(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-29
(45)【発行日】2023-09-06
(54)【発明の名称】エレクトロウェッティングデバイス内の液滴界面
(51)【国際特許分類】
G01N 35/08 20060101AFI20230830BHJP
C12Q 1/02 20060101ALI20230830BHJP
C12Q 1/6869 20180101ALI20230830BHJP
C12Q 1/6813 20180101ALI20230830BHJP
G01N 37/00 20060101ALI20230830BHJP
B01J 19/00 20060101ALI20230830BHJP
G01N 1/00 20060101ALI20230830BHJP
C12M 1/00 20060101ALN20230830BHJP
【FI】
G01N35/08 A
C12Q1/02
C12Q1/6869 Z
C12Q1/6813 Z
G01N37/00 101
B01J19/00 321
G01N1/00 101F
C12M1/00 A
(21)【出願番号】P 2021170662
(22)【出願日】2021-10-19
(62)【分割の表示】P 2020533814の分割
【原出願日】2018-12-21
【審査請求日】2021-11-16
(32)【優先日】2017-12-21
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】511252899
【氏名又は名称】オックスフォード ナノポール テクノロジーズ ピーエルシー
(74)【代理人】
【識別番号】100092783
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100120134
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100187964
【氏名又は名称】新井 剛
(72)【発明者】
【氏名】ホールデン,マシュー
(72)【発明者】
【氏名】ホワイト,ジェームズ
(72)【発明者】
【氏名】ヘロン,アンドリュー,ジョン
(72)【発明者】
【氏名】クラーク,ジェームズ,アンソニー
(72)【発明者】
【氏名】ハイド,ジェーソン,ロバート
(72)【発明者】
【氏名】ハドウェン,ベンジャミン,ジェームズ
(72)【発明者】
【氏名】アンダーソン,サリー
【審査官】森口 正治
(56)【参考文献】
【文献】特許第5847858(JP,B2)
【文献】特許第4713306(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 19/00
C12Q 1/02
C12Q 1/6869
C12Q 1/6813
G01N 35/00-37/00
G01N 1/00-1/44
C12M 1/00
(57)【特許請求の範囲】
【請求項1】
液滴界面にわたって測定を行うためのエレクトロウェッティングデバイスであって、前記エレクトロウェッティングデバイスは、
作動電極のアレイを支持する第1の基板と、
前記作動電極を覆い、疎水性表面を有する絶縁層と、
少なくとも2つのセンサ電極の少なくとも1つのセットを支持する第2の基板と
を含み、
前記エレクトロウェッティングデバイスは、
前記第1の基板と前記第2の基板との間に配設された流体媒体と、
前記流体媒体内に懸濁された液体の1つ以上の液滴であって、前記液滴は前記疎水性表面上に配設される、前記液滴とを受容するように配置されており、
前記作動電極は、液滴間に少なくとも1つの液滴界面を有する液滴の少なくとも1つのシステムを形成するために、前記1つ以上の液滴をエレクトロウェッティングし、前記1つ以上の液滴を移動させ、且つ/又は前記1つ以上の液滴の形状を修正するための作動信号を受信するように構成され、
前記少なくとも1つのセットのセンサ電極は、前記液滴の少なくとも1つのシステム中のそれぞれの液滴に電気的に接触するように、前記第2の基板上に配置され
、
前記エレクトロウェッティングデバイスは、
構成(i)、前記センサ電極は、前記作動電極が作動信号を受信する間に基準信号を受信する、又は、
構成(ii)前記第2の基板は、前記作動電極が作動信号を受信する間に基準信号を受信する少なくとも1つのさらなる電極をさらに支持する、
を含む、前記エレクトロウェッティングデバイス。
【請求項2】
前記第2の基板は、前記第1の基板の面とほぼ平行な面に配置され、前記第1の基板とは間隔を空けて配置されている、請求項1に記載のエレクトロウェッティングデバイス。
【請求項3】
前記作動電極に接続され、前記疎水性表面上の前記液滴を操作するために、前記作動電極に作動信号を印加するように構成された制御システムをさらに含む、請求項1又は2に記載のエレクトロウェッティングデバイス。
【請求項4】
前記制御システムは、前記作動電極に作動信号を印加して、前記少なくとも1つのセットされたセンサ電極と電気的に接触する前記液滴の少なくとも1つのシステムを形成するように構成されている、請求項3に記載のエレクトロウェッティングデバイス。
【請求項5】
前記エレクトロウェッティングデバイスは、前記構成(i)を含み、前記制御システムは、前記作動電極に作動信号を印加しながら、前記センサ電極に基準信号を印加するように配置されている、請求項
3または4に記載のエレクトロウェッティングデバイス。
【請求項6】
前記制御システムは、2つの液滴間の界面に液滴界面を形成するように選択された前記作動電極に作動信号を印加するように構成されている、請求項3~5のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項7】
前記エレクトロウェッティングデバイスは、前記構成(ii)を含み、前記制御システムは、前記さらなる電極に接続されており、前記作動電極に作動信号を印加しながら、前記さらなる電極に基準信号を印加するように配置されている、請求項3~6のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項8】
前記さらなる電極は、前記第1の基板に面する前記第2の基板の表面上に堆積されている、請求項7に記載のエレクトロウェッティングデバイス。
【請求項9】
前記さらなる電極は、前記センサ電極の周りに延在する、請求項8に記載のエレクトロウェッティングデバイス。
【請求項10】
前記センサ電極に接続され、かつ液滴界面を形成するそれぞれの液滴に電気的に接続されているセンサ電極間で電気測定を行うように構成されたセンサシステムをさらに含む、請求項1~9のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項11】
前記電気測定は、インピーダンス測定を含む、請求項10に記載のエレクトロウェッティングデバイス。
【請求項12】
前記センサシステムは、中に挿入された膜貫通孔を有する両親媒性分子の膜を含む液滴界面にわたって、それぞれの液滴間の接触を行うそれぞれのセンサ電極間で電気測定を行うように構成されている、請求項
10または11に記載のエレクトロウェッティングデバイス。
【請求項13】
前記電気測定は、膜貫通孔を通る液滴間のイオン流の測定である、請求項12に記載のエレクトロウェッティング。
【請求項14】
前記センサシステムは、それぞれの対のセンサ電極間の電位差を印加しながら前記電気測定を行うように配置されている、請求項12または13に記載のエレクトロウェッティングデバイス。
【請求項15】
前記センサシステムは、前記膜貫通孔と相互作用する分析物に依存する電気測定を行うように配置されている、請求項12~14のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項16】
前記センサシステムは、前記電気測定を処理して、前記分析物を分析するように構成された分析システムをさらに含む、請求項15に記載のエレクトロウェッティングデバイス。
【請求項17】
前記分析物は、ポリマー単位を含むポリマーであり、前記分析システムは、前記電気測定を処理して、前記ポリマーの前記ポリマー単位の推定同一性を導き出すように構成されている、請求項16に記載のエレクトロウェッティングデバイス。
【請求項18】
前記第2の基板は、少なくとも2つのセンサ電極の複数のセットを支持する、請求項1~17のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項19】
前記絶縁層は、前記疎水性表面を形成する疎水性材料によってコーティングされた電気絶縁材料の層を含む、請求項1~18のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項20】
前記センサ電極は、前記第1の基板に面する前記第2の基板の表面上に堆積されている、請求項1~19のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項21】
前記第2の基板の前記表面上に堆積され、センサシステムに電気接続を提供するために、前記センサ電極に接続された導電性トラックをさらに含む、請求項20に記載のエレクトロウェッティングデバイス。
【請求項22】
前記第2の基板は、前記絶縁層の前記疎水性表面に面するさらなる疎水性表面を形成する疎水性材料によってコーティングされており、前記エレクトロウェッティングデバイスは、前記第2の基板をコーティングする前記疎水性材料の前記さらなる疎水性表面、および前記絶縁層の前記疎水性表面上に配設された、前記流体媒体および前記液滴を受容するように配置され、
前記第2の基板をコーティングする前記疎水性材料は、前記センサ電極の少なくとも一部を露出する開口部を有する、請求項1~21のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項23】
前記第2の基板は、少なくとも1つのさらなる電極をさらに支持する、請求項21又は22に記載のエレクトロウェッティングデバイス。
【請求項24】
前記さらなる電極は、前記第1の基板に面する前記第2の基板の表面上に堆積されている、請求項23に記載のエレクトロウェッティングデバイス。
【請求項25】
前記さらなる電極は、前記センサ電極の周りに延在する、請求項24に記載のエレクトロウェッティングデバイス。
【請求項26】
前記エレクトロウェッティングデバイス内に受容された、前記流体媒体および前記流体媒体内の液体を含む2つの液滴をさらに含む、請求項1~25のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項27】
前記液体および前記流体媒体のうちの一方は、極性であり、前記液体および前記流体媒体のうちの他方は、無極性であり、前記液滴は、前記液滴の前記液体と前記流体媒体との間の前記界面に両親媒性分子をさらに含み、前記液滴界面は、両親媒性分子の膜を含む、請求項26に記載のエレクトロウェッティングデバイス。
【請求項28】
前記液体は、極性であり、前記流体媒体は、無極性である、請求項27に記載のエレクトロウェッティングデバイス。
【請求項29】
前記流体媒体は、液体媒体である、請求項
27または28に記載のエレクトロウェッティングデバイス。
【請求項30】
前記液滴のうちの少なくとも1つは、両親媒性分子の前記膜中に挿入することができる膜貫通孔を含む、請求項
27~29のいずれか一項に記載のエレクトロウェッティングデバイス。
【請求項31】
前記液滴のうちの少なくとも1つは、前記膜貫通孔と相互作用することができる分析物を含む、請求項30に記載のエレクトロウェッティングデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
いくつかの態様において、本発明は、エレクトロウェッティングデバイスに関し、流体媒体内の液体の液滴間に液滴界面を形成するためのそれらの使用に関する。いくつかの態様において、本発明は、エレクトロウェッティングデバイスに関し、それらの使用は、エレクトロウェッティングを使用して形成された液滴界面上で測定することである。
【背景技術】
【0002】
流体媒体内の液体の液滴を操作するための、エレクトロウェッティングデバイス、例えば誘電体上のエレクトロウェッティング(EWOD)デバイスは、既知である。
【0003】
これをより詳細に考慮すると、誘電体上のエレクトロウェッティングは、例えば、US2016/0305906に開示されるように、電界の印加によって流体の液滴を操作するための周知の技術である。EWODデバイスの例示的な構成および動作は、以下の文献に記載されている。US6,911,132は、2次元の液滴の位置および移動を制御するための2次元EWODアレイを開示する。US6,565,727は、液滴の分割および合流、ならびに異なる材料の液滴の混合を含む、他の液滴動作のための方法を開示する。US7,163,612は、薄膜トランジスタ(TFT)を含む薄膜電子機器に基づくアクティブマトリクス(AM)配置が、AMディスプレイ技術に用いられるものと同様の回路配置を使用して、EWODデバイスへの電圧パルスのアドレス決定を制御するために、どのように使用され得るかを記載する。この一般的な種類のデバイスは、AM-EWODデバイスと呼ばれ得る。
【0004】
EWODデバイスを使用して、かかる液滴を操作して、例えば両親媒性分子の膜を含む、液滴間の液滴界面を形成することが提案されている。それは、液滴界面自体、およびまた液滴界面で発生するプロセスを研究するための潜在的に有用なシステムを提供する。特定の関心を有する一例では、かかるプロセスは、膜貫通孔の挿入、およびそれに続くイオン電流など特性の測定を含み得、測定は、分析物とかかる膜貫通孔との相互作用に依存し得る。
【0005】
両親媒性分子の膜、例えば人工平面脂質二重層は、生体膜の単純化モデルとして機能し得、膜貫通タンパク質ポア、例えばイオンチャネルなど膜貫通孔の特徴付けを含む様々なプロセスの研究のために広く使用される。イオンチャネルは、生物学において細胞膜にわたる特定のイオンの移動を選択的に制御する、膜貫通タンパク質ポアの多様な群であり、多種多様な生物学的プロセスの基本である電圧および電気化学的勾配を確立する。
【0006】
個々のタンパク質ポアの単一チャネル記録(SCR)は、チャネルタンパク質機能を研究する強力な手段である。単一チャネル記録は、単一のタンパク質チャネルを通るイオン電流の変化を測定し、単一分子レベルで電圧依存性、ゲーティング挙動、リガンド結合親和性、およびイオン選択性を調べ得る。Montal,M.&Mueller,P.1972.Proceedings of the National Academy of Sciences of the United States of America 69,3561-3566)によって開示されるように、脂質二重層を形成するための様々な方法を採用してもよい。平面脂質二層は、広く使用されているが、調製することが困難であり、その短い寿命は、多くの状況での使用を禁止する。
【0007】
