IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングの特許一覧

特許7340602ウイルス不活化のための連続フロー反応器
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-30
(45)【発行日】2023-09-07
(54)【発明の名称】ウイルス不活化のための連続フロー反応器
(51)【国際特許分類】
   B01J 19/24 20060101AFI20230831BHJP
   B01F 25/43 20220101ALI20230831BHJP
   B01F 23/40 20220101ALI20230831BHJP
   C12N 7/04 20060101ALI20230831BHJP
   C12M 1/00 20060101ALI20230831BHJP
   A61L 2/18 20060101ALI20230831BHJP
【FI】
B01J19/24 Z
B01F25/43
B01F23/40
C12N7/04
C12M1/00 Z
A61L2/18
【請求項の数】 15
(21)【出願番号】P 2021518902
(86)(22)【出願日】2019-10-07
(65)【公表番号】
(43)【公表日】2022-01-13
(86)【国際出願番号】 US2019054965
(87)【国際公開番号】W WO2020076683
(87)【国際公開日】2020-04-16
【審査請求日】2021-06-04
(31)【優先権主張番号】62/742,530
(32)【優先日】2018-10-08
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】503385923
【氏名又は名称】ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
(74)【代理人】
【識別番号】110001508
【氏名又は名称】弁理士法人 津国
(72)【発明者】
【氏名】オロスコ,ラケル
(72)【発明者】
【氏名】コフマン,ジョナサン
(72)【発明者】
【氏名】パーカー,ステファニー
(72)【発明者】
【氏名】マシューズ,ナティラ・ナット
【審査官】小久保 勝伊
(56)【参考文献】
【文献】特表2001-510725(JP,A)
【文献】特表2017-529875(JP,A)
【文献】特開昭57-053228(JP,A)
【文献】特表2001-509728(JP,A)
【文献】国際公開第2017/129771(WO,A1)
【文献】米国特許出願公開第2015/0273430(US,A1)
【文献】Biotechnol.Prog.,2017,Vol.33.No.4,p.954-965
(58)【調査した分野】(Int.Cl.,DB名)
A61L 2/18
B01F 25/43
B01F 23/40
B01J 19/24
C12N 7/04
C12M 1/00
(57)【特許請求の範囲】
【請求項1】
単一の流路を有する単一の連続フロー反応器管を形成するように流体連通している複数の織り合わされた流路を含み、
複数の織り合わされた流路の各々が、異なる非平行平面内にある複数のターンを含み、
複数のターンの各々が、複数のターンの角度よりも小さい角度を有する屈曲部によって互いに分離され、
複数の織り合わされた流路が、複数の屈曲部を含み、各屈曲部が、複数の織り合わされた流路の長手方向軸の周りのある角度で互いに対して回転される、
連続フロー反応器。
【請求項2】
複数のターンが、少なくとも第1のパターンと、第1のパターンとは異なる第2のパターンとを含み、第1のパターンが所定のターン数を含み、第2のパターンが所定のターン数を含み、第1のパターン内の所定のターン数が、第2のパターン内の所定のターン数と同じ又は異なる、請求項記載の連続フロー反応器。
【請求項3】
複数のターンが、ターンの繰り返しパターンを含み、
好ましくは、ターンのパターンが、8回屈曲した後に繰り返される、
請求項記載の連続フロー反応器。
【請求項4】
複数のターンの各々が、100°~200°の角度を含み、
好ましくは、複数のターンの各々が、135°~140°の角度を含む、
請求項記載の連続フロー反応器。
【請求項5】
複数のターンが、ターン中心で45°変化する流れ方向を含む三次元経路をたどる、請求項記載の連続フロー反応器。
【請求項6】
複数の織り合わされた流路が、可撓性合金及び記憶合金のうちの少なくとも1つから作製される、請求項1~のいずれか1項に記載の連続フロー反応器。
【請求項7】
複数の織り合わされた流路が、1m3当たり19.6~39.2ターンを含む、請求項1~のいずれか1項に記載の連続フロー反応器。
【請求項8】
複数の織り合わされた流路が内部構造物を含む、請求項1~のいずれか1項に記載の連続フロー反応器。
【請求項9】
複数の織り合わされた流路が、横糸状パターン及び縦糸状パターンを含む、請求項1~のいずれか1項に記載の連続フロー反応器。
【請求項10】
織り合わされた流路の長手方向軸の周りの角度が、25度~60度である、請求項1~のいずれか1項に記載の連続フロー反応器。
【請求項11】
単一の長手方向軸上の少なくとも1つの流路、単一の流路を有する単一の連続フロー反応器管を形成するように流体連通している複数の織り合わされた流路を含み、複数のターンを含む連続フロー反応器であって、
複数のターンのうちの少なくとも2つが、異なる非平行平面内にあり、
