(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-22
(45)【発行日】2023-08-30
(54)【発明の名称】酸化物超電導バルク導体及び通電素子
(51)【国際特許分類】
C30B 29/22 20060101AFI20230823BHJP
H01F 6/06 20060101ALI20230823BHJP
C01G 1/00 20060101ALI20230823BHJP
C01G 3/00 20060101ALI20230823BHJP
C30B 19/00 20060101ALI20230823BHJP
C04B 35/45 20060101ALI20230823BHJP
H01B 12/06 20060101ALI20230823BHJP
【FI】
C30B29/22 501Z
H01F6/06 120
H01F6/06 140
C01G1/00 S
C01G3/00
C30B29/22 501B
C30B19/00 Z
C04B35/45 040
H01B12/06
(21)【出願番号】P 2019181315
(22)【出願日】2019-10-01
【審査請求日】2022-06-06
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175802
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100134359
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】手嶋 英一
【審査官】山本 一郎
(56)【参考文献】
【文献】特開2011-060769(JP,A)
【文献】特開2017-011204(JP,A)
【文献】特開2013-187103(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 29/22
H01F 6/06
C01G 1/00
C01G 3/00
C30B 19/00
C04B 35/45
H01B 12/06
(57)【特許請求の範囲】
【請求項1】
組成式がRE
1Ba
2Cu
3O
y(式中のREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される1種又は2種以上の元素であり、yは、6.8≦y≦7.2を満足する。)で表され、結晶方位の揃ったRE
1Ba
2Cu
3O
y相中に、組成式がRE
2BaCuO
5で表されるRE
2BaCuO
5相が分散した組織を有し、かつ板状である少なくとも2つの酸化物超電導バルク体と、
チタン又はチタン合金からなる板状の補強部材と、を備え、
前記補強部材の少なくとも2つの面に、前記補強部材の長手方向に亘って前記酸化物超電導バルク体が重ねられて固定されていることを特徴とする、酸化物超電導バルク導体。
【請求項2】
前記補強部材が、当該補強部材の長手方向の両端部又は当該補強部材の板幅方向の両端部の少なくともいずれかに、前記酸化物超電導バルク体の端面と接触する突起部を有することを特徴とする、請求項1に記載の酸化物超電導バルク導体。
【請求項3】
前記補強部材の少なくとも2つの面に固定された前記酸化物超電導バルク体のうちの2つの前記酸化物超電導バルク体が、その長手方向の互いに異なる一端において、前記補強部材を介し、互いに対向して延設されている壁部を有することを特徴とする、請求項1に記載の酸化物超電導バルク導体。
【請求項4】
前記補強部材の少なくとも2つの面に固定された前記酸化物超電導バルク体の少なくともいずれかが、その長手方向の両端において前記補強部材側に延設されている壁部を有することを特徴とする、請求項1に記載の酸化物超電導バルク導体。
【請求項5】
前記壁部が、その長手方向端部において、外部接続用の電極端子と電気的に接続可能であることを特徴とする、請求項3又は4に記載の酸化物超電導バルク導体。
【請求項6】
前記板状である少なくとも2つの酸化物超電導バルク体の厚さが、100μm以上であることを特徴とする、請求項1~5のいずれか1項に記載の酸化物超電導バルク導体。
【請求項7】
2つの前記酸化物超電導バルク体が、前記補強部材の対をなす2つの面のそれぞれに、前記補強部材の長手方向に亘って固定されていることを特徴とする、請求項1~
6のいずれか1項に記載の酸化物超電導バルク導体。
【請求項8】
請求項1~
7のいずれか1項に記載の酸化物超電導バルク導体と、
前記酸化物超電導バルク導体に電気的に接続される電極端子と、を備え、
前記補強部材の少なくとも2つの面に固定された各前記酸化物超電導バルク体が、前記酸化物超電導バルク体の長手方向の両端において前記電極端子に電気的に接続されていることを特徴とする、通電素子。
【請求項9】
前記酸化物超電導バルク体の露出表面が、非透水性シート又はテープで被覆されていることを特徴とする、請求項
8に記載の通電素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸化物超電導バルク体を利用した酸化物超電導バルク導体、及び、その酸化物超電導バルク導体を使用した通電素子に関する。
【背景技術】
【0002】
電気を通す導体として、現在、銅が最も多く使用されている。これは、室温での比抵抗が銀とほぼ同程度で他の物質に比べ低く、かつ比較的安価であることによる。導体の比抵抗を下げる方法には、導体を冷却する方法がある。銅の場合、液体窒素温度(77K)に冷却すると、比抵抗は、室温での比抵抗に対して約1/7の約2.5×10-9Ωmとなる。銅の導体としての形態は、線状あるいはテープ状の線材と、板状あるいは棒状のブスバー(導体棒)がある。銅製線材は、ケーブルや電磁石のコイル、同期モータの界磁巻線等に用いられる。一方、銅製ブスバーは、配電盤や制御盤の分岐導体、誘導モータの導体等に用いられる。大容量の電流用の導体としては、銅線よりも銅ブスバーの方が効率的な場合が多い。
【0003】
超電導材料は、臨界温度Tc以下に冷却する必要はあるものの、電気抵抗がほぼゼロであり、理想的な導体である。金属系超電導材料は、臨界温度Tcが低く、極低温への冷却の必要性から広く普及するに至っていない。そのため、臨界温度Tcが液体窒素温度以上と高く、冷却の負担が比較的小さい酸化物超電導材料が実用化されると、酸化物超電導材料が広く普及することが期待される。酸化物超電導体の材料形態としては、線材と塊状のバルク体とがある。酸化物超電導線材は、銅製線材が用いられている応用分野に適用することができる。一方、酸化物超電導バルク材料から板状導体を切り出せば、銅製ブスバーが用いられている応用分野に適用することができる。ここでは、酸化物超電導バルク材料から板状切り出した酸化物超電導バルク体が利用された導体のことを酸化物超電導バルク導体と呼ぶことにする。さらに、酸化物超電導バルク導体は、銅製ブスバーが用いられている配電盤や制御盤の分岐導体、誘導モータの導体だけでなく、両端に外部接続用の電極端子を取り付けることによって電流リードや永久電流スイッチ等の通電素子にも適用することができる。
