基づくベクトルについて、特に当てはまる。例えば、外向きに投影され1メートルの高さで地面に平行な光軸に基づく第1のベクトルと、外向きに投影され1.2メートルの高さで地面に平行な光軸に基づく第2のベクトルとについて、考慮する。この例によれば、ベクトルが必ずしも交差しなくても、平面図上に投影する場合、光軸に基づく第1のベクトルは、光軸に基づく第2のベクトルに「交差」する可能性がある。
【0164】
別の言い方をすれば、光軸に基づく第1の3次元ベクトルは、第1の2次元の光軸(又は第1のライン)として投影され、光軸に基づく第2の3次元ベクトルは、第2の2次元の光軸(又は第2のライン)として投影され、平面図の視点から見ると(又は他の2次元の視点)、第1の光軸及び第2の光軸は、「交差点」で互いに交差するように見えるであろう。さらに、「交差点」は幾何学原理から導出され、必ずしも、3次元空間内で2つの光軸の実際の交点ではないことが理解される。
【0165】
「交差点」を理解する他の方法は、「交差点」は、幾何学原理から導出される光軸に基づく第1のベクトル及び光軸に基づく第2のベクトルが交差する平面上の点の位置である。類似して、「交差面」は、光軸に基づく少なくとも2つのベクトルが交差する幾何学的平面として理解されべきである。従って、「交差面」は、少なくとも2つの光軸の投影交差点に対応する「交差点」を含む。
【0166】
いくつかの実施形態において、撮像システムは、互いに重複するそれぞれの視野及び組み合わされた視野を形成する少なくとも2つのカメラを含むことができる。いくつかの実施形態において、撮像システムは、他のカメラの少なくとも1つと交差するそれぞれの視野を有する3つ又はそれより多くのカメラを含むことができ、組み合わされた視野を形成することができる。
【0167】
いくつかの実施形態において、マウントアセンブリは、カメラが車両に対して外向きに面するように、車両に撮像モジュールを取り付けるように構成されてもよい。また、いくつかの実施形態において、マウントアセンブリは、車両に対して外向きに面し、地面に平行となるように、カメラを方向付けてもよい。マウントアセンブリは、車両のウィンドウの内面、又は車両の他の構成要素、例えば、バンパー、ピラー、ヘッドライト、テイルライト等に、撮像モジュールを取り付けるように構成されていてもよい。また、いくつかの実施形態において、マウントアセンブリは、ウィンドウの傾きを補うように構成されていてもよい。
【0168】
いくつかの実施形態において、撮像システムは、それぞれのカメラの視野から障害を取り除くように構成されたワイヤブレードを有するワイパーアセンブリを含むことができる。ワイパーアセンブリは、必要に応じて、ワイヤブレードを制御するように構成されたタイマ、センサ、及びモータをさらに含むことができる。
【0169】
いくつかの実施形態において、撮像システムは、グレアスクリーン又はフィルタを含むことができる。グレアスクリーン又はフィルタは、ウィンドウの傾き(例えば、スロープ)によって引き起こされる入射光からのグレアを低減することによって撮像システムの性能を改善することができる。さらに、グレアシールドは、カメラへの開口を提供するように構成されていてもよく、これにより、広範囲の距離にある複数の異なる対象物に生じる被写界深度を増大させることができ、焦点が合ったままになる。
【0170】
図8は、2つのカメラを有する撮像システムの実施形態の概略図である。例示的な実施形態は、少なくとも第1のカメラ805及び第2のカメラ809を含むことができる。図8において、2つのカメラが示されているが、いくつかの実施形態において、撮像システムは、2より多くのカメラ(例えば、3つのカメラ、4つのカメラ、5つのカメラ等)を含むことができる。いくつかの実施形態において、複数のカメラ(例えば、第1のカメラ805及び第2のカメラ809)は、上述の画像キャプチャデバイス122、124および126の1又は複数の特性を共有することができる。
【0171】
図8に示されように、第1のカメラ805は、光軸805aを有する第1の視野を有し、第2のカメラ809は、光軸809aを有する第2の視野を有する。いくつかの実施形態によれば、第1のカメラ805及び第2のカメラ809は、第1のカメラ805の第1の光軸805aが、少なくとも1つの平面内で(例えば、水平面、垂直面、又は、水平面及び垂直面両方)、第2のカメラ809の第2の光軸809aと交差するように(例えば、向き)配置される。いくつかの実施形態において、第1のカメラ805及び第2のカメラ809は、撮像モジュールに固定されることができ、撮像モジュールはマウントアセンブリに固定され又は結合され、マウントアセンブリはマウントブラケットに、順に、固定され又は結合されることができる。いくつかの実施形態において、撮像モジュールは、半円の円弧に沿って、第1のカメラ805及び第2のカメラ809を配置するように構成される。
【0172】
図8は、2次元(X,Y)又は2Dにおいて、カメラ805および809の投影視界を示すことが理解されるべきである。理解を助けるだけのために2次元投影として図示されるが、光軸805aおよび809aは、光軸に基づくベクトルである。図示されるように、光軸805aは、交差面の交差点888で(図示せず)、光軸809aと交差し、光軸805aおよび809aは、図示された2D表現において、交差するように見えるが、それは、3Dにおいて実際には交差しないかもしれない。図示されるように、交差点888は、透明な透過エリア809の中央領域に一致する。このように、光軸805aは、水平面内で光軸809aに交差する。他の実施形態において、光軸805aは、垂直面において光軸809aと交差する。他の実施形態において、依然として、光軸805aは、水平面及び垂直面において光軸809aと交差する。交差点888は、比較的小さい透過エリア803の中央領域と一致する位置に図示されているが、交差点888は、それとは違って配置されていてもよい。例えば、交差面の交差点888は、比較的小さい透過エリア803の外側に配置されるように、第1のカメラ805及び第2のカメラ809からさらに離れて配置され得る。代替的に、交差面の交差点888は、比較的小さい透過エリア803の外側に配置されるように、第1のカメラ805及び第2のカメラ809により近くに配置されていてもよい。このように、交差面の交差点888は、比較的小さい透過エリア803から予め定められた距離に、例えば、約0.2メートルから2.0メートルまで、又は0.5メートルから1.0メートルまでの範囲に配置されていてもよい。少なくとも1つの実施形態において、第1のカメラ805及び第2のカメラ809は、車両のウィンドウの背後に取り付けられるように構成され、交差面の交差点888は、ウィンドウと第1のカメラ805及び第2のカメラ809との間に配置される。少なくとも1つの実施形態において、第1のカメラ805及び第2のカメラ809は、車両のウィンドウの背後に取り付けられるように構成され、交差面の交差点888は、ウィンドウの外面から予め定められた距離に配置される。
