IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧 ▶ プライムプラネットエナジー&ソリューションズ株式会社の特許一覧

特許7339232構造測定システム、構造測定方法、処理装置および処理プログラム
<>
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図1
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図2
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図3
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図4
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図5
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図6
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図7
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図8
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図9
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図10
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図11
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図12
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図13
  • 特許-構造測定システム、構造測定方法、処理装置および処理プログラム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-28
(45)【発行日】2023-09-05
(54)【発明の名称】構造測定システム、構造測定方法、処理装置および処理プログラム
(51)【国際特許分類】
   G01N 21/88 20060101AFI20230829BHJP
   G01N 21/27 20060101ALI20230829BHJP
   G01B 11/30 20060101ALI20230829BHJP
【FI】
G01N21/88 Z
G01N21/27 Z
G01B11/30 Z
【請求項の数】 10
(21)【出願番号】P 2020201520
(22)【出願日】2020-12-04
(65)【公開番号】P2022089263
(43)【公開日】2022-06-16
【審査請求日】2022-09-05
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(73)【特許権者】
【識別番号】520184767
【氏名又は名称】プライムプラネットエナジー&ソリューションズ株式会社
(74)【代理人】
【識別番号】100103894
【弁理士】
【氏名又は名称】家入 健
(72)【発明者】
【氏名】浅野 剛史
(72)【発明者】
【氏名】立山 望美
(72)【発明者】
【氏名】土屋 詔一
(72)【発明者】
【氏名】浅井 正孝
(72)【発明者】
【氏名】内村 将大
(72)【発明者】
【氏名】佐藤 友紀
(72)【発明者】
【氏名】江原 強
【審査官】村田 顕一郎
(56)【参考文献】
【文献】特開2006-003372(JP,A)
【文献】特開2009-053200(JP,A)
【文献】特表2000-501182(JP,A)
【文献】米国特許第4972092(US,A)
【文献】高谷 裕浩ほか,全方位角度分解散乱光計測による加工表面性状解析技術,精密工学会誌,Vol.80, No.6,2014年06月05日,p.514-518
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-21/01
G01N 21/17-21/61
G01N 21/84-21/958
G01B 11/00-11/30
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
金属表面の凹凸構造を測定する構造測定システムであって、
前記金属表面に予め定められた波長領域の光を照射する光源と、
前記金属表面からの戻り光を検出する受光器と、
処理装置とを備え、
前記処理装置は、
凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する第1算出部と、
前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する第1評価部と
を備える構造測定システム。
【請求項2】
前記第1評価部は、前記第1戻り光強度比が小さいほど、前記測定対象の金属表面の凹凸高さが高いと評価する
請求項1に記載の構造測定システム。
【請求項3】
前記予め定められた高さ閾値は、50nm以下である
請求項1または2に記載の構造測定システム。
【請求項4】
凹凸構造密度が予め定められた密度閾値以下である第2基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第2戻り光強度比を算出する第2算出部と、
前記第2戻り光強度比に基づいて前記測定対象の金属表面の凹凸構造密度を評価する第2評価部と
を備える請求項1から3のいずれか一項に記載の構造測定システム。
【請求項5】
前記第2評価部は、前記第2戻り光強度比が小さいほど、前記測定対象の金属表面の凹凸構造密度が高いと評価する
請求項4に記載の構造測定システム。