複数のターンの各々が、複数のターンの角度よりも小さい角度を有する屈曲部によって互いに分離され、
少なくとも1つの流路が、複数の屈曲部を含み、各屈曲部が、複数の織り合わされた流路の長手方向軸の周りのある角度で互いに対して回転される、
連続フロー反応器。
【請求項12】
複数のターンが、所定の回数繰り返される第1のパターンを含む、請求項1記載の連続フロー反応器。
【請求項13】
複数のターンが、少なくとも第1のパターンと、第1のパターンとは異なる第2のパターンとを含み、第1のパターンが所定のターン数を含み、第2のパターンが所定のターン数を含み、第1のパターン内の所定のターン数が、第2のパターン内の所定のターン数と同じ又は異なる、請求項1記載の連続フロー反応器。
【請求項14】
ましくは、屈曲部の各々が、135°未満の角度を含み、複数のターンの各々が、135°~140°の角度を含む、
請求項1記載の連続フロー反応器。
【請求項15】
少なくとも1つの流路が、互いに織り合わされた4つの流路を含む、請求項1記載の連続フロー反応器。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に、連続フロー反応器のための装置及びプロセスに関する。さらに詳細には、本開示は、単一の長手方向軸上に少なくとも2つのターンを有する連続フロー反応器であって、各ターンが異なる非平行平面に配置された連続フロー反応器のための装置及びプロセスに関する。
【背景技術】
【0002】
本発明は、例えば真核細胞を培養して目的のタンパク質を生成するバイオリアクタ(発酵槽)で通常行われる、タンパク質などの生物学的生成物の生成の分野にある。したがって、様々な技術、例えば、フェドバッチ又は連続若しくは灌流発酵が確立される。使用前に、生成物は精製される必要がある。精製工程の中でも、特に、生成物をヒトに使用することが意図される場合、ウイルスの不活化は必須である。
【0003】
現在、低pHでのウイルス不活化は、バッチ反応器内で行われる。不活化される材料(すなわち、活性ウイルスを潜在的に含有する液体)は、バッチ反応器に導入される。不活化される材料を酸性溶液によってpH≦4にし、必要な時間にわたり放置する。ウイルスの不活化は、特定の生成物及びプロセスに依存する時間にわたってウイルスと酸性溶液とを接触させることによって達成される。バッチ反応器の全内容物は、実質的に同一の滞留時間により不活化される。さらに、各バッチ内で達成されるウイルス減少は実質的に同一である。
【発明の概要】
【0004】
一態様では、連続フロー反応器が提供される。連続フロー反応器は、単一の流路を有する単一の連続フロー反応器管を形成するように流体連通している複数の織り合わされた流路を含む。
【0005】
別の態様では、複数の織り合わされた流路の各々は、異なる非平行平面内にある複数のターンを含む。
【0006】
さらなる態様では、複数のターンは、少なくとも第1のパターンと、第1のパターンとは異なる第2のパターンとを含み、第1のパターンは所定のターン数を含み、第2のパターンは所定のターン数を含み、第1のパターン内の所定のターン数は、第2のパターン内の所定のターン数と同じ又は異なる。
【0007】
一態様では、複数のターンは、ターンの繰り返しパターンを含む。
【0008】
別の態様では、ターンのパターンは、8回屈曲した後に繰り返される。
【0009】
さらなる態様では、複数のターンの各々は、約100°~約200°の角度を含む。
【0010】
一態様では、複数のターンの各々は、約135°~約140°の角度を含む。
【0011】
別の態様では、複数のターンは、ターン中心で約45°変化する流れ方向を含む三次元経路をたどる。
【0012】
さらなる態様では、複数の織り合わされた流路は、可撓性合金及び記憶合金のうちの少なくとも1つから作製される。
【0013】
一態様では、複数の織り合わされた流路は、1m3当たり約19.6~約39.2ターンを含む。
【0014】
別の態様では、複数の織り合わされた流路は、内部構造物を含む。
【0015】
さらなる態様では、複数の織り合わされた流路は、横糸状パターン及び縦糸状パターンを含む。
【0016】
一態様では、複数の織り合わされた流路は、複数の屈曲部を含み、各屈曲部は、複数の織り合わされた流路の長手方向軸の周りのある角度で互いに対して回転される。
【0017】
別の態様では、織り合わされた流路の長手方向軸の周りの角度は、約25度~約60度である。
【0018】
一態様では、連続フロー反応器が提供される。連続フロー反応器は、単一の長手方向軸上の少なくとも1つの流路を含み、複数のターンを含み、複数のターンのうちの少なくとも2つは、異なる非平行平面内にある。
【0019】
別の態様では、複数のターンは、所定の回数繰り返される第1のパターンを含む。
【0020】
さらなる態様では、複数のターンは、少なくとも第1のパターンと、第1のパターンとは異なる第2のパターンとを含み、第1のパターンは所定のターン数を含み、第2のパターンは所定のターン数を含み、第1のパターン内の所定のターン数は、第2のパターン内の所定のターン数と同じ又は異なる。
【0021】
一態様では、複数のターンの各々は、複数のターンの角度よりも小さい角度を有する屈曲部によって互いに分離される。
【0022】
別の態様では、屈曲部の各々は、約135°未満の角度を含み、複数のターンの各々は、約135°~約140°の角度を含む。
【0023】
さらなる態様では、少なくとも1つの流路は、互いに織り合わされた4つの流路を含む。