【0173】
例示的な実施形態において、第1のカメラ805は、焦点Pに焦点を合わせ、第2のカメラ809は、焦点Pに焦点を合わせる。このように、焦点Pは、交差面の交差点888を越えて第1の水平距離に配置され、焦点Pは、交差面の交差点888を越えて第2の水平距離に配置される。図示されるように、第1の水平距離及び第2の水平距離は、実質的に等しい距離であるが、代替的な実施形態において、それらは異なる距離とすることができる。例えば、Pは、Pの水平距離のおおよそ1.5倍でもよい。他の実施形態において、Pは、Pの水平距離のおおよそ、1.25倍、1.75倍、2.0倍、2.5倍、又は3.0倍でもよい。さらに、P及びPは、3次元空間において必ずしも特異点ではないことを留意すべきであり、すなわち、焦点P及び焦点Pは、カメラ及びカメラ光学の技術分野の当業者によって理解されるように、それぞれの焦点エリアをそれぞれ包含することができる。さらに、依然として、焦点Pに対応する焦点エリア及び焦点Pに対応する焦点エリアは、少なくとも部分的に、重複してもよい。
【0174】
例示的な実施形態において、交差面の交差点888は、第1のカメラ805のレンズと、第2のカメラ807のレンズとの間の最短距離Dとほぼ等しい離隔距離Dで、第1のカメラ805及び第2のカメラ809から離れている。図示されるように、第1のカメラ805のレンズと第2のカメラ807のレンズとの間の最短距離Dは、Dによって表され、交差面の交差点888と、第1のカメラ805及び第2のカメラ809との間の離隔距離Dは、Dによって表される。離隔距離Dは、カメラ805又はカメラ809のレンズから測定されてもよく、従って、離隔距離Dは異なってもよいことが理解される。いくつかの実施形態において、離隔距離Dは、最短距離Dの1倍から4倍の範囲内にあってもよい。他の実施形態において、離隔距離Dは、最短距離Dの1倍から2倍、2倍から3倍、3倍から4倍、2倍から3倍、又は2倍から4倍の範囲内にあってもよい。いくつかの実施形態において、D及びDは、交差面の交差点(例えば、交差点888)が配置され得る距離を定義する比で表現されてもよい。例えば、Dy≦N×D、ここで2≦N≧4。
【0175】
図示されるように、カメラ805の第1の視野及びカメラ809の第2の視野は、重複し、おおよそ90度である組み合わされた視野を形成する。いくつかの実施形態において、カメラ805の第1の視野及びカメラ809の第2の視野は、部分的にのみ重なり合うが、それにも関わらず、組み合わされた視野を形成することができる。透明な透過エリア803は、構成要素801によって、境界として、輪郭が描かれてもよい。構成要素801は、車両の構成要素、例えば、ピラー、バンパー、ドアパネル、ヘッドライト、サイドウィンドウ、フロントウィンドウ等のような固体の機構でもよい。少なくとも1つの実施形態において、構成要素801は、少なくとも部分的に、図8の斜線の入ったエリア(すなわち、構成要素801)に対応する透明性のないエリアによって囲まれた透明な透過エリア803のような光を通過させる透明な透過エリア803を含むことができる。このように、比較的小さい透過エリア803は、第1のカメラ及び第2のカメラの組み合わされた視野と等しい広角視野を有する広角カメラによって必要とされるであろう比較透過エリアより小さい。他の実施形態において、構成要素801は、ホスト車両の外側に付着された撮像ブラケット又は撮像モジュールの外周でもよい。
【0176】
図9は、単一のカメラの広い視野システムの概略図である。いくつかの実施形態において、カメラ(例えば、単一のカメラ905)は、上述の画像キャプチャデバイス122、124および126の1又は複数の特性を共有することができる。単一のカメラ905は、比較的大きい透明な透過エリア903の外側に投影する光軸905aを有する視野を有する。図示されるように、光軸905aは、外向きに突出し、単一のカメラ905の視野を2つの対称的なエリアに分割する。単一のカメラ905は、図8の第1のカメラ801及び第2のカメラ809の組み合わされた視野と実質的に等しい視野を有する。図示されるように、単一のカメラ905は、およそ90度である視野を有する。図9図8と比較することによって理解できるように、透明な透過エリア903(構成要素901によって、境界として、輪郭が描かれてもよい)は、図8の透過エリア803より大きく、しかし、図8の撮像システムの組み合わされた視野は、図9の単一のカメラの視野と実質的に等しい。 単一のカメラの広い視野システムは、単一のカメラ905を使用するので、透明な透過エリア903は、同等な範囲エリアを有する視野を提供するために透明な透過エリア803より大きくなければならない。結果として、単一広視野システムに関連する設置面積は、図8の実施形態の設置面積より大きい。本開示の目的は、さらに広い視野(組み合わされた視野)を提供するために、撮像システムの設置面積を最小化することである。
【0177】
図10は、3つのカメラを有する撮像システムの他の実施形態の概略図である。例示的な実施形態は、図8の実施形態に類似してもよい。例示的な実施形態は、第1のカメラ1005、第2のカメラ1007、及び第3のカメラ1009を含むことができる。いくつかの実施形態において、カメラ(例えば、第1のカメラ1005、第2のカメラ1007、及び第3のカメラ1009)は、上述した画像キャプチャデバイス122、124および126の1又は複数の特性を共有することができる。
【0178】
図10に示されるように、第1のカメラ1005は、光軸1005aを有する第1の視野を有し、第2のカメラ1009は、光軸1009aを有する第2の視野を有し、第3のカメラ1007は、光軸1007aを有する第3の視野を有する。 図10は、2次元(X,Y)又は2Dにおいて、カメラ1005、1007、および1009の投影視界を示すことが理解されるべきである。理解を助けるだけのために2次元投影として図示されるが、光軸1005a、1007aおよび1009aは、光軸に基づくベクトルである。図示されるように、光軸1005a、光軸1009a、及び光軸1007aは、交差面の少なくとも1つ(例えば、水平面、垂直面、又は、水平面及び垂直面の両方)の交差点1010において、互いにクロスオーバーする。例示的な実施形態において、第3のカメラ1007は、実質的に、第1のカメラ1005及び第2のカメラ1009の中心及び等距離に配置される。しかしながら、他の実施形態において、第3のカメラ1007は、例えば、第1のカメラ1005または第2のカメラ1009の中心ではなく及び/又はより近くにないように、交互に配置されてもよい。