【請求項6】
前記予め定められた波長領域は、1000nm以下であって、前記金属表面に含まれる金属のエネルギー吸収率が予め定められた吸収率閾値以上の波長領域である
請求項1から5のいずれか一項に記載の構造測定システム。
【請求項7】
前記金属表面は、銅またはアルミニウムを主成分として含み、
前記予め定められた波長領域は、600nm以下である
請求項6に記載の構造測定システム。
【請求項8】
金属表面の凹凸構造を測定する構造測定方法であって、
前記金属表面に予め定められた波長領域の光を照射する照射工程と、
前記金属表面からの戻り光を検出する受光工程と、
凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する第1算出工程と、
前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する第1評価工程と
を備える構造測定方法。
【請求項9】
金属表面の凹凸構造を測定するための処理装置であって、
前記金属表面に予め定められた波長領域の光を照射させた場合に検出される、前記金属表面からの戻り光の強度の情報を取得する取得部と、
凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する第1算出部と、
前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する第1評価部と
を備える処理装置。
【請求項10】
金属表面の凹凸構造を測定するための処理プログラムであって、
前記金属表面に予め定められた波長領域の光を照射させた場合に検出される、前記金属表面からの戻り光の強度の情報を取得する取得処理と、
凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する第1算出処理と、
前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する第1評価処理と
をコンピュータに実行させる処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属表面の凹凸構造を測定する構造測定システム、構造測定方法、処理装置および処理プログラムに関する。
【背景技術】
【0002】
基板表面の凹凸構造を非接触で測定する方法が提案されている。例えば特許文献1には、化合物半導体基板の主面に測定光を照射し、その反射光を解析することで化合物半導体層の微小な凹凸を識別する凹凸識別方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-009173号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし上述の特許文献1に記載の方法では、金属表面の凹凸構造を測定できない。また特許文献1に記載の方法は、刻印の読み取りができるだけであって、刻印を形成している凹凸構造の凹凸高さ等の具体的な構造情報まで評価することはできない。
【0005】
本発明は、このような問題を解決するためになされたものであり、非接触で金属表面の凹凸構造を測定できる構造測定システム、構造測定方法、処理装置および処理プログラムを提供することを目的とするものである。
【課題を解決するための手段】
【0006】
本発明の一態様にかかる構造測定システムは、金属表面の凹凸構造を測定する構造測定システムである。前記構造測定システムは、前記金属表面に予め定められた波長領域の光を照射する光源と、前記金属表面からの戻り光を検出する受光器と、処理装置とを備える。前記処理装置は、第1算出部と、第1評価部とを備える。前記第1算出部は、凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する。前記第1評価部は、前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する。この構造測定システムは、照射した光に対する戻り光強度を用いるため、非接触で金属表面の凹凸構造の高さを測定できる。
【0007】
ここで、前記第1評価部は、前記第1戻り光強度比が小さいほど、前記測定対象の金属表面の凹凸高さが高いと評価する。これにより構造測定システムは、非接触で金属表面の具体的な凹凸高さ情報を取得できる。また前記高さ閾値は、測定精度の観点から50nm以下であることが好ましい。
【0008】
前記構造測定システムは、第2算出部と、第2評価部とを備えてよい。前記第2算出部は、凹凸構造密度が予め定められた密度閾値以下である第2基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第2戻り光強度比を算出する。また前記第2評価部は、前記第2戻り光強度比に基づいて前記測定対象の金属表面の凹凸構造密度を評価する。これにより構造測定システムは、非接触で金属表面の凹凸構造の密度を測定できる。ここで、前記第2評価部は、前記第2戻り光強度比が小さいほど、前記測定対象の金属表面の凹凸構造密度が高いと評価する。これにより構造測定システムは、非接触で金属表面の具体的な凹凸構造密度情報を取得できる。
【0009】
また前記予め定められた波長領域は、1000nm以下であって、前記金属表面に含まれる金属のエネルギー吸収率が予め定められた吸収率閾値以上の波長領域であることが好ましい。凹凸構造高さがナノオーダーである場合には、レイリー散乱により光閉じ込め効果が促進され、これにより光吸収が促進されるため、凹凸構造に応じた戻り光強度比の変化が顕著に表れることになるからである。したがって、上記波長領域の光を照射することにより、測定精度が高くなる。なお前記金属表面は、銅またはアルミニウムを主成分として含み、前記予め定められた波長領域は、600nm以下であってよい。
【0010】