したがって、両親媒性分子の他の膜が提案されている。平面脂質二重層の代替物が開示され、例えば、両親媒性分子の二重層を形成する方法を開示するWO2008/012552は、油など疎水性媒体中の水溶液の液滴を使用する。
【0008】
それぞれのイオンチャネルタンパク質ポアまたはナノポアを含む両親媒性分子の個々の懸濁膜のアレイは、提供され得、例えばWO2014/064443に開示される。両親媒性膜のいずれかの側に提供される2つの水溶液間のイオン電流は、ポリヌクレオチドなど分析物を特徴付けるために測定され得、ポリヌクレオチドシークエンスを判定することができるナノポアアレイを含むMinION (商標)など商用デバイスは、Oxford Nanopore Technologies Ltd.によって販売されている。
【0009】
したがって、互いに接触している液滴間の液滴界面は、両親媒性分子の膜を形成する代替的な方法である。両親媒性分子の二重層によって形成されるかかる膜は、液滴界面二重層(DIB)と呼ばれ得る。複数の膜は、複数の対の液滴間の界面において形成され得る。DIBを形成するための技術は、例えば、Leptihn et al,Nature Protocols 8,1048-1057(2013)に開示されており、DIBは、そこに挿入された膜貫通孔の研究のために使用され得る。例えば、Martel et al.,Biomicrofluidics 6,012813(2012)は、タンパク質チャネルが挿入された液滴界面二重層を形成するためのマイクロ流体デバイスを開示する。金マイクロワイヤは、膜チャネルを通るイオン電流の測定を行うために、各液滴と電気的に接触するために、Ag/AgClパッドが設けられた作動電極を含む基板上に堆積された。
【0010】
本発明の第1の態様は、エレクトロウェッティングデバイス内に液滴界面を形成するための方法およびデバイスに関する。
【0011】
本発明の第1の態様によれば、エレクトロウェッティングデバイス内に液滴界面を形成する方法が提供され、エレクトロウェッティングデバイスは、作動電極のアレイと、作動電極を覆い、最外疎水性表面を有する絶縁層と、疎水性表面上に配設された、流体媒体および流体媒体内の液体を含む2つの液滴であって、液体および流体媒体のうちの一方は、極性であり、液体および流体媒体のうちの他方は、無極性である、流体媒体および2つの液滴と、を含み、これにより、作動電極は、作動信号がそれらに印加されるときに、液滴をエレクトロウェッティングすることができ、方法は、選択された作動電極に作動信号を印加して、2つの液滴のうちの一方または両方を、より低いエネルギー状態にあるときと比較して、一方または両方の液滴の形状が修飾される通電状態に配置し、かつ2つの液滴をその間の隙間を伴って近接させることであって、隙間は、2つの液滴が、一方または両方が通電状態にあるときに互いに接触せず、より低いエネルギー状態にあるときに液滴界面を形成するように互いに接触するように選択される、印加することと、作動電極に印加された作動信号を変更して、一方または両方の液滴のエネルギーをより低いエネルギー状態に低下させ、したがって一方または両方の液滴が、隙間内に弛緩し、2つの液滴が、互いに接触し、それによって液滴界面を形成することと、を含む。
【0012】
この方法は、作動電極のアレイと、作動電極を覆い、最外疎水性表面を有する絶縁層とを含むエレクトロウェッティングデバイスに適用される。かかるエレクトロウェッティングデバイスにおいて、流体媒体および流体媒体内の液体を含む2つの液滴は、疎水性表面上に配設され得る。作動電極は、作動信号がそれらに印加されるときに、液滴をエレクトロウェッティングすることができ、それによって、作動信号の選択による液滴の操作を可能にする。
【0013】
方法は、2つの液滴間に液滴界面を形成するための確実性の高い技術を提供する。本方法では、作動信号は、2つの段階で作動電極に印加される。最初の段階では、印加された作動信号は、2つの液滴の一方または両方を通電状態に配置するように選択されたパターンを有する。その結果、一方または両方の液滴の形状は、より低いエネルギー状態にあるときと比較して、修飾される。かかる通電状態において、2つの液滴は、その間の隙間を伴って近接される。隙間は、2つの液滴が、一方または両方が通電状態にあるときに互いに接触せず、より低いエネルギー状態にあるときに液滴界面を形成するように互いに接触するように選択される。
【0014】
次の段階では、印加された作動信号は、変更されて、一方または両方の液滴のエネルギーをより低いエネルギー状態に低下させる。その結果、一方または両方の液滴は、隙間内に弛緩し、2つの液滴は、互いに接触する。それによって、液滴界面は、2つの液滴間に形成される。したがって、一方または両方の液滴の表面の移動は、通電状態の弛緩によって引き起こされ、それは、受動的プロセスである。
【0015】
このプロセスは、液滴全体を互いに移動させる作動信号を印加することによって、2つの液滴を直接接触させようとするのと比較して、液滴界面の形成の確実性を向上させる。かかる方法は、原則的に可能であり得るが、液滴は、融合(すなわち、合流)する傾向を有し、液滴間の界面を維持することは困難である。
【0016】
方法は、2つの液滴のうちの1つだけを通電状態に置くことによって適用され得るが、好ましくは、両方の液滴は、通電状態に置かれる。その結果、両方の液滴の表面は、隙間内に弛緩し、互いに接触して液滴界面を形成する。このように、両方の液滴の弛緩を使用して、液滴界面を形成し、それは、形成の確実性をさらに増加させる。
【0017】
一方または両方の液滴の通電状態において、表面の所望の弛緩が液滴界面を形成することを可能にする液滴の任意の形状が選択され得る。様々な形状が可能であるが、有利には、エレクトロウェッティングデバイスの平面視において、通電状態における液滴の形状は、細長い。同様に、通電状態における液滴の接触線の形状は、細長い。その場合、液滴間の隙間は、細長い形状の主要な長さに沿って延在し得、それにより、弛緩時に、主要な長さに沿って延在する液滴の表面は、隙間内に移動し、他の液滴に接触し得る。
【0018】
細長い形状が使用される場合、通電状態における液滴の形状は、少なくとも2:1、好ましくは少なくとも4:1、または少なくとも8:1のアスペクト比を有し得る。概して、アスペクト比を増加させることは、少なくとも1つの液滴の表面の移動度を増加させ、それは、液滴を接触させることを支援する。
【0019】
作動電極に作動信号を印加するステップ中、2つの液滴は、2つの液滴の重心に近接され、2つの液滴の重心は、液滴のより低いエネルギー状態において、2つの重心の間の線に沿った液滴の組み合わされた半径未満の距離だけ分離されている。
【0020】
方法は、より低いエネルギー状態における液滴の接触線によって囲まれた領域が、少なくとも2個の作動電極、好ましくは少なくとも5個の作動電極、少なくとも10個の作動電極、または少なくとも20個の作動電極を覆うエレクトロウェッティングデバイスに有利に適用され得る。一般に、エレクトロウェッティングデバイスの設計において、液滴が覆う作動電極が多ければ多いほど、液滴の通電状態における形状の制御の解像度は、良好である。それは、次いで、少なくとも1つの液滴の表面の移動の程度を増加させることを可能にし、液滴を接触させることを支援する。
【0021】
1つ以上の液滴を通電させるように選択される作動信号は、交互(AC)作動電圧信号であり得る。一般に、エレクトロウェッティングデバイスにおけるAC作動信号の使用は、液滴を操作するために有利であることが知られている。その場合、好ましくは、選択された作動電極に印加される作動信号を変更するステップは、選択された作動電極に、AC作動信号の代わりに、DC電位または浮動電位を印加することを含み得る。これは、DC電位または浮動電位が、AC作動信号が維持される場合よりも、液滴界面を破裂させる可能性が低いため、液滴界面の形成の確実性を向上させる。
【0022】
方法は、エレクトロウェッティングデバイスに適用され得、絶縁層は、疎水性表面を形成する疎水性材料によってコーティングされた電気絶縁材料層を含む。
【0023】
方法は、絶縁層の疎水性表面に面する第2の基板をさらに含むエレクトロウェッティングデバイスに適用され得、第2の基板は、絶縁層の疎水性表面に面するさらなる疎水性表面を形成する疎水性材料によってコーティングされている。この場合、液滴は、疎水性層のさらなる疎水性表面、および絶縁層の疎水性表面上に配置され得る。このように、液滴は、2つの基板の間に挟まれており、それによって液滴の形状が制約される。これにより、通電状態とより低いエネルギー状態との間の液滴の形状の制御度が向上し、次いで、液滴界面の形成の確実性が向上する。
【0024】
さらに、第2の基板は、液滴界面が形成されている液滴と電気的に接続するセンサ電極を支持し得る。
【0025】
方法は、作動電極に接続されているアクティブマトリクス配置をさらに含むエレクトロウェッティングデバイスに適用され得る。
【0026】
方法は、2つの液滴間に単一の液滴界面のみを形成するように適用され得るが、同様に方法は、疎水性表面上に配置された1つ以上のさらなる液滴と共に適用され得、作動電極に作動信号を印加するステップおよび変更するステップは、複数の対の液滴の間に複数の液滴界面を形成するように実行され得る。
【0027】
液滴界面の形成後、電気測定は、液滴界面にわたって液滴間で行われ得る。例えば、電気測定は、膜貫通孔を通る、液滴間のイオン流の測定値であり得る、および/または液滴間の電位差を印加しながら行われ得る。
【0028】
さらに本発明の第1の態様によれば、上記と同様の方法を実装する、液滴界面を形成するためのエレクトロウェッティングデバイスが提供される。
【0029】
本発明の第2の態様は、エレクトロウェッティングデバイス内に形成され、液滴間に1つ以上の液滴界面を有する液滴のシステム内のそれぞれの液滴と電気的に接続することに関する。かかる電気的接続は、例えば、エレクトロウェッティングデバイスにおける様々な液滴動作を実行するときの液滴の大きさまたは位置など、液滴の特性を検知する目的、または液滴界面にわたって測定を行う目的を有し得る。
【0030】
US2010/0,194,408は、作動電極における液滴の存在、部分的存在、または不在を判定するための、とりわけ液滴アクチュエータ上の容量を検出するための方法、回路、および装置を開示する。US8,653,832は、AM-EWODデバイスの各アレイ素子のアレイ素子回路にインピーダンス(または容量)検知機能をどのように組み込み得るかを記載し、インピーダンスセンサ回路は、アレイ内の各電極に存在する液滴の存在および大きさを判定するために使用され得る。しかしながら、これらのアプローチは、作動信号が印加される同じ電極から信号を取得する必要性によって制限される。
【0031】
Martel et al.,Biomicrofluidics 6,012813(2012)は、タンパク質チャネルが挿入された液滴界面二重層を形成するためのマイクロ流体デバイスを開示し、そこでは、金マイクロワイヤは、膜チャネルを通って流れるイオン電流の測定を行うために、各液滴と電気的に接触するために、Ag/AgClパッドが設けられた作動電極を含む基板上に堆積された。しかし、この構造は、不便であり、製造することが困難であるだけでなく、測定を行う確実性を制限し、技術の拡張性を制限する。
【0032】
本発明の第2の態様によれば、液滴界面にわたって測定を行うためのエレクトロウェッティングデバイスが提供され、エレクトロウェッティングデバイスは、作動電極のアレイを支持する第1の基板と、作動電極を覆い、疎水性表面を有する絶縁層と、絶縁層の疎水性表面に面し、少なくとも2つのセンサ電極の少なくとも1つのセットを支持する第2の基板と、を含み、エレクトロウェッティングデバイスは、疎水性表面上に配設された流体媒体および流体媒体内の液体を含む液滴を受容するように配置されており、作動電極は、液滴間に1つ以上の液滴界面を有する液滴の少なくとも1つのシステムを形成するために、受容された液滴をエレクトロウェッティングするための作動信号を受信するように構成され、各セットのセンサ電極は、液滴の少なくとも1つのシステム内のそれぞれの液滴と電気的に接続するように構成されている。
【0033】
したがって、エレクトロウェッティングデバイスにおいて、センサ電極は、作動電極を覆う絶縁層の疎水性表面に面する第2の基板上に設けられている。かかるセンサ電極は、少なくとも2つのセンサ電極の少なくとも1つのセットに配置されており、各セットのセンサ電極は、液滴のシステム内のそれぞれの液滴と電気的に接続するように構成されている。これにより、液滴と電気的に接続するための便利かつ確実性の高い方法を提供する。
【0034】
第2の基板は、絶縁層の疎水性表面に面するさらなる疎水性表面を形成する疎水性材料によってコーティングされ得る。その場合、エレクトロウェッティングデバイスは、疎水性層のさらなる疎水性表面、および絶縁層の疎水性表面上に配置される、流体媒体および液滴を受容するように配置され得る。このように、液滴は、2つの基板の間に挟まれており、それによって液滴の形状が制約される。これにより、作動電極に印加された作動信号による液滴の制御度が向上する。
【0035】
第2の基板が疎水性材料によってコーティングされている場合、第2の基板をコーティングする疎水性材料は、センサ電極の少なくとも一部を露出する開口部を有し得る。これにより、センサ電極と液滴との間の電気的接続が向上する。
【0036】
第2の基板は、少なくとも1つのさらなる電極をさらに支持し、少なくとも1つのさらなる電極は、例えば、液滴を操作するために作動信号が作動電極に印加されている間に、基準信号を受信するための電極である。
【0037】
センサ電極、および設けられる場合、さらなる電極は、第1の基板に面する第2の基板の表面上に堆積され得る。その場合、さらなる電極は、設けられる場合、センサ電極の周りに延在し得る。
【0038】
エレクトロウェッティングデバイスは、制御システムをさらに含み得、制御システムは、作動電極に接続されており、受容された液滴を操作するために、作動電極に作動信号を印加するように構成されている。
【0039】
制御システムは、作動電極に作動信号を印加しながら、センサ電極、および/または設けられる場合、さらなる電極に基準信号を印加するように構成され得る。
【0040】
制御システムは、2つの液滴間の界面に液滴界面を形成するように選択された作動電極に作動信号を印加するように構成され得る。
【0041】
エレクトロウェッティングデバイスは、センサシステムをさらに含み得、センサシステムは、センサ電極に接続され、液滴界面を形成するそれぞれの液滴に電気的に接続されているセンサ電極間で、例えばインピーダンス測定を含む電気測定を行うように構成されている。かかる電気測定は、液滴のシステム内の2つの液滴間の液滴界面にわたって行われ得る。
【0042】
センサシステムは、中に挿入された膜貫通孔を有する両親媒性分子の膜を含む液滴界面にわたって、それぞれの液滴間の接触を行うそれぞれのセンサ電極間で電気測定、例えば膜貫通孔を通る、液滴間のイオン流の測定、および/または膜貫通孔と相互作用する分析物に依存する電気測定を行うように構成され得る。
【0043】
