IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コベルコ・コンプレッサ株式会社の特許一覧

<>
  • 特許-液冷式スクリュー圧縮機 図1
  • 特許-液冷式スクリュー圧縮機 図2
  • 特許-液冷式スクリュー圧縮機 図3
  • 特許-液冷式スクリュー圧縮機 図4
  • 特許-液冷式スクリュー圧縮機 図5
  • 特許-液冷式スクリュー圧縮機 図6
  • 特許-液冷式スクリュー圧縮機 図7
  • 特許-液冷式スクリュー圧縮機 図8
  • 特許-液冷式スクリュー圧縮機 図9
  • 特許-液冷式スクリュー圧縮機 図10
  • 特許-液冷式スクリュー圧縮機 図11
  • 特許-液冷式スクリュー圧縮機 図12
  • 特許-液冷式スクリュー圧縮機 図13
  • 特許-液冷式スクリュー圧縮機 図14
  • 特許-液冷式スクリュー圧縮機 図15
  • 特許-液冷式スクリュー圧縮機 図16
  • 特許-液冷式スクリュー圧縮機 図17
  • 特許-液冷式スクリュー圧縮機 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-21
(45)【発行日】2023-08-29
(54)【発明の名称】液冷式スクリュー圧縮機
(51)【国際特許分類】
   F04C 18/16 20060101AFI20230822BHJP
   F04C 29/02 20060101ALI20230822BHJP
   F04C 29/04 20060101ALI20230822BHJP
【FI】
F04C18/16 Q
F04C29/02 311K
F04C29/04 B
【請求項の数】 9
(21)【出願番号】P 2019077953
(22)【出願日】2019-04-16
(65)【公開番号】P2020033993
(43)【公開日】2020-03-05
【審査請求日】2021-10-26
(31)【優先権主張番号】P 2018158544
(32)【優先日】2018-08-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】521362885
【氏名又は名称】コベルコ・コンプレッサ株式会社
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100111039
【弁理士】
【氏名又は名称】前堀 義之
(72)【発明者】
【氏名】田中 孝二
(72)【発明者】
【氏名】野口 透
(72)【発明者】
【氏名】坂口 広宣
(72)【発明者】
【氏名】今城 貴徳
【審査官】岸 智章
(56)【参考文献】
【文献】国際公開第2018/038070(WO,A1)
【文献】中国実用新案第201858157(CN,U)
【文献】韓国公開特許第2003-0034806(KR,A)
【文献】特開平11-336683(JP,A)
【文献】実開昭53-123613(JP,U)
【文献】特開昭57-135293(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04C 18/16
F04C 29/02
F04C 29/04
(57)【特許請求の範囲】
【請求項1】
ケーシングに設けられ、一対のスクリューロータが収容されたロータ室と、
前記スクリューロータのロータ軸線方向に沿って前記ケーシングに形成された給液ラインと、
前記給液ラインと接続し、前記給液ラインから供給される液体を前記ロータ室に供給するために、前記給液ラインと交差する方向に沿って前記ケーシングに設けられた給液口と
を備え、
前記給液口は、
前記給液ラインと流体的に連通する入口部と、
前記ロータ室と流体的に連通する噴射部と、
前記入口部と前記噴射部とを流体的に接続する、一定の流路断面積を有する中間部とを備え、
前記噴射部の前記ロータ室に対する開口部は、前記給口の軸線に直交する平面としてロータ室側から見て円形であり、前記噴射部の開口部及び前記入口部の前記給液ラインに対する開口部の流路断面積は、前記中間部の前記流路断面積よりも大きく、前記噴射部の前記開口部における直径は、前記スクリューロータの歯部の軸直角歯先幅よりも大きい、液冷式スクリュー圧縮機。