【0024】
一態様では、連続フロー反応器内のウイルス不活化の方法が提供される。方法は、約187~約333のレイノルズ数及び約105~約212のディーン数を有する流量での連続フロー反応器へのプロセス流、及び少なくとも1つのウイルス不活化化合物又は溶液と、連続フロー反応器内でプロセス流と少なくとも1つのウイルス不活化化合物又は溶液とを接触させることとを含む。
【0025】
別の態様では、生成物流のウイルス不活化の連続的な低pHのためのプロセスが提供される。
【0026】
様々な実施態様の追加の特徴及び利点は、以下の説明に部分的に記載され、説明から部分的に明らかになるか、様々な実施態様の実施によって習得され得る。様々な実施態様の目的及び他の利点は、本明細書の説明において特に指摘される要素及び組合せによって実現及び達成される。
【0027】
本開示は、そのいくつかの態様及び実施態様では、詳細な説明及び添付の図面からさらに完全に理解され得る。
【図面の簡単な説明】
【0028】
図1A】本開示の一例による、そのケーシング及び例示的な反応器管を示す連続フロー反応器の斜視図である。
図1B】本開示の一例による、図1Aの連続管型反応器の部分斜視図である。
図1C】本開示の一例による、図1Aの連続管型反応器の背面図である。
図1D】本開示の一例による、図1Aの連続フロー反応器の斜視図、正面図、及び側面図を示す。
図2A】本開示の一例による、単一のランを有する例示的な連続フロー反応器管の等角図である。
図2B】本開示の一例による、単一の長手方向軸上にあるが異なる非平行平面内にあるターンを有する、図2Aの連続フロー反応器管を示す。
図2C】本開示の一例による、図2Aの例示的な連続フロー管の上面図である。
図2D】本開示の一例による、図2Aの管の長手方向アクセスに沿った断面図である。
図2E】本開示の一例による、ターンを有する第1の流路と、実質的に直線状の第2の経路とを有する、図2Aの連続フロー反応器管である。
図2F】本開示の一例による、図2Aの例示的な連続フロー管の側面図である。
図2G】本開示の一例による、図2Fの例示的な連続フロー管の側面図の領域Aの詳細図である。
図3A】本開示の一例による、4つのランを有する例示的な連続フロー管の等角図である。
図3B】本開示の一例による、図3Aの例示的な連続フロー管の上面図である。
図3C】本開示の一例による、図3Aの例示的な連続フロー管の底面図である。
図3D】本開示の一例による、図3Aの例示的な連続フロー管の第1の流路と第2の流路との間の接続点の詳細図である。
図4A】本開示の一例による、横糸状パターンを有する第1の流路及び第2の流路を示す。
図4B】本開示の一例による、縦糸状パターンを有する第1の流路及び第2の流路を示す。
図4C】本開示の一例による、縦糸状パターンを有する第1の流路と、横糸状パターンを有する第2の流路とを示す。
図5】本開示の一例による、互いに接続された複数の連続フロー反応器を示す。
図6】本開示の一例による、5.26E-02m s-1の入口速度に対する織り流路の中心線速度を示す。
図7】本開示の一例による、織り流路に沿った流路及び軸方向速度輪郭を示す。
図8】本開示の一例による、図7の織り設計平面速度輪郭及びディーン渦/半径方向速度の詳細を示す。
図9】本開示の一例による、図8の半径方向平面の各々について推定された、5.26E-01m s-1の入口速度を用いて計算された最大速度を示す。
図10A】本開示の一例による、図8の位置1~3における半径方向平面の水平中心線速度及び垂直中心線速度を示す。
図10B】本開示の一例による、図8の位置4~7における半径方向平面の水平中心線速度及び垂直中心線速度を示す。
図10C】本開示の一例による、図8の位置8~11における半径方向平面の水平中心線速度及び垂直中心線速度を示す。
図10D】本開示の一例による、図8の位置12~13における半径方向平面の水平中心線速度及び垂直中心線速度を示す。
図11】4つの流量20、30、50、100ml/分(それぞれ1.05E-02、1.58E-02、2.63E-02、及び5.26E-02m/sの線速度)に関する372nmでの吸光度対時間(分)の波形パルストレーサ実験データを示すグラフである。
図12】20、30、50、及び100ml/分での織パルストレーサ(Weave Pulse Tracer)実験の無次元E曲線を示すグラフである。
【発明を実施するための形態】
【0029】
本明細書及び図面を通して、同様の参照番号は同様の要素を識別する。
【0030】
前述の一般的な説明及び以下の詳細な説明はともに、例示的かつ説明的なものにすぎず、本教示の様々な実施態様の説明を提供することを意図していることを理解されたい。
【0031】
ウイルス安全性が、哺乳動物細胞内で生成されるタンパク質治療薬に求められ、ウイルス除去手順は高度に規制されている。ウイルスは、プロセス流れに化合物又は溶液を加えることによって不活化され得る。そのような化合物又は溶液は、溶媒、洗剤、低温殺菌(加熱)、及びpH低下(酸)のうちの少なくとも1つを含むことができる。低pHは、モノクローナル抗体精製プロセスで使用される非常に効果的な方法であり、内因性レトロウイルスを含む大きなエンベロープウイルスの4log(10)超を一定して除去する。pHによるレトロウイルスの不活化プロセスのための米国材料試験協会(ASTM)の規格では、以下の低pHウイルス不活化条件が規定されている:pH≦3.6、≧15℃、指定されたpHでのシステム固有の緩衝液中で≧30分間、≧5log減少値(LRV)を提供する。