他の実施形態において、依然として、第3のカメラ1007は、第1のカメラ1005及び第2のカメラ1009の前方であり、例えば、比較的小さい透明な透過エリア1003の近くに配置されていてもよい。図示されるように、透明な透過エリア1003は、構成要素1001によって、境界として輪郭が描かれていてもよい。構成要素1001は、車両の構成要素、例えば、ピラー、バンパー、ドアパネル、ヘッドライト、サイドウィンドウ、フロントウィンドウ等のような固体の機構でもよい。いくつかの実施形態において、第1のカメラ1005、第2のカメラ1009、第3のカメラ1007は、撮像モジュールに固定されることができ、撮像モジュールは、マウントアセンブリに固定され又は結合され、マウントアセンブリは、マウントブラケットに、順に、固定され又は結合されることができる。いくつかの実施形態において、撮像モジュールは、半円の円弧に沿って、第1のカメラ1005、第2のカメラ1009、及び第3のカメラ1007を配置するように構成されていてもよい。例えば、撮像モジュールは、半円のような形状でもよい。
【0179】
示されるように、光軸1005a、1009aおよび1007aは、交差面(図示せず)の交差点1010で互いに交差する。示されるように、交差面の交差点1010は、透明な透過エリア1003の中央領域に一致する。しかしながら、光軸1005a、1009aおよび1007aは、任意の手法で独立して交差してもよいことを留意すべきである。つまり、追加の交差点及び/又は交差面があってもよい(図示せず)。さらに、いくつかの実施形態において、交差面の交差点1010は、同時に一致する独立した交差面の複数の独立した交差点を表してもよい。例えば、光軸1005aおよび1009aは、交差して、第1の交差面の第1の交差点を形成し、光軸1005aおよび1007aは、交差して、第2の交差面の第2の交差点を形成し、光軸1009aおよび1007aは、交差して、第3の交差面の第3の交差点を形成する。図示されるように、第1の交差面の第1の交差点、第2の交差面の第2の交差点、第3の交差面の第3の交差点は、互いに一致し、交差点1010として表され、同時交差面の同時交差点を形成する。 従って、「交差点」という用語は、少なくとも2つの光軸(光軸1005a、1009aおよび1007a等)が少なくとも1つの平面、例えば、水平面及び/又は垂直面において互いに交差する位置を指すことが理解される。
【0180】
交差面の交差点1010は、比較的小さい透過エリア1003の中央領域に一致する位置に図示されているが、交差面の交差点1010は、それとは違って配置されていてもよい。例えば、交差面の交差点1010は、比較的小さい透過エリア1003の外側に配置されるように、第1のカメラ1005、第2のカメラ1009、及び/又は第3のカメラ1007からさらに離れて配置されていてもよい。代替的に、交差面の交差点1010は、比較的小さい透過エリア803の外側に配置されるように、第1のカメラ1005、第2のカメラ1009、及び/又は第3のカメラ1007により近くに配置されていてもよい。このように、交差面の交差点1010は、比較的小さい透過エリア1003から予め定められた距離に、例えば、約0.01メートルから2.0メートルまで、0.1メートルから0.5メートルまで、又は0.5メートルから1.0メートルまでの範囲に配置されていてもよい。
【0181】
例示的な実施形態において、第1のカメラ1005は、焦点Pに焦点を合わせ、第2のカメラ1009は、焦点Pに焦点を合わせ、第3のカメラ1007は、焦点Pに焦点を合わせる。このように、焦点Pは、交差面の交差点1010を越えて第1の水平距離に配置され、焦点Pは、交差点1010を越えて第2の水平距離に配置され、焦点Pは交差点1010を越えて第2の水平距離に配置される。図示されるように、第1、第2、及び第3の水平距離は、実質的に等しい距離であるが、代替的な実施形態において、異なる距離とすることができる。例えば、Pは、P及び/又はPの水平距離のおよそ1.5倍でもよく、その逆でもよい。他の実施形態において、Pは、Pの水平距離のおおよそ、1.25倍、1.75倍、2.0倍、2.5倍、又は3.0倍でもよい。さらに、P、P、及びPは、3次元空間において、必ずしも特異点ではないことを留意すべきであり、すなわち、それらは、カメラ及びカメラ光学の技術分野の当業者によって理解されるように、それぞれの焦点エリアをそれぞれ包含することができる。さらに、依然として、焦点Pに対応する焦点エリア、焦点Pに対応する焦点エリア、及び焦点Pに対応する焦点エリアは、少なくとも部分的に、重複してもよい。
【0182】
例示的な実施形態において、交差点1010の交差点は、第1のカメラ1005のレンズと第2のカメラ1007のレンズとの間の最短距離Dとほぼと等しい離隔距離Dで、第1のカメラ1005、第2のカメラ1009及び第3のカメラ1007から離れている。図示されるように、第1のカメラ1005のレンズと第2のカメラ1007のレンズとの間の最短距離Dは、Dによって表され、交差面の交差点1010と、第1のカメラ1005及び第2のカメラ1009との間の離隔距離Dは、Dによって表される。離隔距離Dは、カメラ1005、カメラ1009、又はカメラ1007のレンズから測定されてもよく、従って、離隔距離Dは異なってもよいことが理解される。また、固有の最短距離Dは、それぞれのカメラ間に存在してもよいことが理解されるべきである。このように、各カメラ1005、1009および1007は、それぞれの最短離隔距離D及びそれぞれの最短距離Dを有することができる。いくつかの実施形態において、離隔距離Dは、最短距離Dの1倍から4倍の範囲内にあってもよい。他の実施形態において、離隔距離Dは、最短距離Dの1倍から2倍、2倍から3倍、3倍から4倍、2倍から3倍、又は2倍から4倍の範囲内にあってもよい。いくつかの実施形態において、Dは、互いに最も遠く離れている、例えば、第1のカメラ1005及び第2のカメラ1009、2つのカメラ間の間隔を指してもよい。いくつかの実施形態において、D及びDは、交差面の交差点1010が配置され得る距離を定義する比で表現されてもよい。例えば、Dy≦N×D、ここで2≦N≧4。
【0183】