【0004】
酸化物超電導バルク導体に用いる酸化物超電導バルク材料としては、臨界温度Tcが高く、大電流を流せる超電導バルク材料、即ち臨界電流密度Jcが高い超電導バルク材料が望ましい。RE-Ba-Cu-O系酸化物超電導体(REは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される1種又は2種以上の元素である。)の臨界温度Tcは、90K程度と高い。しかしながら、酸化物の一般的な製法である焼結法で作製されるRE-Ba-Cu-O系酸化物超電導体のバルク材料は、多数の結晶粒からなる多結晶状の超電導バルク材料である。酸化物超電導バルク材料が多結晶である場合には、内部に存在する多数の結晶粒界が超電導電流を阻害するため、臨界電流密度Jcは77Kで1.0×103A/cm2以下であり、低い値となる。
【0005】
臨界電流密度Jcを改善するために、例えば、以下の特許文献1で開示されているような、溶融結晶成長プロセスが開発されている。このような溶融結晶成長プロセスを適用することにより、結晶方位の揃ったRE1Ba2Cu3Oy(式中のyは、6.8≦y≦7.1を満足する。)中にRE2BaCuO5が微細分散した組織を有する、酸化物超電導バルク材料を得ることができる。内部に微細分散したRE2BaCuO5相は磁力線をピン止めする機能を有する。かかる酸化物超電導バルク材料は、温度が77Kである1Tの磁場中において臨界電流密度Jcが1.0×104A/cm2以上という、磁場中でも高い特性を示す。ここで、「結晶方位の揃った」とは、内部に大傾角粒界を含まない単結晶状であることと同義である。
【0006】
酸化物超電導バルク材料から板状にバルク体を切り出せば、銅製ブスバーのような導体を製造することは可能である。しかしながら、酸化物超電導材料は脆性材料であり、細長く切り出された酸化物超電導バルク体は、そのままでは破損しやすいという問題があり、実用上は何らかの補強が必要である。破損の原因としては、導体取扱い時の外力や冷却時の熱応力がある。破損の原因が導体取扱い時の外力だけであるならば、高剛性の補強部材を酸化物超電導バルク体に貼り合わせることで高強度化が可能である。しかし、超電導体は冷却して用いられるため、冷却時の熱応力に対する耐久性も重要である。例えば、以下の特許文献2では、従来の補強体として、ステンレス鋼、マンガン鋼、ガラス繊維強化プラスチック(GFRP)等を例示した上で、チタンやチタン合金を補強体として用いることが開示されている。特許文献2に図示された電流リードでは、管状補強体中に酸化物超電導バルク体が納められ、端部が電極端子と固定されている。補強体としてチタンやチタン合金が選ばれた理由は、ステンレス鋼やGFRP、あるいは従来の導体材料である銅に比べて、チタン及びチタン合金の熱収縮率が酸化物超電導バルク体の熱収縮率に近いため、熱サイクルに強くなるためである。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平2-153803号公報
【文献】特開平9-306721号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述したように、酸化物超電導バルク材料から板状にバルク体を切り出せば銅製ブスバーのような導体を製造することは可能であり、チタンやチタン合金を補強部材とすることで熱サイクルに強い導体とすることも可能である。しかしながら、脆性材料である酸化物超電導バルク体を利用した酸化物超電導バルク導体では、万が一酸化物超電導バルク体が破損した場合の電流の迂回路(バイパス機能)が必要であるが、従来の酸化物超電導バルク導体ではバイパス機能がなかったために実用化が進まないという問題があった。もちろん、酸化物超電導バルク導体に対して外付けで導電性部材を並列に配置することでバイパス機能を付与することはできるが、バイパス機能を外付けする工程が必要なくなれば製作工程がより簡便になるので、導体の内部にバイパス機能を有することが求められていた。
【0009】
導体の内部にバイパス機能を有する構造としては、酸化物超電導バルク体の補強部材を導電性材料で形成してバイパス機能を持たせることが考えられる。従来の導体材料である銅などを補強部材として用いれば、バイパス機能は十分となる可能性はあるが、酸化物超電導バルク体と銅の熱収縮率が大きく異なるという問題があった。そのため、従来の導体材料である銅などを補強部材として用いる酸化物超電導バルク導体では、酸化物超電導バルク体と銅の熱収縮率の差による反りや剥離破損を防ぐための部材が必要であった。一方、チタンやチタン合金を補強部材として用いれば、剥離防止部材のようなものは不要になるとなる可能性はあるが、チタンやチタン合金の電気抵抗率は銅の数十から数百倍と大きいので、バイパス機能は小さく十分ではなかった。
【0010】
そこで、本発明は上記問題に鑑みてなされたものであり、本発明の目的とするところは、RE-Ba-Cu-O(REは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される1種又は2種以上の元素)の組成を含む希土類系酸化物超電導バルク体を利用した酸化物超電導バルク導体において、熱サイクルを受けても反りや剥離破損が抑えられる耐熱サイクル性に優れ、且つ、内部に電流のバイパス機能を有する酸化物超電導バルク導体、及びその酸化物超電導バルク導体を使用した通電素子を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の酸化物超電導バルク導体は、以下のとおりである。
(1)組成式がRE1Ba2Cu3Oy(式中のREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される1種又は2種以上の元素であり、yは、6.8≦y≦7.2を満足する。)で表され、結晶方位の揃ったRE1Ba2Cu3Oy相中に、組成式がRE2BaCuO5で表されるRE2BaCuO5相が分散した組織を有し、かつ板状である少なくとも2つの酸化物超電導バルク体と、チタン又はチタン合金からなる板状の補強部材と、を備え、前記補強部材の少なくとも2つの面に、前記補強部材の長手方向に亘って前記酸化物超電導バルク体が重ねられて固定されていることを特徴とする、酸化物超電導バルク導体。
(2)前記補強部材が、当該補強部材の長手方向の両端部又は当該補強部材の板幅方向の両端部の少なくともいずれかに、前記酸化物超電導バルク体の端面と接触する突起部を有することを特徴とする、(1)に記載の酸化物超電導バルク導体。