【0032】
図1A図1Eを参照すると、ウイルスを不活化するために、プロセス流では、連続ウイルス不活化(CVI)反応器100などの連続フロー反応器にプロセス流を導入することができる。いくつかの例示的なプロセス流には、バイオリアクタ流出物、アニオン交換クロマトグラフィー流出物、カチオン交換クロマトグラフィー流出物、水性二相抽出からの流出物、沈殿反応からの流出物、膜濾過工程からの流出物、及び限外濾過工程からの流出物が非限定的に含まれる。
【0033】
図1Aに示す一例では、CVI反応器100は、圧力降下及び軸方向分散を最小限に抑える及び/又は低減するように構成又は設計することができる。したがって、CVI反応器100は、2000未満のRe数を有する流れとして定義され、かつRe=ρvd/μ(式中、ρは密度、vは平均速度、dは管直径、μは力学的粘度である)として定義される低いレイノルズ(Re)数で動作することができる。例えば、Re数の計算は、25℃の温度、ρ=1000kg m-3及びμ=8.9E-4Pa・sを有するプロセス流に基づくことができる。ただし、層流は、放物線速度プロファイルによって特徴付けられるように、管の中心にある流体要素が、壁の近くの要素よりも速く移動し、広い滞留時間分布(RTD)をもたらす軸方向分散を引き起こす可能性がある。図1B図2A、及び図2Bに示すように、軸方向分散を低減及び/又は少なくとも部分的に排除するために、CVI反応器100は、単一の長手方向軸LX上に配置されているが、異なる非平行平面(例えば、平面A及び平面B)内にあるターン114A及び114Bなどの少なくとも2つのターン又は曲線114を有する流路又はチャネル112を含むことができる。この特定の設計は、半径方向混合を促進し、軸方向分散を低減する二次流れを生成することができる。
【0034】
ターン又は曲線114の曲率半径(ROC)は、ディーン数(D)及びターン長さと円環形状の長さとの比(LDT)の関数として決定することができる(D=Re√(d/2R)(式中、dは管内径であり、Rは流路の曲率半径である)、及びLDT=0.322×d 0.31×Re0.59×d 0.76(式中、dは内径であり、dはメートル単位のコイル直径である))。
【0035】
反応器設計
図1A図1Eは、例示的なCVI反応器100を示す。CVI反応器100は、本体102と、本体102内の連続フロー反応器管110とを含むことができる。
【0036】
図1Aに示すように、CVI反応器100は、複数列の連続フロー反応器管110、例えば、少なくとも5列の連続フロー反応器管110を含むことができる。この例示的なCVI反応器100では、連続フロー反応器管110の各列内のターン数は、反応器管110の外径及び/又は内径に依存し得る。例えば、比較的大きな直径の反応器管110は、比較的小さな直径の反応器管110よりも少ないターンを含み得る。一例では、連続フロー反応器管110が約0.3cm以下から約2cm以上、例えば約1.05cmからのROCを含む場合、連続フロー反応器管110の各列は、合計約320ターン以上に対して16ターンを含むことができる。CVI反応器100のパラメータは、約50以上のディーン数、例えば、約100以上のディーン数、例えば、約100~約500のディーン数に対応することができる。
【0037】
一例では、CVI反応器100にプロセス流と、少なくとも1つのウイルス不活化化合物又は溶液とを導入する前に、プロセス流とウイルス不活化化合物又は溶液との組合せは、約187~約333のレイノルズ数及び約105~約212のディーン数を有する流量を含むことができる。
【0038】
CVI反応器100は、約50ターン以上、例えば約100ターン以上を含むことができる。例えば、CVI反応器は、約320ターンを含むことができる。図1B及び図1Cを参照すると、約320ターンを小型の設計に収容するために、図1Cに示すように、複数の積層180、例えば、2つの層180から10以上の層180、例えば5つの層180に、CVI反応器100内の流路112を水平に配置することができる。一例では、積層180内の各層180(a)~180(e)内の流路112は、約28ターン以下~約68ターン以上を含むことができる。例えば、積層180内の各層180(a)~180(e)は、64ターンを含むことができる。一例では、各層180は、180°ターン185によってその隣接する下層180に接続され得る。CVI反応器100が5つの層180を含む一例では、5つの層180の各々の中の連続フロー反応器管110は、4つの180°垂直ターン185によって互いに接続され得る。
【0039】
図1Bを参照すると、一例では、CVI反応器100内の各層180は深さL7を含むことができる。深さL7は、連続フロー反応器管110を収容することができる距離であり得る。最低でも、深さL7は、第1の層180(a)内の第1の八角星の中心から第2の層180(b)内の第2の八角星の中心までの距離であり得る。例えば、深さL7は、連続反応器管110の直径又は絡み合った連続フロー反応器管110の長さL3(図3Cに示す)の関数として定義することができる。一例では、深さL7は、連続フロー反応器管110の直径のサイズの約6.06倍(すなわち、6.06*d)以下から連続フロー反応器管110の直径のサイズの約7.84倍(すなわち、7.84*d)までであり得る。例えば、L7は、約3.85cm以下~約5cm以上、例えば約4.7cmであり得る。一例では、距離L8は、第1の層内の管状流路112の底部から第1の層の真下の第2の層内の管状流路112の頂部までであり得る。L8の距離はまた、連続反応器管110の直径の関数として定義することができる。一例では、距離L8は、連続フロー反応器管110の直径のサイズの約0.23倍(すなわち、0.23*d)から連続フロー反応器管110の直径のサイズの約0.70倍(すなわち、0.7*d)までであり得る。例えば、L8は、約0.15cm(1.5mm)~約0.5cm(5mm)であり得、例えば、約0.425cm(4.25mm)からであり得る。