図示されるように、第1のカメラ1005の視野は、第2のカメラ1009の第2の視野と重なる。第1及び第2のカメラ1005、1009の視野の両方は、第3のカメラ1007の視野と重なる。例示的な実施形態において、光軸1005aは、比較的小さい透明な透過エリア1003の中央領域において、光軸1009a及び光軸1007aと交差する。このように、比較的小さい透過エリア1003は、第1のカメラ、第2のカメラ、及び第3のカメラの組み合わされた視野と等しい広角視野を有する広角カメラによって必要とされるであろう比較透過エリアより小さい。図示されるように、カメラ1005の第1の視野、カメラ1009の第2の視野、及びカメラ1007の第3の視野は、およそ150度である組み合わされた視野を形成する。他の実施形態において組み合わされた視野は、45度から180度の範囲でもよい。例えば、組み合わされた視野は、55度、65度、75度、85度、95度、105度、115度、125度、135度、145度、155度、165度、又は175度でもよい。
【0184】
図11Aは、図10の3つのカメラの実施形態に一致する例示的な撮像システムの概略平面図である。 図示されるように、図11Aの例示的な撮像システムは、車両99のリアサイドウィンドウ又は車両99の本体のピラー部分等の構成要素に取り付けられることができる。いくつかの実施形態において、車両99は自動運転車両でもよい。理解を容易にするため、車両99は、2つの実質的に対称的な半分に長さ方向に車両99を分割する中央の長手方向軸Cとともに示される。例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野Fは、66度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野Fは、66度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野Fは、66度の小さいキャップレンズを有する第3のカメラに対応する。例示的な実施形態において、各カメラは、66度の視野を有する。第1の視野Fは、第3の視野Fと重なる。 同じく、第2の視野Fは、第3の視野Fと重なる。
【0185】
図11Aにおいて、第1の視野Fは、車両99の中央の長手方向軸Cから5度オフセットしていてもよい。他の実施形態において、Fは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。第2の視野Fは、車両99の中央の長手方向軸Cから13度オフセットしていてもよい。他の実施形態において、Fは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。例示的な実施形態において、第3の視野Fは、第1の視野F及び第2の視野Fと、等しい量、重なる。他の実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cに対して、実質的に垂直である。他の実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cからオフセットしていてもよく、すなわち、光軸は、中央の長手方向軸Cに対して、垂直ではない。
【0186】
例示的な実施形態において、組み合わされた視野は、162度である。他の実施形態において、組み合わされた視野は大きくても小さくてもよい。例えば、他の例示的な実施形態において、組み合わされた視野は、100度から175度までの範囲、例えば、110度、120度、130度、140度、150度、165度等でもよい。
【0187】
図11Bは、図8の2つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。 例示的な撮像システムは、図11Aの実施形態と類似する。従って、同様の特徴は、詳細に説明しないであろう。例示的な実施形態において、第1の視野F1Bは、66度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野F3Bは、66度の小さいキャップレンズを有する第2のカメラに対応する。例示的な実施形態において、各カメラは、66度の視野を有する。第1の視野F1Bは、第3の視野F3Bと重なる。
【0188】
図11Bにおいて、第1の視野F1Bは、車両99の中央の長手方向軸Cから5度オフセットしていてもよい。他の実施形態において、F1Bは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。第2の視野F3Bは、車両99の中央の長手方向軸Cから60度オフセットしていてもよい。他の実施形態において、F3Bは、車両99の中央の長手方向軸Cから、30度から90度までの範囲、例えば、10度、20度、30度、40度、50度、60度、70度、80度、又は90度、オフセットしていてもよい。
【0189】
例示的な実施形態において、組み合わされた視野は、115度である。他の実施形態において、組み合わされた視野は大きくても小さくてもよい。例えば、他の例示的な実施形態において、組み合わされた視野は、90度から175度までの範囲、例えば、95度、100度、110度、120度、130度、140度、150度、165度等でもよい。
【0190】
図12Aは、図10の3つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。 図12Aにおいて、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野Fは、52度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野Fは、52度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野Fは、100度のレンズを有する第3のカメラに対応する。例示的な実施形態において、第1の視野Fは、第3の視野Fと重なる。同じく、第2の視野Fは、第3の視野Fと重なる。他の実施形態において、第1のカメラは、52度の小さいキャップレンズを有してもよく、第2のカメラは、52度の小さいキャップレンズを有してもよい。
【0191】
図12Aにおいて、第1の視野Fは、車両99の中央の長手方向軸Cから5度オフセットする。他の実施形態において、Fは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。第2の視野Fは、車両99の中央の長手方向軸Cから13.1度オフセットしていてもよい。他の実施形態において、Fは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。例示的な実施形態において、第3の視野Fは、第1の視野F及び第2の視野Fと、等しい量、重なる。他の実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cに対して実質的に垂直である。他の実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cからオフセットしていてもよく、すなわち、光軸は、中央の長手方向軸Cに対して、垂直ではない。
【0192】
