IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ユニプレス株式会社の特許一覧

<>
  • 特許-ダイナミックダンパ 図1
  • 特許-ダイナミックダンパ 図2
  • 特許-ダイナミックダンパ 図3
  • 特許-ダイナミックダンパ 図4
  • 特許-ダイナミックダンパ 図5
  • 特許-ダイナミックダンパ 図6
  • 特許-ダイナミックダンパ 図7
  • 特許-ダイナミックダンパ 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-28
(45)【発行日】2023-09-05
(54)【発明の名称】ダイナミックダンパ
(51)【国際特許分類】
   F16F 15/139 20060101AFI20230829BHJP
   F16F 15/134 20060101ALI20230829BHJP
   F16F 15/30 20060101ALI20230829BHJP
   F16D 7/02 20060101ALI20230829BHJP
   F16D 43/21 20060101ALI20230829BHJP
   F16H 1/28 20060101ALI20230829BHJP
【FI】
F16F15/139 A
F16F15/134 A
F16F15/30 V
F16D7/02 A
F16D43/21
F16H1/28
【請求項の数】 11
(21)【出願番号】P 2019213146
(22)【出願日】2019-11-26
(65)【公開番号】P2021085432
(43)【公開日】2021-06-03
【審査請求日】2022-10-24
(73)【特許権者】
【識別番号】000178804
【氏名又は名称】ユニプレス株式会社
(74)【代理人】
【識別番号】100078776
【弁理士】
【氏名又は名称】安形 雄三
(74)【代理人】
【識別番号】100121887
【弁理士】
【氏名又は名称】菅野 好章
(74)【代理人】
【識別番号】100200333
【弁理士】
【氏名又は名称】古賀 真二
(72)【発明者】
【氏名】村田 豊
(72)【発明者】
【氏名】小林 篤
【審査官】大谷 謙仁
(56)【参考文献】
【文献】特開2021-038833(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16F 15/139
F16F 15/134
F16F 15/30
F16D 7/02
F16D 43/21
F16H 1/28
(57)【特許請求の範囲】
【請求項1】
第1の弾性体を用いるダンパ機構と、遊星歯車を用いるダンパ機構と、トルクリミッタ機構とを備え、
前記第1の弾性体を用いるダンパ機構は、入力部材と出力部材との間の、動力伝達のための第1の経路に設けられ、
前記遊星歯車を用いるダンパ機構は、前記入力部材と前記出力部材との間の、前記第1の経路とは別個に設けられた第2の経路に設けられ、
前記遊星歯車を用いるダンパ機構は、複数のプラネタリギヤと、前記複数のプラネタリギヤを回転可能に軸支するキャリアと、前記複数のプラネタリギヤに外歯歯車で噛合するサンギヤとの、回転部材を備え、
前記キャリア、前記サンギヤとの2つの回転部材は前記第2の経路の入力部材と出力部材とに、それぞれ回転揺動可能に接続され、
前記2つの回転部材は、前記入力部材と前記出力部材との間で、前記入力部材と前記出力部材との間の前記第1の弾性体の伸縮に応じて、回転揺動中心位置を中心に回転揺動し、
前記複数のプラネタリギヤは、前記2つの回転部材の回転揺動に応じて回動することで、トルク変動を抑制するようにダンパマスとして機能し、
前記トルクリミッタ機構は、前記第1の経路に設けられ、
前記第1の経路における前記入力部材と前記出力部材との間のトルクが、予め設定した限度であるトルク容量を超過した場合には、前記入力部材と前記出力部材とが相対的に回動し、前記回転揺動中心位置を変位させることを特徴とする、ダイナミックダンパ。
【請求項2】
前記トルクリミッタ機構は、前記入力部材と前記第1の弾性体を用いたダンパ機構との間に設けられる、請求項1に記載のダイナミックダンパ。
【請求項3】
前記トルク容量は、前記第1の弾性体にかかるトルクの最大設定値よりも小さく設定される、請求項1又は2に記載のダイナミックダンパ。
【請求項4】
前記トルクリミッタ機構は、前記入力部材の回動に応じて回動する第1回動部材と、前記第1回動部材とは摩擦材を介して設けられた、前記出力部材の回動に応じて回動する第2回動部材と、これらを押圧する第2の弾性体とを備え、
前記第2の弾性体により押圧されることで、前記摩擦材による前記第1回動部材と前記第2回動部材との間のトルク容量が調整される請求項1乃至3のいずれか1項に記載のダイナミックダンパ。
【請求項5】
第1の弾性体を用いるダンパ機構と、遊星歯車を用いるダンパ機構と、トルクリミッタ機構とを備え、
前記第1の弾性体を用いるダンパ機構は、入力部材と出力部材との間の、動力伝達のための第1の経路に設けられ、
前記遊星歯車を用いるダンパ機構は、前記入力部材と前記出力部材との間の、前記第1の経路とは別個に設けられた第2の経路に設けられ、
前記遊星歯車を用いるダンパ機構は、複数のプラネタリギヤと、前記複数のプラネタリギヤを回転可能に軸支するキャリアと、前記複数のプラネタリギヤに外歯歯車で噛合するサンギヤとの、回転部材を備え、
前記キャリア、前記サンギヤとの2つの回転部材は前記第2の経路の入力部材と出力部材とに、それぞれ回転揺動可能に接続され、
前記2つの回転部材は、前記入力部材と前記出力部材との間で、前記入力部材と前記出力部材との間の前記第1の弾性体の伸縮に応じて、回転揺動中心位置を中心に回転揺動し、
前記複数のプラネタリギヤは、前記2つの回転部材の回転揺動に応じて回動することで、トルク変動を抑制するようにダンパマスとして機能し、
前記トルクリミッタ機構は、前記第2の経路に設けられ、前記入力部材の回動に応じて回動する第1回動部材と、前記第1回動部材とは摩擦材を介して設けられた、前記出力部材の回動に応じて回動する第2回動部材と、これらを押圧する第2の弾性体とを備え、
前記第2の弾性体により押圧されることで、前記摩擦材による前記第1回動部材と前記第2回動部材との間のトルク容量が調整され、
前記第1の弾性体の伸縮による前記ダンパマスの慣性トルクが、予め設定した限度であるトルク容量を超過した場合には、前記入力部材と前記出力部材に対して、前記トルクリミッタ機構を介して入力部材側に接続された回転部材が相対的に回動し、前記回転揺動中心位置を変位させることを特徴とする、ダイナミックダンパ。
【請求項6】
前記トルクリミッタ機構は、前記入力部材と前記遊星歯車を用いるダンパ機構との間に設けられる、請求項に記載のダイナミックダンパ。
【請求項7】
前記トルク容量は、前記ダンパマスとして機能する回転部材の慣性トルクの最大設定値よりも小さく設定される、請求項又はに記載のダイナミックダンパ。
【請求項8】
前記第2の弾性体は皿ばねである請求項4又は5に記載のダイナミックダンパ。
【請求項9】
前記第1の弾性体を用いるダンパ機構は、ねじれ振動ダンパである請求項1乃至8のいずれか1項に記載ダイナミックダンパ。
【請求項10】
前記遊星歯車機構は、ラビニヨ式遊星歯車機構である請求項1乃至9のいずれか1項に記載のダイナミックダンパ。
【請求項11】
前記動力伝達のための経路が、前記入力部材から前記出力部材又は、前記出力部材から前記入力部材である請求項1乃至10のいずれか1項に記載のダイナミックダンパ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ダイナミックダンパに関し、更に詳細には、原動機の回転変動や駆動軸のねじれ振動等に伴うトルク変動を低減するために、遊星歯車の構成要素をダンパマスとして使用するダイナミックダンパにおいて、トルク変動を低減するための遊星歯車の噛合いの領域(回動領域)を、トルクリミッタを用いることにより、過大なトルク入力の度に変位させて、歯車の全周を用いることを可能にした、ダイナミックダンパに関する。
【背景技術】
【0002】
エンジンなどの動力源による回転動力を車輪などに伝達する動力伝達装置では、動力源に接続される駆動軸は、一般的には、クラッチや変速機構を介して、被駆動軸に接続され、当該被駆動軸に接続された車輪などに動力が伝達される。
【0003】
また、モータ等の電動機や、ガソリンエンジン等の原動機など、異なる動力源を併用したハイブリッド車両には、車輪の駆動にモータ等の電動機とガソリンエンジン等の原動機を併用するパラレル式や、車輪の駆動にモータ等の電動機のみを使用し、ガソリンエンジン等の原動機を発電のみに使用するシリーズ式や、これらを併用したようなスプリット式があるが、これらのハイブリッド車両では、その方式によっては、ガソリンエンジン等の原動機の始動時などに、モータ等の電動機側からガソリンエンジン等の原動機側へ動力が伝達される場合があるなど、その作動状態に応じて、適宜、動力の伝達方向や大きさに変動を生ずる場合もある。
【0004】
そして、こうした動力伝達装置では、モータ等の電動機やガソリンエンジン等の原動機の出力変動や、駆動軸のねじれ振動、或いは、被駆動軸に接続されたタイヤに対する路面からの反力などによる回転変動に起因して、トルク変動が発生する場合が有る。
【0005】
そのため、こうした回転動力を用いることが一般的な車両等では、トルク変動が一定の限度を超えた場合には、トルクの伝達を一時的に制限するトルクリミッタ機構を備えたダンパ機構や、トルクの変動を低減するために弾性体や遊星歯車機構を併用したダンパ機構などが設けられている。
【0006】
このうち、トルクリミッタ機構を備えたダンパ機構としては、例えば、特開2002-13547号公報(特許文献1)に開示されたような「ハイブリッド駆動装置用ダンパ」や、特開2004-19834号公報(特許文献2)に開示されたような「トルク変動吸収装置」が開示されている。
【0007】
そして、特許文献1には、第1の動力源としてのエンジンにより回転駆動する第1回転部材と、第2の動力源としてのモータに連結される第2回転部材と、第1回転部材と第2回転部材との間の変動トルクを抑制するトーション部材と、第1の動力源及び第2の動力源による変動トルクが所定値に達すると動力の伝達を制限するリミッタ機構を備えることを特徴とする、ハイブリッド駆動装置用ダンパが開示されている。
【0008】
また、特許文献2には、第1回転軸に連結された第1部材と、第2回転軸に連結された第2部材と、第1部材と第2部材との間に介在すると共に第1回転軸のトルクを第2回転軸へ伝達させるダンパ部と、第1部材と第2部材との間に介在し、第1回転軸と第2回転軸との間の伝達トルクの制限性を高めるリミッタ摩擦係合部を有するトルクリミッタとを具備しており、トルクリミッタのリミッタ摩擦係合部は、硬質粒子と硬質粒子を結合するバインダとを主要成分とする膜状に成膜されていることを特徴とするトルク変動吸収装置が開示されている。