【0040】
図1Dを参照すると、一例では、CVI反応器100は、約20×4.5×15~約40×9×30cm、例えば約27×5.8×23.5cmの本体又はフットプリント寸法L(図1DではS1として示す)×W(図1DではW1として示す)×H(図1DではH1として示す)を含むことができ、約442.6cm~約7000cm、例えば約1770.43cmの流路112長さを収容することができ、約300ml~約800ml、例えば約560.68mlの流量を近似的にもたらす。CVI反応器100の本体は、第1の側部124及び第2の側部126を含むことができる。一例では、第1の側部124は、少なくとも1つの溝又は窪み124Aを含むことができ、第2の側部126は、少なくとも1つの突起126Aを含むことができる。少なくとも1つの窪み124A及び少なくとも1つの突起126Aは、2つのCVI反応器100が互いに当接して配置された際に、それらが互いに取り外し可能に固定され得るように配置され得る。
【0041】
H2として示される、反応器の入口点の中心から出口点までの間の距離は、約5cm以下~約200cm以上、例えば約15cm~約25cm、例えば約23.5cmであり得る。CVI反応器100はまた、H3として示される、反応器の底部からハンドルまでの長さを含むことができる。H3の長さは、約23cm~約30cm、例えば約27.2cmであり得る。一例では、フランジ195は、CVI反応器100の底部から約0.1~約1cm、例えば約0.67cm延在することができる。さらに、フランジ195は、約0.3cm~約2cm、例えば約1.1cmの半径を含むことができる。
【0042】
一例では、連続フロー反応器管110は、1つ以上の内部構造物を含むことができる。内部構造物には、例えば、いくつか名前を挙げれば、ディフューザ、キャッチャ、分配器、触媒、ミキサ、再分配、及びコレクタが含まれ得る。これらの内部構造物のうちの1つ以上は、連続フロー反応器管110内のどこにでも配置することができ、任意の方法で配置することができる。
【0043】
一例では、CVI反応器100は、連続フロー反応器管110の長さを通してどこにでも配置されたサンプリングポート(図には示さず)を含むことができる。例えば、サンプリングポートは、連続フロー反応器管110の開始部と終了部との間のほぼ中間に配置することができる。サンプリングポートを使用して、混合されたプロセス流とウイルス不活化化合物又は溶液との試料を抽出して、例えば、混合物のpHレベル又は稠度、及び/又は混合物の任意の他の特性を決定することができる。pHレベルを調整するために、CVI反応器100は補助入力ポートを含むことができる。補助入力ポートは、ユーザが任意の必要な追加のウイルス不活化化合物若しくは溶液又はプロセス流を加えることを可能にする。
【0044】
一例では、比較的小さい又は比較的大きい体積のプロセス流に対応するために、比較的小さい又は比較的大きい反応器を使用することができ、比較的小さい又は比較的大きい反応器内の反応器管は、反応器100と実質的に同様の内径と2*の曲率半径を含む。
【0045】
図2A図3Dは、低Reで動作することができる例示的な連続フロー反応器管110を示す。連続フロー反応器管110は、ターン又は曲線114及び屈曲部116を含む管状流路112を含むことができる。ターン又は曲線114のうちの少なくとも2つは、単一の長手方向軸LX上に配置されているが、異なる非平行平面、例えば平面A及び平面Bに配置されている。連続フロー反応器管110を形成するために使用される経路の数に応じて、ターンは、2つ以上の異なる非平行平面、例えば約6~約13の異なる平面、例えば8つの異なる平面にあることができる。さらに、ターンのうちの少なくとも2つは、例えば図2B及び図3Bに示すように、少なくとも2つのターンに対応する平面が互いに交差することができるように配置される。ターンはまた、所定のターン数の後に繰り返されても繰り返されなくてもよいパターンを形成することができる。例えば、その長手方向軸に沿った単一の経路の断面を示す図2Dに示すように、単一の経路は、少なくとも2回繰り返されるパターン150を含むことができる(図2Aも参照)。各流路は、約4ターン~約128ターン又はそれ以上の交互のターン、例えば約16~約32ターンを含むことができる。各ターン114は、約110°~約280°、例えば約135°~約140°の角度を含むことができる。一例では、第1のターンは、第2のターンの角度(約140°の角度など)よりも小さい角度(約135°の角度など)を含むことができる。さらに、図2A図2B、及び図3Aに示すように、各流路はまた、約8~約64又はそれ以上の屈曲部116、例えば約8~約16の屈曲部116を含むことができる。各屈曲部116は、約15°~約135°未満の角度、例えば約30°~約90°の角度、例えば約45°の角度を含むことができる。一例では、各パターン150は、約4回以上の屈曲の後、例えば約8回の屈曲の後に繰り返され得る。