(3)前記補強部材の少なくとも2つの面に固定された前記酸化物超電導バルク体のうちの2つの前記酸化物超電導バルク体が、その長手方向の互いに異なる一端において、前記補強部材を介し、互いに対向して延設されている壁部を有することを特徴とする、(1)に記載の酸化物超電導バルク導体。
(4)前記補強部材の少なくとも2つの面に固定された前記酸化物超電導バルク体の少なくともいずれかが、その長手方向の両端において前記補強部材側に延設されている壁部を有することを特徴とする、(1)に記載の酸化物超電導バルク導体。
(5)前記壁部が、その長手方向端部において、外部接続用の電極端子と電気的に接続可能であることを特徴とする、(3)又は(4)に記載の酸化物超電導バルク導体。
(6)前記板状である少なくとも2つの酸化物超電導バルク体の厚さが、100μm以上であることを特徴とする、(1)~(5)のいずれか1項に記載の酸化物超電導バルク導体。
(7)2つの前記酸化物超電導バルク体が、前記補強部材の対をなす2つの面のそれぞれに、前記補強部材の長手方向に亘って固定されていることを特徴とする、(1)~(6)のいずれか1項に記載の酸化物超電導バルク導体。
(8)(1)~(7)のいずれか1項に記載の酸化物超電導バルク導体と、
前記酸化物超電導バルク導体に電気的に接続される電極端子と、を備え、前記補強部材の少なくとも2つの面に固定された各前記酸化物超電導バルク体が、前記酸化物超電導バルク体の長手方向の両端において前記電極端子に電気的に接続されていることを特徴とする、通電素子。
(9)前記酸化物超電導バルク体の露出表面が、非透水性シート又はテープで被覆されていることを特徴とする、(8)に記載の通電素子。
【発明の効果】
【0012】
本発明によれば、RE-Ba-Cu-Oの組成からなる希土類系酸化物超電導バルク体を利用した酸化物超電導バルク導体において、熱サイクルを受けても反りや剥離破損を抑える耐熱サイクル性に優れ、且つ、内部に電流のバイパス機能を有する酸化物超電導バルク導体、及びその酸化物超電導バルク導体を使用した通電素子を、提供することができる。
【図面の簡単な説明】
【0013】
【
図1】本発明の実施形態に係る酸化物超電導バルク導体の一例を示す斜視図である。
【
図2】従来の酸化物超電導バルク導体を用いた通電素子の一例を示す断面図である。
【
図3】従来の酸化物超電導バルク導体の一例を示す斜視図である。
【
図4】本発明の一実施形態に係る酸化物超電導バルク導体の別の例を示す概念図である。
【
図5】同実施形態に係る酸化物超電導バルク導体における端部の突起部の例を示す部分側面図である。
【
図6】本発明の実施形態に係る酸化物超電導バルク導体の別の例を示す概念図である。
【
図7】本発明の実施形態に係る酸化物超電導バルク導体の別の例を示す概念図である。
【
図8】本発明の実施形態に係る酸化物超電導バルク導体の別の例を示す概念図である。
【
図9】本発明の実施形態に係る酸化物超電導バルク導体の別の例を示す概念図である。
【
図10】本発明の実施形態に係る酸化物超電導バルク導体を使用した通電素子の一例を示す概念図である。
【
図11】本発明の実施形態に係る酸化物超電導バルク導体を使用した通電素子の別の例を示す概念図である。
【
図12】本発明の実施例における酸化物超電導バルク導体及び通電素子の態様を示す概念図である。
【発明を実施するための形態】
【0014】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、図中の各構成要素の比率、寸法は、実際の各構成要素の比率、寸法を表すものではない。また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
【0015】
<超電導バルク体の概要について>
本実施形態で用いる結晶方位の揃った酸化物超電導バルク体(以下、結晶方位の揃った酸化物超電導バルク体を単に「超電導バルク体」ともいう。)は、RE-Ba-Cu-O系酸化物超電導体である。より詳細には、本実施形態で用いる結晶方位の揃った酸化物超電導バルク体は、単結晶状のRE1Ba2Cu3O7-x相(123相)中に、RE2BaCuO5相(211相)等に代表される非超電導相が分散した組織を有するものである(以下、単結晶状のRE1Ba2Cu3O7-x相(123相)中に、RE2BaCuO5相(211相)等に代表される非超電導相が分散した組織を有する酸化物超電導体を「QMG材料」ともいう。)。特に、本実施形態に係る酸化物超電導バルク体は、直径20μm以下の非超電導相が微細分散した組織を有するものであることが望ましい。
【0016】
ここで、「結晶方位の揃った」とは、超電導電流が大幅に低下する粒界である大傾角粒界を内部に含まない単結晶状であることを意味する。また、「単結晶状」とは、完全な単結晶のみを指すのではなく、単結晶中に小傾角粒界等のような実用に差し支えない欠陥が存在するものも包含するものとする。大傾角粒界とは、例えば、粒界を挟んで隣り合う領域の結晶方位の角度が15°よりも大きい粒界をいう。また、小傾角粒界とは、例えば、粒界を挟んで隣り合う領域の結晶方位の角度が15°以下である粒界をいう。
【0017】
123相及び211相における構成元素REは、Y及び希土類元素からなる群より選択される少なくとも1種以上から選択される。ただし、希土類元素としてCe、Pr、Pm及びTbを含有する場合には、超電導体とはならないため、Ce、Pr、Pm及びTbは、上記REからは除外される。即ち、123相及び211相における構成元素REは、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素、Y及びこれら元素の組み合わせから選択される。ただし、La、Nd、Sm、Eu、又はGdの少なくともいずれかを含む123相は、1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なったりすることが知られている。123相及び211相は、QMG材料が超電導特性を有すれば、化学量論組成から外れた組成を有する組織を含む。また、後述するように、QMG材料は、Agを含有してもよい。
【0018】
前述のBa元素の置換は、臨界温度を低下させる傾向がある。また、より酸素分圧の小さい環境において製造されるQMG材料は、Ba元素の置換が抑制される傾向にある。
【0019】
このような単結晶状の酸化物超電導バルク体は、セラミックスの一般的な製法である焼結法ではなく、以下で詳述するような、焼結温度よりも高い溶融温度以上に成形体を昇温して半溶融状態にした後、徐冷中に結晶成長させるという、溶融結晶成長法で製造される。
【0020】
123相は、以下に示すような、211相と、BaとCuとの複合酸化物からなる液相との包晶反応により生成する。
211相+液相(BaとCuの複合酸化物)→123相
【0021】