【請求項2】
記給液口は、前記ロータ軸線方向に沿った直線上に複数個配設されている、請求項1に記載の液冷式スクリュー圧縮機。
【請求項3】
前記中間部の直径は0.7mm以上18mm以下であり、
前記噴射部の前記開口部における直径は、前記中間部の直径の4.0倍以下である、請求項1又は2に記載の液冷式スクリュー圧縮機。
【請求項4】
前記噴射部の前記開口部における直径は、前記中間部の直径の1.5倍以上3.0倍以下である、請求項3に記載の液冷式スクリュー圧縮機。
【請求項5】
前記噴射部は、前記中間部と接続する部分から前記開口部に向けて前記流路断面積が漸増する、逆テーパ形状を有する、請求項1から請求項4のいずれか1項に記載の液冷式スクリュー圧縮機。
【請求項6】
前記噴射部は、前記中間部と接続する部分から前記開口部までの前記流路断面積が一定であり、
前記噴射部の前記中間部と接続する部分に、前記流路断面積が非連続的に増加する段差が形成されている、請求項1から請求項4のいずれか1項に記載の液冷式スクリュー圧縮機。
【請求項7】
前記給液口は、前記ケーシングに設けられた前記給液ラインから前記ロータ室まで貫通する取付穴に挿入された、両端開口の管部材を備え、
前記管部材によって前記中間部が画定され、
前記管部材の前記ロータ室に臨む端面は、前記取付穴内に位置し、
前記管部材の前記端面と、前記取付穴の穴周壁によって前記噴射部が画定されている、請求項6に記載の液冷式スクリュー圧縮機。
【請求項8】
前記入口部は、前記給液ラインと接続する部分から前記中間部に向けて流路断面が漸減する、テーパ形状を有する、請求項1から6のいずれか1項に記載の液冷式スクリュー圧縮機。
【請求項9】
前記入口部は、前記給液ラインと接続する部分から前記中間部と接続する部分まで、前記中間部の前記流路断面積よりも大きい一定の流路断面積を有し、
前記入口部の前記中間部と接続する部分に、前記流路断面積が非連続的に減少する段差が形成されている、請求項1から請求項7のいずれか1項に記載の液冷式スクリュー圧縮機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液冷式スクリュー圧縮機に関する。
【背景技術】
【0002】
油冷式スクリュー圧縮機のような液冷式スクリュー圧縮機では、潤滑と圧縮空気の冷却のために、ロータ室内に液体(例えば油)を供給し、雌雄ロータが噛み合いながら回転することにより構成される圧縮過程にある圧縮空気にその液体を混入させている。特許文献1に開示された油冷式スクリュー圧縮機が備えるロータ室内への給油口は、いわゆるキリ穴であり、両端間で直径が一定の直管形状である。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-214740号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
液冷式スクリュー圧縮機では、液体の撹拌による動力損失や、ロータ室とスクリューロータの歯部との間の狭小隙間における液体の粘性による動力損失のような、空気を圧縮するための動力以外の動力損失がある。これらの動力損失のために、液冷式とすることで、却って効率が低下し得る。
【0005】
また、特許文献1の給油口のように、給液口の形状が直管形状であると、運転時にスクリューロータが給液口の真上を通り過ぎる際に、給液口からロータ室に供給される液体の流れが阻害され、速度が低下する。この速度低下により、歯溝内での液体の分散性が低下し、圧縮空気の冷却効率が低下し得る。
【0006】
以上の理由より、従来の液冷式スクリュー圧縮機は、空気を所要圧力まで圧縮するために必要な動力の低減や、冷却効率の向上について、改善の余地がある。
【0007】
本発明は、液冷式スクリュー圧縮機において、空気を所要圧力まで圧縮するために必要な動力を低減することや、冷却効率を向上することを課題とする。
【課題を解決するための手段】