本発明の一態様にかかる構造測定方法は、金属表面の凹凸構造を測定する構造測定方法である。前記構造測定方法は、照射工程と、受光工程と、第1算出工程と、第1評価工程とを備える。前記照射工程は、前記金属表面に予め定められた波長領域の光を照射する工程である。前記受光工程は、前記金属表面からの戻り光を検出する工程である。前記第1算出工程は、凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する工程である。前記第1評価工程は、前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する工程である。この構造測定方法によれば、照射した光に対する戻り光強度を用いるため、非接触で金属表面の凹凸構造の高さを測定できる。
【0011】
本発明の一態様にかかる処理装置は、金属表面の凹凸構造を測定するための処理装置である。前記処理装置は、取得部と、第1算出部と、第1評価部とを備える。前記取得部は、前記金属表面に予め定められた波長領域の光を照射させた場合に検出される、前記金属表面からの戻り光の強度の情報を取得する。前記第1算出部は、凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する。前記第1評価部は、前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する。この処理装置によれば、照射した光に対する戻り光強度を用いるため、非接触で金属表面の凹凸構造の高さを測定できる。
【0012】
本発明の一態様にかかる処理プログラムは、金属表面の凹凸構造を測定するための処理プログラムである。前記処理プログラムは、取得処理と、第1算出処理と、第1評価処理とをコンピュータに実行させる。前記取得処理は、前記金属表面に予め定められた波長領域の光を照射させた場合に検出される、前記金属表面からの戻り光の強度の情報を取得する処理である。前記第1算出処理は、凹凸高さが予め定められた高さ閾値以下である第1基準金属表面からの戻り光強度に対する測定対象の金属表面からの戻り光強度を示す第1戻り光強度比を算出する処理である。前記第1評価処理は、前記第1戻り光強度比に基づいて前記測定対象の金属表面の凹凸高さを評価する処理である。この処理プログラムによれば、照射した光に対する戻り光強度を用いるため、非接触で金属表面の凹凸構造の高さを測定できる。
【発明の効果】
【0013】
本発明により、非接触で金属表面の凹凸構造を測定できる構造測定システム、構造測定方法、処理装置および処理プログラムを提供することができる。
【図面の簡単な説明】
【0014】
図1】実施形態1にかかる構造測定システムの概略構成図である。
図2】実施形態1にかかる処理装置の機能構成を示すブロック図である。
図3】実施形態1にかかる処理装置のハードウェア構成を示すブロック図である。
図4】異なる凹凸高さを有するCu材の戻り光強度を示す図である。
図5】異なる凹凸高さを有するCu材の光吸収率を示す図である。
図6】異なる凹凸高さを有するCu材の第1戻り光強度比を示す図である。
図7】異なる凹凸高さを有するAl材の光吸収率を示す図である。
図8】異なる凹凸高さを有するAl材の戻り光強度を示す図である。
図9】実施形態1にかかる処理装置の処理手順を示すフローチャートである。
図10】実施形態1にかかる処理装置の評価処理の手順を示すフローチャートである。
図11】実施形態2にかかる処理装置の機能構成を示すブロック図である。
図12】凹凸構造密度を説明するための図である。
図13】異なる凹凸構造密度を有するCu材の戻り光強度を示す図である。
図14】実施形態2にかかる処理装置の評価処理の手順を示すフローチャートである。
【発明を実施するための形態】
【0015】
以下、実施形態を通じて本発明を説明するが、特許請求の範囲にかかる発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。説明の明確化のため、以下の記載および図面は、適宜、省略、および簡略化がなされている。なお、各図面において、同一の要素には同一の符号が付されている。
【0016】
<実施形態1>
まず図1~10を用いて、本発明の実施形態1について説明する。図1は、実施形態1にかかる構造測定システム1の概略構成図である。構造測定システム1は、金属表面の凹凸構造の状態を測定するシステムである。例えば構造測定システム1は、工場の製造ライン上に設置され、金属表面を有する試料が良品であるか、不良品であるかを検査するために用いられる。
【0017】
本図には、測定対象の試料2の一例が示されている。試料2は、基板3と、基板3の上に形成された金属表面4とを有する。基板3は、平板状の部材である。基板3は、CuやAl等の導電性の金属材料によって構成されるが、これに限らず、ガラス基板またはシリコンウエハであってもよい。金属表面4は、基板3の表面に形成されている金属薄膜である。より詳細には、金属表面4は、基板3の一方の主面(表面)に形成されている。ここで、金属表面4は、Cu、Al、Sn、Ti及びFeの何れかを主成分とする金属材料によって構成されている。なお、金属表面4は、基板3の一部として基板3と一体となって形成されていてよい。
【0018】
金属表面4は、ナノオーダーの微細な凹凸形状を有する凹凸部5を含む。凹凸部5は、金属表面4上に形成されている。凹凸部5は、金属表面4の主成分と同じ金属(Cu、Al、Sn、Ti及びFeの何れか)を主成分とする金属材料によって構成される。
【0019】
本実施形態1では、構造測定システム1は、凹凸構造の状態として凹凸部5の凹凸高さHを測定する。構造測定システム1は、光源30と、積分球32と、受光器36と、処理装置10とを備える。
【0020】