センサシステムは、分析システムをさらに含み得、分析システムは、電気測定を処理して、膜貫通孔と相互作用する分析物を分析するように構成されている。例えば、分析物がポリマー単位を含むポリマーである場合、分析システムは、電気測定を処理して、ポリマーのポリマー単位の推定同一性を導き出すように構成され得る。
【0044】
本発明の第3の態様は、液滴界面上で実験を行うためのエレクトロウェッティングデバイスの使用に関する。
【0045】
本発明の第3の態様によれば、液滴界面上で実験を行うための装置が提供され、装置は、作動電極のアレイと、作動電極を覆い、最外疎水性表面を有する絶縁層とを含むエレクトロウェッティングデバイスであって、エレクトロウェッティングデバイスは、疎水性表面上に配設された、流体媒体および流体媒体内の液体を含む液滴を受容するように配置されている、エレクトロウェッティングデバイスと、受容された液滴を操作するように、かつ液滴間に1つ以上の液滴界面を有する液滴の少なくとも1つのシステムを形成するように選択された作動電極に作動信号を印加するように構成された制御システムと、液滴界面にわたって、形成されたシステム内の液滴間で電気測定を行うように構成されたセンサシステムと、を含む。
【0046】
かかる装置は、液滴界面上で実験を行うのに適している。
【0047】
装置は、液滴界面が形成され得るエレクトロウェッティングデバイスを含む。エレクトロウェッティングデバイスは、作動電極のアレイと、作動電極を覆い、最外疎水性表面を有する絶縁層とを含む。エレクトロウェッティングデバイスは、疎水性表面上に配設された、流体媒体および流体媒体内の液体を含む液滴を受容し得る。
【0048】
装置はさらに、受容された液滴を操作するように、かつ液滴間に1つ以上の液滴界面を有する液滴の少なくとも1つのシステムを形成するように選択された作動電極に作動信号を印加するように構成された制御システムを含む。したがって、制御システムの使用は、エレクトロウェッティングデバイス内に液滴界面を形成することを可能にする。
【0049】
装置は、液滴界面にわたって、形成されたシステム内の液滴間で電気測定を行うように構成されたセンサシステムを含み、それによって形成された液滴界面上で実験が行われることを可能にする。
【0050】
液滴界面の形成後、液滴界面にわたって、液滴間で様々な種類の電気測定が行われ得る。例えば、電気測定は、膜貫通孔を通る、液滴間のイオン流の測定であり得、および/または液滴間の電位差を印加しながら行われ得る。
【0051】
センサシステムは、分析システムをさらに含み得、分析システムは、電気測定を処理して、膜貫通孔と相互作用する分析物を分析するように構成されている。例えば、分析物がポリマー単位を含むポリマーである場合、分析システムは、電気測定を処理して、ポリマーのポリマー単位の推定同一性を導き出すように構成され得る。
【0052】
有利には、制御システムは、センサシステムによって行われる電気測定に応答して、液滴の少なくとも1つの形成されたシステムを修飾するように配置され得る。装置がセンサシステムからのフィードバックに基づいて、液滴の形成されたシステムを修飾する能力は、それによって装置が適応的に液滴界面上で実験を実行することを可能にするため、大きな利点を提供する。
【0053】
制御システムが応答するセンサシステムの出力は、電気測定自体を含み得る。これは、測定される電気的特性に基づいて行われる実験の第1の種類の制御を提供する。電気的特性は、液滴界面の形成、およびそこで生じる反応など関連するプロセスの基本であるため、この第1の種類の制御によって、これらのプロセスが検討され、適応的に修飾されることを可能にする。
【0054】
代替的に、センサシステムは、電気測定を処理するように構成された分析システムを含み、センサシステムの出力は、分析システムの出力を含む。これは、分析に基づいて行われる実験の第2の種類の制御を提供する。かかる分析により、例えば分析される分析物に関するより高いレベルの情報が得られることを可能にするため、この第2の種類の制御は、分析の結果に基づいて強力な実験的適応を提供する。
【0055】
行われ得る制御の種類は、広範であり、それによって強力な実験装置を提供する。いくつかの非限定的な例は、以下の通りである。
【0056】
液滴の形成されたシステムは、システム内の液滴界面を分離することによって修飾され得る。
【0057】
液滴の形成されたシステムは、新しい液滴を液滴のシステム内の現在の液滴と接触させるように移動させ、新しい液滴と現在の液滴との間に液滴界面を形成することによって修飾され得る。
【0058】
液滴の形成されたシステムは、新しい液滴を液滴のシステム内の現在の液滴と接触させるように移動させ、新しい液滴と現在の液滴を融合させることによって修飾され得る。その場合、新しい液滴は、液滴の液体と流体媒体との間の界面に両親媒性分子を含まないことがあり得る。
【0059】
有利には、制御システムは、液滴の複数のシステムを並列に形成するように選択された作動電極に作動信号を印加するように配置され得る。これは、装置が、互いに並列な複数のシステム上で実験を行うことを可能にし、それによって装置の実験スループットを増加させる。
【0060】
装置は、エレクトロウェッティングデバイスの疎水性表面上に配設された液滴を流体媒体内に形成するように構成された液滴調製システムをさらに含み得る。この場合、制御システムは、液滴調製システムを制御して、液滴を形成するように構成され得る。これは、適切な試薬を含む液滴が実験目的のために形成されることを可能にするため、装置の実験力を増加させる。
【0061】
本発明の第1の態様~第3の態様は、例えば同じデバイスまたは装置内で一緒に実装され得る。したがって、本発明の第1の態様~第3の態様の好ましい特徴は、任意の組み合わせで組み合わされ得、これらのうちのいくつかは、以下の従属クレームで定義される。
【0062】
より良い理解を可能にするために、本発明の実施形態は、添付の図面を参照して非限定的な実施例として説明される。
【図面の簡単な説明】
【0063】
【
図1-2】
図1は、AM-EWODデバイスを含む装置の概略図である。
図2は、AM-EWODデバイスの概略斜視図である。
【
図3-4】
図3は、AM-EWODデバイスの一部分の断面側面図である。
図4A~4Bは、それぞれ、液体液滴が存在する場合および存在しない場合の、作動電極において提示される電気負荷の回路表現の図である。
【
図5-6】
図5は、AM-EWODデバイス内の薄膜電子機器の平面図である。
図6は、AM-EWODデバイスのアレイ素子回路の図である。
【
図7-9】
図7は、AM-EWODデバイスの第2の基板上に形成された導電性材料の層の平面図である。
図8~9は、液滴間に液滴界面を形成する方法の連続する段階中の、AM-EWODデバイス内の作動電極のアレイ上の一対の液滴の平面図である。
【
図10-16】
図10~12は、液滴間に液滴界面を形成する方法の連続する段階中の、AM-EWODデバイス内の作動電極のアレイ上の一対の液滴の平面図である。
図13は、3つの液滴の2つのシステムを形成するそれぞれの方法の平面図である。
図14は、3つの液滴の2つのシステムを形成するそれぞれの方法の平面図である。
図15は、液滴のそれぞれのシステムの平面図である。
図16は、液滴のそれぞれのシステムの平面図である。
【
図17-20】
図17Aは、AM-EWODデバイス内の作動電極のアレイの2つの画像である。
図17Bは、AM-EWODデバイス内の作動電極のアレイの2つの画像である。
図18は、AM-EWODデバイス内の導電性材料のパターン化された層の図である。
図19は、2つの液滴の3つのシステムが形成されているAM-EWODデバイス内の作動電極のアレイの画像である。
図20は、3つの液滴の2つのセットの、液滴間の2つの液滴界面の形成前後の画像である。
【
図21-23】
図21は、AM-EWODデバイスにおける液滴界面の形成、分離、および再形成中の、電流および電圧の電気測定のプロットである。
図22は、AM-EWODデバイス内の2つの液滴のシステムの画像である。
図23は、
図22の液滴のシステムにおいて得られた電流信号のトレースである。
【
図24-25】
図24は、DNAが、AM-EWODデバイス内の2つの液滴のシステムにおいて、ポアを通って転移する実験中の、電流および電圧の電気測定のプロットである。
図25は、6つの転移事象についての、電流の電気測定のプロットである。
【0064】
装置全体
図1は、液滴界面を形成するための、およびその上で実験を行うための装置30を例解する。装置30は、リーダ32、およびリーダ32に挿入され得るカートリッジ33を含む。カートリッジ33は、エレクトロウェッティングデバイスの一例であるAM-EWODデバイス34を含む。AM-EWODデバイス34は、
図2に示され、以下にさらに説明される。
【0065】
リーダ32およびカートリッジ33は、例えば接続ワイヤ42のケーブルによって、使用中に一緒に電気的に接続され得るが、電気通信を提供する様々な他の方法(例えば、無線接続)が使用され得る。
【0066】
リーダ32はまた、液滴調製システム35も含み、液滴調製システム35は、カートリッジ33が挿入されるときに、AM-EWODデバイス34内の流体媒体60内の液体を含む液滴1を形成するように構成されている。液滴1および流体媒体60に好適な材料特性は、以下に論じられている。液滴調製システム35はまた、試料調製を行って、測定される分析物を調製することが可能であり得、代替的に試料調製は、AM-EWODデバイス34内で実施され得る。試料は、ライブラリ調製のため、またはシークエンシングのために区分され得る。
【0067】
液滴調製システム35は、流体入力ポートを含み得、流体入力ポートは、1つ以上の貯蔵器からAM-EWODデバイス34に液体を入力し、それによってAM-EWODデバイス34内に液滴を生成する機能を実行する。液滴調製システム35は、例えば、エレクトロウェッティングによって液体の流れを制御する従来の流体光学素子によって形成され得る。液滴調製システム35は、所望により、作成された液滴1の体積を正確に制御する能力を有し、典型的には、2~3%まで正確である。典型的には、液滴は、1nL~10μLの間のそれぞれの体積を有し得る。
【0068】
装置30は、リーダ32に設けられた制御システム37をさらに含む。この例では、制御システム37は、制御電子機器38、およびシステムに関連付けられた任意のデータを任意のアプリケーションソフトウェアに記憶し得る記憶装置40を含む。制御電子機器38は、CPU、マイクロコントローラ、またはマイクロプロセッサなどAM-EWODデバイス34の制御に関連する様々な制御動作を実行するように構成されている好適な回路および/または処理デバイスを含み得る。
【0069】
それらの機能のうち、本発明の特徴を実装するために、制御電子機器38は、記憶装置40内で制御アプリケーションとして具現化されたプログラムコードを実行し得る全体の制御システム37の一部を含み得る。記憶装置40は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、消去可能でプログラマブルな読み出し専用メモリ(EPROMまたはフラッシュメモリ)、または任意の他の好適な媒体など非一時的なコンピュータ可読媒体として構成され得る。また、例示的な実施形態に従って、コードは、制御電子機器38によって実行され得るが、かかる制御システム機能性はまた、専用ハードウェア、ファームウェア、ソフトウェア、またはそれらの組み合わせを介して実行され得る。
【0070】
以下により詳細に記載されるように、制御システム37は、液滴調製システム35の制御を含む装置1の様々な素子の制御を実行して液滴1を形成するように、および液滴を操作するために作動信号の印加の制御を実行するように構成されている。特に、制御システム37は、2つ以上の液滴1の1つ以上のシステムを形成するように構成されている。液滴1のまたは各システム内で、1つ以上の液滴界面は、それぞれの対の液滴1の間に形成されている。制御システム37はまた、ユーザにグラフィカルユーザインターフェース(GUI)を提供し得、それは、ユーザに、液滴動作(例えば、液滴を移動させる)、アッセイ動作(例えば、アッセイを実行する)などプログラムコマンドの入力を提供し、かかる動作の結果をユーザに表示することを提供する。
【0071】
エレクトロウェッティングデバイス
図2および
図3は、AM-EWODデバイス34を例解する。
【0072】
図2に見られるように、AM-EWODデバイス34は、第1の基板44(
図2および
図3において最下基板である)を有し、薄膜電子機器46は、第1の基板44上に配設されている。作動電極48のアレイ50は、薄膜電子機器46の上で第1の基板46によって支持されている。薄膜電子機器46は、作動電極48を駆動するように配置されている。
【0073】
作動電極48のアレイ50は、X×Y長方形アレイであり得、XおよびYは、任意の整数である。作動電極48は、例えば、酸化インジウムスズ(ITO)または別の透明金属酸化物、あるいは金属、あるいは任意の他の導電性材料から形成され得る。
【0074】
AM-EWODデバイス34は、第1の基板を有し、また、第1の基板44からスペーサ56によって分離された第2の基板54(
図2および3において最上基板である)を含む。以下でさらに記載するように、液滴1は、第1の基板44と第2の基板54との間に配設されている。単一の液滴が、
図2および3に示されているが、一般に、複数の液滴1が存在する。
【0075】
AM-EWODデバイス34の積層構造は、
図3に最もよく見られ、
図3は、第1の基板44によって支持された2つの作動電極48を含むその一部を例解する。作動電極48は、導電性材料のパターン化された層から形成され得る。
【0076】
疎水性材料64によってコーティングされた電気絶縁材料の層62を含む絶縁層61は、第1の基板44上に配置されており、作動電極48を覆う。疎水性材料64は、絶縁層61の最外疎水性表面を形成する。
【0077】
第2の基板54は、絶縁層61の疎水性表面に面する。第2の基板54は、絶縁層61に面する第2の基板54の表面上に堆積されている導電性材料の層58を支持する。導電性材料の層58は、より詳細に記載されるように、より多くの電極を形成するようにパターン化されている。
【0078】
第2の基板54は、疎水性材料68によってコーティングされており、疎水性材料68は、導電性材料の層58を覆い、絶縁層61の疎水性表面に面するさらなる疎水性表面を形成する。
【0079】
疎水性材料64および68は、任意の好適な材料(同じであり得るか、または異なり得る)、例えばフッ素重合体によって形成され得る。
【0080】
液滴1は、AM-EWODデバイス34内に受容され、流体媒体60内に配設されている。液滴1および流体媒体60は、絶縁層61の疎水性表面、および第2の基板54をコーティングする疎水性材料68のさらなる疎水性表面上に配設されている。このように、液滴1は、第1の基板44と第2の基板54との間に挟まれており、それにより、液滴1の形状が制約される。これは、以下に記載される方法で、作動電極48に印加される作動信号による、液滴1の制御度を向上させる。