【0008】
本発明の一態様は、ケーシングに設けられ、一対のスクリューロータが収容されたロータ室と、前記ケーシングに設けられた給液ラインと、前記給液ラインと接続し、前記給液ラインから供給される液体を前記ロータ室に供給するために、前記ケーシングに設けられた給液口とを備え、前記給液口は、前記給液ラインと流体的に連通する入口部と、前記ロータ室と流体的に連通する噴射部と、前記入口部と前記噴射部とを流体的に接続する、一定の流路断面積を有する中間部とを備え、前記噴射部の前記ロータ室に対する開口部は、前記給油口の軸線に直交する平面としてロータ室側から見て円形であり、前記開口部の流路断面積は、前記中間部の前記流路断面積よりも大きく、前記噴射部の前記開口部における直径は、前記スクリューロータの歯部の軸直角歯先幅よりも大きい、液冷式スクリュー圧縮機を提供する。
【0009】
給液口の噴射部のロータ室に対する開口部は、給液口の中間部の流路断面積よりも大きい流路断面積を有する。この構成により、給液口が両端間で流路断面積が一定の直管形状(いわゆるキリ穴)である場合と比較して、運転時にスクリューロータの歯部が給液口の真上を通り過ぎる瞬間において、中間部のロータ室側の端部と歯先との距離が長くなる。言い換えれば、給液口から噴射された液体がスクリューロータの歯部(歯先)とケーシングの隙間を通過する際に、液体が通過し得る断面積が拡大する。従って、ロータ室への液噴射時の圧力損失が減少する。この圧力損失減少により、給液口へ供給される液体の体積流量を、給液口がキリ穴である場合と同一としたままで、ロータ室に噴射される液体の流速を増加できる。言い換えれば、体積流量を増加することなく、給液口がキリ穴である場合よりもロータ室に噴射される液体の流速を増加できる。この流速増加により、液柱がスクリューロータの歯部の歯面に衝突する際の微粒化が促進され、液滴の伝熱面積が増加し、圧縮空気に対する冷却効率が向上する。従って、空気を所要圧力まで圧縮するのに必要な動力を低減できる。
【0010】
仮にロータ室へ噴射される液体の流速増加のために、給液口へ供給する液体の体積流量を増加すると、スクリューロータの歯部による液体の撹拌による動力損失や、スクリューロータの歯部(歯先)とケーシングとの間の狭小隙間における液体の粘性による動力損失を増加させてしまう。しかし、前述のように、本発明の一態様によれば、給液口へ供給する液体の体積流量は同一のままで、ロータ室に噴射される液体の流速を増加できるため、動力損失の増加も発生しない。
【0011】
前記給液ラインは、前記スクリューロータのロータ軸線方向に沿って設けられており、前記給液口は、前記ロータ軸線方向に沿った直線上に複数個配設されてもよい。
【0012】
本明細書において、スクリューロータの歯部の「軸直角歯先幅」とは、歯部のロータ軸と直交する断面における、歯部の先端が有する平滑面の幅をいう。開口部の直径を軸直角歯先幅よりも大きく設定したことにより、スクリューロータの歯部が給液口の真上を通り過ぎる際に、平滑面が給液口の噴射部を塞ぐことがないので、より効果的にロータ室への液噴射時の圧力損失を減少できる。
【0013】
前記中間部の直径は0.7mm以上18mm以下であり、前記噴射部の前記開口部における直径は、前記中間部の直径の4.0倍以下であってもよい。
【0014】
特に、前記噴射部の前記開口部における直径は、前記中間部の直径の1.5倍以上3.0倍以下であってもよい。
【0015】
前記噴射部は、前記中間部と接続する部分から前記開口部に向けて前記流路断面積が漸増する、逆テーパ形状を有してもよい。
【0016】
前記噴射部は、前記中間部と接続する部分から前記開口部までの前記流路断面積が一定であり、前記噴射部の前記中間部と接続する部分に、前記流路断面積が非連続的に増加する段差が形成されてもよい。
【0017】
前記給液口は、前記ケーシングに設けられた前記給液ラインから前記ロータ室まで貫通する取付穴に挿入された、両端開口の管部材を備え、前記管部材によって前記中間部が画定され、前記管部材の前記ロータ室に臨む端面は、前記取付穴内に位置し、前記管部材の前記端面と、前記取付穴の穴周壁によって前記噴射部が画定されてもよい。