【0009】
その一方、トルクの変動を低減するために弾性体や遊星歯車機構を併用したダンパ機構としては、例えば、特許第6314888号公報(特許文献3)により開示された、シングル遊星歯車を用いた捩り振動の低減装置や、特許第6363720号公報(特許文献4)により開示されたダイナミックダンパなどが開示されている。
【0010】
このうち、特許文献3に開示された、シングル遊星歯車を用いた捩り振動の低減装置は、入力されたトルクの変動や振動を、その変動に伴って生じる慣性トルクによって低減させる振動低減装置に関するものである。
【0011】
更に詳細には、特許文献3では、当該特許文献3の図1に示されるように、中心回転要素2(サンギヤ2)とリング回転要素3(リングギヤ3)と回転要素5(キャリア5)とのうち、これらのいずれかの回転要素が、トルクが入力される入力要素とされるとともに、他のいずれかの回転要素が、トルクを出力する出力要素とされ、入力要素と出力要素とが所定角度相対回転できるように弾性体を介して連結された、捩り振動低減装置が開示されている。
【0012】
そして、特許文献3の捩り振動低減装置は、サンギヤ2の外周部とリングギヤ3の内周部との間の空隙領域であって、かつ、サンギヤ2とリングギヤ3とが所定角度相対回転した場合にピニオンギヤ4が公転する角度の範囲を超えた空隙領域である非動作領域θと、サンギヤ2とリングギヤ3とのうち、入力要素および出力要素とされていない回転要素に、当該非動作領域θの内部に突出するように形成されている質量増大部9とを備えていることを特徴としている。
【0013】
また、特許文献4に開示されたダイナミックダンパは、本願の出願人によるものであり、トルク変動の低減のために、ラビニヨ式遊星歯車を用いている。
【0014】
すなわち、特許文献4で用いられるダイナミックダンパは、例えば、当該特許文献4の図5に示されるように、複数設けられたプラネタリギヤ34が、段付形状のラビニヨ式遊星歯車装置をなしており、各々が一体回転するように軸方向に並置され歯数が相違する小径ピニオン42と大径ピニオン44とを含んでいる。
【0015】
そして、小径ピニオン42と大径ピニオン44には、例えば、特許文献4の図5に示されるように、小径サンギヤ40及び大径サンギヤ38、或いは、特許文献4の図10に示されるように、大径リングギヤ66及び小径リングギヤ64が噛合可能であり、複数の段付プラネタリギヤ34を連結するキャリア36を含めて、大径リングギヤ、小径リングギヤ、小径サンギヤ、大径サンギヤの5回転要素のうちから入力要素と出力要素との選択が可能となっており、特許文献4の図5の例では、2回転要素として、大径サンギヤ38と小径サンギヤ40を選択し、大径サンギヤ38を入力側回転要素、キャリア36を出力側回転要素とし、残りの小径サンギヤ40をダンパマス要素として用いることにより、トルク変動の低減を図っている。
【先行技術文献】
【特許文献】
【0016】
【文献】特開2002-13547号公報
【文献】特開2004-19834号公報
【文献】特許第6314888号公報
【文献】特許第6363720号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
上記の特許文献1に記載されたリミッタ機構は、第1の動力源及び第2の動力源による変動トルクが所定値に達すると動力の伝達を制限するものであり、特許文献2に記載されたトルクリミッタは、第1回転軸と第2回転軸との間の伝達トルクを制限するものである。
【0018】
そのため、特許文献1や2に開示される技術では、共に、動力の伝達を制限することを主目的としていたことから、トルク変動の低減ための機構に対しては、過負荷がかかることを防止する以外には、特に積極的な機能は開示されていなかった。
【0019】
また、上記の特許文献3や4に記載されたような、従来の遊星歯車を用いたダイナミックダンパでは、ダンパマスとして用いる歯車については、組み付け時における歯車の噛合いの領域(回動領域)が、特定の位相の範囲内、すなわち、歯車の中心から見た場合の特定の角度の範囲内に決まってしまう、という特徴があった。
【0020】
そのため、常に、当該特定の位相の範囲内にある歯車が噛合わされる位置において、トルク変動によるトルクを受け持つため、寿命強度が不利となり、強度を向上させるためには、歯車が大きくなってしまうことから、車両内等にコンパクトに収納することが難しくなり、全体の重量も増加してしまう等の課題があった。
【0021】
すなわち、例えば、特許文献3に開示された技術では、ピニオンギヤ4がサンギヤ2の周りを自転しながら公転する角度は、併設される弾性体を用いたダンパの当該弾性体の伸縮範囲に応じた一定の範囲内に限られており、その公転する角度の範囲を超えた非動作領域θまでには、公転しないようになっている。
【0022】
そのため、特許文献3に開示された技術では、ピニオンギヤ4とサンギヤ2との歯面が噛み合う動作領域は、これらの歯面全周のうち、一定の範囲の部分に限られていた。
【0023】
そして、これは、例えば、図1に示したように、特許文献4に開示された技術においても同様であった。
【0024】
ここで、図1は、特許文献4に開示された構成を例として、遊星歯車の基準噛合い図を示したものであり、図1においては、遊星歯車を用いるダンパ機構の一部が示されている。
【0025】
図1に示した遊星歯車を用いるダンパ機構は、サンギヤAとその外周上に配置された複数のピニオンギヤBと、キャリアEとからなっている。
【0026】
そして、サンギヤAは、更に、小径サンギヤA1と、大径サンギヤA2とからなっており、当該大径サンギヤA2は、小径サンギヤA1に対して紙面の奥行方向に同軸に配置されている。
【0027】
また、ピニオンギヤ(プラネタリギヤ)Bは、更に、大径ピニオンギヤB2と、図面上では見えない小径ピニオンギヤB1とからなっており、当該小径ピニオンギヤB1は、大径ピニオンギヤB2に対して紙面の奥行方向に同軸に一体的に配置されている。
【0028】
また、キャリアEは、図1の図面上では、紙面の奥行方向に配置されていて、上述の複数のピニオンギヤを回動可能に軸支している。
【0029】
そのため、図1に示した構成例においては、小径サンギヤA1には大径ピニオンギヤB2が噛合し、大径サンギヤA2には、図示しない小径ピニオンギヤB1が噛合するようになっている。そして、かかるピニオンギヤBは、キャリアEと組み合わされて、サンギヤAの外歯面に沿って自転しながら公転し、ダンパマスとしての機能を発揮できるように構成されている。
【0030】
しかし、ピニオンギヤBがサンギヤAの外歯面上を公転出来る範囲は、図示しないダンパスプリングの伸縮の範囲に応じて制限されるために、図1中に曲線L0で示す矢印の両端の範囲内に限られている。
【0031】
すなわち、遊星歯車を組み付けた際の歯車の初期の噛合い位置を基準にした場合には、図示しないダンパスプリングを弾性体として用いたダンパ機構の当該ダンパスプリングの伸縮範囲内において、遊星歯車が正転方向(時計周り方向)及び負転方向(反時計周り方向)に回転揺動する。そして、当該遊星歯車は、当該ダンパスプリングと並列に取り付けられているため、トルク変動が入力されていないときは、初期の噛合い位置に戻る。
【0032】
そのため、図1に示したサンギヤAとピニオンギヤBとが噛合する歯面も、例えば、図中に白抜きの矢印で示した初期の噛合い位置である回転揺動中心位置α0から、トルク変動に応じて回転揺動するが、その範囲は、図1中に曲線L0で示した、回転揺動中心位置α0の時計周り方向若しくは反時計周り方向の近傍の一定の範囲内に限られ、歯面全周に対する一部の領域に限定されている。(なお、ここで、図中の回転揺動中心位置α0は、ピニオンギヤBの回動範囲を表すために、サンギヤAの外縁近くに任意にとった位置を示したものであり、必ずしも初期の状態でサンギヤAとピニオンギヤBとが実際に噛合っている部分を表示するものではない。)
したがって、こうした歯車の噛合う一部の領域については、トルク変動に応じて繰り返してストレスが加わることから、トルク入力回数の増加に伴って疲労が蓄積され、強度の低下を招いて歯面の塑性破壊などが起き易くなり、製品寿命が低下する、という課題があった。
【0033】
また、かかる課題を解決しようとして、歯車の強度を増加させるために歯車を大きくした場合には、当該ダンパ機構が大きくなるため、車両内にコンパクトに収納することが困難になる等の課題があった。
【0034】
そこで、上記課題を解決するために本発明は、遊星歯車の構成要素をダンパマスとして使用するダイナミックダンパにおいて、トルク変動を低減するためのダンパマスとして使用する歯車の噛合いの領域(回動領域)を、トルクリミッタを用いることで、初期の噛合い位置である回転揺動中心位置α0から順次変位させて、歯車の歯面全周を有効に利用できるようにして、製品寿命を拡大することを目的とする。
【課題を解決するための手段】
【0035】
上記の課題を解決するために、本発明では、次に詳細を記すように、遊星歯車の構成要素をダンパマスとして使用するダイナミックダンパにおいて、トルク変動を低減するためのダンパマスとして使用する歯車の噛合いの領域(回動領域)を、トルクリミッタにより、過大入力の度に順次変位させて、歯車の全周を用いることを可能にしている。
【0036】
上記課題を解決するために本発明は、第1の弾性体を用いるダンパ機構と、遊星歯車を用いるダンパ機構と、トルクリミッタ機構とを備え、前記第1の弾性体を用いるダンパ機構は、入力部材と出力部材との間の、動力伝達のための第1の経路に設けられ、前記遊星歯車を用いるダンパ機構は、前記入力部材と前記出力部材との間の、前記第1の経路とは別個に設けられた第2の経路に設けられ、前記遊星歯車を用いるダンパ機構は、複数のプラネタリギヤと、前記複数のプラネタリギヤを回転可能に軸支するキャリアと、前記複数のプラネタリギヤに外歯歯車で噛合するサンギヤとの、回転部材を備え、前記キャリア、前記サンギヤとの2つの回転部材は前記第2の経路の入力部材と出力部材とに、それぞれ回転揺動可能に接続され、前記2つの回転部材は、前記入力部材と前記出力部材との間で、前記入力部材と前記出力部材との間の前記第1の弾性体の伸縮に応じて、回転揺動中心位置を中心に回転揺動し、前記複数のプラネタリギヤは、前記2つの回転部材の回転揺動に応じて回動することで、トルク変動を抑制するようにダンパマスとして機能し、前記トルクリミッタ機構は、前記第1の経路に設けられ、前記第1の経路における前記入力部材と前記出力部材との間のトルクが、予め設定した限度であるトルク容量を超過した場合には、前記入力部材と前記出力部材とが相対的に回動し、前記回転揺動中心位置を変位させることを特徴とする、ダイナミックダンパを提供する。