光源30は、金属表面4に予め定められた波長領域の光(照射光)を照射する光源である。ここで予め定められた波長領域とは、後述する処理装置10の評価処理に用いる波長領域であり、評価用波長とも呼ばれる。評価用波長は、1000nm以下であってよい。そして評価用波長は、金属表面4の主成分の金属に応じて定められてよい。そして光源30は、評価用波長をカバーするランプ、例えば重水素ランプまたはハロゲンランプ等であってもよい。また光源30は、評価用波長を有するレーザ、例えば半導体レーザ、YAG SHGレーザ、YAG THGレーザまたはエキシマレーザ等であってもよい。
【0021】
光源30は、積分球32の入射開口を介して、積分球32の、該入射開口と反対側に位置する開口に取り付けられた試料2の金属表面4に、照射光を照射する。入射角θは、予め定められた角度であってよく、例えば10°以下であってよい。なお入射角θは、金属表面4の主成分の金属に応じて定められてよい。
【0022】
積分球32は、光源30から取り込んだ照射光を、散乱(拡散反射)させる中空の球体部材である。積分球32は、その内面が球形であり、内壁には硫酸バリウム等の反射率の高い光散乱材料が塗布されている。
【0023】
受光器36は、積分球32の内部空間の中央に配置され、金属表面4からの戻り光を検出する受光器である。ここで戻り光は、鏡面反射光と、拡散反射光とを合わせた光を指す。つまり照射光は、光源30から放射され、積分球32の内部空間を介して、試料2の金属表面4に入射する。そしてその鏡面反射光および拡散反射光は、積分球32の内壁で反射を繰り返し、最終的に受光器36に受光される。受光器36は、処理装置10に接続され、戻り光を検出したことに応じて処理装置10に戻り光強度の情報を送信する。
【0024】
処理装置10は、金属表面4の凹凸構造を測定および評価するためのコンピュータ装置である。処理装置10は、受光器36から供給される戻り光強度の情報に基づいて、金属表面4の凹凸構造の状態を算出し、評価する。また処理装置10は、光源30に接続され、光源30に対して照射制御を行う。なお処理装置10は、試料2を載置するステージ(不図示)の移動制御をしてよい。
【0025】
図2は、実施形態1にかかる処理装置10の機能構成を示すブロック図である。処理装置10は、照射制御部11と、取得部12と、第1算出部13と、第1評価部14と、出力部15と、記憶部16とを有する。
【0026】
照射制御部11は、光源30に接続され、金属表面に評価用波長の照射光を光源30に照射させる。
【0027】
取得部12は、受光器36に接続され、受光器36から戻り光強度の情報を受信し、取得する。取得部12は、取得した戻り光強度の情報を第1算出部13に供給する。
【0028】
第1算出部13は、測定対象の金属表面4からの戻り光強度の情報に基づいて、第1戻り光強度比を算出する。ここで第1戻り光強度は、第1基準金属表面からの戻り光強度に対する測定対象である試料2の金属表面4からの戻り光強度を示す。なお第1基準金属表面は、凹凸高さHが予め定められた高さ閾値以下である凹凸構造を有する金属表面である。高さ閾値は、測定精度の観点から50nm以下であることが好ましい。第1基準金属表面からの戻り光強度の情報は、後述する記憶部16に、第1基準面情報17として予め記憶されている。第1算出部13は、算出した第1戻り光強度比の情報を第1評価部14に供給する。
【0029】
第1評価部14は、第1戻り光強度比に基づいて試料2の金属表面4の凹凸高さHを評価する。ここで第1評価部14は、第1戻り光強度比が小さいほど、試料2の金属表面4の凹凸高さHが高いと評価する。これにより、非接触で金属表面の具体的な凹凸高さ情報を取得できる。例えば第1評価部14は、第1戻り光強度比が予め定められた範囲内であるか否かを判定することで、試料2の金属表面4の凹凸高さHが合格圏内であるか否かを判定する。そして第1評価部14は、凹凸高さが合格圏内の試料2について、良品であると判定する。また第1評価部14は、第1戻り光強度比と第1基準金属表面の凹凸高さHの情報とに基づいて、試料2の金属表面4の凹凸高さHの値を推定してもよい。第1基準金属表面の凹凸高さHについては、第1基準金属表面の断面SEM(Scanning Electron Microscope)画像等により、予め取得してよい。そして第1評価部14は、評価した凹凸高さHの情報を出力部15に供給する。
【0030】
出力部15は、評価した凹凸高さHの情報を出力する。出力部15は、凹凸高さHの情報を表示する表示部(不図示)または音声で出力する音声出力部(不図示)を含んでもよい。また出力部15は、処理装置10と通信可能に接続された外部装置(不図示)に凹凸高さHの情報を送信する送信部(不図示)を含んでもよい。
【0031】
記憶部16は、処理装置10の情報処理に必要な情報を記憶する記憶媒体である。本実施形態1では、記憶部16は、第1基準面情報17を記憶する。
【0032】
図3は、実施形態1にかかる処理装置10のハードウェア構成を示すブロック図である。
【0033】
処理装置10は、主要なハードウェア構成として、プロセッサ100と、ROM101(Read Only Memory)と、RAM102(Random Access Memory)と、インターフェース部103(IF;Interface)とを有する。プロセッサ100、ROM101、RAM102およびインターフェース部103は、データバスなどを介して相互に接続されている。
【0034】
プロセッサ100は、制御処理および演算処理等を行う演算装置としての機能を有する。プロセッサ100は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(field-programmable gate array)、DSP(digital signal processor)またはASIC(application specific integrated circuit)並びにこれらの組み合わせであってよい。ROM101は、プロセッサ100によって実行される制御プログラムおよび演算プログラム等を記憶するための機能を有する。RAM102は、処理データ等を一時的に記憶するための機能を有する。インターフェース部103は、有線または無線を介して外部と信号の入出力を行う。また、インターフェース部103は、ユーザによるデータの入力の操作を受け付け、ユーザに対して情報を表示する。例えば、インターフェース部103は、光源30および受光器36と通信を行う。