【0018】
この構成により、給液口をケーシングに設ける加工時の寸法管理が、ケーシングそのものを直接、掘削等にて加工して、中間部と、その中間部の流路断面積より大きい流路断面積をロータ室に対する開口部に備えた噴射部を形成する場合に比べ、容易となる。加工時の寸法管理が容易になることで、より高度な品質安定性を確保できる。また、異なる管部材を使用することで、給液口の中間部の直径を、製品仕様に合わせて容易に変更できる。さらに、注液口を設けるためにケーシングに施す加工としては、流路断面積が非連続的に増加する段差の加工や、流路断面積が連続的に拡大するテーパ形状の加工を必要とせず、取付穴(貫通穴)の形成のみが要求されるため、工数削減を図ることができる。
【0019】
前記入口部は、前記給液ラインと接続する部分から前記中間部に向けて流路断面が漸減する、テーパ形状を有してもよい。
【0020】
前記入口部は、前記給液ラインと接続する部分から前記中間部と接続する部分まで、前記中間部の前記流路断面積よりも大きい一定の流路断面積を有し、前記入口部の前記中間部と接続する部分に、前記流路断面積が非連続的に減少する段差が形成されてもよい。
【0021】
これらの構成により、給液ラインから給液口の入口部に液体が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給液口へ供給する液体の体積流量を増加することなく、ロータ室に噴射される液体の流速を増加できる。
【発明の効果】
【0022】
本発明に係る液冷式スクリュー圧縮機によれば、圧縮空気の冷却効率が向上し、空気を所要圧力まで圧縮するために必要な動力の低減、つまり効率改善を実現し得る。
【図面の簡単な説明】
【0023】
図1】本発明の第1実施形態に係る油冷式スクリュー圧縮機の模式的な平面図。
図2図1の線II-IIでの断面図。
図3図1の線III-IIIでの断面図。
図4】本発明の第1実施形態に係る油冷式スクリュー圧縮機を含む圧縮機システムの模式図。
図5図3の部分Vの拡大図。
図6図3の部分Vの異なる断面での断面図。
図7】給油口を雌ロータ室から見た図。
図8】従来の油冷式圧縮機の図5と同様の断面図。
図9】第1実施形態の変形例の図6と同様の断面図。
図10】第1実施形態の他の変形例の図6と同様の断面図。
図11】本発明の第2実施形態に係る油冷式スクリュー圧縮機の図3と同様の断面図。
図12】第2実施形態の図6と同様の断面図。
図13】第2実施形態の変形例の図6と同様の断面図。
図14】第2実施形態の他の変形例の図6と同様の断面図。
図15】本発明の第3実施形態に係る油冷式スクリュー圧縮機の図3と同様の断面図。
図16】第3実施形態の図6と同様の断面図。
図17】オリフィス管の斜視図。
図18】油量と断面効率の関係を示すグラフ。
【発明を実施するための形態】
【0024】
(第1実施形態)
図1から図3を参照すると、本発明の第1実施形態に係る油冷式スクリュー圧縮機(液冷式スクリュー圧縮機)1は、空間的に互いに連通する雄ロータ室2aと雌ロータ室2bとが形成されたケーシング2を備える。雄ロータ室2aには雄ロータ3が収容され、雌ロータ室2bには雌ロータ4が収容されている。また、ケーシング2には、ロータ室2a,2bに空間的に連通している吸込口2cと吐出口2dとが設けられている。
【0025】
雄ロータ室2aは、円筒面2eと、一対の端面2g,2hによって画定されている。また、雌ロータ室2bは、円筒面2fと、雄ロータ室2aと共通の一対の端面2g,2hによって画定されている。
【0026】
雄ロータ(スクリューロータ)3は、ロータ軸3aと、ロータ軸3aの外周に設けられた複数の螺旋状の歯部3bを備える。同様に、雌ロータ4は、ロータ軸4aと、ロータ軸4aの外周に設けられた複数の螺旋状の歯部4bを備える。互いに隣接する歯部4bの対の間には、螺旋状の歯溝4cがそれぞれ画定されている。雄ロータ3のロータ軸3aは、軸受5A,5Bによって、それ自体の軸線Lm回りに回転自在に支持されている。雌ロータ4のロータ軸4aも、軸受6A,6Bによって、それ自体の軸線Lf回りに回転自在に指示されている。