そして、この包晶反応により、123相が生成する温度(Tf:123相生成温度)は、構成元素REのイオン半径に依存する傾向があり、RE元素のイオン半径の減少に伴いTfも低くなる。また、雰囲気中の酸素分圧の低下及び酸化物超電導バルク体のAg含有量の増加に伴い、Tfは低下する傾向にある。
【0022】
単結晶状の123相中に211相が微細分散した材料は、123相が結晶成長する際、未反応の211相の結晶粒が123相中に取り残されるためにできる。即ち、上記バルク材は、以下に示す反応により生成する。
211相+液相(BaとCuの複合酸化物)→123相+211相
【0023】
QMG材料中の211相の微細分散は、臨界電流密度Jc向上の観点から、極めて重要である。QMG材料中には、上記のような構成元素に加えて、Pt、Rh又はCeの少なくとも一つを微量に含有することも可能である。Pt、Rh又はCeの少なくとも一つを微量に含有することで、半溶融状態(即ち、211相と液相とからなる状態)での211相の粒成長が抑制され、結果的に、QMG材料中の211相の粒径を約1μm程度に微細化することができる。これらの元素の含有量は、微細化効果が現れる量の観点、及び、材料コストの観点から、それぞれ、Pt:0.2~2.0質量%、Rh:0.01~0.5質量%、Ce:0.5~2.0質量%であることが好ましい。より好ましくは、Ptの含有量は、0.4~0.8質量%、Rhの含有量は、0.05~0.4質量%、及びCeの含有量は、0.1~0.3質量%である。また、Pt、Rh又はCeのうちの複数を用いる場合、含有されるPt、Rh又はCeの合計量は、酸化物超電導バルク材料(QMG材料)の総質量に対して、好ましくは、0.1質量%以上2.0質量%以下であり、更に好ましくは、0.2質量%以上1.5質量%以下である。QMG材料が含有するPt、Rh及びCeは、123相中に一部固溶する。また、QMG材料が含有するPt、Rh及びCeのうち、固溶できなかった残分は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。なお、QMG材料は、バルク体全体として、4回回転対称性の結晶構造を有している。
【0024】
ここで、123相中の211相の割合は、臨界電流密度Jcの特性及び機械強度の観点から、例えば、5~35体積%であることが望ましい。更に好ましくは、15体積%以上30体積%以下である。また、超電導バルク体中には、50~500μm程度のボイド(気泡)が5~20体積%程度存在することが一般的である。更に、超電導バルク体中に、上記のような元素に加えてAgを更に添加することも可能である。Agを更に添加した場合、超電導バルク体は、Agの添加量に応じて、粒径が1~500μm程度のAg又はAg化合物を0体積%超25体積%以下含むようになる。
【0025】
また、結晶成長後のバルク体は、酸素欠損量(x)が0.5~0.8程度となることで、半導体的あるいは絶縁材料的な抵抗率の温度変化を示す。このような結晶成長後のバルク体を、各構成元素REに応じて623K~873Kの温度で100時間程度、酸素雰囲気中においてアニールすることにより、酸素が超電導バルク体中に取り込まれ、酸素欠損量(x)は、0.2以下、即ち酸素量y(=7-x)は、6.8以上となり、良好な超電導特性を示す。このとき、超電導相中には、双晶構造が生成する。しかしながら、このような双晶構造も含め、本明細書においては、「単結晶状」と称することとする。
【0026】
かかる酸化物超電導バルク体を、酸化物超電導バルク導体として利用するには、結晶成長後の酸化物超電導バルク体を、棒状又は板状といった所定の形状に加工した上で、上記のような酸化物超電導バルク体の酸素アニールを行うことが求められる。
【0027】
<本実施形態に係る酸化物超電導バルク導体の詳細な説明>
以下では、本発明の実施形態に係る酸化物超電導バルク導体について、図を参照しながら説明する。なお、図に示す本実施形態に係る酸化物超電導バルク導体は、あくまでも一例であり、本発明が図に示す態様に限定されるものではないことは言うまでもない。
【0028】
図1は、本実施形態に係る酸化物超電導バルク導体の一例を示す斜視図である。本実施形態に係る酸化物超電導バルク導体10は、組成式がRE
1Ba
2Cu
3O
y(式中のREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される1種又は2種以上の元素、6.8≦y≦7.2)で表され、結晶方位の揃ったRE
1Ba
2Cu
3O
y相中に、組成式がRE
2BaCuO
5で表されるRE
2BaCuO
5相が分散した組織を有する板状の酸化物超電導バルク体110が、チタン又はチタン合金からなる板状の補強部材120の少なくとも2面(補強部材120の長手方向の両端面を除く)に、長手方向(x軸方向)に亘って、重ねられて固定配置されている。なお、以下の説明において、酸化物超電導バルク体110と補強部材120とが重ねられた方向(z軸方向)を重ね方向と言い、板面内における長手方向と垂直な方向を幅方向(y軸方向)と言うことがある。また、重ね方向長さを厚さ、幅方向長さを幅と言うことがある。
【0029】
酸化物超電導バルク導体10に用いられる酸化物超電導バルク体110は、板状のチタン又はチタン合金からなる補強部材120に重ねることができれば、その断面形状や長手方向(外部の電源や電極への接続方向)の形状に特に制限を設けるものではない。酸化物超電導バルク体110において、その長手方向の形状は、例えば、銅製ブスバーと同様に、直線状、U字状、S字状等、を採用できるが、製作の容易性や補強部材との重ね合せの容易性からは、直線状が好ましい。また、その長手方向に垂直な断面形状は、多角形状であれば、円形状や楕円形状の場合と異なって、平面部分を有するため、板状の補強部材と重ねられることから用いることができる。断面形状が四角形状であると、製造加工し易く、補強部材との重ね合せが容易であり好ましい。
【0030】
また、チタン又はチタン合金からなる補強部材120としては、板状の形状を有し、酸化物超電導バルク体110と重ねることができれば、断面形状や長手方向の形状に特に制限を設けるものではない。したがって、長手方向(外部の電源や電極への接続方向)の形状は、酸化物超電導バルク体110の形状と合わせる必要があるが、その長手方向に垂直な断面形状は、多角形状であればよく、四角形状であると補強部材120との重ね合せが容易であり好ましい。
【0031】
また、酸化物超電導バルク体110は、板状(断面が多角形状)の補強部材120の少なくとも2面に、重ねられて固定されていれば、本発明の目的は達成できるが、大容量の電流を通すことからは、面積が大きな2面(断面が長方形状であれば、長辺側の対向する2面)に重ねられて固定されていることが好ましい。
【0032】