【0081】
液滴1は、絶縁層61の疎水性表面との接触角66を有する。接触角66は、(1)疎水性表面から液滴1の液体までの(ΓSL)界面、(2)液滴1の液体から周囲流体媒体60までの(ΓLG)界面、および(3)疎水性表面から周囲流体媒体60までの(ΓSG)界面の表面張力成分のバランスによって決定される。電圧が印加されない場合、接触角66は、ヤングの法則を満たし、方程式cosθ=((ΓSG-ΓSL)/ΓLG)によって与えられる大きさθである。
【0082】
したがって、作動電極48は、作動信号が作動電極48に印加されるときに、液滴1をエレクトロウェッティングすることができる。作動信号は、絶縁層61の疎水性表面の疎水性を効果的に制御し、それによって液滴1を通電させる電気力を生み出す。かかる通電状態において、液滴1は、液滴1がより低いエネルギー状態にあるとき、すなわち、作動信号が液滴1により低いエネルギーを提供するか、またはエネルギーを提供しない状態と比較して修飾される形状を有する。
【0083】
修飾される形状へのかかる言及は、AM-EWODデバイス34の平面における形状、すなわち、絶縁層61の疎水性表面に平行な形状を指し得る。作動信号によって供給されるエネルギーは、液滴1の3次元形状を修飾するが、形状は、作動電極48が配列される方向であるAM-EWODデバイス34の平面において、最も大きく影響される。
【0084】
同様に、より低いエネルギー状態にあるときと比較して修飾される形状への言及は、液滴1の接触線の形状を指し得る。この文脈において、用語「接触線」は、液滴1と流体媒体60との間の界面が作動電極48の上の絶縁層61の疎水性表面に接触する線の通常の意味を有する。
【0085】
選択された作動電極48に印加される作動信号のパターンの選択的制御によって、液滴1は、第1の基板44と第2の基板54との間の横方向平面で操作され、および移動され得る。一般に、このような液滴1のかかる操作は、EWODデバイスで知られる技術を適用し得る。
【0086】
作動信号は、液滴1をエレクトロウェッティングするのに好適な任意の形態をとり得る。典型的には、作動信号は、AC作動信号であり得るが、一般的には、それらは、基準電圧に対するDC電位であり得る。作動信号を印加する間、基準信号は、以下にさらに記載するように、AM-EWODデバイス内の他の場所に基準電極59に印加される。
【0087】
基準信号は、任意の好適な形態をとり得る。一例では、基準信号は、固定基準電圧であり得る。作動信号がAC作動信号である別の例では、基準信号は、AC作動信号と逆位相にあるAC基準信号であり得る。この例では、作動電極48と基準電極59との間の電位差の大きさは、固定基準電圧である基準信号と比較して増加され、例えば、AC作動信号およびAC基準信号が等しい大きさである場合、倍増される。
【0088】
図4Aは、液滴1が存在する場合の作動電極48と基準電極59との間の電気負荷70Aの簡易化された回路表現を示す。液滴1は、通常、並列な抵抗器およびキャパシタとしてモデル化され得る。典型的には、液滴1の抵抗は、比較的低く(例えば、液滴がイオンを含む場合)、液滴の容量は、比較的高い(例えば、液滴1が水性である場合、極性液体の相対的な誘電率は比較的高い、例えば、約80であるため)。多くの状況において、液滴抵抗は、比較的小さく、したがって、エレクトロウェッティングのための対象となる周波数において、液滴1は、電気的短絡として有効に機能し得る。疎水性材料64および68は、キャパシタとしてモデル化され得る電気的特性を有し、層62の絶縁材料もまた、キャパシタとしてモデル化され得る。作動電極48と基準電極59との間の全体的なインピーダンスは、キャパシタによって近似され得、その値は、通常、層62の絶縁材料の寄与、および疎水性材料64および68寄与によって支配され、典型的な層の厚さおよび材料については、値においてピコファラドのオーダーであり得る。
【0089】
図4Bは、液滴1が存在しない場合の、作動電極48と基準電極59との間の電気負荷70Bの回路表現を示す。この場合、液滴成分は、上部基板と第1基板との間の空間を占める無極性流体60の容量を表すキャパシタに置き換えられる。この場合、作動電極48と基準電極59との間の全体的なインピーダンスは、キャパシタによって近似され得、その値は、無極性流体の容量によって支配され、典型的にはフェムトファラドのオーダーで小さい。
【0090】
作動電極48を駆動および検知する目的のために、電気負荷70Aおよび70Bは、全体として実際にはキャパシタとして機能し、その値は、所与の作動電極48に液滴1が存在するか否かに依存する。液滴が存在する場合、容量は、比較的高く(典型的にはピコファラドのオーダーである)、一方で、液滴1が存在しない場合、容量は、低い(典型的にはフェムトファラドのオーダーである)。液滴が所与の電極48を部分的に覆う場合、容量は、液滴1による作動電極48の被覆の程度をほぼ表し得る。
【0091】
図5は、AM-EWODデバイス34における薄膜電子機器46の配置を例解する。薄膜電子機器46は、第1の基板44上に位置し、アレイ素子51のアクティブマトリクス配置を含み、アレイ素子51は、各々、対応する作動電極48の電極電位を制御するためのアレイ素子回路72含む。集積された行ドライバ74および列ドライバ76回路もまた、薄膜電子機器46に実装され、制御信号をアレイ素子回路72に供給する。このように、アレイ素子回路72は、制御システム37の制御下で、選択的に、作動電極48を作動させて、作動電極48に作動信号を印加する機能を実行し得る。したがって、制御システム37は、液滴操作動作を行うために、必要な電圧およびタイミング信号など作動電極48に印加される作動信号を制御する。
【0092】
図6は、各アレイ素子51内に存在するアレイ素子回路72の配置を例解する。アレイ素子回路72は、ENABLE、DATAおよびACTUATE、ならびに作動電極48に接続されている出力を有する作動回路88を含む。
【0093】
シリアルインタフェース82はまた、シリアル入力データストリームを処理するように、およびアレイ50内の作動電極48への必要な電圧のプログラミングを容易にするように設けられ得る。電圧供給インターフェース84は、対応する供給電圧、第2の基板の駆動電圧、および他の必要な電圧入力を提供する。第1の基板44と、外部制御電子機器、電源、および任意の他の構成要素との間のいくつかの接続ワイヤ86は、大きなアレイサイズであっても、比較的少ないものにされ得る。任意選択的に、シリアルデータ入力は、部分的に並列処理され得る。例えば、2つのデータ入力線が使用される場合、列ドライバ回路76に対する若干の修飾を伴い、第1は、列1~X/2のデータを、第2は、列(1+x/2)~Mのデータを供給し得る。このように、データがアレイ素子51にプログラミングされ得る速度は、増加され、それは、液晶ディスプレイ駆動回路で使用される標準的な技術である。
【0094】
液滴界面検知
図7は、どのように、導電性材料の層58が、パターン化されて、センサ電極100、導電性トラック101、およびさらなる電極102を形成し、それらは、したがって第2の基板54上に堆積され、それによって支持されるかを示す。
【0095】
センサ電極100は、それぞれの液滴1と電気的に接続するように配置されている。センサ電極100の提供は、液滴1との電気的接続を行うための、例えば、液滴1の間に形成された液滴界面にわたって液滴1の間で電気測定を行うための、便利かつ確実性の高い方法である。一方、かかる種類の電気接続は、作動電極48と液滴1との間の電気絶縁材料の層62を含む絶縁層61の存在のために、作動電極58からは不可能である。
【0096】
第2の基板54をコーティングする導電性材料の層58を覆う疎水性材料68は、センサ電極100の一部を露出する開口部69を備えているが、より一般的に、開口部は、より大きく、センサ電極100の全体を露出し得る。疎水性材料68内の開口部69は、センサ電極100と液滴1との間で電気的に接触することを支援する。流体媒体60、および/または液滴1の液体は、開口部69に流入し得、疎水性材料68より低い電気インピーダンスを有し、それによって導電経路を提供する。
【0097】
かかる開口部69は、親水性パッチとして機能する追加の利点を有し得、これは、電極が作動停止しているか、またはデバイスが電力停止している場合、液滴1を適切な位置に固定するのに役立つ。
【0098】
かかる開口部69は、疎水性材料68の選択的除去、例えば、ドライエッチングプロセスまたはリフトオフプロセスによって作成され得る。
【0099】
しかしながら、開口部69は、必須ではなく、代わりに、センサ電極100と液滴1との間の電気的接続は、疎水性材料68を通して行われ得、これは、電気測定がまだそれを介して行われ得るのに十分に低いインピーダンス(実部または虚部)を有し得る。その場合、疎水性材料68の厚さおよび材料特性は、それに応じて選択される。
【0100】
センサ電極100は、セットで配置されており、各セットのセンサ電極100は、液滴1との電気的接続を行うように大きさが決定され、および形状が決定され、液滴界面は、液滴1の間に、液滴1のそれぞれのシステム内において形成されている。これは、センサ電極100の領域が、センサ電極100と液滴1との接触線によって囲まれている領域と同様であり、各セット内のセンサ電極100の中心との間の距離が、形成されたシステム内の液滴1の中心との間の距離と同様であることによって実現され得る。センサ電極100の各セットは、液滴1のそれぞれのシステムと位置合わせされ、液滴1のそのシステム内のそれぞれの液滴1と電気的に接続され得る。したがって、制御システム37は、2つ以上の液滴1の複数のシステムを形成するように構成され得、ここで液滴1の各システムは、センサ電極100のそれぞれのセットと位置合わせされる。
【0101】
例解として、
図7は、2つのセンサ電極100の3つのセット、およびそれぞれのセットのセンサ電極100と位置合わせして形成された2つの液滴1の3つのシステムを示す。しかしながら、概して、任意の数のセンサ電極100のセットが存在し得、セットは、各システムに含まれる液滴100の数に依存して任意の数のセンサ電極100を含み得る。
【0102】
この構成の結果、液滴1のシステムは、並列に形成され得、実験は、センサ電極100のそれぞれのセットを使用して、その上で並列に行われ得る。一般に、任意の数の液滴2のシステムが形成され得、例えば、2個以上、最大、数万オーダーの多数が形成され得る。
【0103】
導電性トラック101は、センサ電極100に接続されており、導電性材料層58の縁部にまで延在し、そこで、以下にさらに記載する液滴界面センサシステム110に電気接続されている。したがって、導電性トラック101は、センサ電極100から液滴界面センサシステム110への電気的接続を提供する。
【0104】
さらなる電極102は、センサ電極100および導電性トラック101の周りに延在する。
【0105】
さらなる電極102は、
図4Aおよび4Bに示す回路表現において基準電極59として機能し得る。その場合、制御システム37は、さらなる電極102に接続されており、作動電極48に作動信号を印加しながら、さらなる電極102に基準信号を印加するように配置されている。
【0106】
しかしながら、さらなる電極102は、必須ではない。さらなる電極102が存在しない場合、またはさらなる電極102が存在する場合であっても、異なる電極(複数可)は、基準電極59として機能し得る。一例では、センサ電極100は、基準電極59として機能し得る。
【0107】
別の例では、基準電極59は、第1の基板44と第2の基板54との間の別の場所に、例えば、平面内基準電極など別個の素子として、設けられ得る。任意のかかる例では、制御システム37は、基準電極59、例えばセンサ電極100に接続されており、作動電極48に作動信号を印加しながら、基準電極59に基準信号を印加するように配置されている。かかる配置では、第1の基板44上の作動されていない作動電極48は、基準として動作し得、液滴1は、第2の基板54上の基準電極を必要とせずに、移動され得る。
【0108】
リーダ32は、測定ユニット111を含む液滴界面センサシステム110をさらに含み、測定ユニット111は、センサ電極110に接続されており、それぞれの液滴1に電気的に接続されているセンサ電極110の間で、液滴1の間に形成された液滴界面にわたって電気測定を行う。測定ユニット111は、典型的には、作動信号が作動電極48に印加されない間に、電気測定を行うように制御される。これは、例えば、測定される液滴のシステムに物理的に影響を与える、または損傷を与えることによって、あるいは測定ユニット111に電気的干渉を引き起こすことによって、作動信号が電気測定に影響を与えるリスクを低減するという利点を有する。
【0109】
薄膜電子機器46の素子は、センサ電極100および測定ユニット111から電気的に絶縁されているので、電気測定の実行に関与しない。
【0110】
任意の好適な電気測定、例えば、インピーダンス、電流または容量の測定が行われ得る。可能な構成では、電気測定は、電圧を印加することによって、およびセンサ電極100のうちの1つを通じて調達される電流を測定することによって行われ得、一方で、他のセンサ電極100は接地されている。したがって、液滴界面2の電気インピーダンスの実部および虚部が判定され得る。
【0111】
測定ユニット111は、液滴界面実験に好適な適切な電子構成要素によって形成され得、例えば、増幅器配置を含む検出チャネルを含む。一例では、測定ユニット111は、パッチクランプ配置を含み得る。別の例では、測定ユニット111は、WO2011/067559に記載されている信号処理機能と同じ構造を有し得る。
【0112】
電気測定は、下限から上限までの周波数範囲で行われ得、任意の組み合わせで、下限は、1Hz、10Hz、または100Hzであり、上限は、10MHz、100KHz、または10KHzである。
【0113】
測定ユニット111は、それらの測定を行いながら、測定が行われるそれぞれの対のセンサ電極100間の電位差を印加するように配置され得る。
【0114】
測定ユニット111は、制御システム37によって制御され、制御システム37の制御下で、液滴1のシステムがAM-EWODデバイス34内に形成された後、液滴1のシステムのうちのいずれかから電気測定を行う。
【0115】
電気測定は、任意の好適な種類、例えば、インピーダンス測定、および/または液滴界面にわたるイオン電流の測定であり得る。測定が、液滴界面にわたって行われ、液滴界面がそこに挿入された膜貫通孔を有する両親媒性分子の膜を含む場合、電気測定は、例えば、膜貫通孔を通る液滴間のイオン電流の測定、および/または膜貫通孔と相互作用する分析物に依存する電気測定であり得る。
【0116】
測定は、Soni GV et al.,Rev Sci Instrum.2010 Jan;81(1):014301およびT Gilboa and A Meller,Analyst,2015,140,4733-4747によって開示されるように、光学的、または光学的および電気的の組み合わせであり得る。
【0117】