【0035】
以下では、第1評価部14による評価処理の前提となる、凹凸高さHおよび第1戻り光強度比の関係について説明するが、まず試料2の作製方法の一例を説明する。
【0036】
(試料2の作製方法)
まず、凹凸部5が形成される前の金属部材(以下、プレ金属部材と称す)を準備する。なお、プレ金属部材には、金属表面4が設けられており、Cu、Al、Sn、Ti及びFeの何れかを主成分とする金属材料によって構成されている。ここでは、金属表面4が、Cuを主成分とする金属材料(以下、Cu材と呼ぶ)、例えばC1100材によって構成されている場合を例に説明する。次にプレ金属部材に設けられた金属表面4の所定領域にパルスレーザを照射する。これにより所定領域における金属表面4の一部は溶融し、溶融金属が蒸発して、ガス雰囲気中に放出され、金属蒸気となる。その後、金属蒸気が凝縮またはガスとの反応により粒子になり、金属表面4に堆積・凝固する。金属表面4の各領域でこれを繰り返すことにより凹凸部5は形成される。パルスレーザの照射条件は、主成分となる金属に応じて異なるが、C1100材の場合は例えば、ピーク出力が10kW以上、パルス幅が1~1000ns、レーザスポット径が75μm以下、スポット間隔が59μm以下である。ここでは、パルスレーザの照射条件を変化させることで、異なる凹凸高さHの金属表面を作製する。
【0037】
(凹凸高さHおよび第1戻り光強度比の関係)
次に、凹凸高さHおよび第1戻り光強度比の関係について説明する。図4は、異なる凹凸高さHを有するCu材の戻り光強度を示す図である。本図の横軸は、光源30の照射光の波長[nm]を示し、縦軸は戻り光強度[%]を示す。なお本図の戻り光強度については、紫外可視分光光度計(SHIMADZU製 SolidSpec-3700)を用いて200~2000[nm]で測定した。図の点線は凹凸高さHが高い試料2(「H_高」)の戻り光強度を示し、実線は凹凸高さHが中程度の試料2(「H_中」)の戻り光強度を示し、一点鎖線は凹凸高さHが低い試料2(「H_低」)の戻り光強度を示す。なお図示しない断面SEM画像により、本図の「H_高」の凹凸高さHは123[nm]、「H_中」の凹凸高さHは69.0[nm]、「H_低」の凹凸高さHは27.8[nm]であることがわかっている。
【0038】
本図に示すように、光照射による戻り光強度は、ナノオーダーの凹凸構造が全面に形成されていれば、凹凸高さHに関わらず、短波長になるほどマクロ的に0に収束していく。これは、レイリー散乱によって光が散乱し、散乱した光が表面プラズモン共鳴によって金属表面に吸収されるからであると考えられる。
【0039】
図5は、異なる凹凸高さを有するCu材の光吸収率を示す図である。光吸収率は、入射光強度から戻り光強度と透過光強度とを減じた値であるが、本例では透過光強度は0に近いため、入射光強度から戻り光強度を減じることで算出される。本図に示すように、「H_高」、「H_中」および「H_低」の光吸収率は、600nm以下で高い値を示している。これは、ナノオーダーの凹凸構造を有する金属表面4の光吸収特性が、主成分金属のバルクの光吸収特性と類似していることを示している。したがって、「H_高」、「H_中」および「H_低」の金属表面4は、酸化物等に変質することなく、純金属と同様に、表面プラズモン共鳴により光吸収が生じていることがわかる。
【0040】
ここで、1000nm以下、特に主成分金属のバルクでのエネルギー吸収率が高い波長領域、の照射光に対する戻り光強度の、凹凸高さHによる影響を見るために、「H_高」および「H_中」のそれぞれの戻り光強度を、「H_低」の戻り光強度で除した値を算出し、これを第1戻り光強度比Aとする。すなわち、本例では、「H_低」の金属表面4が第1基準金属表面となる。しかし第1基準金属表面はこれに限らず、主成分として含まれる金属に応じて定められる凹凸高さHを有する金属表面4であってもよく、例えば50nm以下の凹凸高さHを有する金属表面4であってもよい。なお主成分金属のバルクでのエネルギー吸収率は、分光放射率であってよく、例えば放射温度計により金属部材の表面温度を測定することで得られる。
【0041】
図6は、異なる凹凸高さを有するCu材の第1戻り光強度比Aを示す図である。図の点線は「H_高」の第1戻り光強度比Aを示し、実線は「H_中」の第1戻り光強度比Aを示す。本図に示すように、「H_高」および「H_中」の第1戻り光強度比Aはいずれも、全測定波長領域で1より小さくなっている。そして凹凸高さHが高いほど、第1戻り光強度比Aは小さくなり、この傾向は、短波長になるほど、具体的には主成分金属のバルクのエネルギー吸収率が高い波長領域以下の波長領域で、顕著になっている。なおCu材の場合は、エネルギー吸収率が高い波長領域以下の波長領域は、600nm以下である。
【0042】
このことは以下のように説明できる。すなわち凹凸高さHが高いほど、短波長側で生じるレイリー散乱が大きくなり、凹凸構造内に光が閉じ込められる。そしてこのような光閉じ込め効果が大きいほど、表面プラズモン共鳴による光吸収が促進される。これにより、「H_高」の短波長側の第1戻り光強度比Aは、より凹凸高さHが低い「H_中」の短波長側の第1戻り光強度比Aよりも小さくなる。
【0043】
以上、金属表面4がCu材である場合の凹凸高さHおよび第1戻り光強度比の関係について説明したが、他の金属材料、例えばアルミニウムを主成分とする金属材料(Al材)によって構成される場合についても同様である。
【0044】