【0037】
また、上記ダイナミックダンパにおいて、前記トルクリミッタ機構は、前記入力部材と前記第1の弾性体を用いたダンパ機構との間に設けられることにより、或いは、前記トルク容量は、前記第1の弾性体にかかるトルクの最大設定値よりも小さく設定されることにより、或いは、前記トルクリミッタ機構は、前記入力部材の回動に応じて回動する第1回動部材と、前記第1回動部材とは摩擦材を介して設けられた、前記出力部材の回動に応じて回動する第2回動部材と、これらを押圧する第2の弾性体とを備え、前記第2の弾性体により押圧されることで、前記摩擦材による前記第1回動部材と前記第2回動部材との間のトルク容量が調整されることにより、さらに効果的に達成される。
【0038】
また、上記課題を解決するために本発明は、第1の弾性体を用いるダンパ機構と、遊星歯車を用いるダンパ機構と、トルクリミッタ機構とを備え、前記第1の弾性体を用いるダンパ機構は、入力部材と出力部材との間の、動力伝達のための第1の経路に設けられ、前記遊星歯車を用いるダンパ機構は、前記入力部材と前記出力部材との間の、前記第1の経路とは別個に設けられた第2の経路に設けられ、前記遊星歯車を用いるダンパ機構は、複数のプラネタリギヤと、前記複数のプラネタリギヤを回転可能に軸支するキャリアと、前記複数のプラネタリギヤに外歯歯車で噛合するサンギヤとの、回転部材を備え、前記キャリア、前記サンギヤとの2つの回転部材は前記第2の経路の入力部材と出力部材とに、それぞれ回転揺動可能に接続され、前記2つの回転部材は、前記入力部材と前記出力部材との間で、前記入力部材と前記出力部材との間の前記第1の弾性体の伸縮に応じて、回転揺動中心位置を中心に回転揺動し、前記複数のプラネタリギヤは、前記2つの回転部材の回転揺動に応じて回動することで、トルク変動を抑制するようにダンパマスとして機能し、前記トルクリミッタ機構は、前記第2の経路に設けられ、前記入力部材の回動に応じて回動する第1回動部材と、前記第1回動部材とは摩擦材を介して設けられた、前記出力部材の回動に応じて回動する第2回動部材と、これらを押圧する第2の弾性体とを備え、前記第2の弾性体により押圧されることで、前記摩擦材による前記第1回動部材と前記第2回動部材との間のトルク容量が調整され、前記第1の弾性体の伸縮による前記ダンパマスの慣性トルクが、予め設定した限度であるトルク容量を超過した場合には、前記入力部材と前記出力部材に対して、前記トルクリミッタ機構を介して入力部材側に接続された回転部材が相対的に回動し、前記回転揺動中心位置を変位させることを特徴とする、ダイナミックダンパを提供する。
【0039】
また、上記ダイナミックダンパにおいて、前記トルクリミッタ機構は、前記入力部材と前記遊星歯車を用いるダンパ機構との間に設けられることにより、或いは、前記トルク容量は、前記ダンパマスとして機能する回転部材の慣性トルクの最大設定値よりも小さく設定されることにより、更に効果的に達成される。
【0040】
た、前記第2の弾性体は皿ばねであることにより、或いは、前記第1の弾性体を用いるダンパ機構は、ねじれ振動ダンパであることにより、更に効果的に達成される。
【0041】
また、上記ダイナミックダンパにおいて、前記遊星歯車機構は、ラビニヨ式遊星歯車機構であることにより、或いは、前記動力伝達のための経路が、前記入力部材から前記出力部材又は、前記出力部材から前記入力部材であることにより、更に効果的に達成される。
【発明の効果】
【0042】
本発明では、弾性体と遊星歯車機構とを併用したダンパ機構を用いており、更にトルクリミッタ機構を併設して、過大なトルク入力が有るたびに、遊星歯車機構を構成する歯車の噛み合わせの回転揺動中心位置を変位させて、遊星歯車が回転揺動する領域(回動領域)を変位できるようにしている。
【0043】
そのため、遊星歯車機構を用いるダイナミックダンパにおいて、歯車の噛合わせの位置を最初に設定した噛み合わせの領域から、トルクリミッタ機構に過大なトルク入力が有る度に順次変位させることが可能になり、歯車全周を利用することが可能になる。
【0044】
したがって、本発明によれば、遊星歯車を構成する各歯車の噛合いの領域を、最初に設定した特定の範囲に限らずに全周に拡大できるため、歯車の歯面の特定の領域に繰り返し負担が加わることを防止して、製品寿命の拡大を図ることが可能である。
【図面の簡単な説明】
【0045】
図1】特許文献4の例による歯車の基準噛合い図として、初期の回転揺動中心位置や噛合い領域の例を示す正面図である。
図2】本発明による歯車の噛合いの位相の回転を模式的に示した正面図であり、図2(A)は図1と同様の構成により初期の回転揺動中心位置や噛合い領域の例を示し、図2(B)は図2(A)と比較して、トルクリミッタ機構により噛合いの位相が回転した様子を示したものである。
図3】第1の実施形態に基づくダイナミックダンパの各構成要素の関係を概念的に示した模式図である。
図4】第1の実施形態の構成例を示す断面図である。
図5】第1の実施形態の主要な構成要素を示す斜視図である。
図6】第1の弾性体を用いるダンパ機構の第1の弾性体周辺の動作を示す正面図であり、図6(A)は、第1の弾性体にトルクが掛からない中立の状態を示し、図6(B)は、ダンパ入力部材が、ダンパ出力部材よりも相対的に時計回り方向に回動している状態を示し、図6(C)は、ダンパ入力部材が、ダンパ出力部材よりも相対的に反時計回り方向に回動している状態を示している。
図7】第2の実施形態に基づくダイナミックダンパの各構成要素の関係を概念的に示した模式図である。
図8】第2の実施形態の構成例を示す断面図である。
【発明を実施するための形態】
【0046】
本発明では、トルク変動を低減するためのダンパマスとして使用する歯車の噛合いの領域(回動領域、或いは、位相)をトルクリミッタにより、原動機等からの過大なトルク入力やダンパマスとして用いる遊星歯車にかかる慣性トルクが過大となる度に順次変位させて、歯車の歯面全周を有効に用いることを可能にしている。
【0047】
図2は、本発明によるこうしたトルクリミッタによる噛合いの位相の回転を模式的に示した正面図であり、図2(A)は図1と同様の構成により遊星歯車の初期の噛合いの位相の様子を示し、図2(B)は図2(A)と比較して、トルクリミッタにより噛合いの位相が回転した様子を示している。
【0048】
本発明によるダイナミックダンパでは、組付け時には、遊星歯車の初期の噛合いの位相は、図2(A)に両端に矢印のある曲線L0に示したように、回転揺動中心位置α0を中心とした、特定の位相の範囲に限られている。
【0049】
しかし、ダイナミックダンパに過大な駆動力や過大なトルク入力が有ると、トルクリミッタにより、入力部材側と出力部材側とにトルクリミッタ滑り角P1だけの滑りが発生する。
【0050】
そうすると、この発生した滑り角P1により、図2(B)の白抜きの矢印P1に示すように、入力部材と出力部材の滑り角分P1だけ、遊星歯車が初期の噛合い位置から回転し、これに応じて回転揺動中心位置α0も、従前の位置からα1へと変位する。
【0051】
そして、遊星歯車が初期の噛合い位置からP1だけ回転することにより、回動領域(位相)も回転し、位相が回転することにより、初期の段階では、図1(A)に示すように、常に同じ位相の範囲内で噛み合って回転揺動していた遊星機構の噛合い位相(回動領域)L0を、図2(B)に示すように、初期の状態からシフトした新たな回動領域L1にずらす事が可能と成る。
【0052】
そのため、本発明では、トルクリミッタに過大なトルク入力が有る度に上記位相のずれが生じて、これが累積することにより、歯車のすべての歯面が使用可能と成る為、歯車の寿命強度向上を図ることが可能である。
【0053】
なお、本願においては、時計回り若しくは反時計回りの双方向に回転する「回動」と、これらのいずれか一方の方向に回転する「回転」とを特に区別することなく使用しているが、上記トルクリミッタによる入力部材と出力部材とのずれは、一方向へ回転する場合のみならず、双方向へ回転する回動であっても構わない。
【0054】
次に、本発明による実施形態を説明する。なお、以下の説明では、同一の構成要素については、他の形態を採り得るものについても同一の記号を用い、重複する説明や構成については、一部省略する場合がある。また、図面に示す各構成要素の大きさや比率などは説明の便宜のために実際のものとは異なる場合もあり、図面の一部については、分かり易くするためにハッチングを省略している場合もある。
【0055】
最初に本発明による第1の実施形態について、図3を用いて説明する。ここで、図3は、本発明による第1の実施形態に基づくダイナミックダンパ300の各構成要素の関係を概念的に示した模式図である。
【0056】
本発明による第1の実施形態によるダイナミックダンパ300は、基本的には図3に示すように、遊星歯車を用いるダンパ機構15と第1の弾性体を用いるダンパ機構9とトルクリミッタ機構5とを備えている。
【0057】
そして、これらは、入力部材2と出力部材14との間に第1の弾性体によるダンパ機構9を配置して駆動力の伝達を行う第1の経路と、当該第1の経路とは別個に設けられ、入力部材2と出力部材14との間に、遊星歯車を用いるダンパ機構15を配置した第2の経路に、設けられており、本第1の実施形態では、トルクリミッタ機構5は、第1の経路上に設けられている。
【0058】
このうち、遊星歯車を用いるダンパ機構15は、図3に示すように、サンギヤAを入力部材に接続した入力要素とし、サンギヤBを出力部材に接続した出力要素として用いている。
【0059】
すなわち、本実施形態では、遊星歯車を構成するピニオンギヤ(プラネタリギヤ)を、軸方向に並設され、各々が一体回転するように軸方向に並置され歯数が相違する第1ピニオン及び第2ピニオンにより構成している。言い換えれば、ピニオンギヤは同軸に構成され軸方向に並設された第1ピニオンと第2ピニオンからなり、これらは一体的に回転するように軸方向に一体的に接続されていて、歯数が異っており、更にその口径も異なっている。
【0060】
そして、これら第1ピニオン及び第2ピニオンの夫々にその内側及び外側の少なくとも片側において噛合する少なくとも2個の回転ギヤ部材を用いる構成を採用している。言い換えれば、これらの第1ピニオンと第2ピニオンのそれぞれに対して噛合する、少なくとも2個の回転ギヤ部材を用いる構成を採用することが可能であり、これら2個の回転ギヤ部材は、これら2個の回転ギヤ部材の内側の歯面(内歯面)又は外側の歯面(外歯面)で、ピニオンギヤの外歯面と噛合するように構成される。
【0061】
そのため、本実施形態では、第1ピニオン及び第2ピニオンの夫々にその内側において噛合する2個の回転ギヤ部材、又は、第1ピニオン及び第2ピニオンの夫々にその外側において噛合する2個の回転ギヤ部材、若しくは、第1ピニオン及び第2ピニオンの夫々にその内側及び外側において噛合する2個以上の回転ギヤ部材、の夫々の組み合わせを用いる構成を採用することが可能である。