液滴界面センサシステム110は、分析システム112をさらに含み得、分析システム112は、分析物を分析するために、膜貫通孔と相互作用する分析物に依存する電気測定を処理するように構成されている。例えば、分析物がポリマー単位を含むポリマーである場合、分析システムは、電気測定を処理して、ポリマーのポリマー単位の推定同一性を導き出すように構成され得る。分析システム112は、任意の好適な既知の技術を使用して電気測定を処理し得、そのうちのいくつかの例を以下にさらに記載する。
【0118】
分析システム112は、(1)ハードウェア段階、例えば、測定ユニット111からの信号として供給される電気測定を事前処理するためのフィールドプログラマブルゲートアレイ(FPGA)と、(2)ハードウェア段階から供給される信号を処理するためのプロセッサとの適切な組み合わせによって形成され得る。プロセッサは、任意の好適な形態の処理デバイスであり得る。プロセッサは、
図1に示すようにリーダ32内に実装され得、記憶装置40内に記憶され得るソフトウェアを実行し得る。代替手段として、プロセッサは、リーダ32の外部の処理デバイス、例えば従来のコンピュータ装置によって実装され得る。
【0119】
例として、測定ユニット111および分析システム112は、WO2011/067559に記載される信号処理機能と同様の構造を有し得る。
【0120】
液滴界面センサシステム110は、他の種類の測定システムと組み合わされて、例えば、作動電極からの容量測定、追加の電極(図示せず)からの測定、ならびに/あるいは吸収または放射赤外線、紫外線を含むがこれに限定されない電磁放射線を使用した測定を行い得、その技術は、標識染料または抗体、ならびに/あるいは蛍光共鳴エネルギー伝達(FRET)を採用し得る。
【0121】
液滴検知
アレイ素子回路72はまた、作動電極48と電気的に通信している液滴センサ回路90も含み得る。液滴センサ回路90は、各作動電極48の位置における液滴1の存在または不在を検出するための検知能力を提供する。このようにして、アレイ素子回路72もまた、液滴1の操作中にアレイ素子51の位置における液滴1の存在または不在を検知する機能を実行し得る。しかしながら、作動電極48と液滴1との間に電気絶縁材料の層62を含む絶縁層61の存在のため、液滴界面、または液滴界面で発生するプロセスを研究するのに適した電気測定を行うことが困難または不便であり得る。
【0122】
液滴センサ回路90は、インピーダンスセンサ回路を使用して静電容量検知を好都合に採用し得る。液滴センサ回路90は、例えば、US8,653,832およびGB2,533,952に記載されているように、当該技術分野で既知の種類のインピーダンスセンサ回路を含み得る。本明細書に記載されるように、液滴1は、エレクトロウェッティングによって作動され得、静電容量検知手段またはインピーダンス検知手段によって検知され得る。典型的には、静電容量検知およびインピーダンス検知は、アナログであり得、アレイ素子51ごとにおいて同時に、またはほぼ同時に行われ得る。かかるセンサから返された情報を処理することによって(例えば、リーダ32の記憶装置40内のアプリケーションソフトウェア内で)、制御システム37は、AM-EWODデバイス内に存在する各液滴1の位置、大きさ、重心および外周を、リアルタイム、またはほぼリアルタイムに判定し得る。
【0123】
代替的に、かかる検知は、いくつかの他の手段、例えば光学的手段または熱的手段によって行われ得る。液滴センサ回路90の代替手段は、エレクトロウェッティングデバイスの分野で既知であるように、液滴特性を検知するために使用され得る光学センサなど外部センサを提供することである。
【0124】
制御システム37は、液滴センサ回路90に対して制御信号を生成および出力して、液滴1の操作中に検知動作を実行する。集積されたセンサ行アドレス78および列検出回路80は、各アレイ素子回路72内の液滴センサ回路90のアドレスおよび読み出しのために、薄膜電子機器46内に実装されている。典型的には、液滴センサ回路90の読み出しは、アレイ50の同じ行にあるアレイ要素51に共通であり得る1つ以上のアドレスライン(例えばRW)によって制御され得、また、アレイ50の同じ列にあるすべてのアレイ要素50に共通であり得る1つ以上の出力、例えばOUTを有し得る。
【0125】
制御システム37は、液滴センサ回路90の出力を使用して、液滴1を操作するときに、作動信号の作動電極48への印加のタイミングを制御し得る。
【0126】
液滴界面の形成
制御システム37は、AM-EWODデバイス34を制御して、以下のように、対の液滴1の間に1つ以上の液滴界面2を有する液滴1のシステムを形成するように構成されている。
【0127】
まず、制御システム37は、液滴調製システム35を制御して、液滴1のそれぞれのシステムに対して必要に応じて、AM-EWODデバイス34内に液滴1を形成する。液滴1は、実施される実験のために必要とされるように、任意の適切な試薬から調製され得る。好適な試薬は、以下に記載されている。
【0128】
次に、制御システム37は、作動電極48への作動信号の印加を制御して、液滴1のシステムを形成する。
【0129】
単に作動信号を印加して、液滴を、作動電極48のアレイ50にわたって、液滴が互いに接触して形成される場所から移動させることのみによって、液滴1を操作することが考えられてきた。しかしながら、その場合、液滴1は、融合する傾向があり、液滴1の間の液滴界面を維持することは困難である。エレクトロウェッティングは、塩濃度、液滴試薬(特に膜成分)および液滴サイズなど、試料間で変化しやすいいくつかの要因に依存しているため、液滴界面2の形成を促進するための条件の最適化は、困難である。
【0130】
したがって、異なる方法は、以下に記載するように、2つの段階を採用して実装される。
【0131】
本方法の例を
図8~12に示し、本方法中に液滴が操作されるときの、作動電極48のアレイ50上の一対の液滴1の平面図を連続して示す。特に、
図8~12は、作動電極48のアレイ50上の液滴の接触線を示す。
図8~
図12はまた、作動信号が印加される53選択された作動電極48のハッシュ化による、印加される作動信号のパターン53を示す。この実施例は、単なる例示のためのものであり、限定的ではない。様々な変更は、例えば、液滴1の大きさに加えられ得、作動信号のパターンが作られ得る。また、
図8~
図12は、液滴1の液体が極性であり、流体媒体50が無極性であり、結果として作動信号が印加される作動電極48がエレクトロウェッティングされる例に関することに留意されたい。液滴1の液体が無極性であり、流体媒体50が極性である概念的な代替では、作動信号のパターンは、反転され、結果として、作動信号が印加されていない作動電極48が無極性液滴を引き寄せるであろう。
【0132】
背景として、液滴1の弛緩状態において、液滴1は、作動電極48への作動信号の印加によってエレクトロウェッティングされず、液滴1は、最も低い表面エネルギーの形状をとり、形状は一般に、絶縁層61の疎水性表面が均一な特性を有する円形であろうことに留意されたい。
【0133】
方法の第1の段階では、作動信号は、選択された作動電極48に印加され、2つの液滴1のうちの1つ、または好ましくは両方を通電させ、2つの液滴1の間に液滴界面が形成される。説明を明確にするために、2つの液滴1の両方を通電させる場合について説明する。
【0134】
通電状態において、液滴1の形状は、液滴1のより低いエネルギー状態における液滴1の形状と比較して修飾される。かかる通電状態において、2つの液滴1は、その間に隙間3を伴って近接するように移動される。隙間3のため、液滴1は、この時点では互いに接触しない。
【0135】
方法の第1の段階は、H e液滴センサ回路90からのフィードバック制御の下で実行され得る。
【0136】
第1の段階で適用されるプロセスの例は、以下のように、
図8~10に示される。
【0137】
図8は、作動電極48の正方形4×4群に作動信号のパターン53が印加されるステップを示す。これは、2つの液滴1を通電させて、概して正方形でもあるが、液滴1の表面エネルギーを最小限に抑える、角のいくつかの丸みを有する対応する形状を形成する。
図8はまた、液滴1がどのように一緒に移動され得るかも示す。特に、
図8は、作動信号のパターン53が、前のステップに対してシフトされる作動電極48の群に印加される場合を示す。これは、矢印4の方向に、作動電極48の群に向かって液滴1を移動させる結果を有する。このようにして、液滴1は、成形され得、移動され得る。
【0138】
図9は、作動電極48の長方形2×8群に作動信号のパターン53が印加されるステップを示す。これは、2つの液滴1を通電させて、概して長方形でもあるが、液滴1の表面エネルギーを最小限に抑える、角のいくつかの丸みを有する対応する形状を形成する。このステップでは、作動電極48の長方形2×8群、したがって、液滴1は、作動電極48の2列の隙間3を伴って近接している。
【0139】
図10は、
図9に示すステップの後のステップを示し、ここでは、作動信号は、作動電極48の2×8群のうちの1つが作動電極48の1列だけシフトされることを除いて、同じパターン53を有し、したがって、作動電極48の長方形2×8群、したがって液滴1は、作動電極48の単一の列の隙間3を伴って近接している。この例では、これは、方法の第1の段階の最後のステップである。
【0140】
方法の第2の段階では、印加される作動信号は、液滴1のエネルギーがより低いエネルギー状態に低下するように変更される。
【0141】
この段階では、変更は、好ましくは、液滴1に影響を及ぼす作動電極48に作動信号を印加していないことである。その場合、作動電極48から液滴1にエネルギーは供給されないので、より低いエネルギー状態は、弛緩後の液滴1の形状が材料特性のみによって影響される液滴1の最小エネルギーの状態である。代替的に、変更では、原則として、液滴1を通電させる作動信号を印加することであるが、程度が低く、したがって、液滴1は、弛緩し、その形状は、変化するが、液滴1に影響を及ぼす作動電極48に作動信号が適用されない場合よりも程度が低い。
【0142】
隙間3を挟んで互いに向き合う液滴1の表面は、より低いエネルギー状態に配置された結果、隙間3内に弛緩し、互いに接触し、それによって2つの液滴1の間に液滴界面2を形成する。したがって、液滴2の表面の移動は、第1の段階で生成された液滴1の通電状態からの弛緩によって引き起こされる。これは、液滴界面2の確実性の高い形成を提供する受動的プロセスである。液滴1が弛緩する速度は、液滴1の液体と流体媒体50の液体との相対粘度、液滴1の大きさ、および/または隙間3の大きさなど1つ以上の要因に依存し得る。
【0143】
デバイス幾何学的形状(液滴1の大きさ、疎水性表面間の隙間の高さなど)、および液滴界面2における表面張力は、それ自体、材料の選択および材料特性に依存し、液滴1の表面が触れるとき、液滴1が融合または合体するのではなく、液滴界面2が形成されるように配置されている。作動信号のパターンの幾何学的形状、および液滴1の空間寸法は、典型的には、液滴界面2が最小表面積で形成されるように配置されている。
【0144】
印加される作動信号は、液滴1への通電を停止するための任意の方法で変更され得る。作動電極をエレクトロウェッティングするよう印加される作動信号がAC作動信号である場合、変更は、液滴1を通電させたAC作動信号を、DC電位、例えば接地電位または浮遊電位に置き換えることが望ましい。これは、作動信号にAC信号が印加されなくなるという利点を有し、それは、AC信号から生じるAC電界の存在が、液滴界面2が破裂するリスク、および液滴2の表面が接触するときに液滴2を融合させるリスクを増加させるため、液滴界面2の形成を支援する。
【0145】
代替的に、液滴1への通電を停止する他の変更がなされ得る。代替手段は、作動電極48のアレイ50からすべての電力を除去することである。しかしながら、DC電位を印加することが好ましく、周囲の望ましくない電磁干渉から液滴界面2を遮蔽するのを支援し得る。
【0146】
本発明者らは、AC電圧波形を印加することによって従来の方法で液滴の作動を停止させないことが好ましいことを理解しており、なぜなら、結果として生じる摂動が液滴界面2を損傷し得るか、または液滴界面2を介した電気測定を妨げ得るからである。
【0147】
第2の段階で適用されるプロセスの例は、以下のように、
図11および12に示される。
【0148】
図11は、作動電極48の2つの2×8群に対する作動信号の印加を中止し、代わりにDC電位または浮動電位を印加することにより、作動信号のパターンが
図10に示すものと比較して変更されるステップを示す。
図11は、変更が行われた瞬間における液滴1を示しており、その時、液滴は、瞬時にこれまでと同じ概して長方形形状を有する。しかしながら、液滴は次いで、
図12に示すより低いエネルギー状態に弛緩する。他の液滴1が存在しない場合、各液滴1は、概して円形である自らのより低いエネルギー状態をとるが、液滴1の質量中心は、概して同じ位置に留まる。したがって、それらのより低いエネルギー状態に向かって弛緩する際に、隙間3を挟んで互いに向き合う液滴1の表面は、隙間3内に弛緩し、互いに接触し、それによって液滴界面2を形成する。
【0149】
図8~10に示す通電状態の液滴2の特定の形状は、限定的ではなく、一般に、液滴1を接触させて弛緩させ、液滴界面を形成することを可能にする任意の形状が使用され得る。典型的には、液滴2の通電された接触線の形状は、細長く、隙間3は、細長い形状の長さに沿って延在し得る。任意の細長い形状、例えば、
図9に示す長方形形状、楕円形形状、またはより複雑な形状が選択され得る。細長くない形状、例えば、
図8に示す正方形形状も使用され得る。
【0150】
液滴1の正確な形状は、作動信号のパターンの制御によって選択されるが、液滴1と流体媒体50との間の表面張力のために、それとは異なり得、材料特性に依存するであろう。
【0151】
液滴2の通電された接触線の形状が細長い場合、通電された液滴1の形状は、少なくとも2:1、好ましくは少なくとも4:1、または少なくとも8:1のアスペクト比を有し得る。概して、アスペクト比を増加させることは、液滴1への通電が停止されている場合、液滴1の表面の移動の程度を増加させ、それによって液滴1を接触させることを支援する。
【0152】
第1の段階における液滴1の間の隙間3は、2つの液滴1が接触しないが十分に近く、より低いエネルギー状態に置かれるときに液滴界面2を形成するように選択される。液滴1が近接されるときの隙間3の幅は、作動信号のパターンが変更されるときに液滴1が接触することを可能にするように選択される。これは、通電状態における液滴1の同じものに依存し得る。典型的には、2つの液滴1が近接されるときの隙間3の幅は、2つの液滴1の重心が、液滴1のより低いエネルギー状態における2つの重心の間の線に沿った、液滴1の組み合わされた半径未満の距離だけ分離されているように選択され得る。
【0153】
隙間3は、アレイ50内の作動電極38の単一の行または列の幅、あるいはアレイ50内の作動電極38の2つ以上の行または列の幅を有し得る。
【0154】