いくつかの実施形態において、第3の視野は、第1の視野F及び第2の視野Fと、等しい量、重なるように、方向付けされている。例示的な実施形態において、組み合わされた視野は、161.9度である。他の実施形態において、組み合わされた視野は大きくても小さくてもよい。例えば、他の例示的な実施形態において、組み合わされた視野は、100度から175度までの範囲、例えば、110度、120度、130度、140度、150度、165度等でもよい。
【0193】
図12Bは、図8の2つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。例示的な撮像システムは、図12Bの実施形態と類似する。従って、同様の特徴は、詳細に説明しないであろう。図12Bにおいて、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう2つのカメラを含む。例えば、第1の視野F4Bは、52度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野F5Bは、100度のレンズを有する第2のカメラに対応する。例示的な実施形態において、第1の視野F4Bは、第2の視野F6Bと重なる。
【0194】
図12Bにおいて、第1の視野F4Bは、車両99の中央の長手方向軸Cから5度オフセットしていてもよい。他の実施形態において、第1の視野F4Bは、車両99の中央の長手方向軸Cから、5度から30度までの範囲、例えば、10度、15度、20度、又は25度、オフセットしていてもよい。例示的な実施形態において、第2の視野F6Bは、車両99の中央の長手方向軸Cから43度オフセットしていてもよい。他の実施形態において、第2の視野F6Bは、車両99の中央の長手方向軸Cに対して、実質的に垂直である。他の実施形態において、第2の視野F6Bは、車両99の中央の長手方向軸Cからオフセットしていてもよく、すなわち、光軸は、中央の長手方向軸Cxに対して、垂直ではない。
【0195】
例示的な実施形態において、組み合わされた視野は、132度である。他の実施形態において、組み合わされた視野は大きくても小さくてもよい。例えば、他の例示的な実施形態において、組み合わされた視野は、100度から175度までの範囲、例えば、110度、120度、130度、140度、150度、165度等でもよい。
【0196】
図13は、図10の3つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。図13において、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野Fは、52度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野Fは、52度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野Fは、100度のレンズを有する第3のカメラに対応する。例示的な実施形態において、第1の視野Fは、第3の視野Fと、17度、重なる。同じく、第2の視野Fは、第3の視野Fと、17度、重なる。他の実施形態において、第1の視野F及び第2の視野Fは、10度から35度の範囲内で、第3の視野Fとそれぞれ重なることができる。例えば、約15度、20度、25度、30度、35度等。図13において、第1の視野Fは、車両99の中央の長手方向軸Cから5度オフセットし、第2の視野Fは、車両99の中央の長手方向軸Cから5度オフセットする。例示的な実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cに対して、実質的に垂直であり、すなわち、光軸(図示せず)が、車両99の中央の長手方向軸Cに対して、実質的に垂直である。他の実施形態において、第3の視野Fは、車両99の中央の長手方向軸Cからオフセットしていてもよく、すなわち、光軸は、中央の長手方向軸Cに対して、垂直ではない。
【0197】
図14は、図10の3つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。図14において、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野F10は、52度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野F11は、52度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野F12は、100度のレンズを有する第3のカメラに対応する。例示的な実施形態において、第1の視野F10は、車両99の中央の長手方向軸Cから7度オフセットし、第2の視野F11は、車両99の中央の長手方向軸Cから13度オフセットする。例示的な実施形態において、第3の視野F12は、車両99の中央の長手方向軸Cに対して、完全に垂直ではないが、実質的に垂直であると言うことができる。
【0198】
図15および16は、開示される実施形態に一致する組み合わされた視野を有する他の例示的な撮像システムの斜視図である。撮像システム1400は、第1のカメラ1402及び第2のカメラ1404を含む。 撮像システム1400は、第1のカメラ1402及び第2のカメラ1404を収容するマウントアセンブリ1408をさらに含むことができる。マウントアセンブリ1408は、図15に示されるように、第1のカメラ1402及び第2のカメラ1404が車両に対して外側に面するように、撮像モジュール1400を車両に取り付けるように構成されていてもよい。図15において、車両99の側部に配置されるように示されるが、撮像システム1400は、車両99の任意のウィンドウ(例えば、フロントウィンドウ、サイドウィンドウ、リアウィンドウ)の背後に配置されていてもよく、車両99の任意の構成要素(例えば、ピラー、バンパー、ドアパネル、ヘッドライト、トランクの蓋、フェンダー、ルーフラック、クロスバー等)に含まれ、又は取り付けていてもよい。例えば、車両の構成要素に含まれる場合、撮像システム1400は、構成要素の開口部に交差して設けられた透明な表面(例えば、ガラス、プレキシガラス等)の背後に配置されていてもよい。
【0199】
マウントアセンブリ1408は、第1のカメラ1402及び第2のカメラ1404を地面と平行に方向付けするように構成されていてもよい。代替的に、マウントアセンブリ1408は、第1のカメラ1402及び第2のカメラ1404を地面に対してオフセット角度、例えば、5度、10度、又は15度で方向付けするように構成されていてもよい。
【0200】
