(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-30
(45)【発行日】2023-09-07
(54)【発明の名称】ゾーングリッパーを使用した箱の操作
(51)【国際特許分類】
B25J 13/08 20060101AFI20230831BHJP
【FI】
B25J13/08 A
(21)【出願番号】P 2021569851
(86)(22)【出願日】2019-08-12
(86)【国際出願番号】 US2019046174
(87)【国際公開番号】W WO2020036877
(87)【国際公開日】2020-02-20
【審査請求日】2021-11-22
(32)【優先日】2018-08-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518096722
【氏名又は名称】ボストン ダイナミクス,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】チッタ,サチン
(72)【発明者】
【氏名】ハーシュバーガー,デイビッド
(72)【発明者】
【氏名】ポーウェルス,カール
【審査官】神山 貴行
(56)【参考文献】
【文献】特開2010-005769(JP,A)
【文献】特開2015-047681(JP,A)
【文献】米国特許出願公開第2015/0066199(US,A1)
【文献】特開2015-039767(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B25J1/00-21/02
(57)【特許請求の範囲】
【請求項1】
ロボット(100)の制御システム(110)において、壁に囲まれたコンテナ(30)内に配置されたサイズが異なる複数の箱(22)の最小箱サイズを受け取る工程であって、ここで、前記ロボット(100)は、複数の真空吸引カップ(210)を有するグリッパー(200)を備える、前記最小箱サイズを受け取る工程と、
前記制御システム(110)によって、前記グリッパー(200)のグリップ領域を、前記最小箱サイズに基づいて複数のゾーンに分割する工程と、
前記制御システム(110)によって、視覚センサー(120)からの画像に基づいて、前記複数の箱(22)の候補箱(24)のセットを配置する工程と、
前記複数のゾーン(Z)の各ゾーン(Z)について、前記制御システム(110)によって、前記候補箱(24)のセットに対し、前記視覚センサー(120)からの前記画像によって特定された1つ以上の隣接する箱(26)とそれぞれのゾーン(Z)との重なりを決定する工程と、
前記制御システム(110)によって、前記壁に囲まれたコンテナ(30)の1つ以上の壁(30w)を回避する前記候補箱(24)のセットの、ターゲット候補箱(24T)の把持ポーズ(P
G)を決定する工程
であって、前記把持ポーズ(P
G
)は前記ターゲット候補箱(24T)に対する前記グリッパー(200)の位置を定義するものである、前記把持ポーズ(P
G
)を決定する工程と、
前記制御システム(110)によって、前記ターゲット候補箱(24T)にそれぞれの隣接する箱(26)と重ならない前記複数のゾーン(Z)の各ゾーン(Z)をアクティブ化する前記グリッパー(200)が、前記ターゲット候補箱(24T)を持ち上げるため前記把持ポーズ(P
G)を実行する工程と、
を備えることを特徴とする方法(700)。
【請求項2】
前記制御システム(110)によって、前記把持ポーズ(P
G)が、前記ターゲット候補箱(24T)を持ち上げるのに十分な吸引力を提供する領域に対応する、前記ターゲット候補箱(24T)の最小の範囲を含むことを決定する工程をさらに備える、請求項1に記載の方法(700)。
【請求項3】
前記制御システム(110)によって、部品有無センサー(220)が前記ターゲット候補箱(2
4T)と十分なマージンで重なり、前記十分なマージンは、前記部品有無センサー(220)をトリガーして、前記ターゲット候補箱(24T)の存在を伝達することを決定する工程をさらに備える、請求項1または2に記載の方法(700)。
【請求項4】
前記ターゲット候補箱(24T)の前記把持ポーズ(P
G)を決定する工程は、前記壁に囲まれたコンテナ(30)の前記1つ以上の壁(30w)の位置
からオフセットされる前記把持ポーズ(P
G)を
定義することを含む、請求項1から3のいずれか一項に記載の方法(700)。
【請求項5】