【0062】
そこで、本実施形態では、上記の組み合わせのうち、第1ピニオン及び第2ピニオンの夫々にその外側において噛合する少なくとも2個の回転ギヤ部材として、サンギヤAとサンギヤBとを採用している。
【0063】
そして、図3に示すように、サンギヤAは、第1ピニオンに相当するピニオンギヤAとその外側において噛合し、サンギヤBは第2ピニオンに相当するピニオンギヤBとその外側において噛合している。
【0064】
そのため、本発明による上記第1の実施形態では、一般的な遊星歯車に用いられるリングギヤは使用しない構成を採用している。
【0065】
なお、図3、に示した例では、入力要素として用いるサンギヤA(図4の小径サンギヤ16)は、出力要素として用いるサンギヤB(図4の大径サンギヤ17)よりも半径の小さい小径ギヤを使用し、これらに噛合するピニオンギヤは、これに応じて、ピニオンギヤA(図4の大径ピニオンギヤ24)は、ピニオンギヤB(図4の小径ピニオンギヤ23)よりも半径の大きい大径ギヤを使用している。
【0066】
また、上記第1の実施形態では、遊星歯車機構として、ラビニヨ式遊星歯車機構を用いているが、本発明では、これに限らず、一般的な遊星歯車機構を用いることも可能である。
【0067】
そして、その際用いる遊星歯車機構は、複数のプラネタリギヤを回転可能に軸支するキャリアと、当該複数のプラネタリギヤに外歯歯車で噛合するサンギヤ、又は、当該複数のプラネタリギヤに内歯歯車で噛合するリングギヤのいずれか一方又はその双方との、回転部材を備えるものを用いることも可能である。
【0068】
すなわち、複数のプラネタリギヤを回転可能に軸支するキャリアと、当該複数のプラネタリギヤに外歯歯車で噛合するサンギヤ、及び、当該複数のプラネタリギヤに内歯歯車で噛合するリングギヤとからなる遊星歯車機構、又は、複数のプラネタリギヤを回転可能に軸支するキャリヤと、当該複数のプラネタリギヤに外歯歯車で噛合するサンギヤとからなり、リングギヤを含まない遊星歯車機構、又は、複数のプラネタリギヤを回転可能に軸支するキャリアと、当該複数のプラネタリギヤに内歯歯車で噛合するリングギヤとからなり、サンギヤを含まない遊星歯車機構、を用いて全体構造のコンパクト化と軽量化とを図ることも可能である。
【0069】
そのため、このような構造を採用した場合には、キャリア、サンギヤ、若しくは、リングギヤのうちの、いずれか2つの回転部材は上記第2の経路の入力部材と出力部材とに、それぞれ回転揺動可能に接続して、これらの2つの回転部材が、入力部材と出力部材との間で、第1の弾性体の伸縮に応じて、回転揺動中心位置を中心に回転揺動され、プラネタリギヤを含む他の回転部材は、これら2つの回転部材の回転揺動に応じて回動することで、かかるトルク変動を抑制するようにダンパマスとして機能させることも可能である。
【0070】
また、トルクリミッタ機構5は、図3に示すように、入力部材2と出力部材14との間の動力伝達のための第1の経路(動力伝達経路)上に配置されており、上述した遊星歯車を用いるダンパ機構15とは、入力部材2と出力部材14とは同じであるものの、異なる経路により並列に設けられている。
【0071】
そのため、トルクリミッタ機構5は、第1の経路における入力部材と出力部材との間のトルクが、トルク容量を超過した場合には、相対的に回動するが、かかるトルク容量は、後述する第1の弾性体にかかるトルクの最大設定値よりも小さく設定し、第1の弾性体を用いるダンパ機構9を過大なトルク入力から保護することも可能である。
【0072】
また、第1の弾性体を用いるダンパ機構9は、トルクリミッタ機構5と同様の動力伝達経路上に直列に設けられており、第1の弾性体を用いたダンパ機構9の入力部材側には、トルクリミッタ機構5が接続されている。
【0073】
そして、当該第1の弾性体を用いるダンパ機構9は、一般的なねじれ振動ダンパに用いられる構成を用いることが可能であり、第1の弾性体としてコイルスプリング(ダンパスプリング)を用いることも可能である。
【0074】
そのため、本発明による第1の実施形態では、図3による概念的な模式図で示したような構成を採用するために、次のように機能する。
【0075】
すなわち、最初に、入力部材と出力部材との間の動力伝達が原動機側から行われるとすると、原動機500からの駆動力は、図3において示す矢印Feの方向から、駆動軸550により、フライホール1を介して本発明の第1の実施形態によるダイナミックダンパ300の入力部材2に入力される。
【0076】
ここで、原動機500はエンジンやモータなどが該当するが、駆動力として回転動力を取り出せるものであれば、特に限定を設けるものではない。
【0077】
なお、後述するように、本発明を、例えば、ガソリンエンジンとモータ等の電動機とを併用するハイブリッド車などに用いる場合には、原動機500にガソリンエンジンを用い、出力部材14の側からモータによる駆動力を供給することも可能である。そのため、そのような場合には、トルクリミッタ機構5は、出力部材14の側からの駆動力による過大なトルク入力等に応じて作動することになる。
【0078】
また、フライホイール1は、原動機500からの回転変動を抑制するための手段の一つであるが、本発明によるダイナミックダンパ300と併用しても良く、必ずしも併用しなくとも良い。
【0079】
次に、このようにして入力部材2に入力された駆動力は、トルクリミッタ機構5、及び、これと直列に接続された第1の弾性体を用いるダンパ機構9を介して出力部材14に接続され、出力部材14からの動力は変速機構700から被駆動軸900方向へ伝動される。
【0080】
そして、入力部材2には、更に、上記トルクリミッタ機構5と第1の弾性体を用いるダンパ機構9との組み合わせに対しては、出力部材14に向かって並列に設けられた遊星歯車を用いるダンパ機構15が接続されている。
【0081】
そして、上記第2の経路における、遊星歯車を用いるダンパ機構15では、入力部材2は、遊星歯車のサンギヤAを回転可能な方向に連結され、遊星歯車のサンギヤBは出力部材に対して相互に回転可能に連結されている。
【0082】
そのため、遊星歯車を用いるダンパ機構15では、第1の経路に構成されるトルクリミッタ機構5及びこれと直列に接続された第1の弾性体を用いるダンパ機構9と、第2の経路に設けられた遊星歯車を用いるダンパ機構15とが並列に接続されていることから、トルクリミッタ機構5が動作しない場合には、第1の弾性体によるダンパ機構9が作動する範囲内において、キャリア18に回転可能に支持されたプラネタリギヤ22であるピニオンギヤAとサンギヤA、同じくこれらのピニオンギヤBとサンギヤBとが所定の歯面により噛合し、第1の弾性体の伸縮に応じてキャリア18が作動しその慣性トルクにより制振が行われる。
【0083】
その一方、トルクリミッタ機構5が動作した場合には、第1の弾性体によるダンパ機構9と、遊星歯車を用いるダンパ機構15とが一体となって、トルクリミッタ機構5による滑りの影響を受ける。
【0084】
そのため、第1の弾性体によるダンパ機構9は全体的にはそのままシフトするが、遊星歯車を用いるダンパ機構15では、駆動力による過大なトルク入力に対応して、トルクリミッタ機構5が入力部材2と出力部材14との間で滑ることで、初期の組み付け時に特定の範囲の基準歯面(回転揺動中心位置α0)周りの一定の範囲内で噛合していた遊星歯車が、トルクリミッタの滑り角分回転して新たな回転揺動中心位置α1へ移動し、歯車の噛合の歯面の範囲(回動領域)を変更することが可能となる。
【0085】
そのため、原動機からの過大なトルク入力の度に、トルクリミッタ機構が動作し、これが繰り返されることにより、順次に噛合される歯面が変更されることにより、遊星歯車機構の歯車の歯面全周を有効に利用することで、歯車の寿命強度向上をすることが可能である。
【0086】
また、次に、ハイブリッド車に代表される電動車では原動機500の始動時にはエンジン効率が低くなるため、電動機800により駆動力を発生させ、図3において矢印Fmで示すような方向から、出力部材14に入力される。
【0087】
すなわち、入力部材2と出力部材14との間の動力伝達が、被駆動軸900側から電動機800による動力を入力して、駆動軸550側へ出力することにより、動力伝達のための経路を出力部材14方向から、入力部材2方向へすることも可能である。
【0088】
そして、このような場合には、出力部材14に入力された駆動力は、第1の弾性体によるダンパ機構9及びトルクリミッタ機構5を介して、入力部材2、フライホイール1及び原動機500に出力され、原動機500の駆動軸550の回転を上昇させてから原動機500の始動をさせることも可能である。
【0089】
そのため、この場合には、原動機始動時に短時間で駆動軸550の回転を上昇させており、また共振点を通過することで過大な駆動力及びトルク変動が発生する。
【0090】
そこで、本第1の実施形態では、このような過大なトルク入力に対して、トルクリミッタ機構5が動作して、入力部材2の側と出力部材14の側とが滑ることで、初期の組み付け時に特定の歯面で勘合していた遊星歯車がトルクリミッタ機構5の滑り角分回転し、遊星歯車機構の噛合の歯面を変更することが可能となり、歯車の寿命強度向上をすることができる。
【0091】
次に、上記第1の実施形態の更に具体的な構成について図4、及び図5を用いて説明する。ここで、図4は、本発明の第1の実施形態の構成例を示す断面図であり、図5は、本第1の実施形態によるダイナミックダンパの各構成要素の概要を斜視図で示したものである。
【0092】
なお、図5は、上段の左側が変速機構700側を想定し、下段の右側が原動機500側を想定しており、紙面の都合により、上段右端の構成が図中の一点鎖線で示したように、下段左端の構成につながる様になっている。
【0093】
また、本発明は、回転動力を伝達することから、図5で示したように、回転動力が入力される駆動軸等の軸線方向正面から見た場合には、軸線に垂直に配置された円形を基本的な形態とする。そのため、図4に示す断面図では、当該円形の中心に垂直な軸方向に沿った鉛直上部方向の断面部分を、軸方向に対して水平な方向から見たものを示している。したがって図4の下方に示す一点鎖線は軸線の中心を示している。
【0094】
本発明による第1の実施形態は、図4に示すように、基本的には、原動機500(図3参照)からの動力が入力される入力部材2と、入力部材2からの入力を変速機構700(図3参照)の入力軸に出力する出力部材14と、入力部材2に接続されたトルクリミッタ機構5及びこれに直列に接続され、他端側は出力部材14に接続される第1の弾性体を用いるダンパ機構9と、これらと並列に、入力部材2と出力部材14との間に設けられた遊星歯車を用いるダンパ機構15とから構成されている。