撮像システム1400は、少なくとも1つのワイヤブレードを含むワイパーアセンブリ1406をさらに含むことができる。ワイパーアセンブリ1406は、第1のカメラ1402及び第2のカメラ1404のそれぞれの視野から障害を取り除くするように構成されていてもよい。いくつかの実施形態において、ワイパーアセンブリ1406は、車両99の外側に設置されることができる。ワイパーアセンブリ1406は、検知機能、タイマー機能、電動式アクチュエータ、ヒンジ式アクチュエータ、回転式アクチュエータ等を含むことができる。
【0201】
図17及び図18は、開示される実施形態と一致する組み合わされた視野を有する他の例示的な撮像システムの斜視図である。撮像システム1800は、第1のカメラ1802(例示を目的として部分的に見えなくされている)、第2のカメラ1804及び第3のカメラ1806を含む。マウントアセンブリ(図16の1408を参照)は、第1のカメラ1802、第2のカメラ1804、及び第3のカメラ1806が、車両99のサイドリアウィンドウに対して外向きに面するように、車両99の撮像モジュール1800を取り付けるように構成されている。他の実施形態において、マウントアセンブリ(図16の1408参照)は、図19及び図20に関連して、下でさらに詳細に述べるように、車両99のフロントガラスに撮像モジュール1800を取り付けるように構成されていてもよい。他の実施形態において依然として、マウントアセンブリ(図16の参照1408)は、車両99の構成要素、例えば、バンパー、ピラー、ドアパネル、ヘッドライト、トランクの蓋、フェンダー、ルーフラック、クロスバー等に撮像モジュール1800を取り付けるように構成されていてもよい。
【0202】
フロントガラスの実施形態によれば、撮像システム1800は、車両のフロントガラスに取り付けられることができる。この例示的な実施形態によれば、また、第3のカメラの光軸が直接的に前方となるように、第3のカメラモジュールは、直接的に前方に(車両99の後輪を通る軸に対して垂直に)取り付けられることができる。第1のカメラは、第3のカメラの左に取り付けられることができ、第1のカメラの光軸が第3のカメラの光軸と交差するように(例えば、左から右に)向けられ、第2のカメラは、第3のカメラの右に取り付けられ、第2のカメラの光軸が第3のカメラの光軸と交差するように(例えば、右から左に)向けられる。また、第1及び第2のカメラの光軸は、必ずしも交差する必要はないが、互いに交差してもよいことも理解されるべきである。
【0203】
図19及び図20は、車両99のフロントガラスに使用するための例示的な撮像システムの様々な実施形態を示す。図19及び図20は、前に説明した実施形態と類似し、従って、同様の特徴及び類似性は詳細に説明しない。全ての前述の例示的な範囲は、図19及び図20に従って実施形態に同じく適用可能であることは理解されるべきである。
【0204】
図19は、図10及び図11A図14の3つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。図19において、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野F13は、66度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野F14は、66度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野F15は、66度のレンズを有する第3のカメラに対応する。例示的な実施形態において、第1の視野F13は、第3の視野F15と重なる。 同じく、第2の視野F14は、第3の視野F15と重なる。
【0205】
図20は、図10の3つのカメラの実施形態と一致する例示的な撮像システムの概略平面図である。図20において、例示的な撮像システムは、それぞれの視野を有する各カメラをともなう3つのカメラを含む。例えば、第1の視野F16は、52度の小さいキャップレンズを有する第1のカメラに対応し、第2の視野F17は、52度の小さいキャップレンズを有する第2のカメラに対応し、第3の視野F18は、100度のレンズを有する第3のカメラに対応する。例示的な実施形態において、第1の視野F16は、第3の視野F18と重なる。同じく、第2の視野F17は、第3の視野F18と重なる。いくつかの実施形態において、組み合わされた視野は、車両の前方180度を有することができる。
【0206】
図21は、例示的な撮像システム2200の概略側面図である。図22は、図10の3つのカメラの実施形態と一致する撮像システム2200の全体像の図である。図示されるように、撮像システム2200は、車両99のリアウィンドウの内側に設置される。他の実施形態において、撮像システム220は、本開示の原則に従って、車両99のフロントガラスに設置されてもよい。撮像システム2200は、光がウィンドウを透過してカメラ2205、2207および2009に到達することが可能にする比較的小さい透過エリア2204を取り囲むグレアシールド2202を含むことができる。グレアシールド2202は、ダーク接着剤、遮光ペンキ、着色、偏光、露光量のための印刷又は塗装されたエリア、それらの任意の組み合わせを含むことができる。グレアシールド2202の少なくとも1つの利点は、フロントガラスの傾き(スロープ)によって引き起こされる入射光からからのグレアを低減することができる。グレアシールド2202は、カメラ1005、1007および1009への開口を提供するように構成された比較的小さい透過エリア2204を取り囲むことができ、これにより、カメラ2205、2207および2209の被写界深度を増大させ、複数の異なる対象物を広範囲の距離で焦点が合ったままとすることができる。いくつかの実施形態において、比較的小さい透過エリア2204は着色され又は偏光されることができる。
【0207】
図23は、フロントガラス2300に配置された例示的な撮像システム2200の側面図である。図示されるように、フロントガラス2300は、真っすぐな水平方向表面、例えば、地面に対して40度の傾きを有する。図23の例は、40度の傾きでフロントガラス2300を示すが、他の傾き(例えば、35度、38度、42度、45度等)のフロントガラスは、開示される実施形態に一致する。例示的な実施形態において、撮像システム2200は、3つのカメラ2205、2207および2209を含み(図22参照)、しかしながら、側面図において、カメラ2205によってカメラ2209は見えなくなるので、第1のカメラ2205及び第3のカメラ2207のみが図示される。図示されるように、カメラ2205および2207は、異なる高さである。従って、それぞれの光軸(それぞれの破線で示された)に関連するベクトルは、垂直面内で交差しないかもしれない。しかしながら、それぞれの光軸(それぞれの破線でで示された)に関連するベクトルは、水平面内で交差してもよい。