ここで酸化物超電導バルク導体10に用いられる酸化物超電導バルク体110の厚さは、好ましくは、100μm以上である。酸化物超電導材料の導体としては、同じ材料系のものをテープ状の金属基材上に形成した超電導テープ線材もあるが、超電導部分の厚さは1μm程度である。しかしながら、超電導テープ線材の超電導部分の厚さが酸化物超電導バルク体110の厚さと全く異なるため、その性質や挙動も大きく異なる。また、酸化物超電導バルク材料から100μmよりも薄く切り出して酸化物超電導バルク体110とすることは困難である。超電導テープ線材において、超電導部分の厚さが1μm程度と非常に薄い理由は、線材の製作工程の初めから金属基材上に形成されるためであり、その点でも酸化物超電導バルク体110は酸化物超電導テープ線材とは異なるものである。
【0033】
酸化物超電導材料は脆性材料であり、一般に、酸化物超電導材料から細長く切り出された酸化物超電導バルク体は、そのままでは破損しやすい。しかしながら、例えば、
図1に示した酸化物超電導バルク導体10では、高剛性を有するチタン又はチタン合金が補強部材120として用いられているので、酸化物超電導バルク体110は外力に対して強い構造になっている。しかも、酸化物超電導材料のような脆性材料は、圧縮応力よりも引張応力に対する強度が小さく、導体のような長尺なものに対して起こり易い、導体を曲げる方向に作用する外力に対しても強度が小さい。しかしながら、酸化物超電導バルク導体10を、例えば、
図1に示すように、補強部材120の少なくとも2面に酸化物超電導バルク体110が固定配置された導体とすることによって、少なくともどちらか一方の面側の酸化物超電導バルク体110は破損しにくい構造になっている。即ち、酸化物超電導バルク導体10を曲げる方向に外力が作用した場合には、補強部材120を挟んで両側の酸化物超電導バルク体110には互いに逆向きの応力が発生し、圧縮応力側の酸化物超電導バルク体110は特に破損しにくい。また、酸化物超電導バルク体110は、長手方向(x軸方向)が通電しやすい結晶のab軸方向に切り出される。長手方向がab軸となるように切り出された酸化物超電導バルク体110において、300K程度の室温から液体窒素温度(77K)まで冷却したときの酸化物超電導バルク体110のab軸方向の熱収縮率は0.16%である。一方、300K程度の室温から液体窒素温度(77K)まで冷却したときの熱収縮率は、チタンで0.15%、チタン合金で0.15~0.17%、銅で0.32%、ステンレス鋼で0.30%、GFRP(繊維方向)で0.26%である。従って、酸化物超電導バルク体110に熱収縮率が近いチタンやチタン合金を補強部材120とすることで、冷却時の熱収縮率差による熱応力が小さくなり、熱サイクルに強い構造になっている。更に、酸化物超電導バルク導体10を補強部材120の少なくとも2面に酸化物超電導バルク体110が固定配置された導体とすることによって、片側の酸化物超電導バルク体110が万が一破損した場合においても、反対側の酸化物超電導バルク体110が電流の迂回路(バイパス機能)として機能する。
【0034】
酸化物超電導バルク体110と補強部材120とは、接着樹脂や半田、銀ペーストを用いて固定することができる。チタンやチタン合金の電気抵抗率は銅の数十倍から数百倍と大きいのでバイパス機能は小さいが、半田や銀ペーストのような電気導電性材料で固定することによって、片側の酸化物超電導バルク体110が有する電流のバイパス機能を補完することができる。固定方法としては、酸化物超電導バルク体110と補強部材120のそれぞれの接着面の両方に、又は酸化物超電導バルク体110と補強部材120のどちらかの一方の接着面に、接着樹脂や半田を塗布し、接着面同士を重ね合せることで固定できる。必要に応じて、おもりを載せること等によって荷重をかけることで接着面の密着性を上げることができる。常温硬化型接着樹脂や銀ペーストを用いる場合には、室温状態、例えば298Kでの固定も可能であるが、半田や加熱硬化型の接着樹脂や銀ペーストの場合には、加熱状態で酸化物超電導バルク体110の接着面と補強部材120とを重ね合わせることになる。酸化物超電導バルク体110を補強するという点では、酸化物超電導バルク体110をその接着面全面で補強部材120と固定した方が好ましいが、複数の酸化物超電導バルク導体10同士を接続する場合や、あるいは、酸化物超電導バルク導体10を他の部材と接続する場合には、接続する箇所の形状に合わせて全面接着でない部分が生じることもある。このように、複数の酸化物超電導バルク導体10同士を接続する場合や、あるいは、酸化物超電導バルク導体10を他の部材(例えば外部電極)と接続する場合においては、半田や銀ペーストを用いて接続することによって、接続部の接触電気抵抗を小さくすることができる。
【0035】
また、酸化物超電導バルク体110の表面に銀膜(図示せず。)を設けることで、酸化物超電導バルク導体10を他の部材と電気的に接続する際に、接触電気抵抗をさらに小さくすることができる。なお、補強部材120の厚さについて制約を設けるものではないが、薄すぎると補強の効果が小さくなるので、補強部材120の厚さとしては0.5mm以上が好ましい。また、厚すぎると導体として嵩張るので、補強部材120の厚さとしては、酸化物超電導バルク体110の厚さの2倍以下が好ましい。
【0036】
ここで、
図2、3を参照して、従来の酸化物超電導バルク導体50を使用した通電素子5及び従来の酸化物超電導バルク導体50Aを説明する。
図2は、比較のために示した、従来の酸化物超電導バルク導体50とそれを使用した通電素子5の断面図である。また、
図3は、従来の別の一例である酸化物超電導バルク導体50Aを示す斜視図である。例えば、特許文献2のような従来例では、チタンやチタン合金を補強部材としている。特許文献2には、例えば、
図2に示すように、通電素子5として、管状の補強部材520の内部に酸化物超電導バルク体510が収納されて構成された酸化物超電導バルク導体50の両端に電極端子60が接続された例や、
図3に示すように、酸化物超電導バルク導体50Aとして、補強部材520Aの一面に酸化物超電導バルク体510Aを密着させる例が図示されている。しかし、酸化物超電導バルク導体を
図2や
図3に示したような構造とすることによって熱サイクルに強い導体とすることは可能であるが、酸化物超電導バルク導体50及び酸化物超電導バルク導体50Aは、万が一酸化物超電導バルク体510、510Aが破損した場合の電流の迂回路(バイパス機能)が導体内部にないため、酸化物超電導バルク導体50、50Aに対して外付けで導電性部材を並列に配置することでバイパス機能を付与することが必要になる。そのため、バイパス機能を外付けする工程が必要となり、製作工程が煩雑になる。
【0037】
図4は、本実施形態に係る酸化物超電導バルク導体の別の一例を示す概念図である。
図4(a)は、本実施形態に係る酸化物超電導バルク導体の別の一例である酸化物超電導バルク導体10Aの斜視図であり、(b)は、酸化物超電導バルク導体10Aをy方向から見た側面図である。