【0095】
これらの構成要素のうち、入力部材2は、原動機500から駆動力が入力される部分であり、本発明による第1の実施形態では、フライホイール1が入力部材2に連結されていて、原動機からの出力変動を低減できるように構成されている。
【0096】
そして、入力部材2自体は、入力プレート3と入力バックアッププレート4とから構成されており、これらは、入力部材2の一部を構成する入力側支持体として機能する。
【0097】
これらのうち、入力プレート3は駆動軸等の軸線に対して垂直に設けられた円環形状を有しており、円環の内側部分は、第1の弾性体を用いるダンパ機構9の方向に延伸して設けられて、トルクリミッタ機構5の一部を形成するように構成されている。また、その外周の内側には、入力バックアッププレート4とフライホイール1とに相互に接続させるための複数のねじ穴が設けられており、その更に内側には、後述するピストンプレート8の突出部8Lをはめ込んで、はめ込み方向に摺動可能にするための隙間部3Lが形成されている。
【0098】
また、入力バックアッププレート4は、全体的には、円環状に形成されるが、中心部分が変速機構700側に向けた突面を有する平たいコーン状に形成されており、その外周側には、入力プレート3とフライホイール1とに相互に接続するための複数のねじ穴が設けられており、ねじにより、フラホイールと入力プレートと入力バックアッププレートとが、固定できるようになっている。
【0099】
また、入力バックアッププレート4のコーン形状を構成する内周側の部分はトルクリミッタ機構5の方向に延伸すると共に、更に、遊星歯車を用いるダンパ機構15迄設けられていて、トルクリミッタ機構5の一部を構成すると共に、後述する遊星歯車を用いるダンパ機構15の入力要素に接続されている。
【0100】
次に、トルクリミッタ機構5は、常態においては一体的に回動するが、原動機500側(若しくは、出力部材14の側に電動機が設けられた場合には当該電動機800側)からの過大なトルク入力などにより、入力部材と出力部材との間で、トルクが前記トルク容量を超過した場合には、入力部材2側と出力部材14の側との間に滑りを生じさる機能を有するものである。
【0101】
なお、ここで、滑りとは、入力部材の一部を構成する入力側支持体と出力部材の一部を構成する出力側支持体とが相対的な回動を生ずることをいう。
【0102】
そのため、トルクリミッタ機構5は、入力部材2と出力部材14との間の摺動部分に構成されており、基本的には、入力部材の回動に応じて回動する第1回動部材(例えば、入力プレート3)と、出力部材の回動に応じて回動する第2回動部材(例えば、ダンパ入力部材10a)と、これらを付勢する第2の弾性体とを備えているが、本実施形態では、概ね、入力部材2が摩擦材(7a、7b)を介して出力部材(ここでは、10a,10b)を挟持する構造を採用している。
【0103】
すなわち、図4に示されるように、トルクリミッタ機構5は、第1の弾性体を用いるダンパ入力部材(10a,10b)と、摩擦材(7a、7b)と、入力プレート3と組み合わされて使用されるピストンプレート8と、第2の弾性体6とを主な構成要素としている。
【0104】
そして、第1の弾性体を用いるダンパ入力部材(10a,10b)は、出力部材14の側に接続されることで出力部材14を支持する出力側支持体として機能している。
【0105】
また、摩擦材(7a、7b)については、特に限定を設けるものではないが、摩擦材は基本的には、駆動軸等の軸心に対して垂直に形成された平面を有する円環状であり、摩擦面により、出力部材14又はその一部として機能する出力側支持体を挟持するものであるから、摩耗による劣化が少ない安定的な素材であることが望ましい。
【0106】
また、上記のうち、ピストンプレート8は、基本的には円環状をしているが、円環状の平面の一部が入力プレート3方向に突出して、全体的にはこの部分で断面がL型を構成する突出部8Lを有している。そして、円環状に形成された平面の部分が、入力プレート3と平行になるように設けられており、突出部8Lを構成する平面部分の端部が、円環状の平面部分から折り曲がって、入力プレート3の隙間部3Lに、後述する皿ばねにより押圧されることで摺動できるように、嵌合されている。
【0107】
そのため、ピストンプレート8と入力プレート3が平行に配置されている部分では、ピストンプレート8が入力プレート3に対向する部分には摩擦材(7a)を配し、入力プレート3がピストンプレート8に対向する部分では摩擦材(7b)を配することができるようになっており、これらの摩擦材(7a、7b)が、出力側支持体としての第1の弾性体を用いるダンパ入力部材(10a,10b)を挟持できるようになっている。
【0108】
また、トルクリミッタ機構5では、更に、ピストンプレート8が入力プレート3と平行に構成されている部分の反対側の面には、第2の弾性体6が配置されている。
【0109】
かかる第2の弾性体6は、例えば、皿ばねを用いることが可能であり、弾性材料から形成されると共に、基本的には円環形状を有しているが、図4に示すように、軸線に垂直な方向からは、断面方向から見て、僅かに傾斜して見えるように、言い換えれば、内周部分が、幾分、変速機構700側に突出するように形成され、皿バネとしての機能を発揮するようになっている。
【0110】
そのため、第2の弾性体6は、入力部材2の入力側支持体である入力バックアッププレート4が、ピストンプレート8と入力プレート3が平行に配置されている部分で概ね平行に構成されていることにより、当該入力バックアッププレート4に、断面から見た場合の片側を支持されることで、ピストンプレート8側を弾性的に押圧し,付勢することが可能になっている。
【0111】
このような構成により、トルクリミッタ機構5の摺動部分では、入力側支持体である入力プレート3と、これに対して第2の弾性体6により押圧される方向に摺動可能に接続されたピストンプレート8とが、摩擦材(7a、7b)を介して、出力側支持体としての第1の弾性体を用いるダンパ入力部材(10a10b)を回動可能に挟持することが可能である。
【0112】
そして、摩擦材(7a、7b)による入力側支持体と出力側支持体との間のトルク容量は、入力側支持体である入力プレート3に、第2の弾性体6により押圧されて摺動可能に接続されたピストンプレート8を、当該第2の弾性体6が押圧することで、調整可能と成っている。
【0113】
そのため、本第1の実施形態によるトルクリミッタ機構5では、入力部材2の入力側支持体(入力プレート3)と出力部材14側の出力側支持体(ダンパ入力部材10a,10b)との間の摺動部分では、入力側支持体と出力側支持体との間のトルクが、トルク容量を超過しない常態においては、入力側支持体と出力側支持体とは一体的に回動する。
【0114】
しかし、かかるトルクが、トルク容量を超過した場合には、入力側支持体と出力側支持体とが相対的に回動することが可能であり、これに応じて、後述するように、遊星歯車を用いるダンパ機構15のダンパマス構成要素が回動する領域を変位させることが可能である。
【0115】
また、ここで、予め設定するトルク容量は、上記トルクリミッタ機構5が動力を伝達するための第1の経路に設けられていることから、後述する第1の弾性体を用いたダンパ機構9の当該第1の弾性体にかかるトルクの最大設定値よりも小さく設定し、当該第1の弾性体を用いたダンパ機構9の保護を図ることも可能である。
【0116】
次に、第1の弾性体を用いたダンパ機構9は、エンジンなどの原動機、或いは、モータ等の電動機からの急激な出力変動やシャフトなどのねじり系の共振で発生するトルクの変動成分等を低減する機構である。そのため、第1の弾性体を用いたダンパ機構では、第1の弾性体の伸縮によりトルク変動(回転変動)乃至変形量(変位)を低減することで、トルクの変動成分(トルク変動)を低減して入力部材と出力部材間とで伝達し、かかる弾性体の伸縮により遊星歯車機構を作動させることで、遊星歯車機構による慣性トルクを生じさせている。
【0117】
そして、本発明による第1の実施形態では、第1の弾性体によるダンパ機構9は、入力部材2から、後述する遊星歯車の入力要素へ接続されるものとは別の第1の経路により、遊星歯車の出力要素の接続される出力部材14へ接続された構成を備えており、上述したトルクリミッタ機構5は、第1の弾性体を用いたダンパ機構9から見て入力部材2の側に接続されている。
【0118】
かかる第1の弾性体を用いたダンパ機構9の構成については、特に限定を設けるものではなく、例えば、本出願人による「ねじれ振動低減装置」(国際公開WO2019/163770A1)などの構成を用いることが可能であるが、本第1の実施形態では、図4及び図5に示すように、2つのダンパ入力部材(10a、10b)と、コイルスプリング(ダンパスプリング)からなる第1の弾性体11と、ダンパ出力部材12とから構成されている。
【0119】
そしてこれらの構成要素は、複数の第1の弾性体11が、ダンパ出力部材12の外周の内側に沿って設けられたダンパ出力部材側弾性体保持部12hに配置されると共に、ダンパ入力部材10aとダンパ入力部材10bとが、ダンパ出力部材12及び第1の弾性体11を挟み込んで回動可能に保持する構造を採っており、その回動範囲は、第1の弾性体11が伸縮する範囲になっている。
【0120】
これらの構成要素のうち、第1の弾性体11は、ダンパ入力部材(10a、10b)とダンパ出力部材12との間に相対的なトルクの変動があった場合に、これを緩和して、相互に伝達するために用いられる。
【0121】
したがって、原動機500の側から伝達されたダンパ入力部材(10a、10b)からの入力に変動があった場合に、これを緩和して、ダンパ出力部材12の側に伝達し、或いは、電動機800の側から伝達されたダンパ出力部材12からの入力に変動があった場合には、これを緩和して、ダンパ入力部材(10a、10b)へ伝達する。
【0122】
そのため、第1の弾性体11は、コイルスプリングから構成されており、本第1の実施形態では、6つのコイルスプリング(11-1~11-6)が、ダンパ出力部材12のダンパ出力部材側弾性体保持部12hと、後述するダンパ入力部材側弾性体保持部10ah、及び、ダンパ入力部材側弾性体保持部10bhとが作る空間の内部に保持されており、第1の弾性体が伸縮する範囲内で、ダンパ入力部材(10a、10b)とダンパ出力部材12とが相対的に回動可能になるように形成されている。
【0123】
また、2つのダンパ入力部材(10a、10b)は、入力部材2の側から入力された駆動力を、第1の弾性体によるダンパ機構9に入力する部分である。
【0124】
これら2つのダンパ入力部材(10a、10b)は、相互に組み合わされることにより、その内側にダンパ出力部材12と第1の弾性体11とを保持できるようになっており、基本的には、入力部材2の側とダンパ出力部材12との間で駆動力を伝動できるように構成されている。