これらのプロセスを支援するために、液滴1の接触線によって囲まれる領域は、作動電極38の領域と比較して大きいことが望ましい。これは、液滴1の通電状態における形状の制御の解像度を増加させ、液滴1のアレイにわたる移動、および弛緩時の液滴1の表面の接触への移動を可能にすることを支援する。したがって、AM-EWODデバイス1は、作動電極48を考慮して設計されており、作動電極48は、実験的に使用されることが望まれる液滴1の典型的な大きさを考慮して大きさが決定される。アクティブマトリクス配置の特別な利点は、それが、液滴1の大きさと比較して高い解像度で作動信号の作動パターンの印加を可能にすることである。
【0155】
典型的には、より低いエネルギー状態における液滴1の接触線によって囲まれる領域は、作動電極48の領域の少なくとも2倍、好ましくは、少なくとも5倍、少なくとも10倍、または少なくとも20倍である。したがって、より低いエネルギー状態における液滴1の接触線によって囲まれる領域は、少なくとも2個の作動電極48、好ましくは少なくとも5個の作動電極48、少なくとも10個の作動電極48、または少なくとも20個の作動電極48を覆い得る。
【0156】
上記の説明は、説明を容易にするために両方の液滴1を通電することを指すが、代替的に、第1の段階において2つの液滴1のうちの1つのみを通電することによって、液滴界面2は、形成され得る。その場合、第2の段階において作動信号を変更すると、その1つの液滴1の表面は、他方の液滴1の固定表面に接触するように弛緩する。
【0157】
液滴のシステム
上記には、1つのシステムの2つの液滴1の間の単一の液滴界面2の形成が記載されている。同様の方法を使用して、複数の液滴界面2は、3つ以上の液滴1のシステム内のそれぞれの対の液滴の間に形成され得る。液滴界面2は、液滴1を連続してまたは同時に接触させることによって順次形成され得る。例として、
図13は、順次形成される2つの液滴界面2を有する、3つの液滴1のシステムを形成する例を例解し、
図14は、同時に形成される2つの液滴界面2を有する、3つの液滴1のシステムを形成する例を例解する。これらの実施例の各々において、液滴界面2は、上記に記載される方法を使用して形成される。
【0158】
一般に、液滴1の形成されたシステムの構成は、所望の実験を行うように選択される。かかる形成されたシステムにおいて、液滴1は、例えば、
図13および14に示す3つの液滴1のシステムに示されるように、同様に順次、液滴界面2と直列に配置され得る。代替的に、形成されたシステムにおいて、液滴1は、より複雑な配置またはクラスタを有してもよく、そのうちの2つの非限定的な例が、
図15および16に示される。
【0159】
かかる液滴1のシステムでは、液滴1は、同等または同等ではない体積であってもよく、液滴1は、同じまたは異なる成分を有し得る。
【0160】
システム内の1つ以上の液滴は、液滴界面2に挿入することができる膜貫通孔を含み得る。典型的には、液滴界面2の形成後、膜貫通孔は、液滴界面2に自発的に挿入し、その後、電気測定が行われ得る。システム内の1つ以上の液滴1は、膜貫通孔と相互作用する分析物を含み得る。
【0161】
装置1を使用して、液滴界面2を形成し、その後、このように形成された液滴界面2上で電気測定を行うことには、特に複数の液滴界面2を有する3つ以上の液滴1のシステムを作成する場合に、いくつかの利点がある。例えば、平面膜のアレイの形成を伴ういくつかの他の技術と比較して、比較的小さな試料体積が使用され得る。これは、測定と同じデバイス上でライブラリ調製が生じ得るため、剪断の可能性が低下するため、長い長さのポリヌクレオチドを使用する可能性を可能にする。試料が転送される必要がないことを考えると、汚染リスクは低くなる。試料はすべて、液滴1のいずれか一方または両方に含まれているため、試料損失が少なく、回収され得る。エレクトロウェッティングは、すべての液体操作に使用されるため、ポンプまたは他の可動部品の必要性は、排除される。液滴の位置決めは、プログラムされたスクリプトを通じて制御されるため、試料調製は、自動化され得る。次いで、DNA試料の液滴は、ポリマーベシクル、試薬、ポア、および分析物を含む所望の成分が補充され得る。
【0162】
一種類の実験では、液滴1は、例えば、試料中で発生する進行中の反応を監視するために、試料の体積から周期的に分離され得る。これは、経時的な分析、反応物質の滴定、条件の変化などを提供する。
【0163】
他の利点は、
●検知/シーケンシングと結合されたライブラリ調製/PCRを行う能力、シーケンシングするライブラリの使いやすさ(自動化、ウォークアウェイ)
●低い汚染リスク
●ライブラリまたはシーケンシングのための区分化された試料の使用
●試料/反応の異なる位置、例えば、ゲル/メッシュ/拡散バリアを通る長さ、細胞試料上の位置、および/または濃度/熱/密度勾配をサンプリングすることを可能にすること、を含む。
【0164】
フィードバックおよび修飾
上記に記載されるように、装置1は、液滴1のシステム内に液滴界面2を形成し、それらの液滴界面2上で実験を行うのに好適である。特別な利点は、制御システム37が、液滴界面センサシステム110の出力に応答して、形成された液滴1のシステムを修飾することによって得られる。したがって、液滴1のシステムは、以前に実行された実験からのフィードバックを使用して、実験の継続的な性能を修飾するように修飾され得る。これは、実験が適応的に実行され得るため、強力な実験ツールを提供する。
【0165】
液滴界面センサシステム110の様々な出力は、例えば、以下のようにフィードバックを提供するために使用され得る。
【0166】
使用され得る液滴界面センサシステム110の出力は、測定ユニット111によって行われる電気測定を含む。これは、第1の種類の制御を提供する。電気的特性は、液滴界面の形成およびそこで生じる反応など関連するプロセスの基本であるため、この第1の種類の制御によって、これらのプロセスが検討され、適応的に修飾されることを可能にする。例えば、センサシステムによって行われる電気測定は、液滴界面2が正常に形成されたかどうかを判定するために使用され得る。
【0167】
使用され得る液滴界面センサシステム110の出力は、分析システム112の出力を含む。これは、第2の種類の制御を提供する。かかる分析は、例えば、分析される分析物に関するより高いレベルの情報が得られることを可能にするため、この第2の種類の制御は、分析の結果に基づいて強力な実験的適応を提供する。
【0168】
制御システム37は、例えば、以下のように、様々な方法で液滴1の形成されたシステムを修飾し得る。
【0169】
制御システム37は、システム内で液滴界面2を分離することによって、液滴1の形成されたシステムを修飾し得る。これを行うために、制御システム37は、作動電極48に作動信号のパターンを印加し、液滴界面2が形成される液滴のうちの一方または両方を分離させて移動させる。液滴1の分離は、液滴界面2を分離する。
【0170】
かかる分離は、例えば、液滴界面2で発生する相互作用を停止するために使用され得る。これは、例えば、測定ユニット111によって行われた電気測定が、液滴界面2が正常に形成されていないことを示す場合、または分析システム112の出力が、例えば、分析物が枯渇したために分析が完了したこと、または特定の分析物に関する十分な電気測定が行われたことを示す場合に、行われ得る。
【0171】
制御システム37は、新しい液滴1を、液滴1のシステム内の現在の液滴1と接触させるように移動させ、新しい液滴1と現在の液滴1との間に液滴界面2を形成することによって、液滴1の形成されたシステムを修飾し得る。これを行うために、制御システム37は、上記と同じ方法を使用して作動電極48に作動信号を印加する。
【0172】
かかる新しい液滴界面2の形成は、例えば、測定ユニット111によって行われた電気測定が、液滴界面2が正常に形成されていないことを示すため、新しい液滴界面を形成することが望ましい場合、または分析システム112の出力が、液滴界面2における分析が完了し、さらなる測定値を取得することが望ましい場合に、使用され得る。
【0173】
制御システム37は、新しい液滴1を、液滴1のシステム内の現在の液滴1と接触させるように移動させ、新しい液滴1と現在の液滴1とを融合させることによって、液滴1の形成されたシステムを修飾し得る。これを行うために、制御システム37は、作動電極48に作動信号を印加し、新しい液滴1を現在の液滴1と接触させるように移動させ、それらを融合させる。液滴1の融合は、液滴界面を形成するための上記の方法を使用せずに、単に新しい液滴1を現在の液滴1と接触させる移動のみによって、実現され得る。代替的に、または加えて、液滴1の融合は、そうでなければ新しい液滴1と現在の液滴との間に形成されるであろう液滴界面を破裂させるAC作動信号を印加することによって、実現され得る。
【0174】
システムの現在の液滴1への新しい液滴1のかかる融合は、例えば、対の液滴1のうちの1つにおける酸化還元対のうちの1つの部材が枯渇しているときに、新しい試薬を現在の液滴1に導入するために使用され得る。
【0175】
このようにして新しい液滴1を融合する場合、新しい液滴1は、液滴1の液体と流体媒体50との間の界面に両親媒性分子を含まないことがあり得る。
【0176】
液滴1の形成されたシステムを修飾するこれらおよび他の方法は、任意の組み合わせで一緒に使用され得、例えば、多段階実験を実行し得る。
【0177】
いくつかの特定の用途は、上記に記載されているが、これらは限定的ではなく、実際に、フィードバックの利点の1つは、汎用性である。用途のいくつかのさらなる非限定的な例は、以下の通りである。
●膜貫通孔の自動挿入
●ポアまたは二次的なポアの不要な挿入への液滴1のシステムの適応
●反応/試料条件に基づく制御
●液滴界面分離の推進
●より多くの試料または試薬の送達
●異なる試料の送達
●液滴への多くの媒介物質の送達
●他の場所で試料を採取し、および/または回収し、および/または試料の元の体積に戻すための液滴1の分離
●反応条件の変更(例えば、温度、添加物、クエンチ/活性化)
●代替測定の実施(例えば、吸収度)
●試料の元の体積への戻り
●分析された試料(またはその一部)に対する新たな反応の性能
●複数のポア種類の制御、および複数の膜に対する各々のバランス
●同じ試料と相互作用する複数の膜およびポアを有する膜配置の形成
●十分な情報が得られるまでのみの実験の実施、それによる全体的な実験スループットの増加
●試料のキューイング/プーリング、例えば、オンデマンドでの試料のキューからのライブラリ試料の送達の許可、および/またはキュー順序の変更
●シーケンシング/検知の結果としての試料のプーリング
●複数の試料のうちのどれを分析するかの判定
●実行期間/成功基準の判定
●膜/ポア分析前の試料修飾のための条件の判定(例えば、ライブラリ調製物の種類/濃度)
●液滴1が周期的に試料の体積から分離される場合、以前の実験の結果のフィードバックとしての使用による、反応/試料条件の適応
●膜/ポアをセンサとして利用する指向性進化法の性能
【0178】
流体媒体内の液滴
本明細書において、流体媒体内の液体を含む液滴を言及する場合、液体および流体媒体は、以下のように選択され得る。概して、流体媒体内に液滴を形成する任意の液体が使用され得るが、いくつかの考えられる材料は、以下の通りである。
【0179】
流体媒体は、原則として、気体媒体であり得るが、好ましくは、液体媒体である。
【0180】
いくつかの場合では、および、しばしば、流体媒体が液体媒体である場合、液体および流体媒体のうちの一方は、極性であり、液体および流体媒体のうちの他方は、無極性である。好ましくは、液滴の液体は、極性であり、流体媒体は、無極性である。
【0181】
液体および流体媒体のうちの1つが極性であるとき、極性媒体は、典型的には、水を含む水性液体である。水性液体は、1つ以上の溶質をさらに含み得る。水性液体は、例えば、水性媒体のpHを適宜調節するために緩衝液を含み得、それは、支持電解質を含み得る。水性媒体は、例えば、酸化還元対、または酸化還元対の部材を含み得、酸化還元対を提供するために部分的に酸化または還元され得る。酸化還元対は、Fe2+/Fe3+、フェロセン/フェロセニウム、またはRu2+/Ru3+など当該技術分野で知られているものから選択され得る。かかる例は、フェロシアニド/フェリシアニド、ルテニウムヘキサミン、およびフェロセンカルボン酸である。
【0182】
代替的に、液体および流体媒体のうちの1つが極性である場合、極性媒体は、極性有機溶媒を含み得る。極性有機溶媒は、例えば、アルコールなどプロトン性有機溶媒であり得、または非プロトン性極性有機溶媒であり得る。
【0183】
液滴の液体は、以下に記載される種類の実験を行うのに好適な任意の液体であり得る。異なる液滴は、異なる液体を含み得る。
【0184】
液体および流体媒体のうちの他方は、無極性である場合、無極性媒体は、油を含み得る。油は、単一の化合物であり得るか、または油は、2つ以上の化合物の混合物を含み得る。
【0185】
一例では、油は、純粋なアルカン炭化水素である。
【0186】
油は、例えば、シリコーン油を含み得る。好適なシリコーン油は、例えば、ポリ(フェニルメチルシロキサン)およびポリ(ジメチルシロキサン)(PDMS)を含む。シリコーン油は、ヒドロキシ末端シリコーン油、例えば、ヒドロキシ末端PDMSを含み得る。
【0187】
加えてまたは代替的に、油は、炭化水素、例えばヘキサデカンを含み得るが、任意の適切な炭化水素が使用され得る。油が炭化水素を含む場合、それは、単一の炭化水素化合物、または2つ以上の炭化水素の混合物を含み得る。油が炭化水素を含む場合、炭化水素は、分岐または非分岐であり得る。炭化水素は、例えばスクアレン、ヘキサデカン、またはデカンであり得る。一実施形態では、それは、ヘキサデカンである。しかしながら、いくつかの実施形態では、炭化水素は、ハロゲン原子、例えば、臭素で置換され得る。
【0188】
油は、1つ以上のシリコーン油と1つ以上の炭化水素との混合物を含み得る。混合物中のシリコーン油および炭化水素は、両方とも上記でさらに定義された通りであり得る。シリコーン油は、例えばポリ(フェニルメチルシロキサン)またはPDMSであり得る。
【0189】
他の種類の油も可能である。例えば、油は、フルオロカーボンまたはブロモ置換C10~C30アルカンであり得る。
【0190】
両親媒性分子
液体および流体媒体のうちの一方は、極性であり、液体および流体媒体のうちの他方は、無極性である場合、液滴は、液滴の液体と流体媒体との間の界面に両親媒性分子をさらに含み得る。かかる両親媒性分子は、液滴界面の形成前に流体媒体中の液滴を安定させる役割を果たす。また、両親媒性分子は、液滴界面が、形成されるとき、両親媒性分子の膜を含むことを可能にし得る。
【0191】
多数の異なる種類の両親媒性分子が使用され得る。使用され得る両親媒性分子の種類のいくつかの非限定的な例は、以下の通りである。
【0192】
一例では、両親媒性分子は、脂質を含み得る、それは、脂質二重層を形成する場合の従来のように、単一の成分または成分の混合物を有し得る。
【0193】