図7は、異なる凹凸高さを有するAl材の光吸収率を示す図である。例えばAl材は、A1050である。本図に示すように、「H_高」、「H_中」および「H_低」の光吸収率は、300nm付近で第1ピークをとり(p1)、また800~900nm付近で第2ピークをとる(p2)。これは、ナノオーダーの凹凸構造を有する金属表面4の光吸収特性は、主成分金属のバルクの光吸収特性と類似していることを示している。したがって、Al材についても、「H_高」、「H_中」および「H_低」の金属表面4は、酸化物等に変質することなく、純金属と同様に、表面プラズモン共鳴により光吸収が生じていることがわかる。
【0045】
そしてAl材についても、1000nm以下、特に主成分金属のバルクでのエネルギー吸収率が高い波長領域、において、戻り光強度の凹凸高さHによる影響が顕著になる。図8は、異なる凹凸高さを有するAl材の戻り光強度を示す図である。本図に示すように、戻り光強度は、「H_低」、「H_中」、「H_高」の順に小さくなる。したがって第1基準金属表面を「H_低」の金属表面4とすると、「H_高」の第1戻り光強度比Aは、より凹凸高さHが低い「H_中」の第1戻り光強度比Aよりも小さくなる。そしてこのような傾向は、短波長側で、特に図7の第1ピーク(p1)に相当する波長領域付近で顕著になっている。
【0046】
このように短波長側では凹凸高さHが高いほど第1戻り光強度比Aが小さくなるため、第1評価部14は、第1戻り光強度比Aに基づいて試料2の金属表面4の凹凸高さHを評価することができる。そして評価用波長は、金属表面4に主成分として含まれる金属(バルク)のエネルギー吸収率が予め定められた吸収率閾値以上の波長または波長領域であることが好ましい。一例として金属表面4がCu材またはAl材の場合は、評価用波長は、600nm以下である。600nm以下であれば、レイリー散乱の発生頻度が上昇し、光吸収が促進される。したがって凹凸高さHによる第1戻り光強度比Aの違いが顕著に表れるため、評価精度が向上する。なお金属表面4がAl材の場合は、評価用波長は、第1ピークに合わせて400nm以下であることがさらに好ましい。
【0047】
図9は、実施形態1にかかる処理装置10の処理手順を示すフローチャートである。
まず金属表面4の主面を、n個(nは自然数)の区間の領域に仮想的に分割する。1区間あたりの領域は、例えば光源30が一度に照射可能な領域である。そして処理装置10は、区間毎に以下のステップS10~12を繰り返す。
【0048】
まず処理装置10の照射制御部11は、光源30に対して制御信号を送信し、試料2の金属表面4のi番目の区間の領域に対して所定の波長領域の照射光を照射させる(ステップS10;光照射工程)。本例では、金属表面4がCu材の場合は、照射光の波長は600nm以下とし、入射角θは8°とする。金属表面4がAl材の場合も、照射光の波長は600nm以下とし、入射角θは8°とする。
【0049】
これにより受光器36が金属表面4からの戻り光を検出する(ステップS11;受光工程)。そして処理装置10の取得部12は、該当区間の戻り光強度の情報を受光器36から取得する(ステップS12)。取得部12は、記憶部16に取得した戻り光強度の情報を記憶してよい。
【0050】
そしてステップS13において、処理装置10の第1算出部13および第1評価部14は、後述する評価処理を実行する。
【0051】
ステップS14において、処理装置10の出力部15は、評価結果を出力し、処理を終了する。本例では、出力部15は、試料2が良品であるか、不良品であるかを出力する。
【0052】
図10は、実施形態1にかかる処理装置10の評価処理の手順を示すフローチャートである。なお区間番号iの初期値は1である。
【0053】
まず処理装置10は、区間番号iが全区間数n以下であるか否かを判定する(ステップS20)。これにより処理装置10は、金属表面4全体を測定したか否かを判定する。処理装置10は、区間番号iが全区間数nを超えた場合(ステップS20でNO)、金属表面4が全体として良品の粗化面であると判定し(ステップS21)、処理を終了する。一方、処理装置10は、区間番号iが全区間数n以下である場合(ステップS20でYES)、処理をステップS22に進める。
【0054】
ステップS22において、処理装置10の第1算出部13は、記憶部16の第1基準面情報17と、i番目の区間の戻り光強度の情報とを用いて、i番目の区間の第1戻り光強度比Aを算出する。本ステップは、第1算出工程と呼ばれる。なお評価用波長が所定幅を有している場合には、まず第1算出部13は、評価用波長領域におけるi番目の区間の戻り光強度の平均値を算出する。そして第1算出部13は、i番目の区間の戻り光強度の平均値を、評価用波長領域における第1基準金属表面の戻り光強度の平均値で除し、得られた値をi番目の区間の第1戻り光強度比Aとする。第1算出部13は、i番目の区間の第1戻り光強度比Aの情報を第1評価部14に供給する。
【0055】
次にステップS23において、第1評価部14は、i番目の区間の第1戻り光強度比Aが所定範囲内であるか否かを判定する。本ステップは、第1評価工程と呼ばれる。本例では、第1評価部14は、i番目の区間の第1戻り光強度比Aが所定数dより大きく、かつ所定数eより小さいか否かを判定する。第1評価部14は、i番目の区間の第1戻り光強度比Aが所定範囲内である場合には(ステップS23でYES)、i番目の区間の凹凸高さHを合格と判定し(ステップS24)、iの値をインクリメントし(ステップS27)、処理をステップS20に戻す。すなわち、第1評価部14は、次の区間の凹凸高さHの評価を進める。
【0056】
一方、第1評価部14は、i番目の区間の第1戻り光強度比Aが所定範囲外である場合には(ステップS23でNO)、i番目の区間の凹凸高さを不合格と判定し(ステップS25)、全体NG率を算出する。全体NG率は、全区間数nに対する累計の不合格区間数の割合であり、本例では百分率である。第1評価部14は、全体NG率が所定数fよりも小さいか否かを判定し(ステップS26)、小さい場合(ステップS26でYES)処理をステップS27に進める。一方で、第1評価部14は、全体NG率が所定数f以上となった場合(ステップS26でNO)、金属表面4が全体として不良品の粗化面であると判定し(ステップS28)、処理を終了する。