【0125】
そのため、ダンパ入力部材(10a、10b)は、それぞれが円環形状の平面を基本として構成されているが、その外周部分には、これらを相互に組み合わせて固定するための形状が構成されている。
【0126】
すなわち、ダンパ入力部材10b側には、図5に示すように、ダンパ入力部材10a側に向けて軸心に平行な複数の突起部10btが設けられており、これに応じて、ダンパ入力部材10a側には、当該突起部10btに嵌合するための凹部10arが設けられている。
【0127】
また、2つのダンパ入力部材(10a、10b)は、ダンパ出力部材12と相互に組み合わされて、第1の弾性体11を保持するための空間が形成されている。
【0128】
そのため、ダンパ入力部材10aについては、ダンパ出力部材12が設けられた側とは反対側の面に、原動機500側に向けて軸線に平行に、内部が中空となるように、ダンパ入力部材側弾性体保持部10ahが設けられており、同様に、ダンパ入力部材10bについては、ダンパ出力部材12が設けられた側とは反対側の面に、変速機構700側に向けて軸線に平行に、内部が中空となるように、ダンパ入力部材側弾性体保持部10bhが設けられている。
【0129】
なお、上記のように、本第1の実施形態では、2つのダンパ入力部材(10a、10b)は、ダンパ出力部材12を挟み込むように円環状に形成されており、ダンパ入力部材10bについては、かかる円環形状の内周部分は、上述のダンパ入力部材側弾性体保持部10bhの軸心側の端部迄に至っているが、ダンパ入力部材10aについては、かかる円環形状の内周部分は、更に円環中心の軸心周辺まで延伸されており、その途中には、後述するダンパ出力部材12と出力部材14とを締結する締結部材13の部分で、変速機構700側に向けて円環形状の窪み部10aoが形成されている。
【0130】
また、ダンパ出力部材12は、基本的には、ダンパ入力部材(10a、10b)と出力部材14との間で駆動力を伝動する機能を有する部分である。
【0131】
そのため、ダンパ出力部材12は、全体的には円環形状を有しているが、本第1の実施形態の場合には、円環形状の内周部分の内側に、内周に沿って複数のリベット穴が設けられており、この部分に締結部材13を用いて、出力部材14が接続されるように構成されている。
【0132】
そして、ダンパ出力部材12の円環形状を形成する平面には、円周に沿って、第1の弾性体11と同数のダンパ出力部材側弾性体保持部12hが設けられており、ダンパ入力部材側弾性体保持部10ah、及び、ダンパ入力部材側弾性体保持部10bhと協働して、これらが作る空間の内部に、第1の弾性体11を、弾性体11が伸縮する長さ方向が円周方向と平行になるように、保持している。
【0133】
そのため、上記のような構成を有する第1の弾性体を用いるダンパ機構9は、一般的に用いられるダンパ機構と同様であり、図6に示すように、第1の弾性体11にかかるトルクに応じて、当該弾性体11が伸縮する。
【0134】
ここで、図6は第1の弾性体11を用いるダンパ機構9の弾性体周辺の動作を示す正面図であり、図6(A)は、第1の弾性体11にトルクが掛からない中立の状態を示し、図6(B)は、トルクが掛かったことにより、ダンパ入力部材(10a、10b)が、ダンパ出力部材12よりも相対的に時計回り方向に回動している状態を示し、図6(C)は、トルクが掛かったことにより、ダンパ入力部材(10a、10b)が、ダンパ出力部材12よりも相対的に反時計回り方向に回動している状態を示している。また、図6(A)から図6(C)で中央に縦に表示された鎖線は、中立状態での第1の弾性体11の円周方向での中央の位置を示したものであり、第1の弾性体の両端面は、11ccと11cwで表している。
【0135】
そのため、このように第1の弾性体11が圧縮された場合には、第1の弾性体11は、その圧縮力に対して弾性により反発して中立の位置に戻り変形量を低減するような作用を生ずるため、これによりトルク変動を低減することが可能である。
なお、本発明では、かかるトルク変動の発生は、原動機500側からの過大なトルク入力や、変速機構700の側から電動機800による過大なトルク入力が有った場合の他、被駆動軸900の側に過負荷が生じた場合や、駆動軸550や被駆動軸900のねじれ振動等の、何らかの原因により、入力部材2の側と出力部材14の側とで、過大なトルク入力が生じた場合を想定している。
【0136】
また、上記の説明では、ダンパ入力部材(10a、10b)が、ダンパ出力部材12に対して、時計廻り方向に相対的に回動した場合などの例を示しているが、ダンパ入力部材(10a、10b)とダンパ入力部材(10a、10b)との回動は、相対的なものである。
【0137】
次に、遊星歯車を用いるダンパ機構15は、本発明を構成する第1の弾性体を用いたダンパ機構9により、第1の弾性体が伸縮することに応じて、遊星歯車機構を構成する歯車が回動し、その慣性トルクによって、トルク変動を低減する機構である。
【0138】
そして、本発明による第1の実施形態では、遊星歯車を用いるダンパ機構15は、入力部材2から、上述したトルクリミッタ機構5が設けられた第1の経路とは並行して設けられた第2の経路により、出力部材14へ接続された構成を備えている。
【0139】
かかる遊星歯車を用いるダンパ機構15の構成については、特に限定を設けるものではなく、一般的な遊星歯車機構や、ラビニヨ式遊星歯車機構を用いることも可能であり、例えば、本出願人による「ダイナミックダンパ」(特許文献4)などの構成を用いることが可能であるが、本第1の実施形態では、図4に示すように、概略すると、サンギヤ(16,17)と、これらと噛合してその周囲を自転しながら公転する複数のプラネタリギヤ(ピニオンギヤ)22と、当該プラネタリギヤを相互に接続して支持するキャリア18とから構成されている。
【0140】
これらの構成要素のうち、サンギヤ(16,17)は、相互に歯数の異なる、小径サンギヤ16と、当該小径サンギヤ16よりも半径の大きい大径サンギヤ17とからなり、共に円環状に構成されていて、円環の中心が、軸心に沿って(すなわち軸方向に)並設されるように配置されており、夫々は、スラスト軸受27等を介して、独立に回動可能になっている。
【0141】
そして、更に、小径サンギヤ16は、遊星歯車への入力要素として、入力部材2の一部を構成する入力バックアッププレート4の内周側の端部と溶接部29により接続されており、大径サンギヤ17は、遊星歯車からの出力要素として、出力部材14と溶接部30により接続されている。
【0142】
なお、本第1の実施形態においては、出力部材14の一部は小径サンギヤの16の中心側寄りで、駆動軸等の軸心方向との間に延伸されているため、出力部材14と小径サンギヤ16との間には、ラジアル軸受28が配設されている。
【0143】
また、プラネタリギヤ22は、相互に歯数が異なる、大径ピニオン24と、それよりも半径の小さい小径ピニオン23とから構成され、各々が一体となって回転するように、ピニオンシャフト21に沿って同軸の方向に、ニードルベアリング20を介して回動可能に並置されており、駆動軸等の軸心の方向に対しては平行に配置されている。
【0144】
そして、上述した小径サンギヤ16に対しては、大径ピニオン24が噛合し、大径サンギヤ17に対しては、小径ピニオン23が噛合するようになっている。
【0145】
また、キャリア18は、上記プラネタリギヤ22が上記サンギヤ(16,17)の周囲に複数個が配置されているため、これらを連結して、ダンパマスとして機能させるものである。
【0146】
そのため、キャリア18は、ピニオンシャフト21から見て変速機構700側寄りの方向にあって入力バックアッププレート4との間に設けられた円環状のキャリアプレート19により、これら複数のプラネタリギヤ22を相互に回動可能に支持して一体として機能するように構成されており、当該キャリアプレート19と入力バックアッププレート4との間には、スラスト軸受25が設けられている。
【0147】
そのため、上記のような構成を有する遊星歯車を用いるダンパ機構15では、入力部材2の一部を構成する入力バックアッププレート4に接続された小径サンギヤ16が入力要素として機能し、出力部材14に接続された大径サンギヤ17が出力要素として機能すると共に、複数のプラネタリギヤ22を一括して支持(軸支)することにより包含するキャリア18がダンパマスとして機能することが可能であり、上記第1の弾性体によるダンパ機構がバネとして機能することと併せて、入力部材2などからのトルク変動を低減することが可能である。
【0148】
したがって、以上のように、本発明による第1の実施形態300では、入力部材2から出力部材14に至る第1の経路には、トルクリミッタ機構5と第1の弾性体を用いたダンパ機構9が設けられ、入力部材2から出力部材14に至る第2の経路には、遊星歯車を用いるダンパ機構15が設けられている。
【0149】
そのため、トルクリミッタ機構5が動作しない場合には、第1の弾性体を用いたダンパ機構9が、エンジンなどの原動機、或いは、モータ等の電動機からの急激な出力変動やシャフトなどのねじり系の共振で発生するトルクの変動成分等を低減し、遊星歯車を用いるダンパ機構15が、第1の弾性体を用いたダンパ機構の第1の弾性体の伸縮に応じて、遊星歯車機構を構成する歯車が回動し、その慣性トルクによって、トルク変動を低減することが可能である。
【0150】
また、トルクリミッタ機構5が動作した場合には、過大なトルク入力に応じて、トルクリミッタ機構5が入力部材2と出力部材14との間で滑ることで、初期の組付け時に、初期の回転揺動中心位置を中心に特定の範囲の基準歯面で噛合していた遊星歯車が、トルクリミッタの滑り角の分だけ回転して、回転揺動中心位置を変位させることで、歯車の噛み合いの歯面の範囲(回動領域)を変更することが可能である。
【0151】
そのため、原動機500や電動機800等からの過大なトルク入力が生ずる度に、トルクリミッタ機構5が動作し、これが繰り返されることにより、順次、遊星歯車の噛み合わされる歯面が変更されることにより、歯車の歯面全周を有効に利用することで、遊星歯車及びこれを含むダイナミックダンパの寿命強度を更に向上させることが可能である。
【0152】
次に、本発明の第2の実施形態について、図7を用いて説明する。ここで、図7は、本発明による第2の実施形態に基づくダイナミックダンパ300の各構成要素の関係を概念的に示した模式図である。
【0153】
本発明の第2の実施形態によるダイナミックダンパ350は、図7に示すように、基本的には、図3で示した第1のダイナミックダンパ300と同様に、遊星歯車を用いるダンパ機構15と、第1の弾性体を用いるダンパ機構9と、トルクリミッタ機構5とを備えており、これらの基本的な構成も、一部を除いて、第1のダイナミックダンパ300と同様である。
【0154】