図4に示す酸化物超電導バルク導体10Aは、補強部材120と、補強部材120の2つの面のそれぞれに、補強部材120の長手方向に亘って固定されている酸化物超電導バルク体110とを備え、補強部材120の長手方向の端部に突起部121が設けられている。突起部121の重ね方向長さは、補強部材120の重ね方向長さよりも長い。補強部材120の端部にこのような突起部121を設けることによって、補強部材120の少なくとも2面に酸化物超電導バルク体110を固定配置することが非常に容易になることに加えて、酸化物超電導バルク導体10Aの端部の補強効果を高めることにも役立つ。
図4において、補強部材120と長手方向端部の突起部121とは最初から一体ものであっても、それぞれ別々に製作して最終的に接着して一体化しても、酸化物超電導バルク導体10Aの端部の補強効果を高める点では同じような効果がある。しかしながら、補強部材120の少なくとも2面に酸化物超電導バルク体110を配置することの容易さの点では、長手方向の補強部材120と端部の突起部121とは最初から一体ものであることが好ましい。
【0038】
図5は、本発明の一実施形態に係る酸化物超電導バルク導体における端部の突起部の一例を示す概念図である。
図5(a)は、補強部材120の端部の突起部121の重ね方向長さが2つの酸化物超電導バルク体110の厚さと補強部材120の厚さの合計と同じ例で、
図5(b)は、補強部材120の端部の突起部121Aの重ね方向長さが2つの酸化物超電導バルク体110の厚さと補強部材120の厚さの合計よりも短い例で、
図5(c)は、補強部材120の端部の突起部121Bの重ね方向長さが2つの酸化物超電導バルク体110と補強部材120の厚さの合計の厚さよりも長い例である。
図5(b)の例では、酸化物超電導バルク導体10Aの端部の補強効果を高める点では効果がやや小さく、
図5(c)の例では、酸化物超電導バルク導体10Aを外部接続部と半田付け等で接続する点でやや煩雑になる。そのため、
図5(a)の例のように、補強部材120の端部の突起部121のように重ね方向長さが酸化物超電導バルク体110の厚さと補強部材120の厚さの合計と同じであることが好ましい。
【0039】
図6は、本実施形態に係る酸化物超電導バルク導体の別の一例を示す概念図である。
図6(a)は、本実施形態に係る酸化物超電導バルク導体の別の一例である酸化物超電導バルク導体10Bの斜視図であり、(b)は、(a)のA-Aにおける断面図であり、(c)は、(a)のB-Bにおける断面図である。
図6に示した酸化物超電導バルク導体10Bは、補強部材120の長手方向の端部だけでなく、長手方向の側面部(幅方向の両端部)にも突起部121が設けられている。補強部材120の側面部の両端部にこのような突起部121を設けることによって、補強部材120の少なくとも2面に酸化物超電導バルク体110を固定配置することが非常に容易になることに加えて、酸化物超電導バルク導体10Bの側面部の補強効果を高めることにも役立つ。この場合、酸化物超電導バルク体110は、その長手方向の断面形状は四角形状で、補強部材120は、その対をなす2つの平面部に重ねられて固定されていることが、製造加工のし易さ、及び、使用のし易さから、好ましい。
【0040】
上記のとおり、
図4~6を参照して説明したように、補強部材120は、その長手方向の両端部又はその板幅方向の両端部の少なくともいずれかに、酸化物超電導バルク体110の端面と接触する突起部121を有することが好ましい。
【0041】
図7は、本実施形態に係る酸化物超電導バルク導体の別の一例を示す概念図である。
図7(a)は、本実施形態に係る酸化物超電導バルク導体の別の一例である酸化物超電導バルク導体10Cの斜視図であり、(b)は、酸化物超電導バルク導体10Cをy方向から見た側面図である。例えば、
図7に示すように、本実施形態に係る酸化物超電導バルク導体10Cは、補強部材120の少なくとも2つの面に固定された酸化物超電導バルク体110が、その長手方向の互いに異なる一端において、補強部材120を介し、互いに対向して延設されている壁部112を有することが好ましい。例えば、
図7では、酸化物超電導バルク導体10Cは、補強部材120と、補強部材120の2つの面のそれぞれに、補強部材120の長手方向に亘って固定されている酸化物超電導バルク体110Aとを備える。酸化物超電導バルク体110Aは、重ね方向の長さが略一定である平坦部111と、平坦部111の長手方向の一端に位置し、平坦部111の重ね方向の長さよりも重ね方向の長さが長い壁部112とを有する。2つの前記酸化物超電導バルク体110Aのそれぞれは、その長手方向の互いに異なる一端において、補強部材120を介し、互いに対向して延設されている壁部112を有する。壁部112の重ね方向長さは、平坦部111の重ね方向長さと、補強部材120の重ね方向長さとの合計長さと等しい。酸化物超電導バルク体110Aの長手方向端部にこのような壁部112を設けることによって、補強部材120の2面に酸化物超電導バルク体110Aを重ねて固定配置することが非常に容易になることに加えて、酸化物超電導バルク導体10Cの長手方向端面に酸化物超電導バルク体110Aの壁部112になっているので、外部接続部(接続端子(図示せず。))と半田付け等で接続することが容易になる。また、酸化物超電導バルク導体10Cは、酸化物超電導バルク体110Aと外部接続部との接触面積が増加する面でも好ましい。
【0042】
図8は、本実施形態に係る酸化物超電導バルク導体の別の一例を示す概念図である。
図8(a)は、本実施形態に係る酸化物超電導バルク導体の別の一例である酸化物超電導バルク導体10Dの斜視図であり、(b)は、酸化物超電導バルク導体10Dをy方向から見た側面図である。
図8に示した酸化物超電導バルク導体10Dは、補強部材120と、補強部材120の2つの面のそれぞれに、補強部材120の長手方向に亘って固定されている酸化物超電導バルク体110、110Bとを備える。一方の酸化物超電導バルク体110は、平坦部111を有し、他方の酸化物超電導バルク体110Bは、平坦部111と、平坦部111の両端に壁部112とを有する。他方の酸化物超電導バルク体110Bは、酸化物超電導バルク体110Bの長手方向の両端に壁部112を有することによって、補強部材120に酸化物超電導バルク体110Bを重ねて固定配置することが非常に容易になることに加えて、酸化物超電導バルク導体10Dの長手方向端面が酸化物超電導バルク体110Bの壁部112になっているので、外部接続部(接続端子(図示せず。))と半田付け等で接続することが容易になる。また、酸化物超電導バルク導体10Dは、酸化物超電導バルク体110Bと外部接続部との接触面積が増加する面でも好ましい。
【0043】
なお、