【0046】
図に示されていない別の例では、連続フロー反応器管110の経路は、繰り返されても繰り返されなくてもよい2つ以上の異なるパターンを含むことができる。連続フロー反応器管110が複数の織り合わされた流路を含む場合、連続フロー反応器管110の各経路は、実質的に同様のパターンを含むことができる。代替的、又は追加的に、連続フロー反応器管110の各経路は、異なるパターンを含むことができる。さらに、連続フロー反応器管110の各経路は、同様の数の繰り返しパターン(例えば、2つの同様に繰り返されるパターン)を含むことができるか、2つよりも多い又は少ない繰り返しパターンを含むことができる。例えば、第2の経路は、2つの同様に繰り返されるパターンを含むことができるか、3つの同様に繰り返されるパターンを含むことができる。
【0047】
上述したように、織り設計の織り合わされた管状流路は、図2Bに示すように、各ターンの中心に45°屈曲部を有する交互の135°~140°ターンからなる。流路の内径は、約0.3cm以下~約1cm以上、例えば約0.6cm~約0.7cm、例えば約0.635cmの内径であり得る。さらに、130~140°ターンの最小曲率半径は、0.635cmのIDに対して決定される約0.3cm~約2cm、例えば約1.05cmであり得る。
【0048】
一例では、図2Eに示すように、連続フロー反応器管110は、所定の回数、例えば2回繰り返され得る第1のパターンを形成する複数のターン114を有する第1の流路と、実質的に直線状であるか、第1の流路のターン間に蛇行パターンを含む第2の流路とを含むことができる。図2Cから分かるように、第1の流路内のターン114のパターンは、八角星を有する上面図を形成する。図3Aに示すように、連続フロー反応器管110が複数の流路、例えば4つの流路を含む場合、4つの流路の各々は、実質的に同じであり、かつ各流路内の各ターン内に形成された空間を占めるように織り合わされ及び/又は配置され得るターン及びパターンを含むことができる。したがって、図2C及び図3Bに示すように、1つの流路又は4つ以上の流路を有する連続フロー反応器管110の上面図は、実質的に八角星のように見える。
【0049】
図2F及び図2Gを参照すると、連続フロー反応器管110内のターン114の各々は、ターン間に約1cm~約2cm、例えば約1.5cmの垂直L1中心間距離を含むことができる。さらに、ターン114の各々は、ターン間に約1cm~約2cm、例えば約1.63cmの水平L2中心間距離を含むことができる。さらに、ターン114の各々は、約3cm~約4cm、例えば約3.85cmの端部間距離L3を含むことができる。連続フロー反応器管110内の各ターン114の半径は、実質的に一定であり得る。例えば、図2Gを参照すると、半径R1及びR2は、交互のターン間のディーン数の実質的な差を防止するために、互いに0.05cm以下、例えば互いに約0.02cm以内にあり得る。例えば、R1は約1.10cmであり得、R2は約1.12cmであり得る。
【0050】
一例では、複数の流路は、複数のターンが多軸三次元流路を形成するように織り合わされ得る。そのような多軸三次元流路は、シート(図4A図4Cに示すように)、角柱(図には示さず)、円筒(図3Aに示すように)、円錐(図には示さず)、及び/又は球(図には示さず)の全体形状を形成するように配置され得る。
【0051】
一例では、連続フロー反応器管110の流路が織り合わされてシート状構造を形成する場合、第1の流路及び第2の流路は、図4Aに示すように、横糸状パターンを形成するターンを含むことができる。あるいは、第1の流路及び第2の流路は、図4Bに示すように、縦糸状パターンを形成するターンを含むことができる。さらに、別の例では、図4Cに示すように、第1の流路は、横糸状パターンを形成するターンを含むことができ、第2の流路は、縦糸状パターンを形成するターンを含むことができる。
【0052】
連続フロー反応器管の材料及び設計
本発明による連続フロー反応器は、任意の適切な不活性材料、例えば、ガラス、合成材料又は金属から作製され得る。別の例では、連続フロー反応器管110は、少なくとも1つの可撓性合金材料及び/又は記憶合金材料から作製され得る。例えば、図3Aに示すように、連続フロー反応器管110の織り合わされた流路は、記憶合金材料又は可撓性材料から作製され得る。そのような材料は、連続フロー反応器管110のユーザが、新しい反応器を設計する必要を伴わず、必要に応じて管の形状を変更し、及び/又はその流量を操作することを可能にすることができる。例えば、連続フロー反応器管110を高温浴中で加熱する必要があるが、利用可能な高温浴が長方形の連続フロー反応器管110を収容することができない場合、ユーザは、連続フロー反応器管110の形状を円形に変更して、高温浴内に良好に適合させることができる。さらに、連続フロー反応器管110に可撓性合金材料又は記憶合金材料を使用することにより、ユーザが反応器の1平方メートル当たりのターンの密度を変更することが可能になり得る。これにより、単一の反応器を複数の目的に使用することが可能になる。反応器の目的に応じて、ユーザは、ターンの一部を真っ直ぐにするか、連続フロー反応器管110に追加のターンを加えることができる。一例では、反応器の体積当たりの135°~140°ターンの密度は、約19.6ターン/m3~約39.2ターン/m3であり得る。
【0053】
織り合わされた流路に関する詳細