また、遊星歯車を用いるダンパ機構15についても、入力要素を小径サンギヤ16とし、出力要素を大径サンギヤ17としている点も同様である。
【0155】
しかし、第2の実施形態によるダイナミックダンパ350では、第1の実施形態によるものとは異なり、入力部材2と出力部材14との間の第1の経路上には、第1の弾性体によるダンパ機構9のみが設けられ、当該第1の経路とは並列に設けられた、第2の経路上には、トルクリミッタ機構5と遊星歯車を用いるダンパ機構15と、が直列に設けられている。
【0156】
すなわち、入力部材2と出力部材14との間の第2の経路には、入力部材2に接続されたトルクリミッタ機構5と、かかるトルクリミッタ機構5から出力部材14側に、遊星歯車を用いるダンパ機構15とが、設けられている。
【0157】
そのため、以上のように構成される本発明の第2の実施形態によるダイナミックダンパ350では、これらが動力伝達に直接関与しない第2の経路に設けられているため、トルクリミッタ機構5は、トルク変動による第1の弾性体を用いるダンパ機構の当該弾性体の伸縮により、これに応じて遊星歯車を用いるダンパ機構のダンパマスとして機能する回転部材の慣性トルクが過大となった場合に動作するようになっている。
【0158】
すなわち、入力部材と出力部材との間の動力伝達が原動機側から行われる場合には、原動機500からの駆動力はフライホイール1を介して本第2の実施形態によるダイナミックダンパ機構の入力部材2に入力される。
【0159】
そして、第1の経路では、入力された駆動力は、第1の弾性体によるダンパ機構9を介して、出力部材14に出力される。
【0160】
その一方、第2の経路では、入力部材2はトルクリミッタ機構5を介して遊星歯車を用いるダンパ機構15の入力要素としてサンギヤAに回転可能な方向に連結され、遊星歯車を用いるダンパ機構15からは、サンギヤBが出力要素として、出力部材14に回転可能な方向に連結されている。
【0161】
そして、当該第2の経路では、トルクリミッタ機構5、及び、遊星歯車を用いるダンパ機構15は、上述のように、第1の経路に設けられた第1の弾性体によるダンパ機構9と並列に配置されている。
【0162】
そのため、本発明の第2の実施形態による遊星歯車を用いるダンパ機構15では、トルクリミッタ機構が動作しない場合には、遊星歯車のキャリアに回転可能に軸支されたプラネタリギヤであるピニオンギヤAとサンギヤA、同じくピニオンギヤBとサンギヤBとが所定の歯面により噛合し、第1の経路に設けられた第1の弾性体の伸縮に応じて当該キャリアが回動することで、トルク変動成分を低減し、変速機構700に伝達することが可能である。
【0163】
その一方、当該キャリアの慣性トルクが過大となることにより、トルクリミッタ機構が動作した場合には、第1の弾性体によるダンパ機構9は直接の影響を受けずに、遊星歯車を用いるダンパ機構15だけが、トルクリミッタによる滑りの影響を受ける。
【0164】
そのため、遊星歯車を用いるダンパ機構15は、過大なトルク入力に対して、キャリアの慣性トルクにより、トルクリミッタ機構5が作動し、入力部材2と出力部材14に対して、入力要素であるサンギヤAが滑ることで、初期の組み付け時に、回転揺動中心位置を中心とした特定の範囲の歯面で噛合していた遊星歯車がトルクリミッタの滑り角分だけ回転し、歯車の噛合の歯面の範囲(回動領域)を変更することが可能となり、歯車の寿命強度向上をすることが可能である。
【0165】
そのため、本第2の実施形態においては、トルクリミッタの動作のためのトルク容量は、ダンパマスとして機能する遊星歯車機構の回転部材の慣性トルクの最大設定値よりも小さく設定して、遊星歯車を用いるダンパ機構の保護を図ることも可能である。
【0166】
また、ハイブリッド車に代表される電動車では原動機500の始動時にはエンジン効率が低くなるために、電動機800により生じた駆動力の一方は、被駆動軸に入力(伝動)され、他の一方は、図7において矢印Fmで示すような方向から、出力部材14に入力される場合もある。そのため、そのような場合には、入力部材2と出力部材14との間の動力伝達が電動機800側(出力部材側)から行われる。
【0167】
そして、上記のような場合には、出力部材14に入力された駆動力は、第1の弾性体によるダンパ機構9を介して、入力部材2、フライホイール1及び原動機500に出力され、原動機500の駆動軸550の回転を上昇させてから原動機500の始動をさせている。
【0168】
そのため、この場合には、原動機始動時に短時間で駆動軸550の回転を上昇させており、また共振点を通過することで過大な駆動力及びトルク変動が発生する。
【0169】
そこで、このような過大なトルク入力に対して、第1の弾性体を用いるダンパ機構の第1の弾性体による伸縮を介して、トルクリミッタ機構5が動作して、入力部材2と出力部材14とが滑ることで、初期の組付け時に、回転揺動中心位置を中心として、特定の歯面で噛合していた遊星歯車がトルクリミッタ機構5の滑り角分だけ回転し、噛合の歯面を変更することが可能となり、歯車の寿命強度向上をすることが可能である。
【0170】
以上のように本発明による第2の実施形態によるダイナミックダンパ350では、トルクリミッタ機構5の作動により、遊星歯車を用いるダンパ機構15のみが入力部材側と出力部材側とで、回動領域が変動するが、第1の弾性体を用いたダンパ機構側は、そのような変動が生じない。
【0171】
そのため、本発明による第2の実施形態によるダイナミックダンパ350では、トルクリミッタ機構5は、第1の実施形態のように原動機500乃至電動機800による駆動力及びトルク変動が過大になることによってトルクリミッタ機構5が動作するのではなく、主として、原動機500乃至電動機800によるトルク変動が過大となることに伴い、上述のように、第1の弾性体を用いるダンパ機構の第1の弾性体による伸縮を介して、遊星歯車機構の回転要素がダンパマスとして機能を発揮することで、ダンパマスの慣性力によりトルクリミッタ機構5が動作する。
【0172】
したがって、本発明の第2の実施形態によるダイナミックダンパ350では、トルクリミッタ機構5への入力トルクは、トルク変動によって発生する第1の弾性体によるダンパ機構9のバネの伸縮に応じたダンパ捩り角分の角加速度と、遊星歯車を用いるダンパ機構15におけるダンパマスの慣性力による慣性トルクになり、トルクリミッタ機構5を動作させるために必要となるトルク容量を低減することができ、エンジンなどの原動機や電動機による駆動力やトルク変動に対して小さい為、トルクリミッタ機構5の小型化・簡易化が可能となる。
【0173】
次に、上記第2の実施形態の更に具体的な構成について図8を用いて説明する。ここで、図8は、本発明の第2の実施形態の構成例を図4と同様に示した断面図である。
【0174】
本発明による第2の実施形態は、図8に示すように、基本的には、図4で示した第1のダイナミックダンパ300と同様に、原動機500(図7参照)からの動力が入力される入力部材2と、入力部材2からの入力を変速機構700(図3参照)の入力軸に出力する出力部材14と、第1の弾性体を用いるダンパ機構9と、トルクリミッタ機構5及び遊星歯車を用いるダンパ機構15とから構成されている点、及び各構成要素の基本的な構成も略同様であるが、その接続関係が異なっている。
【0175】
すなわち、第2の実施形態によるダイナミックダンパ350では、第1の実施形態によるものとは異なり、入力部材2と出力部材14との間の第1の経路上には、第1の弾性体によるダンパ機構9のみが設けられ、当該第1の経路とは並列に設けられた、第2の経路上には、トルクリミッタ機構5と遊星歯車を用いるダンパ機構15と、が直列に設けられた構成を有している。
【0176】
これらの構成要素のうち、入力部材2は、原動機500から駆動力が入力される部分であり、本発明による第1の実施形態と同様に、フライホイール1が入力部材2に連結されていて、原動機からの出力変動を減衰できるように構成されている。
【0177】
そして、入力部材2自体は、本第2の実施形態では、ダンパ入力プレート31とトルクリミッタ入力プレート32とから構成されており、これらは、入力部材2の一部を構成する入力側支持体として機能する。
【0178】
これらのうち、ダンパ入力プレート31は、入力部材2の一部を構成する入力側支持体として、第1の経路を構成する第1の弾性体によるダンパ機構9に接続される部分である。
【0179】
そのため、ダンパ入力プレート31は、駆動軸等の軸線に対して垂直に設けられた円環形状を有しており、フライホイール1と第1の弾性体を用いるダンパ機構9との間に入り込むように設けられている。
【0180】
そして、ダンパ入力プレート31を構成する円環の内側部分は、第1の弾性体を用いるダンパ機構9の方向に延伸して設けられており、更に、第1の弾性体を用いるダンパ機構9を超えて、円環中心に配置されている駆動軸等の軸心の方向にまで延伸されている。
【0181】
また、ダンパ入力プレート31の外縁の内側には、後述するトルクリミッタ入力プレート32やフライホイール1と共に相互に接続されるための複数のねじ穴が設けられており、その更に内側には、後述するダンパ入力部材10bの曲げ部10bLの先端を摺動可能にはめ込むための隙間部31Lが形成されている。
【0182】
また、トルクリミッタ入力プレート32は、入力部材2の一部を構成する入力側支持体として、第2の経路を構成する、トルクリミッタ機構5に接続される部分である。
【0183】
そのため、トルクリミッタ入力プレート32は、基本的には円環形状を有しているが、フライホイール1に当接される部分では、駆動軸等の軸心に垂直に構成されており、フライホイール1に当接される部分の下方では、上記軸心に平行に形成されて、その内側部分に配置されている第1の弾性体によるダンパ機構9の外縁部分を取り囲むように構成され、当該第1の弾性体によるダンパ機構9に隣接して配置されるトルクリミッタ機構5と遊星歯車を用いるダンパ機構15の部分で、軸心方向に垂直に構成されて、後述するトルクリミッタ機構5の摺動部分の一部を構成するようになっている。
【0184】
次に、第1の弾性体を用いたダンパ機構9は、トルク変動を低減する機構であり、基本的な構成と機能は、本発明による第1の実施形態について示したものと同様であり、2つのダンパ入力部材(10a、10b)と、第1の弾性体11と、ダンパ出力部材12とから構成されている。
【0185】
しかし、第2の実施形態では、第1の弾性体を用いたダンパ機構9は、トルクリミッタ機構5を介さずに、入力部材2に接続されている。
【0186】
そのため、第1の弾性体を用いたダンパ機構9を構成するダンパ入力部材10aとダンパ入力部材10bとは、入力部材2の側で、締結部材35により一体に締結されている。
【0187】