【0057】
なお第1評価部14は、試料2の金属表面が良品または不良品であるかを判定したが、これに代えてまたは加えて、試料2の金属表面4の凹凸高さHの値を推定してもよい。具体的には、例えば第1評価部14は、第1基準金属表面の凹凸高さHおよび第1戻り光強度比Aからi番目の区間の凹凸高さHを推定する。そして第1評価部14は、推定した全区間の凹凸高さHの平均をとることで、試料2の金属表面4全体の凹凸高さHを推定する。
【0058】
このように実施形態1によれば、構造測定システム1は、非接触で金属表面4の凹凸構造の高さを測定できる。そして構造測定システム1は、凹凸構造に応じた戻り光強度比の変化が顕著に表れるように光源30の波長領域を金属表面4に含まれる金属に応じて定めることで、測定精度を向上させることができる。
【0059】
<実施形態2>
次に図11~14を用いて、本発明の実施形態2について説明する。実施形態2は、構造測定システム1が金属表面4の凹凸高さHに加えて、凹凸構造密度Dを測定することに特徴を有する。本実施形態2にかかる構造測定システム1は、処理装置10に代えて処理装置10aを備える。
【0060】
図11は、実施形態2にかかる処理装置10aの機能構成を示すブロック図である。処理装置10aは、基本的に処理装置10と同様の構成および機能を有するが、第2算出部18および第2評価部19と、記憶部16に代えて記憶部16aとを有する点で処理装置10と相違する。なお取得部12は、取得した測定対象の金属表面4からの戻り光強度の情報を、第1算出部13に加えて第2算出部18に供給するものとする。
【0061】
第2算出部18は、測定対象の金属表面4からの戻り光強度の情報に基づいて、第2戻り光強度比を算出する。ここで第2戻り光強度比は、第2基準金属表面からの戻り光強度に対する測定対象の金属表面4からの戻り光強度を示す。なお第2基準金属表面は、凹凸構造密度Dが予め定められた密度閾値以下である凹凸構造を有する金属表面である。凹凸構造密度Dおよび密度閾値については後述する。第2基準金属表面からの戻り光強度の情報は、後述する記憶部16aに、第2基準面情報20として予め記憶されている。第2算出部18は、算出した第2戻り光強度比の情報を第2評価部19に供給する。
【0062】
第2評価部19は、第2戻り光強度比に基づいて測定対象の金属表面4の凹凸構造密度Dを評価する。ここで第2評価部19は、第2戻り光強度比が小さいほど、測定対象の金属表面4の凹凸構造密度Dが高いと評価する。これにより、非接触で金属表面の具体的な凹凸構造密度情報を取得できる。例えば第2評価部19は、第2戻り光強度比が予め定められた範囲内であるか否かを判定することで、試料2の金属表面4の凹凸構造密度Dが合格圏内であるか否かを判定する。そして第2評価部19は、凹凸高さHかつ凹凸構造密度Dが合格圏内である試料2について、良品であると判定する。また第2評価部19は、第2戻り光強度比と第2基準金属表面の凹凸構造密度Dの情報とに基づいて、試料2の金属表面4の凹凸構造密度Dの値を推定してもよい。第2評価部19は、評価した凹凸構造密度Dの情報を出力部15に供給する。
【0063】
記憶部16aは、第1基準面情報17に加えて第2基準面情報20を記憶する。
【0064】
図12は、凹凸構造密度Dを説明するための図である。本図は、試料2の金属表面4の上面図である。凹凸構造密度Dは、凹凸構造の間隔dに基づいて算出され、凹凸構造の間隔dが大きいほど、凹凸構造密度Dは小さい値をとる。本実施形態2では、凹凸構造密度Dは、凹凸構造の間隔dに基づいて算出される単位面積当たりの隙間面積Sの、逆数であってよい。単位面積当たりの隙間面積Sは、凹凸構造の間隔dに基づいて算出される凹凸構造間の隙間面積sと、単位面積当たりの凹凸構造の数とから算出される。
【0065】
(凹凸構造密度Dおよび第2戻り光強度比の関係)
以下では、凹凸構造密度Dおよび第2戻り光強度比の関係について説明する。試料2の作製については、実施形態1と同様であり、パルスレーザの照射条件を変化させることで、異なる凹凸構造密度Dの金属表面を作製する。
【0066】
図13は、異なる凹凸構造密度を有するCu材の戻り光強度を示す図である。本図の横軸は、光源30の照射光の波長[nm]を示し、縦軸は戻り光強度[%]を示す。図の点線は凹凸構造密度Dが高い試料2(「D_高」)の戻り光強度を示し、実線は凹凸構造密度Dが中程度の試料2(「D_中」)の戻り光強度を示し、一点鎖線は凹凸構造密度Dが低い試料2(「D_低」)の戻り光強度を示す。本図では、「D_高」の凹凸構造密度Dは1.22×10、「D_中」の凹凸構造密度Dは73.9、「D_低」の凹凸構造密度Dは1である。つまり本例では「D_低」は、凹凸構造を作製しない場合の試料2である。
【0067】
本図に示すように、光照射による戻り光強度は、ナノオーダーの凹凸構造がある程度密に形成されていれば、短波長になるほどレイリー散乱によって散乱し、表面プラズモン共鳴による吸収により、マクロ的に0に収束していく。しかし短波長領域であっても凹凸構造密度Dが低くなるほど、戻り光強度は高い値を有する。これは、レイリー散乱の効果が小さくなり、鏡面反射光が増えるためである。この傾向は、凹凸高さHの場合と同様に、レイリー散乱が発生し、かつ主成分金属のバルクのエネルギー吸収率が高い波長領域以下の波長領域で、顕著になっている。本図のCu材の場合は、この傾向は、600nm以下で顕著に表れる。なお図示しないが、Al材の場合でも、この傾向は、600nm以下で顕著に表れ、400nm以下でより顕著に表れる。
【0068】