【0027】
雄ロータ3の吸込口2c側のロータ軸3aには、モータを含む駆動機構7が機械的に接続されている。駆動機構7によって雄ロータ3が回転されると、雄ロータ3の歯部3bが雌ロータ4の歯溝4cに入り込んだ状態で噛み合い、それによって雄ロータ3と雌ロータ4が同期回転する。雄ロータ3に代えて、雌ロータ4を駆動機構によって回転駆動してもよい。
【0028】
吸込口2cから吸い込まれた気体(本実施形態では空気)は、雄ロータ3の歯部3bと雌ロータ4の歯溝4cによって画定される閉じ込み空間内に閉じ込められ、ロータ3,4の回転に伴って軸線Lm,Lf方向に移動しつつ圧縮され、吐出口2dから吐出される。
【0029】
ケーシング2には、雌ロータ室2bに冷却、潤滑等のための油(液体)を供給するために3個の給油口(給液口)11A,11B,11Cが設けられている。これらの給油口11A~11Cは、雌ロータ室2bの底部に開口しており、雌ロータ4の軸線Lf(雌ロータ室2bの軸線でもある。)に沿った直線上に配置されている。給油口の個数は1個又は2個でもよく、4個以上でもよい。また、雌ロータ室2bのための給油口に代えて、又はそれと併せて、雄ロータ室2aのための給油口を設けてもよい。給油口11A~Cについては、後に詳述する。
【0030】
給油口11A~11Cから油を雌ロータ室2bに供給しているので、吐出口2dから吐出される空気には油が含まれている。図4を併せて参照すると、吐出口2dから吐出された空気は、空気配管12Aを介してセパレータ13に導入される。セパレータ13では、空気と油が分離される。油が分離された空気は、空気配管12Bから圧縮空気を必要とする機器ないし設備へ送られる。セパレータ13で空気から分離された油は、油供給配管14を介して、ケーシング2に設けられた給油ライン(給液ライン)15(本実施形態ではケーシング2に穿設した長孔)へ送られる。給油ライン15から給油口11A~11Cを経て、雌ロータ室2bに油が供給される。このように、油冷式スクリュー圧縮機1とセパレータ13との間を油が循環する。本実施形態では、セパレータ13から油冷式スクリュー圧縮機1へ送油するための油ポンプ16が、油供給配管14に設けられている。
【0031】
次に、給油口11A~11Cについて詳細に説明する。以下の説明では、3個の給油口11A~11Cについて特に区別する必要がない場合、1個の給油口について参照番号11を使用する。
【0032】
図5から図7を参照すると、給油口11よって給油ライン15と雌ロータ室2bとが流体的に連通されている。給油口11は、全体として、雌ロータ4の軸線Lm(雌ロータ室2bの軸線でもある。)に対して直交する方向に真直に延びている。
【0033】
給油口11は、給油ライン15と流体的に連通する入口部21、雌ロータ室2bと流体的に連通する噴射部22、及び入口部21と噴射部22とを流体的に接続する中間部23を備える。
【0034】
本実施形態では、入口部21と中間部23の、給油口11の軸線Liに直交する断面の形状は円形である。この断面形状は、円形以外であってもよい。また、入口部21は一定の直径Deを有し、中間部23も一定の直径Dmを有し、これらの直径De,Dmは同一である。言い換えれば、入口部21から中間部23までの全体にわたって流路断面積Ae,Amが一定である。
【0035】
噴射部22は雌ロータ室2b、より具体的には雌ロータ室2bを画定するケーシング2の円筒面2fに開口する開口部22aを備える。本実施形態では、噴射部22の、給油口11の軸線Liに直交する断面の形状は円形である。この断面形状は、円形以外であってもよい。本実施形態では、噴射部22は、中間部23と接続する部分22bから開口部22aに向けて漸増する直径Diを有する。言い換えれば、噴射部22は、噴射部22が中間部23と接続する部分22bから開口部22aに向けて流路断面積Aiが漸増する逆テーパ形状を有する。この逆テーパ形状により、噴射部22の開口部22aにおける流路断面積Aiは、中間部23の流路断面積Amよりも大きい。