脂質二重層など膜を形成する任意の脂質が使用され得る。脂質は、表面荷電、膜タンパク質を支持する能力、充填密度、または機械的特性など必要とされる特性を有する脂質二重層が形成されるように選択される。脂質は、1つ以上の異なる脂質を含み得る。例えば、脂質は、最大で100種類の脂質を含み得る。脂質は、好ましくは、1~10種類の脂質を含み得る。脂質は、天然に存在する脂質および/または人工脂質を含み得る。
【0194】
脂質はまた、化学修飾され得る。
【0195】
両親媒性ポリマー膜は、より高い電圧に耐える能力のため、脂質膜よりも好ましい。
【0196】
別の例では、両親媒性分子は、第1の外側親水性基、疎水性コア基、および第2の外側親水性基を含む両親媒性化合物を含み得、第1の外側親水性基および第2の外側親水性基の各々は、疎水性コア基に連結されている。
【0197】
いくつかのかかる両親媒性化合物は、WO2014/064444に開示されている。
【0198】
他のかかる両親媒性化合物は、US6,916,488に開示されており、それは、参照により本明細書に援用し、平面両親媒性膜として装置1に採用され得るいくつかのポリマー材料を開示している。具体的には、トリブロックコポリマー、例えば、ポリ(2-メチルオキサゾリン)-ブロック-ポリ(ジメチルシロキサン)-ブロックポリ(2-メチルオキサゾリン)(PMOXA-PDMS-PMOXA)などシリコントリブロックコポリマー膜が開示されている。
【0199】
採用され得るシリコ-ントリブロックポリマーの例は、7-22-7 PMOXA-PDMS-PMOXA、6-45-6 PMOXA-PE-PMOXA、および6-30-6 PMOXA-PDMS-PMOXAであり、命名は、サブユニットの数を指す。
【0200】
かかるトリブロックコポリマーは、液滴中にベシクル形態で提供され得る。
【0201】
両親媒性分子の性質に応じて、膜は、両親媒性分子の二重層であり得るか、または両親媒性分子の単層であり得る。
【0202】
両親媒性分子は、代替的に、別の界面活性剤によって置き換えられ得る。
【0203】
異なる液滴界面は、異なる両親媒性分子の膜、例えば、脂質二重層を含む膜、およびWO2017/004504に開示されるように、上記に記載されるようなシリコーントリブロックポリマー膜などポリマー膜を含み得る。
【0204】
行われる電気測定は、両親媒性分子の膜自体、またはそれらの相互作用を研究するために、例えば、薬物膜誘電率を研究するために使用され得る。
【0205】
膜貫通孔
一般に、液滴界面に挿入することができる任意の膜貫通孔が使用され得る。異なる液滴は、同じまたは異なる膜貫通孔を含み得、したがって、複数の液滴界面が異なる複数の液滴対の間に形成される場合、同じまたは異なる膜貫通孔は、それらの液滴界面に挿入され得る。
【0206】
使用され得る膜貫通孔の種類のいくつかの非限定的な例は、以下の通りである。
【0207】
膜貫通孔は、イオンが流れ得る、膜の一方から他方への経路を提供するチャネル構造である。チャネルは、その長さに沿って幅が異なり得、典型的には0.5nm~10nmの間の内径を有する。
【0208】
任意の好適な膜貫通孔が本発明において使用され得る。ポアは、生物学的または人工的であり得る。適切なポアは、タンパク質ポア、ポリヌクレオチドポア、およびソリッドステートポアを含むが、これらに限定されない。ポアは、DNA折り紙ポアであり得る(Langecker et al.,Science,2012;338:932-936)。適切なDNA折り紙ポアは、WO2013/083983に開示されている。
【0209】
膜貫通孔は、好ましくは、膜貫通タンパク質ポアである。
【0210】
膜貫通タンパク質ポアは、モノマーまたはオリゴマーであり得る。ポアは、6量体、7量体、8量体、または9量体ポアであり得る。ポアは、ホモオリゴマーまたはヘテロオリゴマーであり得る。
【0211】
膜貫通タンパク質ポアは、E.coli Str.K-12 substr.MC4100からのCsgGなどCsgGに由来し得る。好適なCsgGポアの例は、WO2016/034591、WO2017/149316、WO2017/149317、およびWO 2017/149318に記載されている。
【0212】
膜貫通タンパク質ポアは、典型的には、イオンが流れ得る、バレルまたはチャネルを含む。ポアのサブユニットは、典型的には、中心軸を取り囲み、鎖を膜貫通βバレルまたはチャネル、あるいは膜貫通α-ヘリックスバンドルまたはチャネルに寄与する。
【0213】
膜貫通タンパク質ポアのバレルまたはチャネルは、ヌクレオチド、ポリヌクレオチド、または核酸など分析物との相互作用を促進するアミノ酸を含む。ポアは、例えば、1つ以上のアミノ酸の置換または欠失によって修飾され得る。
【0214】
本発明に従って使用するための膜貫通タンパク質ポアは、β-バレルポアまたはα-ヘリックスバンドルポアに由来し得る。β-バレルポアは、β鎖から形成される、バレルまたはチャネルを含む。適切なβ-バレルポアは、α-溶血毒、炭疽毒素、およびロイコシジンなどβ-毒素、ならびにMycobacterium smegmatisポリン(Msp)、例えばMspA、MspB、MspC、またはMspD、CsgG、外膜ポリンF(OmpF)、外膜ポリンG(OmpG)、外膜ホスホリパーゼAおよびNeisseriaオートトランスポーターリポタンパク質(NalP)など細菌の外膜タンパク質/ポリン、ならびにリセニンなど他のポアを含むが、これらに限定されない。α-ヘリックスバンドルポアは、α-ヘリックスから形成されるバレルまたはチャネルを含む。適切なα-ヘリックスバンドルポアは、WZAおよびClyA毒素など内膜タンパク質およびα外膜タンパク質を含むが、これらに限定されない。
【0215】
膜貫通孔は、Msp、α溶血毒(α-H L)、リセニン、CsgG、ClyA、Sp 1、および溶血性タンパク質フラガセトキシンC(FraC)に由来するか、またはそれらに基づき得る。膜貫通タンパク質ポアは、好ましくはCsgG、より好ましくはE.coli Str.K-12 substr.MC4100からのCsgGに由来する。
【0216】
膜貫通孔は、リセニンに由来し得る。リセニン由来の好適なポアは、WO2013/153359に開示されている。
【0217】
ポアは、上記列挙されたナノポアの変異体であり得る。変異体は、アミノ酸配列とのアミノ酸類似性または同一性に基づいて、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、より好ましくは少なくとも95%、97%、または99%相同であり得る。
【0218】
当該技術分野における標準的な方法は、相同性を判定するために使用され得る。例えば、UWGCGパッケージは、相同性を計算するために使用され得る、例えば、そのデフォルト設定時に使用され得る(Devereux et al (1984)Nucleic Acids Research 12,p387-395)BESTFITプログラムを提供する。PILEUPアルゴリズムおよびBLASTアルゴリズムは、例えば、Altschul S.F.(1993)J Mol Evol 36:290-300、Altschul,S.F et al (1990)J Mol Biol 215:403-10に記載されるように、相同性配列またはラインナップ配列を計算するために((典型的には、それらのデフォルト設定時に)同等の残基または対応する配列を同定することなど)使用され得る。BLAST分析を行うためのソフトウェアは、National Center for Biotechnology Information(http://www.ncbi.nlm.nih.gov/)を通じて公開されている。類似性は、ペアワイズ同一性を用いて、またはBLOSUM62などスコアリングマトリックスを適用し、等価同一性に変換することによって測定され得る。これらは進化した変化ではなく機能的な変化を表すので、相同性を判定する際に意図的に変異した位置がマスキングされる。類似性は、例えば、PSIBLASTをタンパク質配列の包括的なデータベース上で使用する位置特異的スコアリングマトリックスの適用によって、より感受性的に判定され得る。進化の時間スケール(例えば、電荷)にわたる置換の頻度ではなく、アミノ酸物理化学的特性を反映する異なるスコアリングマトリックスが使用され得る。
【0219】
アミノ酸置換は、配列番号3のアミノ酸配列、例えば、最大1、2、3、4、5、10、20、または30個の置換に対して行われ得る。保存的置換は、類似の化学構造、類似の化学的特性、または類似の側鎖体積の他のアミノ酸をアミノ酸と置換する。導入されるアミノ酸は、それらが置き換えるアミノ酸と同様の極性、親水性、疎水性、塩基性、酸性、中性、または電荷を有し得る。代替的に、保存的置換は、既存の芳香族アミノ酸または脂肪族アミノ酸の代わりに、芳香族または脂肪族である別のアミノ酸を導入し得る。
【0220】
膜貫通タンパク質ポアなど本明細書に記載のタンパク質のいずれも、合成的にまたは組み換え手段によって作製され得る。例えば、ポアは、インビトロ翻訳および転写(IVTT)によって合成され得る。ポアのアミノ酸配列は、非自然発生アミノ酸を含むように、またはタンパク質の安定性を増加させるように修飾され得る。タンパク質が合成手段によって生成される場合、かかるアミノ酸は、生成中に導入され得る。ポアはまた、合成生成または組み換え生成のいずれかに続いて改変され得る。
【0221】
膜貫通タンパク質ポアなど本明細書に記載のタンパク質のいずれも、当該技術分野において既知の標準的な方法を使用して生成され得る。ポアまたは構造体をコードするポリヌクレオチド配列は、当該技術分野における標準的な方法を使用して誘導および複製され得る。ポアまたは構造体をコードするポリヌクレオチド配列は、当該技術分野における標準的な方法を使用して細菌宿主細胞において発現され得る。ポアは、組み換え発現ベクターからのポリペプチドのin situ発現によって細胞において生成され得る。発現ベクターは、任意選択的に、ポリペプチドの発現を制御するために誘導性プロモーターを担持する。これらの方法は、Sambrook,J.and Russell,D.(2001)Molecular Cloning:A Laboratory Manual,3rd Edition.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NYに記載されている。
【0222】
ポアは、タンパク質生成有機体からの任意のタンパク質液体クロマトグラフィーシステムによる精製に続いて、または組み換え発現後に大規模に生成され得る。典型的なタンパク質液体クロマトグラフィーシステムは、FPLC、AKTAシステム、Bio-Cadシステム、Bio-Rad BioLogicシステム、およびGilson HPLCシステムを含む。
【0223】
分析物
液滴は、標的分析物、テンプレート分析物、または対象となる分析物とも称される、膜貫通孔と相互作用することができる分析物を含み得る。例えば、分析物は、ポリマーまたは薬物であり得る。
【0224】
実施される電気測定は、分析物と膜貫通孔との相互作用に依存し得る。電気測定は、ポアを通るイオン電流の測定であり得る。
【0225】
電気測定が、分析物と膜貫通孔との相互作用に依存する場合、分析は、標的分析物の存在、不在、または1つ以上の特徴を判定し得る。分析は、標的分析物の存在、不在、または1つ以上の特徴を判定し得る。分析物がポリマー単位を含むポリマーである場合、分析において、電気測定は、ポリマー単位の推定同一性を導き出すために、あるいはポリマー単位を計算するか、またはポリマーの長さを判定するために処理され得る。制御実験は、異なる分析物またはポリマー単位の存在下で実施され、分析物が分析のための基礎として電気測定にどのように影響を及ぼすかを判定し得る。
【0226】
分析は、例えば、WO2013/041878またはWO2015/140535に記載されているように、Hidden Markov Modelを採用する技術、例えば、Boza e t a l.,”DeepNano:Deep recurrent neural networks for base calling in MinION nanopore reads”,PLoS ONE 12(6):e0178751,5 June 2017に記載されているように、機械学習を採用する技術、例えば、WO2013/121224に記載されているように、特徴ベクトルの比較を採用する技術、または任意の他の適切な技術を含む、任意の適切な既知の技術を使用して実施され得る。
【0227】
かかる相互作用は、分析物がポアを通って転移するなど、ポアに対して移動する際に生じ得る。その場合、電気測定は、分析物がポアに対して移動する際に行われ得る。かかる移動は、液滴間、すなわちポアにわたって電位差が印加される間に生じ得る。印加される電位は、典型的には、ポアとポリヌクレオチド結合タンパク質との間の複合体の形成をもたらす。印加される電位差は、電圧電位であり得る。代替的には、印加される電位差は、化学的電位であり得る。この例は、両親媒性層を横切る塩勾配を使用することである。塩勾配は、Holden et al.,J Am Chem Soc.2007 Jul 11;129(27):8650-5.に開示されている。
【0228】
標的分析物は、金属イオン、無機塩、ポリマー、アミノ酸、ペプチド、ポリペプチド、タンパク質、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチド、色素、漂白剤、医薬品、診断用薬、レクリエーショナルドラッグ、爆発物または環境汚染物質であり得る。
【0229】
分析物は、アミノ酸、ペプチド、ポリペプチド、および/またはタンパク質であり得る。アミノ酸、ペプチド、ポリペプチド、またはタンパク質は、天然に存在する、または非天然に存在し得る。ポリペプチドまたはタンパク質は、それらの中に合成または修飾アミノ酸を含み得る。アミノ酸へのいくつかの異なる種類の修飾は、当該技術分野で既知である。好適なアミノ酸およびこれらの修飾は、上記である。本発明の目的のために、標的分析物は、当該技術分野で利用可能な任意の方法によって修飾され得ることを理解されたい。
【0230】
分析物タンパク質は、酵素、抗体、ホルモン、成長因子、またはサイトカインなど成長調節タンパク質であり得る。サイトカインは、インターロイキン、好ましくはIFN-1、IL-1、IL-2、IL-4、IL-5、IL-6、IL-10、IL-12、およびIL-13、インターフェロン、好ましくはIL-γ、ならびにTNF-αなどの他のサイトカインから選択され得る。タンパク質は、細菌タンパク質、真菌タンパク質、ウイルスタンパク質、または寄生虫由来タンパク質であり得る。
【0231】
標的分析物は、ヌクレオチド、オリゴヌクレオチド、またはポリヌクレオチドであり得る。ヌクレオチドおよびポリヌクレオチドは、以下に論じられる。オリゴヌクレオチドは、典型的には50個以下のヌクレオチド、例えば40個以下、30個以下、20個以下、10個以下、または5個以下のヌクレオチドを有する短いヌクレオチドポリマーである。オリゴヌクレオチドは、脱塩基ヌクレオチドおよび修飾ヌクレオチドを含む、以下で論じられるヌクレオチドのいずれかを含み得る。