また、ダンパ入力部材10bは、締結部材35で締結された部分から更に入力部材2の側で、軸心と平行にダンパ入力プレート31の側に折り曲げられた曲げ部10bLが形成され、当該曲げ部10bLの端部側は、ダンパ入力プレート31に形成された隙間部31Lにはめ込まれて、入力部材2からの駆動力が伝達されるように構成されている。
【0188】
次に、トルクリミッタ機構5は、第1の実施形態の場合と同様に、入力部材2と出力部材14との間に過大なトルク入力があった場合に、入力部材2と出力部材14に対して、遊星歯車入力部材36との間に滑りを生じさる機能を有するものであり、基本的な構成と効果も同様である。
【0189】
しかし、本第2の実施形態の場合には、第1の実施形態と異なり、トルクリミッタ機構5は、遊星歯車を用いるダンパ機構15とは直列に接続されて、第2の経路上に設けられ、更に当該第2の経路は、第1の弾性体によるダンパ機構9が設けられ動力の伝達を行う第1の経路とは別個に、入力部材と出力部材との間に並列に設けられている。
【0190】
そのため、トルクリミッタ機構5は、第1の実施形態と同様に、第2の弾性体6と摩擦材(7a、7b)と、ピストンプレート8とを主な構成要素としている点では同様である。
【0191】
しかし、第2の実施形態では、第1の実施形態のトルクリミッタ機構5の摺動部分に用いられている入力プレート3に相当するものが、トルクリミッタ入力プレート32になり、入力バックアッププレート4に相当するものがトルクリミッタバックアッププレート33として形成されており、更に、トルクリミッタ機構5の出力部材側は、第1の実施形態では、ダンパ入力部材(10a、10b)であったものが、第2の実施形態では、遊星歯車入力部材36として形成されている点が異なっている。
【0192】
このうち、トルクリミッタ入力プレート32は、上述したように、入力部材2の一部を構成する入力側支持体として、トルクリミッタ機構5に入力側から接続されると共に、トルクリミッタ機構5の摺動部分では、第1の実施形態の入力プレート3と同様に、ピストンプレート8と協働して、摩擦材6を介して、遊星歯車入力部材36を挟持する機能を有している。
【0193】
そのため、トルクリミッタ入力プレート32には、第1の実施形態の入力プレート3と同様に、締結部材34からトルクリミッタ機構5の側に、ピストンプレート8の突出部8Lを摺動可能に接続する隙間部32Lが形成されている。
【0194】
また、トルクリミッタバックアッププレート33は、トルクリミッタ機構5の摺動部分で、トルクリミッタ入力プレート32とはピストンプレート8を介した反対側で、ピストンプレート8との間に設けられた第2の弾性体6を支持するものである。
【0195】
そのため、トルクリミッタバックアッププレート33は、基本的には概ね円環状をしているが、トルクリミッタ入力プレート32と接続される締結部34の部分では、トルクリミッタ入力プレートと同様に駆動軸等の軸心に対して垂直に形成されており、締結部34の駆動軸側の方向ではピストンプレート8の外縁側を軸心に対して平行に形成され、その末端側からは、再びトルクリミッタ入力プレート32と平行になるように軸心に対して垂直に形成されている。
【0196】
したがって、トルクリミッタバックアッププレート33は、ピストンプレート8との間に第2の弾性体6を挟み込んで支持し、第2の弾性体6が、ピストンプレート8を介して、遊星歯車入力部材36を押圧する作用を後背から支援することが可能である。
【0197】
また、遊星歯車入力部材36は、トルクリミッタ機構5からの出力を遊星歯車を用いるダンパ機構15の入力要素に接続する機能を有している。したがって、遊星歯車入力部材36は、入力部材2の一部を構成する入力側支持体としての機能を有している。
【0198】
このような機能を発揮するために、遊星歯車入力部材36は、他の構成要素と同様に、概ね円環状の外観を有しているが、トルクリミッタ機構5の摺動部分では、トルクリミッタ入力プレート32やピストンプレート8と同様に、軸心に対して垂直に構成され、これらに2つの摩擦材(7a、7b)を介して挟持されるように構成されている。
【0199】
そして、遊星歯車入力部材36は、さらにトルクリミッタ機構5の摺動部分から軸心方向では、軸心とほぼ平行に、遊星歯車を用いるダンパ機構15の外周側を取り囲むように延伸し、更にそこから、プラネタリギヤ22とキャリア18の側面を軸心方向に屈曲し、遊星歯車を用いるダンパ機構15の入力要素として機能する小径サンギヤ16に接続されている。
【0200】
したがって、以上のように本発明の第2の実施形態によるダイナミックダンパ350では、入力部材2と出力部材14との間で、原動機側から動力が入力される場合には、原動機に連結されるフライホイール1を介して、入力部材2に駆動力が入力される。
【0201】
そして、入力部材2から出力部材14に向けては、第1の経路と第2の経路が並行して設けられている。
【0202】
そして、第1の経路では、入力部材2と出力部材14との間に第1の弾性体を用いるダンパ機構9が設けられており、入力部材2から当該第1の弾性体によるダンパ機構9への入力は、ダンパ入力プレート31に接続されたダンパ入力部材10bを介して、これと一体化されたダンパ入力部材10aに伝動される。
【0203】
そして、ダンパ入力部材(10a、10b)に入力された動力は、これらが挟持するダンパ出力部材12へ、第1の弾性体11を介して伝動され、ダンパ出力部材12は、出力部材14と締結部材13を介して接続される。そのため、ダンパ出力部材12は、出力側支持体として機能し、出力部材14に動力を出力する。
【0204】
また、第2の経路では、入力部材2と出力部材14との間に、トルクリミッタ機構5と遊星歯車を用いるダンパ機構15とが直列に設けられている。
【0205】
そして、第2の経路では、入力部材2の入力側要素としてトルクリミッタ入力プレート32が設けられており、これが、トルクリミッタ機構5へ延伸して設けられている。
【0206】
そして、トルクリミッタ機構5では、トルクリミッタ入力プレート32とピストンプレート8とが、摩擦材(7a、7b)を介して遊星歯車入力部材36を挟持しており、更にこれらは、トルクリミッタバックアッププレート33に支持された第2の弾性体6により押圧されて、トルクを伝動すると共に、必要なトルクの調整が可能に構成されている。
【0207】
また、トルクリミッタ機構5の摺動部分から延伸された遊星歯車入力部材36は、入力部材として機能し、遊星歯車の小径サンギヤ16へ接続され、出力部材14は、遊星歯車の大径サンギヤ17へ接続される。
【0208】
そして、同じく遊星歯車では、上記のように入力部材と出力部材に取り付けられて一体的に回動する2つのサンギヤ(16,17)に対して、これらとそれぞれ噛合する大径ピニオン24と小径ピニオン23からなる段付形状(ラビニヨ式遊星歯車装置)のプラネタリギヤ22が複数設けられていて、これらのピニオン(24,23)を含めて一体化されたキャリア18がダンパマスとして機能する。
【0209】
そのため、第2の実施形態においては、上記のように構成されるダイナミックダンパ350により、入力部材2からのトルク変動を低減して出力部材へ伝達することが可能である。
【0210】
また、入力部材2と出力部材14との間で、電動機800の側から動力を伝達する場合には、出力部材14からのトルク変動を第1の弾性体11をバネと、キャリア18をダンパマスとして形成されるダイナミックダンパにより、上記と同様に、入力部材2へ低減して伝達する。
【0211】
また、過度なトルク変動が入力された場合には、摩擦材(7a,7b)を介して弾性体6に押圧された、トルクリミッタ入力プレート32と遊星歯車入力部材36との間にて滑りを生じ、入力部材2と出力部材14に対して、遊星歯車入力部材36との間で、回転揺動中心位置を変位させて、回転方向の位相を変え、回動領域を変動させることで、遊星歯車の小径サンギヤ16及び大径サンギヤ17と、それぞれ噛合う大径ピニオン24と小径ピニオン23の噛合い点をずらす事が可能である。
【0212】
そのため、本発明の第2の実施形態によるダイナミックダンパ350では、上述のように、トルクリミッタ機構5への入力トルクは、トルク変動によって発生する第1の弾性体によるダンパ機構9のバネの伸縮に応じたダンパ捩り角分の角加速度と、遊星歯車を用いるダンパ機構15におけるダンパマスの慣性トルクによるものになり、トルクリミッタ機構5を動作させるために必要となるトルク容量を低減することができ、エンジンなどの原動機500や電動機800による駆動力及びトルク変動に対して小さい為、トルクリミッタ機構5の小型化・簡易化を図ることが可能である。
【0213】
なお、上記の各本発明による実施形態等の記載は、本発明において採り得る形態の一例を示したものであり、本発明の趣旨の範囲で、各構成要素の構成は変更することが可能である。
【0214】
そのため、例えば第1の実施形態では、第1の経路上のトルクリミッタ機構5と第1の弾性体によるダンパ機構9との配置を逆にしたり、或いは、第2の実施形態でも同様に、第2の経路上のトルクリミッタ機構5と遊星歯車を用いるダンパ機構15との配置を逆にしたりすることも可能である。
【0215】
また、本発明では、上述の説明にも有る様に、入力部材と出力部材との間で、動力を伝達する方向を適宜変更するなどして、ハイブリッド車両に用いることも可能である。
【符号の説明】
【0216】
1 フライホイール
2 入力部材
3 入力プレート
3L 31L 32L 隙間部
4 入力バックアッププレート
5 トルクリミッタ機構
6 第2の弾性体
7a 7b 摩擦材
8 ピストンプレート
9 第1の弾性体を用いるダンパ機構
10a 10b ダンパ入力部材
10ah 10bh ダンパ入力部材側弾性体保持部
10ao ダンパ入力部材10aの窪み部
10ar ダンパ入力部材10aの凹部
10bt ダンパ入力部材10bの突起部
11 第1の弾性体
12 ダンパ出力部材
12h ダンパ出力部材側弾性体保持部
13 34 35 締結部材
14 出力部材
15 遊星歯車機構
16 A1 小径サンギヤ
17 A2 大径サンギヤ
18 E キャリア
19 キャリアプレート
20 ニードルベアリング
21 ピニオンシャフト
22 B プラネタリギヤ(ピニオンギヤ)
23 B1 小径ピニオン
24 B2 大径ピニオン
25 26 27 スラスト軸受
28 ラジアル軸受
29 30 溶接部
31 ダンパ入力プレート
32 トルクリミッタ入力プレート
33 トルクリミッタバックアッププレート
36 遊星歯車入力部材
300 第1の実施形態におけるダイナミックダンパ
350 第2の実施形態におけるダイナミックダンパ
L0 初期の回動領域
L1 初期の状態からシフトした新たな回動領域
α0 初期の回転揺動中心位置
α1 初期の状態からシフトした新たな回転揺動中心位置
A サンギヤ
図1
図2
図3
図4
図5
図6
図7
図8