そこで実施形態2では、処理装置10aは、「D_高」および「D_中」のそれぞれの戻り光強度を、「D_低」の戻り光強度で除した値を算出し、これを第2戻り光強度比Rとする。すなわち、本例では、「D_低」の金属表面4が第2基準金属表面となる。しかし第2基準金属表面はこれに限らず、例えば凹凸構造密度Dが50以下、さらに好ましくは10以下の金属表面4であってよい。
【0069】
凹凸構造密度Dの評価用波長は、凹凸高さHの場合と同様に、金属表面4に主成分として含まれる金属のエネルギー吸収率が予め定められた吸収率閾値以上の波長または波長領域であることが好ましい。一例として金属表面4がCu材またはAl材の場合は、評価用波長は、600nm以下である。
【0070】
図14は、実施形態2にかかる処理装置10aの評価処理の手順を示すフローチャートである。本図に示すステップは、図9に示すステップS22に代えて、ステップS30~34を含む。なお図9に示すステップと同様のステップについては、適宜説明を省略する。
【0071】
まずi番目の区間について、処理装置10aの第1評価部14は、第1戻り光強度比Aを算出し、第2算出部18は、第2戻り光強度比Rを算出する(ステップS30)。このとき第2算出部18は、記憶部16の第2基準面情報20と、i番目の区間の戻り光強度の情報とを用いて、第2戻り光強度比Rを算出する。第2戻り光強度比Rの算出方法については、第1戻り光強度比Aの算出方法の説明の、第1基準金属表面を第2基準金属表面に読み替えて、説明を省略する。第1算出部13は、i番目の区間の第1戻り光強度比Aの情報を第1評価部14に供給し、第2算出部18は、i番目の区間の第2戻り光強度比Rの情報を第2評価部19に供給する。
【0072】
次にステップS31において、第2評価部19は、i番目の区間の第2戻り光強度比Rが所定範囲内であるか否かを判定する。本例では、第2評価部19は、i番目の区間の第2戻り光強度比Rが所定数aより大きく、かつ所定数bより小さいか否かを判定する。第2評価部19は、i番目の区間の第2戻り光強度比Rが所定範囲内である場合には(ステップS31でYES)、i番目の区間の凹凸構造密度Dは合格であると判定し(ステップS32)、処理をステップS23に進める。
【0073】
一方、第2評価部19は、i番目の区間の第2戻り光強度比Rが所定範囲外である場合には(ステップS31でNO)、i番目の区間の凹凸構造密度Dは不合格であると判定し(ステップS33)、全体NG率を算出する(ステップS34)。第2評価部19は、全体NG率が所定数cよりも小さいか否かを判定し(ステップS34)、小さい場合(ステップS34でYES)処理をステップS23に進める。一方で、第2評価部19は、全体NG率が所定数c以上である場合(ステップS34でNO)、金属表面4が全体として不良品の粗化面であると判定し(ステップS28)、処理を終了する。
【0074】
なお上述の例において、第2算出部18は、第2戻り光強度Rを算出したが、単に評価用波長における戻り光強度、または戻り光強度の平均値を算出するだけでもよい。
【0075】
また第2評価部19は、第1評価部14と同様に試料2の金属表面が良品または不良品であるかを判定したが、これに代えて、試料2の金属表面4の凹凸構造密度Dの値を推定してもよい。例えば第2評価部19は第1基準金属表面の凹凸構造密度Dおよび第2戻り光強度比Rからi番目の区間の凹凸構造密度Dを推定する。そして第1評価部14は、推定した全区間の凹凸構造密度Dの平均をとることで、試料2の金属表面4全体の凹凸構造密度Dを推定する。
【0076】
このように実施形態2によれば、構造測定システム1は、金属表面4の凹凸構造の高さに加えて凹凸構造密度を非接触で測定できる。そして構造測定システム1は、凹凸構造に応じた戻り光強度比の変化が顕著に表れるように光源30の波長領域を金属表面4に含まれる金属に応じて定めることで、測定精度を向上させることができる。
【0077】
なお、本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば実施形態1~2において、処理装置10,10aは、光源30の照射制御および試料2のステージの移動制御を行うとしたが、本機能は省略されてもよい。
【0078】
また実施形態2では、処理装置10aは、評価対象が凹凸高さHおよび凹凸構造密度Dの両方であったが、これに代えて凹凸構造密度Dのみであってもよい。この場合、処理装置10aの第1算出部13および第1評価部14は、省略されてよい。
【0079】
上述の実施形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、構造測定方法にかかる各種処理を、プロセッサにコンピュータプログラム、例えば処理プログラムを実行させることにより実現することも可能である。
【0080】
上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
【0081】
上述の実施形態ではコンピュータは、パーソナルコンピュータやワードプロセッサ等を含むコンピュータシステムで構成される。しかしこれに限らず、コンピュータは、LAN(ローカル・エリア・ネットワーク)のサーバ、コンピュータ(パソコン)通信のホスト、インターネット上に接続されたコンピュータシステム等によって構成されることも可能である。また、ネットワーク上の各機器に機能分散させ、ネットワーク全体でコンピュータを構成することも可能である。
【符号の説明】
【0082】
1 構造測定システム
2 試料
3 基板
4 金属表面
5 凹凸部
10,10a 処理装置
11 照射制御部
12 取得部
13 第1算出部
14 第1評価部
15 出力部
16,16a 記憶部
17 第1基準面情報
18 第2算出部
19 第2評価部
20 第2基準面情報
30 光源
32 積分球
36 受光器
100 プロセッサ
101 ROM
102 RAM
103 インターフェース部(IF)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14