【0036】
噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きい。「軸直角歯先幅」とは、歯部4bのロー軸4aの軸線Lfと直交する断面における、歯部4bの先端が有する平滑面4dの幅をいう。
【0037】
中間部23の直径Dmは0.7mm以上18mm以下に設定できる。噴射部22の開口部22aにおける直径Diは、中間部23の直径Dmの4倍以下に設定できる。特に、噴射部22の開口部22aにおける直径Diは、中間部23の直径Dmの1.5倍以上3.0倍以下に設定できる。
【0038】
給油ライン15により供給される油は、入口部21は給油口11に入り、中間部23に流入し、中間部23の雌ロータ室2b側の端部23aから噴射される。噴射された油は噴射部22を通って雌ロータ室2bに供給される。
【0039】
給油口11の噴射部22の雌ロータ室2bに対する開口部22aにおける直径Di、従って流路断面Aiは、給油口11の中間部23の直径Dm、従って流路断面積Amよりも大きい。そのため、図8に示すように給油口11が両端間で流路断面積が一定の直管形状(いわゆるキリ穴)である場合と比較して、運転時に雌ロータ4の歯部4bが給油口11の真上を通り過ぎる瞬間において、中間部23の雌ロータ室2b側の端部23aと歯部4bの歯先との距離が長くなる。言い換えれば、給油口11から噴射された油が雌ロータ4の歯部4bの歯先とケーシング2の円筒面2fとの隙間を通過する際に、油が通過し得る断面積が拡大する。従って、雌ロータ室2bへの油噴射時の圧力損失が減少する。この圧力損失減少により、給油口11へ供給される油の体積流量を、図8のように給油口11がキリ穴である場合と同一としたままで、雌ロータ室2bに噴射される油の流速を増加できる。言い換えれば、体積流量を増加することなく、給油口11がキリ穴である場合よりも雌ロータ室2bに噴射される油の流速を増加できる。この流速増加により、液柱が雌ロータ4の歯部4bの歯面に衝突する際の微粒化が促進され、油滴の伝熱面積が増加し、圧縮空気に対する冷却効率が向上する。従って、空気を所要圧力まで圧縮するのに必要な動力を低減できる。
【0040】
仮に雌ロータ室2bへ噴射される油の流速増加のために、給油口11へ供給する液体の体積流量を増加すると、雌ロータ4の歯部4bによる油の撹拌による動力損失や、雌ロータ4の歯部4b(歯先)とケーシング2の円筒面2fとの間の狭小隙間における油の粘性による動力損失を増加させてしまう。しかし、本実施形態では、給油口11へ供給する油の体積流量は同一のままで、雌ロータ室2bに噴射される油の流速を増加できるため、動力損失の増加も発生しない。
【0041】
前述のように、噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きい。そのため、雌ロータ4の歯部4bが給油口11の真上を通り過ぎる際に、歯部4bの先端が有する平滑面4dによって給油口11の噴射部22が塞がることがなく、より効果的に雌ロータ室2bへの油噴射時の圧力損失を減少できる。
【0042】
図9及び図10は、第1実施形態の変形例を示す。
【0043】
図9の変形例では、給油口11の入口部21は給油ライン15と接続する部分21aから中間部23と接続する部分21bに向けて直径De、従って流路断面積Aeが漸減するテーパ形状を有する。
【0044】
図10の変形例では、給油口11の入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の直径Dmよりも大きい一定の直径Deを有する。言い換えれば、入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、入口部21が中間部23と接続する部分に、流路断面積が急激ないしは非連続的に減少する段差25が形成されている。
【0045】
図9及び図10に示す構成により、給油ライン15から給油口11の入口部21に油が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給油口11へ供給する油の体積流量を増加することなく、雌ロータ室2bに噴射される油の流速を増加できる。