図3A図3Dは、連続フロー反応器管110が、単一の流路を形成するように流体連通している複数の織り合わされた流路を含むことができる例示的な設計を示す。例えば、図3Aは、単一の流路112を形成するために互いに流体連通している4つの経路(経路1~4)を示す。この設計は、流路と流路の下の空隙空間との間に必要な距離を減少させることによって、流路を並べて積み重ねる線形パターンよりも小型の設計を可能にすることができる。図3Aはまた、4つの流路の織りパターンの拡大図を示す。この例では、経路1~4は、流路内の直線を避けるために、図3Dに示すように、流路コネクタ160などの湾曲した接続部によって接続されている。
【0054】
一例では、図3A及び図3Dに示すように、流路コネクタ160は、2つの凸状端部領域及び中央凹状領域を有するように見える管であり得、それによって、「m」のような形状を形成する。図3Dを参照すると、凸状領域と凹状領域との間の傾斜は、約30度~約60度の角度、例えば約45°の角度であり得る。さらに、凸状領域の各々の半径R3は、約0.3cm~約0.9cm、例えば約0.65cmであり、凹状領域の半径R4は、約0.2cm~約0.8cm、例えば約0.52cmである。さらに、図3B及び図3Dから分かるように、流路コネクタ160の一端の中心から流路コネクタ160の第2の端部の中心までの距離L4は、約2cm~約4cm、例えば約2.96cmであり得る。
【0055】
図3Cを参照すると、上述のように、4つの流路は、八角星の上面図及び底面図を形成する。図3Cを参照すると、八角星は、少なくとも2つの垂直平行管と、2つの水平平行管と、流路コネクタ160とを含む。ターン114の各々は、約3cm~約4cm、例えば約3.85cmの端部間距離L3を含むことができる。さらに、各平行管の間の距離L5は、約1cm~約2cm、例えば約1.65cmである。さらに、流路コネクタ160の端部と管入口170又は管出口175との間の距離L6は、約0.5cm~約1.5cm、例えば約1.1cmであり得る。
【0056】
直列に接続された複数の反応器
一例では、図5に示すように、複数の層180を有するCVI反応器100に加えて、経路長及びインキュベーション時間に対する変更を可能にするために、複数のCVI反応器100を互いに直列に接続することができる。これは、1つ以上のフランジ付きコネクタによって達成することができる。一例では、少なくとも2つの管状CVI反応器100、例えば少なくとも6つ以上のインライン管状CVI反応器100以上を互いに接続することができる。この特定の例では、CVI反応器100の各端部の管状流路112は、CVI反応器100から部分的に延出(延出部190)することができる。延出部190はまた、図1Dに示すように、フランジ195を含むことができる。コネクタ200は、水平180°ターンを含むことができ、及び/又は「U」の形状とすることができる。コネクタの一端は、第1のCVI反応器100の管状流路112又はフランジ195に接続することができ、コネクタの第2の端部は、隣接するインライン管状CVI反応器100の管状流路112又はフランジ195に接続することができる。
【0057】
コネクタ200は、クランプ210によって、又は他のファスナ装置、例えばねじ、接着剤など、及び/又は一体型コネクタ、例えばねじ付き雄/雌端子、高速接続/切断端子などによって、各管状流路112又はフランジ195に接続することができる。一例では、管状流路112又はフランジ195の端部とコネクタ200の各端部との間にガスケットを配置することができる。
【0058】
実施例
実施例1
図1A図1C、及び図1Dに示すように、CVI反応器100内の流れの曲率は、層流領域で動作している間に混合を誘導するディーン渦を生成した。ターン中心にある45°屈曲部は、ターンによって生成されたディーン渦の方向を変化させることによって混合をさらに増加させた。図6を参照すると、左側の画像は、中心面流路の中心線速度を示し、右側の画像は、織り流路の16の135°~140°ターン及び7つの45°屈曲部のあらゆる中心線面を示す。図6に見られるように、流路の中心面で測定された中心線速度であるプロファイルは、完全に発達した流れの放物線速度プロファイルを特徴とする層流領域で動作しているにもかかわらず、長さとともに変化した。特徴的な放物線速度プロファイルは、流路が直線である図6に示す流路の入口で見られた。交互のターン及び屈曲部の織り流路に流路が移行すると、中心線速度プロファイルは長さとともに動的に変化した。
【0059】
織り設計の速度プロファイルをさらに分析するために、図7及び図8に示すように、交互のターンの開始から45°間隔で、又は流路に沿って約0.9cmごとに、軸方向速度輪郭及びディーン渦を測定した。図8では、上部の画像は、速度ヒートマップと、軸方向速度及び半径方向速度が流路に沿って測定され、1~13と番号付けされている平面の概要とを含む。入口速度は5.26E-02m s-1であり、完全に発達した層流に対して1.052E-01m s-1の最大速度をもたらした。速度ヒートマップは、0~1.052E-01m s-1の範囲であった。下部の画像は流路の概要であり、速度輪郭(上部)及び半径方向速度/ディーン渦(下部)は、入口に位置する13の平面で、流路に沿ったターンの開始から45°ごとに、又は約0.9cmの間隔で測定した。
【0060】