図8では、補強部材120の2つの面のそれぞれに補強部材120の長手方向に亘って固定されている2つの酸化物超電導バルク体の一方が壁部112を有する例を説明しているが、
図9に示すように、2つの本実施形態に係る酸化物超電導バルク体のいずれもが、平坦部111の両端に壁部112を有してもよい。このとき、一方の酸化物超電導バルク体110Cの壁部112の重ね方向長さと他方の酸化物超電導バルク体の壁部112の重ね方向長さとの合計が、2つの酸化物超電導バルク体110Cの平坦部111の重ね方向長さと補強部材120の重ね方向長さとの合計と等しい。
【0044】
図8及び
図9を参照して説明したように、本実施形態に係る酸化物超電導バルク導体は、補強部材の少なくとも2つの面に固定された酸化物超電導バルク体の少なくともいずれかが、その長手方向の両端において補強部材側に延設されている壁部を有することが好ましい。
【0045】
また、
図3~5の実施形態において、酸化物超電導バルク体110と、補強部材120の突起部121、121A、121Bとの固定の有無はいずれであっても構わない。酸化物超電導バルク体110と補強部材120とは、面積の大きい2面にて重ねられて固定されているので、突起部121、121A、121Bで固定されていなくても十分に固定されている。また、突起部121、121A、121Bで固定されていても、本発明の効果を減じることはない。
【0046】
また、
図3~9の実施形態において、壁部112と、補強部材120との固定の有無はいずれであっても構わない。酸化物超電導バルク体110A、110B、110Cと補強部材120とは、面積の大きい2面にて重ねられて固定されているので、壁部112と補強部材120とが固定されていなくても十分に固定されている。また、壁部112と補強部材120とが固定されていても、本発明の効果を減じることはない。また、壁部112の補強部材120側の面に銀膜を設けてもよい。
【0047】
また、
図1、
図3~9の実施形態において、酸化物超電導バルク体110は、補強部材120の対をなす2つの面に、補強部材120の長手方向に亘って固定されているが、必ずしも対をなす2つの面に固定されなくてもよく、補強部材120が有する複数の面のうちのいずれか2面の長手方向に亘って固定されていればよい。補強部材120が有する複数の面のうちのいずれか2面の長手方向に亘って固定されていれば、酸化物超電導バルク導体は、熱サイクルを受けても反りや剥離破損を抑える耐熱サイクル性に優れ、且つ、内部に電流のバイパス機能を有するものとなる。
また、補強部材120の断面形状が、四角形状以外の三角形状や五角形以上の多角形の形状であってもよく、少なくともそのうちの2面において、長手方向に亘って固定されていれば、1面にのみ固定される場合に比べて、熱サイクルを受けても反りや剥離破損を抑える耐熱サイクル性に優れ、且つ、内部に電流のバイパス機能を有するものとなる。補強部材120の断面形状が6角形状の場合は、長手方向に6つの平面を有するが、そのうち、一つ置きの3面に酸化物超電導バルク体110を重ねあわせて固定すると、対称性が高まって、より好ましい。
しかしながら、
図3~9に示したように、酸化物超電導バルク体110、110A、110B、110Cは、補強部材の対をなす2つの面に、補強部材120の長手方向に亘って固定されている方が好ましい。これにより、酸化物超電導バルク導体10、10A、10B、10C、10D、10Eを曲げる方向に外力が作用した場合に、補強部材120を挟んで両側の酸化物超電導バルク体110、110A、110B、110Cには互いに逆向きの応力が発生し、圧縮応力側の酸化物超電導バルク体110、110A、110B、110Cは特に破損しづらくなる。その結果、酸化物超電導バルク体110、110A、110B、110Cの電流の迂回路(バイパス機能)として機能を維持することが可能となる。
【0048】
図10は、本発明の実施形態に係る酸化物超電導バルク導体10を使用した通電素子の一例を示す概念図である。本実施形態に係る通電素子1は、酸化物超電導バルク導体10と、酸化物超電導バルク導体10に電気的に接続される電極端子20と、を備え、補強部材120の少なくとも2つの面に固定された各酸化物超電導バルク体110が、酸化物超電導バルク体110の長手方向の両端において電極端子20に電気的に接続されている。
図10(a)は、酸化物超電導バルク導体10を使用した通電素子1をy方向に切断した断面の断面図であり、(b)は、通電素子1をz方向から見た上面図である。
図10に示した通電素子1は、補強部材120の2面のそれぞれに酸化物超電導バルク体110を固定配置している酸化物超電導バルク導体10の両端に外部接続用の電極端子20を取り付けた通電素子である。それぞれの外部接続用の電極端子20は、補強部材120の2面のそれぞれに重ねて配置している2つの酸化物超電導バルク体110の両方に、上面及び下面から半田や銀ペーストで接続されている。チタン又はチタン合金からなる補強部材120が酸化物超電導バルク体110に挟まれているため、この補強部材120は、バイパス機能を有する。そのため、電極端子20が両方の酸化物超電導バルク体110に接続している通電素子1は、内部にバイパス機能を有することになる。さらに、酸化物超電導バルク体110の表面に銀膜を設けることは、酸化物超電導バルク導体10と電極端子20を半田や銀ペーストで電気的に接続する際に、接触電気抵抗を小さくすることができるので好ましい。本実施形態に係る通電素子は、
図10に示した通電素子に限られず、上記の酸化物超電導バルク導体を使用したものであってもよいことは言うまでもない。
【0049】
図11は、本発明の実施形態に係る酸化物超電導バルク導体を使用した通電素子の別の一例を示す概念図である。
図11(a)は、酸化物超電導バルク導体10を使用した通電素子1Aをy方向から見た側面図であり、(b)は、通電素子1Aをz方向から見た上面図である。
図11に示した通電素子1Aは、補強部材120の2面のそれぞれに酸化物超電導バルク体110を固定配置している酸化物超電導バルク導体10の長手方向の両端に外部接続用の電極端子20を取り付けた通電素子1において、酸化物超電導バルク体110の露出表面を非透水性シートまたはテープのような防水材30で被覆している。非透水性シートやテープで被覆するのは酸化物超電導バルク体110の表面のみでよいが、被覆作業の簡便性の点で、
図11では補強部材120の露出表面も一緒に被覆している。同様に電極端子20の一部を一緒に被覆してもよい。従来の酸化物超電導バルク導体を利用した通電素子では、酸化物超電導バルク体の外側からGFRP等の高剛性材料のカバーで覆われており、そのカバーが防水効果を有するが、カバーは補強効果も有するために厚さは数mm以上必要となる。一方、本発明では、チタン又はチタン合金からなる補強部材120が酸化物超電導バルク体110を補強するので、防水材30は、補強効果を有する必要はなく、防水効果のみを有していればよい。そのため、防水材30は、例えば、非透水性シートやテープ等厚みの小さい材料を使用することができ、防水材40の厚さは1mm以下に薄くできる。被覆作業の簡便性の点では、厚さは0.2mm以下がより好ましい。