【0046】
以下の第2及び第3実施形態については、第1実施形態と異なる点を説明する。これらの実施形態に関して特に言及しない構造、機能等は、第1実施形態と同様である。また、これらの実施形態に関する図面において、第1実施形態のものと同一又は同様の要素には同一の符号を付している。さらに、図1図2、及び図4に示される第1実施形態に係る油冷式圧縮機の全体的な構成は、これらの実施形態についても同様である。
【0047】
(第2実施形態)
図11及び図12に示す本発明の第2実施形態に係る油冷式スクリュー圧縮機1では、給油口11の噴射部22は、中間部23と接続する部分22bから開口部22aまで、中間部23の直径Dmよりも大きい一定の直径Diを有する。言い換えれば、噴射部22は、中間部23と接続する部分22bから開口部22aまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、噴射部22の中間部23と接続する部分に、流路断面積が急激ないし非連続的に増加する段差26が形成されている。
【0048】
噴射部22の雌ロータ室2bに対する開口部22aは、中間部23の流路断面積Amよりも大きい流路断面積Aeを有するので、体積流量を増加することなく雌ロータ室2bに噴射される油の流速を増加できる。この速度増加により、圧縮空気に対する冷却効率が向上し、空気を所要圧力まで圧縮するのに必要な動力を低減できる。また、給油口11へ供給する油の体積流量は同一のままで、雌ロータ室に噴射される液体の流速を増加できるため、動力損失の増加も発生しない。さらに、噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きいので、歯部4bの先端面が有する平滑面4dが噴射部22を塞ぐことがなく、より効果的に雌ロータ室2bへの油噴射時の圧力損失を減少できる。
【0049】
図13及び図14は、第2実施形態の変形例を示す。
【0050】
図13の変形例では、給油口11の入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、入口部21の中間部23と接続する部分に、流路断面積が非連続的に減少する段差25が形成されている。中間部23の厚みTHmは、入口部21の厚みTHeと噴射部22の厚みTHiとの和よりも大きい。
【0051】
図14の変形例では、給油口11の入口部21は給油ライン15と接続する部分21aから中間部23と接続する部分21bに向けて直径De、従って流路断面積Aeが漸減するテーパ形状を有する。図13及び図14の構成により、給油ライン15から給油口11の入口部21に油が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給油口11へ供給する油の体積流量を増加することなく、雌ロータ室2bに噴射される油の流速を増加できる。
【0052】
(第3実施形態)
図15及び図16に示す本発明の第3実施形態に係る油冷式スクリュー圧縮機1では、ケーシング2に、別部材を取り付けることで、給油口11を設けている。
【0053】
ケーシング2には、給油ライン15から雌ロータ室2bまで貫通する取付穴31が設けられている。本実施形態では、取付穴31は一定の直径Daを有する円形である。図17に示す、両端開口、つまり中央に軸穴32aを有するオリフィス管(管部材)32が、取付穴31に挿入ないし嵌入され、ケーシング2に対して固定されている。
【0054】
オリフィス管32の雌ロータ室2b側の端面32bは、取付穴31内に位置しており、雌ロータ室2bを画定する円筒面2fに対して窪んでいる。また、オリフィス管32の給油ライン15側の端面32cも取付穴31内に位置している。オリフィス管32の端面32cと、取付穴31の穴周壁31aとによって、給油口11の入口部21が画定されている。また、オリフィス管32の軸穴32aが給油口11の中間部23を構成している。さらに、オリフィス管32の端面32bと、取付穴31の穴周壁31aとによって、給油口11の噴射部22が画定されている。