【0232】
ポリヌクレオチドの少なくとも一部分は、二本鎖であり得る。
【0233】
ポリヌクレオチドは、デオキシリボ核酸(DNA)またはリボ核酸(RNA)など核酸であり得る。ポリヌクレオチドは、DNAの一本鎖にハイブリダイズされたRNAの一本鎖を含み得る。
【0234】
ポリヌクレオチドは、任意の長さであり得る。例えば、ポリヌクレオチドは、少なくとも10、少なくとも50、少なくとも100、少なくとも500のヌクレオチドまたはヌクレオチド対の長さであり得る。ポリヌクレオチドは、1000以上、10000以上、100000以上、または1000000以上のヌクレオチドもしくはヌクレオチド対の長さであり得る。
【0235】
任意の数のポリヌクレオチドを調査し得る。例えば、本発明の方法は、2、3、4、5、6、7、8、9、10、20、30、50、100個以上のポリヌクレオチドを特徴付けることに関係し得る。2個以上のポリヌクレオチドが特徴付けられる場合、それらは、異なるポリヌクレオチド、または同じポリヌクレオチドの2個の実例であり得る。
【0236】
ポリヌクレオチドは、天然に存在し得る、または人工であり得る。
【0237】
分析物がヌクレオチドを含むポリヌクレオチドであり、ポリマー単位の推定同一性が電気測定から導き出される場合、次いで、鎖特徴付け/シークエンシング、またはエキソヌクレアーゼ特徴付け/シークエンシングが適用され得る。
【0238】
鎖シークエンシングにおいて、ポリヌクレオチドは、印加された電位と共に、またはそれに対して、ナノポアを通して転移され得る。この場合、電気測定は、複数のヌクレオチドの1つ以上の特徴を示す。
【0239】
液滴は、ポアを通るポリマーの転移を制御するための酵素などポリマー結合部分を含み得る。部分は、例えば、部分が酵素である場合、酵素活性を使用する分子モーターであり得、または分子ブレーキとしてであり得る。
【0240】
ポリマーがポリヌクレオチドである場合、ポリヌクレオチド結合酵素の使用を含む、転移の速度を制御するために提案されるいくつかの方法がある。ポリヌクレオチドの転移速度を制御するのに適切な酵素は、ポリメラーゼ、ヘリカーゼ、エキソヌクレアーゼ、一本鎖および二本鎖結合タンパク質、ならびにジャイレースなどトポイソメラーゼを含むが、これらに限定されない。他のポリマータイプの場合、そのポリマータイプと相互作用する部分を使用し得る。ポリマー相互作用部分は、WO2010/086603、WO2012/107778、およびLieberman KR et al,J Am Chem Soc.2010;132(50):17961-72)、および電圧ゲートスキームの場合、(Luan B et al.,Phys Rev Lett.2010;104(23):238103)に開示されたいずれかであり得る。
【0241】
ポリマー結合部分は、ポリマー運動を制御するためのいくつかの方法で使用され得る。部分は、印加された電界と共に、またはそれに対して、ポリマーをナノポアを通って移動させ得る。部位は、例えば、部位が酵素である場合、酵素活性を使用する分子モーターとして、または分子ブレーキとして使用され得る。ポリマーの転位は、ポアを通るポリマーの移動を制御する分子ラチェットによって制御され得る。分子ラチェットは、ポリマー結合タンパク質であり得る。ポリヌクレオチドの場合、ポリヌクレオチド結合タンパク質は、好ましくは、ポリヌクレオチドハンドリング酵素である。
【0242】
好ましいポリヌクレオチドハンドリング酵素は、ポリメラーゼ、エキソヌクレアーゼ、ヘリカーゼ、およびジャイレースなどトポイソメラーゼである。ポリヌクレオチドハンドリング酵素は、例えば、WO2015/140535またはWO2010/086603に記載されるポリヌクレオチドハンドリング酵素の種類のうちの1つであり得る。
【0243】
一実施形態では、膜のうちの1つ以上は、試薬を供給するための一種のフリット代替物を提供するために挿入された複数の孔を有する選択性膜であり得る。この実施形態は、例えば、液滴対と、対の液滴に接続された第3の液滴とを含む3つのポアシステムに採用され得、それによって、第3の液滴と対の液滴との間の界面は、複数の孔を含む。第3の液滴は、例えば、フェリシアニド[Fe(CN)6]3-/2-など電気化学媒介物質を含み得る。
【0244】
異なる液滴界面は、その上に挿入された異なる膜貫通孔を有し得る。
【0245】
結合
分析物は、それを膜に結合させるためのアンカー、またはそれをポアに結合させるためのテザーを含み得る。膜は、分析物の結合を促進するように官能化され得る。ポアは、分析物のテザリングを容易にするために修飾され得る。当該技術分野で既知である、分析物を膜に結合する方法は、例えば、WO2012/164270またはWO2015/150786に記載されるように使用され得る。当該技術分野で既知である、分析物をポアにテザリングする方法は、例えば、WO2012/164270またはPCT/GB2017/053603に記載されるように使用され得る。
【0246】
試料
液滴1は、試料から調製され得る。かかる試料は、分析物を含むことが既知であるか、またはそれを含む疑いがあることが既知であり得る。
【0247】
試料は、生体試料であり得る。試料は、任意の有機体または微生物から得られ得るか、または抽出され得る。
【0248】
試料は、任意のウイルスから得られ得るか、または抽出され得る。
【0249】
試料は、好ましくは、流体試料である。試料は、典型的には、患者の体液を含む。試料は、尿、リンパ液、唾液、粘液、または羊水であり得るが、好ましくは、血液、血漿、または血清である。
【0250】
試料は、人間起源であり得るが、代替的には、ウマ、ウシ、ヒツジ、サカナ、ニワトリ、またはブタなど商業用飼育動物由来など、別の哺乳動物由来であり得、または代替的には、ネコもしくはイヌなど愛玩動物であり得る。代替的には、試料は、穀物、マメ科植物、果物、または野菜など商業用作物から得られる試料など、植物起源であり得る。
【0251】
試料は、非生体試料であり得るか、または非生体試料に由来し得る。非生体試料は、好ましくは、液体試料である。非生体試料の例は、外科用流体、飲料水、海水、または河川水など水、および臨床検査用の試薬を含む。
【実施例】
【0252】
実施してきた装置1の使用例は、以下の通りである。
【0253】
実施例の装置1は、1つの携帯用プラットフォームにおいてDNA試料の調製およびシーケンシングを行うように設計された。主要なシーケンシング要素は、上述の種類のAM-EWODデバイス34内の2つの水性液滴1の間の液滴界面2に形成されるポリマー膜に埋め込まれるタンパク質ナノポアである。
【0254】
この実施例では、液滴1の液体は、水溶液であり、液滴は、ベシクル形態である上述の種類のトリブロックコポリマーである両親媒性分子を含み、流体媒体50は、純粋なアルカン炭化水素であった。
【0255】
実施例は、
図17に示すように、作動電極48のアレイ50を有するAM-EWODデバイス31を使用し、
図17は、2つの液滴1も示す画像である。
図17aは、通電状態にある液滴1が、その間に隙間3を伴って近接している、上述した方法の第1の段階の終了時に撮影された。
図17bは、液滴1が弛緩して液滴界面2を形成した、第2の段階の終了後に撮影された。アレイ内の各作動電極48は、寸法200×200μmであったため、使用される任意の液滴1よりもはるかに小さかった。
【0256】
AM-EWODデバイス31において、導電性材料の層58は、
図18に示すようにパターン化されており、ボックス120は、
図17の画像が撮影された領域を示す。
図18は、上端にC1~C15とラベル付けされたコンタクトパッド121を示す。C2とラベル付けされたコンタクトパッド121に接続されたセンサ電極100(接地)と、C5とラベル付けされたコンタクトパッド121に接続されたセンサ電極100(記録)とを、パネル
図17bの液滴界面2からの電気的記録のために使用した。
【0257】
記録電極をAM-EWODデバイス31に組み込み、電圧印加、およびポアDNAシークエンシング信号を含む電流記録を容易にした。
【0258】
実施例では、電流記録は、標準のパッチクランプアンプを使用して、個々の液滴界面2上で行われた。並列な液滴界面2のアレイからマルチチャネル記録するために、マルチチャネル記録システムが採用され得る。DNAシークエンシングに十分な品質(<1 pA rms @ 5KHz)の記録を可能にするには、システムは、事実上電気ノイズがない必要がある。したがって、優先的に、装置1は、EWODモードおよび記録モードと称される2つの相互排他モードで動作する。
【0259】
EWODモードでは、導電性材料の層58内のすべての機能は、移動に必要な電圧の一部を供給する制御電子機器38に接続されている。EWODは、高周波、かつ大きな交流電圧場を使用しているため、EWOD場がオンのままでは記録を行うことができない。具体的には、EWOD場は、DNA信号を曖昧にするノイズを生成する。したがって、液滴1が所望通りに位置決めされると、制御電子機器38は、プラグが抜かれるが、代替的に内部スイッチング構成要素が使用され得る。EWODは、プラグが抜かれると、多極スイッチが作動する。
【0260】
記録中に装置1全体をファラデーケージ内に封入し、周囲ノイズからの干渉を防止した。したがって、記録モード中、液滴は、任意の電気的に誘発された力によって所定の位置に保持されない。
【0261】
上記の方法を使用して、
図19に示すように、AM-EWODデバイス34を使用して、3つのシステムを作成し、各システムは、2つの液滴1からなり、液滴1間に液滴界面2を有する。
【0262】
液滴界面2の形成を以下のように行った。
【0263】
単に、作動電極48への作動信号の印加下で、2つの液滴1を操作してそれらを一緒にすることは、可能であったが、液滴1は、融合する傾向があるため、困難であった。
【0264】
代わりに、上記の方法を使用した。具体的には、第1の段階では、1.5を超えるアスペクト比を有する長方形形状に液滴1を通電した。これらの形状の長辺を1~2ピクセルに近接させ、中心に置いた。3つの液滴1に適用されるこの段階の例は、
図20の左側に示される。
【0265】
第2の段階では、作動信号を切り替えた。液滴は、自然に、弛緩した円形形状に戻って弛緩し、表面積対体積比を低減させた。弛緩は、隙間3にわたって互いに向かい合う液滴の表面を接触させ、液滴界面2を形成させる(受動形成と称され得る)。このアプローチを使用して、DIBは、2つ以上の液滴の間で作成され得る。3つの液滴1に適用されるこの段階の例は、
図20の右側に示される。
【0266】
液滴界面2のかかる形成は、可逆的プロセスであった。
【0267】
制御電子機器38は、DNAシーケンシング信号を曖昧にするノイズを生成したが、液滴界面2へのポア挿入など大きな電流事象を監視することは依然として可能である。デモンストレーションとして、AM-EWODデバイス34が低ノイズモードに電力が供給され得、電流を記録しながら、液滴が位置付けられて、液滴界面を形成するように、装置1を設定した。
【0268】
図21は、このように記録された電流を示す。この信号内では、液滴界面2の形成、解凍、再形成およびポア挿入を観察することが可能である。ポア挿入、ならびに膜切断および再接続の複数サイクルを示している。太く黒い矢印は、ポア挿入を示す。記録タイムバーは、記録モードを示し、EWODonタイムバーは、EWODモードを表し、作動タイムバーは、液滴作動および液滴成形を示す。液滴作動中に測定限界を超えるノイズが観測される。
【0269】
ポア挿入は、300mVで、0~約200pAの電流の跳ね上がりとして観察された。ポア挿入後、電圧は、ゼロに切り替えられ、システムは、EWODモードに切り替えられた。液滴1は、分離され、次いで液滴界面は、再形成された。なお、この間、ノイズは、電流記録機器の目盛りを超える。
【0270】
次に、システムを再び記録モードに切り替え、300mVの電圧を印加した。別のポア挿入を観察した後、もう一度サイクルを繰り返し、合計3回のポア挿入および液滴界面2の2回の分離を行った。これは、AM-EWODデバイス34内で繰り返し、液滴界面2を形成し、ポアを挿入し、液滴1を分離し、液滴界面2を再形成する能力を示す。
【0271】
DNA検出およびシーケンシングを以下のように行った。
【0272】
両親媒性分子を流体媒体50ではなく液滴1に配置することで、非対称膜を作ることができるようになる。例えば、DNA液滴は、対向する液滴と比較して低い濃度のポリマーベシクルを有し得るか、または、それは、全く異なるポリマー組成物を有し得る。これは、試料調製、DIB形成、ポア挿入、DNAシークエンシング、またはさらなるプロセスの最適化における柔軟性を提供し得る。
【0273】
一例では、短いDNA鎖(アダプタ)を検出するために、
図22に示すように、非対称対の液滴1を使用した。
図22は、ポア挿入を補助するために、DNA液滴(上)中に2mg/mL未満の濃度を有する両親媒性分子の膜を含む液滴界面2の一例を示す。対向する液滴(下)中の高いポリマー濃度は、安定性を補助する。
【0274】
図23は、
図22の液滴界面から得られる特徴的なアダプタ信号の一例を示す。pAに示される電流レベルは、オープンポア(2)およびアダプタ占有ポアを表す。
図23において、アダプタ遮断の特徴的な不規則な曲線は、ポアの品質および全体的なシステム構成を確立した容易に認識可能な信号である。
【0275】
同じアプローチを適用して、DNAの一本鎖からシークエンシング信号を得られ得る。3.6Kbの一本鎖DNA試料、シークエンシング試薬および酵素、ポリマーベシクル、媒介物質緩衝液、ならびにナノポアを含む液滴1から液滴界面2を作製した。対向する液滴1は、DNA液滴1と浸透圧的に均衡するために両親媒性分子および媒介物質+塩のベシクルを含有した。
【0276】
単一のポア挿入を観察した後、制御電子機器38のプラグを抜き、電極を記録モードに切り替えた。シークエンシング中、DNA鎖は、ポア内に貫通し、次いで印加された電圧によって引き抜かれる。貫通の速度は、付着した酵素によって調節され、次いで、酵素に、液滴中のATPターンオーバーによって電力が供給される。
【0277】
この実験で使用されたDNAは、既知のシークエンスを有する標準3.6Kbの長さであったため、各鎖は、同様の時間にわたってポアを通過することが予想された。
図24は、行われた電気測定の一例を示し、180mVでのDNA貫通事象を示す。なお、電流遮断時間は15.1秒~18.3秒継続し、およそ毎秒200塩基に相関する。これは、実験の条件下で動作するナノポアに期待される転移速度である。対照試料中の各DNA鎖は、同一であるため、各転移事象からの不規則な曲線のシークエンスは、同じであるべきである。
【0278】
図25は、6つの転移事象についての拡大された電流トレースのプロットであり、各々、特徴的な「a-塩基性」ピークを示し、続いてシークエンシング信号を示す。なお、すべてのトレースは、同じプロファイルを有する。6つの転移事象のこれらの電流トレースの大まかなアラインメントは、信号パターンがDNAの各鎖について同じであることを示す。