図8の各平面での平均/入口速度5.26E-02m s-1の最大速度を予測し、図9の表及びグラフに示す。最大速度のパイプ内の層流の特性値は、平均速度の2倍(2*vavg)であった。ここで、本発明者らのvavgは5.26E-02m s-1であり、2*vavgは1.052E-01m s-1であった。入口では、流路内の曲率の前に、最大速度が特性最大値に達した。ただし、織り流路内の半径方向平面では、最大速度は特性値よりも低かった。これは、流路が最大速度を低下させ、したがって軸方向分散を減少させることを示した。
【0061】
さらなる分析のために、図8の半径方向平面の水平及び垂直の両方の中心線速度プロファイルを図10に示す。特徴的な対称放物線層流速度プロファイルが入口で再び見られたが、流れが屈曲部を通って移動するにつれて、プロファイルは広がり、非対称であった。
【0062】
実施例2
CVI織り反応器を用いたパルストレーサ実験は、最初にMilli-Q水(Barnstead Nanopure Water Purification System,Thermo Scientific,Waltham,MA,USA)を用いてJIBをフラッシングし、続いて50mg/mlリボフラビンの13mlパルス注入を行い、最後にAKTA Pilot(GE Healthcare,IL,USA)上のP-970システムポンプを介してMilli-Q水により追跡することからなった。AKTA Pilot(GE Healthcare)上のUVフローセルを使用して372nmの波長で、出口でのトレーサの吸光度を測定した。4つの流量20、30、40、50、及び100ml/分でのパルストレーサ実験から得られた吸光度対時間の結果を図11に示す。
【0063】
層流は、2000未満のレイノルズ数(Re)で発生する。パイプ内の流れのReは、以下の式1によって定義され、式中、ρは密度、vは平均速度、dは管直径、μは動粘度である。
【数1】
【0064】
湾曲したパイプ内の非圧縮性流体の定常運動の場合、二次流れの強度は、式2(式中、dは管内径であり、Rは流路の曲率半径である)によって示される無次元パラメータ、ディーン数(D)によって特徴付けられる。
【数2】
【0065】
反応器のRTDは、曲線下面積が単一、E曲線であり、式3(式中、Cは出口でのトレーサの濃度であり、tは時間である)によって定義されるように表すことができる。
【数3】
【0066】
軸方向分散は、それぞれ式4及び式5によって定義される平均滞留時間、
【数4】

、及び分散、σによって特徴付けられる。
【数5】
【0067】
以下の表1は、先に図11に示したパルストレーサ実験のレイノルズ数(Re)、ディーン数(D)、及び分散(σ)を示す。これらの値は、注入パルスの分散に近い比較的低い分散値として本発明者らの設計の混合効率を特徴付けるために重要であり、Re<2000の層流領域で動作しているにもかかわらず、織り設計反応器がプラグ流に近い混合に近づいていることを示している。可能な場合、分散の最低値は、100ml/分の最高流量で0.1分である。
【表1】
【0068】
E曲線は、式6(式中、θは無次元時間及び
【数6】

である)に記載されているように、無次元形式、E(θ)で表すことができる。分散は、分散を平均滞留時間の二乗値で割ることによって
【数7】

、無次元時間で表すことができる。図11の実験データの無次元E曲線を以下の図12に示す。無次元RTD曲線の1つを中心として対称性が高いほど、反応器はプラグ流反応器としての予備成形に近い。
【0069】
図12に見られるように、20ml/分の無次元滞留時間分布曲線、E(Θ)は、30ml/分の流量よりもわずかに狭い。これは、流れが一方向であるD≦40~60のディーン数値の範囲内の二次流れの特性である。それよりも高いディーン数D≧60では、ディーン渦は、生成された一対の渦で安定になる
【0070】
前述の説明から、当業者であれば、本教示が様々な形態で実施され得ることを理解することができる。したがって、これらの教示は、特定の実施態様及びその例に関連して説明されているが、本教示の真の範囲は、そのように限定されるべきではない。本明細書の教示の範囲から逸脱することなく、様々な変更及び修正を行うことができる。
【0071】
本開示の範囲は広く解釈されるべきである。本開示は、本明細書に開示された装置、活動及び機械的動作を達成するための均等物、手段、システム、及び方法を開示することを意図している。開示された各装置、物品、方法、手段、機械的要素又は機構について、本開示はまた、その開示を包含し、本明細書に開示された多くの態様、機構及び装置を実施するための均等物、手段、システム、及び方法を教示することを意図している。さらに、本開示は、コーティング並びにその多くの態様、特徴、及び要素に関する。そのような装置は、その使用及び動作において動的であり得、本開示は、装置及び/又は製造品の均等物、手段、システム、及び使用方法、並びに本明細書に開示された動作及び機能の説明及び趣旨と一致するその多くの態様を包含することを意図している。本出願の特許請求の範囲も同様に広く解釈されるべきである
【0072】
本明細書の多くの実施態様における本発明の説明は、本質的に単なる例示であり、したがって、本発明の要旨から逸脱しない変形例は、本発明の範囲内にあることが意図されている。そのような変形例は、本発明の趣旨及び範囲からの逸脱と見なされるべきではない。
図1A
図1B
図1C
図1D
図2A
図2B
図2C
図2D
図2E
図2F
図2G
図3A
図3B
図3C
図3D
図4A
図4B
図4C
図5
図6
図7
図8
図9
図10A
図10B
図10C
図10D
図11
図12