【0055】
本実施形態における噴射部22は、第2実施形態のものと同様の形状を有している。特に、中間部23、つまりオリフィス管32の軸穴32aと噴射部22とが接続する部分に、流路断面積が非連続的に増加する段差26が形成されている。
【0056】
本実施形態における入口部21は、図13に示すものと同様の形状を有している。特に、入口部21が中間部23、つまりオリフィス管32の軸穴32aと接続する部分に、流路断面積が非連続的に減少する段差25が形成されている。
【0057】
第1及び第2実施形態並びにそれらの変形例と同様の効果に加え、本実施形態には以下の効果がある。まず、給油口11をケーシング2に設ける加工時の寸法管理が、ケーシング2そのものを直接、掘削等にて加工して、中間部23と、その中間部23の流路断面積より大きい流路断面積をロータ室に対する開口部に備えた噴射部22を形成する場合に比べ、容易となる。加工時の寸法管理が容易になることで、より高度な品質安定性を確保できる。また、異なるオリフィス管32を使用することで、給油口11の中間部23の直径Dmを、製品使用に合わせて容易に変更できる。さらに、給油口11を設けるためにケーシング2に施す加工としては、流路断面積が非連続的に増加する段差の加工や、流路断面積が連続的に拡大するテーパ形状の加工を必要とせず、取付穴31の形成のみが要求されるため、工数削減を図ることができる。
【0058】
(試験)
本発明の効果を確認するための試験を行った。この試験では、第3実施形態の油冷式スクリュー圧縮機1(図15に示すようにオリフィス管32で給油口11を構成している)と、比較例として図8に示す油冷式スクリュー圧縮機1(給油口11が一定直径のキリ穴)を使用した。個々の油冷式スクリュー圧縮機1(75KW)について、2種類の循環油量で実際に運転し、断熱効率(実際の消費動力に対する理論消費動力の割合)を求めた。個々の油冷式スクリュー圧縮機1の吐出圧力は0.7MPaに設定した。周囲温度は20℃であった。
【0059】
第3実施形態と比較例のいずれにおいても、3個の給油口11A~11Cの中間部23の直径Dmは、雌ロータ4の歯部4bの軸直角歯先幅Wtの4.4倍であった(Dm=4.4×Wt)。
【0060】
第3実施形態については、循環油量は所定の油量Q(L/min)と約1.4×Q(L/min)で運転した際の断熱効率を求めた。循環油量はQ(L/min)のときの給油口11A,11B,11Cの噴射部22の直径Diは、それぞれ2.2Dm(Di=2.2×Dm)、2.9Dm(Di=2.9×Dm)、及び2.9Dm(Di=2.9×Dm)であった。一方、潤滑油量が1.4×Q(L/min)のときの給油口11A,11B,11Cの噴射部22の直径Diは、それぞれ1.7Dm(Di=1.7×Dm)、2.2Dm(Di=2.2×Dm)、及び2.2Dm(Di=2.2×Dm)。
【0061】
図18に試験結果を示す。この図18に示されているように、第3実施形態の油冷式スクリュー圧縮機1は、比較例よりも約1%程度断熱効率が向上することが確認できた。
【符号の説明】
【0062】
1 油冷式スクリュー圧縮機(液冷式スクリュー圧縮機)
2 ケーシング
2a 雄ロータ室
2b 雌ロータ室
2c 吸込口
2d 吐出口
2e,2f 円筒面
2g,2h 端面
3 雄ロータ
3a ロータ軸
3b 歯部
4 雌ロータ
4a ロータ軸
4b 歯部
4c 歯溝
4d 平滑面
5A,5B,6A,6B 軸受
7 駆動機構
11A,11B,11C 給油口(給液口)
12A,12B 空気配管
13 セパレータ
14 油供給配管
15 給油ライン(給液ライン)
16 油ポンプ
21 入口部
21a,21b 部分
22 噴射部
22a 開口部
22b 部分
23 中間部
23a 端部
25,26 段差
31 取付穴
31a 穴周壁
32 オリフィス管
32a 軸穴
32b,32c 端面
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18