【0050】
以上、本発明の実施形態に係る酸化物超電導バルク導体及びその酸化物超電導バルク導体を使用した通電素子の種々の例について説明した。
【0051】
なお、本実施形態に係る酸化物超電導バルク導体及びその通電素子は、
図1、
図4~
図11に示した例に限定されない。即ち、酸化物超電導バルク体と、チタン又はチタン合金からなる補強部材とを備え、補強部材の少なくとも2面に、長手方向に亘って酸化物超電導バルク体が重ねられて固定配置されている酸化物超電導バルク導体及びその酸化物超電導バルク導体を使用した通電素子あれば、酸化物超電導バルク導体や通電素子の態様は特に限定されない。
【実施例】
【0052】
以下に、実施例を示しながら、本発明の実施形態について具体的に説明する。なお、以下に示す実施例は本発明のあくまでも一例であって、本発明が下記の例に限定されるものではない。
【0053】
(実施例1)
本実施例では、
図12を参照して、本実施形態に係る酸化物超電導バルク導体及びその通電素子の有効性について説明する。
図12(a)は、補強部材がない板状の酸化物超電導バルク体のみで構成される酸化物超電導バルク導体である。
図12(b)は、板状のチタン合金製補強部材の片側に板状酸化物超電導バルク体を設けた酸化物超電導バルク導体であり、
図12(c)は、板状のチタン合金製補強部材の両側に板状の酸化物超電導バルク体を設けた酸化物超電導バルク導体である。
図12(d)は、板状の銅製補強部材の両側に板状の酸化物超電導バルク体を設けた酸化物超電導バルク導体である。
図12(e)は、
図12(b)の酸化物超電導バルク導体の両端に電極端子を取り付けた通電素子である。
図12(f)は、
図12(c)の酸化物超電導バルク導体の両端に電極端子を取り付けた通電素子である。ここで、
図12(a)に示した酸化物超電導バルク導体を試料A、
図12(b)に示した酸化物超電導バルク導体を試料B、
図12(c)に示した酸化物超電導バルク導体を試料C、
図12(d)に示した酸化物超電導バルク導体を試料Dと呼ぶ。また、
図12(e)に示した酸化物超電導バルク導体を利用した通電素子を通電素子E、
図12(f)に示した酸化物超電導バルク導体を利用した通電素子を通電素子Fと呼ぶ。
【0054】
まず、試料A~試料Dを構成する棒状の酸化物超電導バルク体を切り出す母材である酸化物超電導バルク体の製造方法について述べる。市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに酸化セリウムを1質量%及び酸化銀を銀換算で10質量%加えて秤量粉を得た。この秤量粉を2時間かけて(xxx)を用いて十分混練してから、大気中にて1173Kで8時間仮焼した。次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K~1252Kの温度領域を100時間かけて徐冷して結晶成長させ、直径60mm、高さ20mmの単結晶状の酸化物超電導バルク体を得た。得られた酸化物超電導バルク体は、結晶方位の揃ったGd1Ba2Cu3Oy相中に、組成式がGd2BaCuO5で表されるGd2BaCuO5相が分散した組織であった。そして、この直径60mmの単結晶状の酸化物超電導バルク体から、長さ35mm×幅2mm×厚さ0.8mmの細長い棒状試料を、結晶のc軸が0.8mm長の辺と平行になるように切り出した。細長い棒状試料は、表面に銀を2μm程度の厚さで成膜した後、酸素気流中において673Kで100時間熱処理した。
【0055】
試料Aについては、この細長い棒状試料を酸化物超電導バルク導体とした。試料Bについては、酸化物超電導バルク体の片側に長さ35mm×幅2mm×厚さ1mmのチタン合金(Ti-6Al-4V)板を補強部材として用い、エポキシ系樹脂(商品名:スタイキャスト2850FT)で全面接着した。試料Cについては、試料Bに用いたチタン合金板と同じチタン合金板の両側に酸化物超電導バルク体をエポキシ系樹脂で接着した。試料Dについては、試料B及びCに用いたチタン合金板と同じサイズの無酸素銅板を補強部材として用い、その両側の面に酸化物超電導バルク体をエポキシ系樹脂で全面接着した。
【0056】
上記の方法で作製した試料A~Dを各5個ずつ準備して、室温(298K)から液体窒素温度(77K)への冷却試験を10回繰り返した。試料Aについては、冷却繰り返し試験の取扱い中に5個中1個について、酸化物超電導バルク体が破損した。試料Dについては、冷却時に酸化物超電導バルク体と補強部材との長手方向の熱収縮率の差によって、5個とも酸化物超電導バルク体と補強部材間に剥離が生じ、冷却を繰り返すにつれて剥離具合が大きくなった。さらに5個中2個に剥離した箇所近傍の酸化物超電導バルク体の一部が破損した。試料Bと試料Cについては、冷却しても試料全体の反りや剥離は生じず、10回冷却後も特に異常はなかった。以上の結果、試料Bと試料Cは熱サイクルに強いことが確認できた。
【0057】
上述した冷却繰り返し試験で異常のなかった試料Bと試料Cを用いて、その両端5mm部分に無酸素銅製の電極端子を半田付し、それぞれ
図12(e)と
図12(f)に示した通電素子Eと通電素子Fを製作した。通電素子Eと通電素子Fを液体窒素に浸漬させた状態で通電したところ、どちらも200A以上通電できた。通電素子が室温に戻った後に、各通電素子の片側の電極端子を固定した状態にて、反対側の電極端子に外力を加え、素子全体に曲げ荷重を作用させた。その後再び液体窒素に浸漬させた状態で通電したところ、通電素子Eは通電できなかったが、通電素子Fは200A以上通電できた。以上の結果、補強部材の両面に酸化物超電導バルク体を重ねて配置することによって、通電素子Fはバイパス機能を有していることが確認できた。
【0058】
従って、本結果から、酸化物超電導バルク導体を、酸化物超電導バルク体が、チタン又はチタン合金からなる補強部材の長手方向の両面に重ねて配置されている構成にすることにより、RE-Ba-Cu-Oの組成を含む希土類系酸化物超電導バルク導体において、内部にバイパス機能を有し熱サイクルに強い酸化物超電導バルク導体及びその通電素子を提供することができる。
【0059】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0060】
1、1A 通電素子
10、10A、10B、10C、10D、10E 酸化物超電導バルク導体
110、110A、110B、110C 酸化物超電導バルク体
111 平坦部
112 壁部
120 補強部材
121、121A、121B 突起部
20 電極端子
30 防水材