さらに、いくつかの実施形態において、先に述べたように、撮像システム220は、2つのカメラを含むことができる。例示的な実施形態において、撮像モジュール2350は、フロントガラス2300に実質的に等しいおおよその傾き、例えば、真っすぐな水平方向表面に対して、約40度の傾きを有するように成形されている。他の実施形態において、撮像モジュール2350は、実質的に長方形であり、フロントガラス2300の傾きを構成するために単にマウントアセンブリ(理解を容易にするためラベルなし)に依存することができる。さらに、マウントアセンブリ(理解を容易にするためラベルなし)は、カメラ2005、2007および2009がフロントガラス2300に対して外向きに投影するように、ウィンドウに対してしっかりと撮像モジュール2350を保持するように構成されている。さらに、カメラ2205、2207および2209の光軸(破線の矢印によって表され)は、地面に平行に外向きに投影することができる。このように、撮像モジュール及びマウントアセンブリは、フロントガラスの傾き(スロープ)を構成することができる。これと同じ方法で、撮像モジュール及びマウントアセンブリは、他のレベル及びタイプの傾き、例えば、水平方向、垂直方向、水平方向及び垂直方向の組み合わせを構成してもよいことが理解されるべきである。
【0208】
図24は、図23の概略平面図である。図24では、3つのカメラ、すなわち、第1のカメラ2205、第2のカメラ2209、及び第3のカメラ2207が図示されている。図示されるように、3つのカメラ2205、2209および2207は、グレアシールド2202によって囲まれる比較的小さい透明な透過エリアを通って外向きに突出する。グレアシールドは、カメラ1005、1007および1009への開口を提供するように構成され、これにより、カメラ2205、2207および2209の被写界深度を増大させ、複数の異なる対象物を広範囲の距離で焦点が合ったままとすることが可能である。いくつかの実施形態において、比較的小さい透過エリア2204は着色され又は偏光されることができる。
【0209】
一実施形態において、第1、第2、及び第3のカメラは、グレアシールド2202(例えば、図22)において同じ開口部を使用することができる。他の実施形態において、各カメラは、それ自体のそれぞれのグレアシールド及び対応する透明なエリア(図示せず)を有することができる。いくつかの例において、カメラによって用いられる印刷又は塗装されたエリアの開口部は、カメラモジュールの3つの(又はそれ以上)カメラの組み合わされたFOVのような類似特性をともなう視野を有するカメラによって必要とされるであろうエリアと等しく又はより小さくてもよい。
【0210】
一実施形態において、第3のカメラは、任意で、第1及び第2のカメラ間に配置される。従って、サイドカメラ(第1及び第2のカメラ2205、2207)が組み合わされることができるので、第3のカメラ2207単独の視野よりも大きい組み合わされた視野を形成し得ることが理解され、組み合わされたFOVを利用することによって、カメラモジュールの性能を妨げることなく、第3のカメラでより細いレンズを使用できる場合があります。これは、第1及び第2のカメラ2205、2207に対して第3のカメラ2207が車両のフロントガラス(又はウィンドウ)の近くに取り付けられ得るので、特に有利であり得る。さらに、フロントガラスにより近づけて取り付けられた中央カメラ2207を有することによって、ウィンドウの印刷または塗装された開口部の小さな開口部に、より大きな視野範囲が得られ、または支持され得ることがさらに理解されるであろう。
【0211】
図25は、本開示に一致する他の実施形態の概略平面図である。例示的な実施形態において、撮像モジュール2512は、比較的小さい透明な透過エリア2511と一致する半径を有する半円の形状に配置されたカメラを含む。つまり、例示的な実施形態において、撮像モジュールは、半円の円弧に沿って、複数のカメラ2501、2502、2503、2504、2505、2506および2507を配置するように構成される。図示されるように、カメラは、半円の半径に向かって方向付けされてもよい。他の開示される実施形態と一致して、マウントアセンブリは(図示せず)、カメラが車両に対して外方に面するように車両のウィンドウの内面に(又は他のコンポーネント)撮像モジュール2511を取り付けるように構成されていてもよい。他の実施形態において、弓形の形状を有する撮像モジュール2512では、対応する半径は、比較的小さい透明な透過エリア2511に一致して配置されなくてもよく、例えば、何れの側部にあってもよい。例示的な実施形態において、対称に方向付けされた7つのカメラ2501、2502、2503、2504、2505、2506および2507があるが、他の実施形態において、より多くの又はより少ないカメラがあってもよい。いくつかの実施形態において、カメラは、半円の弧線に沿って対称に離間されていなくてもよい。
【0212】
例示的な実施形態において、それぞれのカメラ2501、2502、2503、2504、2505、2506および2507は、それぞれの視野(対応する三角領域によって表され)及それぞれの光軸を有し、それぞれの光軸(対応する破線によって表され)は、単一の比較的小さい透過開口部2511の外向きに突出する。例示的な実施形態において、組み合わされた視野Fが170度であるが、他の実施形態において、例えば、約100度から180度の範囲内で、より多く又はより少なくすることができる。図示されるように、各カメラ2501、2502、2503、2504、2505、2506および2507は、組み合わされた視野Fと比較される場合、比較的狭い視野を有する。
【0213】
図示されるように、それぞれの視野は、半円の半径、及び単一の比較的小さい透過開口部2511の中心となる位置に配置された半円の半径と、少なくとも部分的に重なる。 さらに、それぞれの光軸(対応する破線によって表され)は、上記の開示と一致するそれぞれの交差面(理解を容易にするために図示せず)の少なくとも1つのそれぞれの交差点で、他の全てのそれぞれの光軸と交差する(図10参照)。このように、2つの光軸の各交差は、それぞれの交差面のそれぞれの交差点に対応する。例示的な実施形態において、それぞれの光軸は、少なくとも水平面内で、他の全てのそれぞれの光軸と交差する。他の実施形態において、それぞれの光軸は、少なくとも垂直面内で、他の全てのそれぞれの光軸と交差する。依然として、他の実施形態において、それぞれの光軸は、水平面内及び垂直面内の両方で、他の全てのそれぞれの光軸と交差する。
【0214】
例示的な実施形態において、比較的小さい透過エリア2511は、それぞれのカメラ2501、2502、2503、2504、2505、2506および2507への開口を提供するように構成され、これにより、それぞれのカメラ2501、2502、2503、2504、2505、2506および2507の被写界深度を増大させ、複数の異なる対象物を広範囲の距離で焦点が合ったままとすることができる。さらに、比較的小さい透過エリア2511は、組み合わされた視野Fと実質的に等しい広角視野を有する広角カメラによって必要とされるであろう比較透過エリアより小さい。いくつかの実施形態において、組み合わされた視野は、車両99の前方に少なくとも約180度でもよい。図示されるように、透明な透過エリア2511は、構成要素2510によって、境界として輪郭が描かれていてもよい。構成要素2510は、車両の構成要素、例えば、ピラー、バンパー、ドアパネル、ヘッドライト、サイドウィンドウ、フロントウィンドウ等のような固体の機構でもよい。
【0215】
例示的な実施形態において、それぞれのカメラ2501、2502、2503、2504、2505、2506および2507は、複数のカメラのうちの直接隣接したカメラ2501、2502、2503、2504、2505、2506または2507の少なくとも1つから等距離だけ離れている。他の実施形態において、それぞれのカメラ2501、2502、2503、2504、2505、2506および2507は、等しい距離で離間していない。例示的な実施形態において、各交差面の各交差点は、直接隣接するカメラ間と少なくとも等しい距離、最も近いカメラから離れて配置されている。図示されるように、各交差面の各交差点は、直接隣接するカメラ間と等しい距離の最大4倍、最も近いカメラから離れて配置されている。他の実施形態において、各交差面の各交差点は、直接隣接するカメラ間と等しい距離の最大6倍、最も近いカメラから離れて配置されている。
【0216】
例示的な実施形態において、それらの対応する光軸と比較的小さい透明な透過エリア2511との間の最大の静止角をともなうカメラは、偏光フィルタ2515を有することができる。偏光フィルタ2515は、比較的小さい透過開口部2511によって屈折された入射光から反射を除去又は回避することが支援することができる。さらに、複数のカメラを使用することによって、偏光フィルタ2515は、最も影響があるそれらのカメラのみに取り付けられてもよい。さらに、例示的な実施形態は、複数のカメラ2501、2502、2503、2504、2505、2506および2507を有するので、各カメラの露光レベルは、その特定のカメラのために最適化され得る。さらに、一つの特定のカメラのレンズに当たる太陽光に起因するグレアは、他のカメラから画像に影響を与えないかもしれない。このように、複数のカメラ2501、2502、2503、2504、2505、2506および2507は、画像品質に冗長性を提供することができ、そうでなければ、露光不良の可能性に対してヘッジするように構成され得る。
【0217】
少なくとも1つの実施形態において、約2mmの7つのVGA解像度カメラキューブは、図25によって図示されるように、半円の円弧に沿って互いに離間している。本実施形態によれば、半円は、約10mmの直径を有する円に対応する。この実施形態の少なくとも1つの利点は、結果として、非常にコンパクトな高解像度の組み合わされた視野をもたらすことである。
【0218】
類似であるが代替的な実施形態において、複数のカメラは、比較的小さい透過半球開口の最も近くに配置された12カメラの第1のリングをともなう半球体に取り付けられてもよい。本実施形態において、第1のリングの12カメラのそれぞれは、偏光フィルタを有することができる。さらに、8カメラの第2のリング、4カメラの第3のリング、及び中央カメラが含まれてもよい。
【0219】
画像処理技術は、2つ又はそれより多くのカメラの視野を組み合わせて使用されることができ、本明細書の開示と一致してもよいように、組み合わされた視野を提供できることを当業者は理解するであろう。例えば、少なくとも1つの処理デバイス(例えば、処理ユニット110)は、組み合わされた視野を提供するため、及び/又は、2つ又はそれより多くのカメラによってキャプチャされた1又は複数の画像を分析するための命令プログラムを実行することができる。2つ又はそれより多くのカメラのそれぞれの視野が部分的に重複する場合、任意の結果として起こり得る組み合わされた視野は、2つ又はそれより多くのカメラの視野の重複エリア及び2つ又はそれより多くのカメラの何れか1つの非重複エリアを含み得る。トリミングは、本開示に一致する撮像技術において、冗長性を低減又は防止するために使用され得る。
【0220】
また、開示される実施形態は、ホスト車両の内部又はホスト車両のどこかに配置されていてもよく、必ずしも自動運転車両に限定されないことを、当業者は理解するであろう。さらに、いくつかの実施形態において、マルチ撮像システムは、車両99に設置されてもよい。例えば、第1の撮像システムは右サイドリアウィンドウに設置されされてもよく、第2の撮像システムは左サイドリアウィンドウに設置されてもよく、第3の撮像システムはリアバックウィンドウに設置されてもよく、第4の撮像システムはフロントガラスに設置されてもよい。本実施形態によれば、マルチ撮像システムは、車両99を囲む全体パノラマの組み合わされた視野を形成するために組み合わせることができる。
【0221】
前述の説明は、例示の目的で提示されている。包括的ではなく、正確な形態又は開示された実施形態に限定されない。変更及び適合は、明細書および開示される実施形態の実施を考慮することにより、当業者には明らかであろう。
【0222】
さらに、例示的な実施形態が本明細書で説明されたが、同等の素子、修正、省略、組み合わせ(例えば、様々な実施形態にわたる態様の)、適応及び/又はような変更を有する実施形態の何れの及び全ての範囲が、本開示に基づいて当業者によって理解されるであろう。特許請求の範囲における制限は、特許請求の範囲で使用される言語に基づいて広く解釈されるべきであり、本明細書に説明された例または出願の審査中に限定されない。例は非排他的であると解釈されるべきである。さらに、開示された方法の段階は、段階を並べ替えること及び/又は段階を挿入または削除することを含む、任意の手法で変更されてもよい。従って、本明細書および実施例は例示にすぎないと考えられることが意図されており、真の範囲および主旨は以下の特許請求の範囲およびそれらの均等物の全範囲によって示される。
図1
図2A
図2B
図2C
図2D
図2E
図2F
図3A
図3B
図3C
図3D
図4
図5A
図5B
図5C
図5D
図5E
図5F
図6
図7
図8
図9
図10
図11A
図11B
図12A
図12B
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25