前記制御システム(110)によって、前記グリッパー(200)が前記ターゲット候補箱(24T)を閾値高さまで持ち上げ
ることを決定する工程と、
前記制御システム(110)によって、
前記グリッパー(200)が前記ターゲット候補箱(24T)を閾値高さまで持ち上げることを決定することに応じて、前記グリッパー(200)のすべてのゾーン(Z)をアクティブ化する工程をさらに備える、請求項1から4のいずれか一項に記載の方法(700)。
【請求項6】
前記制御システム(110)によって、前記壁に囲まれたコンテナ(30)からの前記ターゲット候補箱(24T)を取り出す間、回避する前記壁に囲まれたコンテナ(30)の
構成要素を特定する工程と、
前記制御システム(110)によって、前記壁に囲まれたコンテナ(30)から前記ターゲット候補箱(24T)を取り出すため、前記壁に囲まれたコンテナ(30)の前記特定された
構成要素を回避する動作パス(500)を決定する工程と、
をさらに備える、請求項1から5のいずれか一項に記載の方法(700)。
【請求項7】
前記複数のゾーン(Z)は、前記グリッパー(200)の前記複数の真空吸引カップ(210)を横切って連鎖させる、請求項1から6のいずれか一項に記載の方法(700)。
【請求項8】
サイズが異なる前記複数の箱(22)は直線状のオブジェクトに対応する、請求項1から7のいずれか一項に記載の方法(700)。
【請求項9】
サイズが異なる前記複数の箱(22)は、高さが異なる前記複数の箱(22)に対応する、請求項1から8のいずれか一項に記載の方法(700)。
【請求項10】
前記把持ポーズ(P
G)は、ターゲット候補箱(24T)の上面に重なっている前記複数の真空吸引カップ(210)のうちの真空吸引カップ(210)のセットによって定義される前記グリッパー(200)の位置に対応する、請求項1から9のいずれか一項に記載の方法(700)。
【請求項11】
視覚センサー(120)と、
複数の真空吸引カップ(210)を含むグリッパー(200)と、
制御システム(110)であって、
壁に囲まれたコンテナ(30)内に配置されたサイズが異なる複数の箱(22)の最小箱サイズを受け取り、
前記グリッパー(200)のグリップ領域を、前記最小箱サイズに基づいて複数のゾーン(Z)に分割し、
視覚センサー(120)からの画像に基づいて、前記複数の箱(22)の候補箱(24、24T)のセットを配置し、
前記複数のゾーン(Z)の各ゾーン(Z)について、前記候補箱(24、24T)のセットに対し、前記視覚センサー(120)からの前記画像によって特定された1つ以上の隣接する箱(26)とそれぞれのゾーン(Z)との重なりを決定し、
前記壁に囲まれた前記コンテナ(30)の1つ以上の壁(30w)を回避する前記候補箱(24)のセットの、ターゲット候補箱(24T)の把持ポーズを決定し、
ここで、前記把持ポーズは前記ターゲット候補箱(24T)に対する前記グリッパー(200)の位置を定義するものであり、
前記制御システム(110)に対し、前記グリッパー(200)が、前記ターゲット候補箱(24T)を持ち上げるため、前記ターゲット候補箱(24T)にそれぞれの隣接する箱(26)と重ならない前記複数のゾーンの各ゾーンをアクティブ化する前記把持ポーズ(P
G)を実行すること、を含む動作を行うように構成された
制御システム(110)と、
を備えるロボット(100)。
【請求項12】
前記動作は、前記把持ポーズ(P
G)が、前記ターゲット候補箱(24T)の、前記ターゲット候補箱(24T)を持ち上げるのに十分な吸引力を提供する領域に対応する最小範囲を含むことを決定することをさらに含む、請求項11に記載のロボット(100)。
【請求項13】
前記動作は、部品有無センサー(220)をトリガーして、前記ターゲット候補箱(24T)の存在を伝達する十分なマージンによって、前記部品有無センサー(220)が前記ターゲット候補箱(24T)と重なることを決定することをさらに含む、請求項11または12に記載のロボット(100)。
【請求項14】
前記ターゲット候補箱(24T)の前記把持ポーズ(P
G)を決定することは、前記壁に囲まれた前記コンテナ(30)の前記1つ以上の壁(30w)の位置
からオフセットされる前記把持ポーズ(P
G)を
定義することを含む、請求項11から13のいずれか一項に記載のロボット(100)。
【請求項15】
前記制御システム(110)は、
前記ターゲット候補箱(24T)を閾値高さまで持ち上げ、
前記ターゲット候補箱(24T)を閾値高さまで持ち上げることに応じて、前記グリッパー(200)のすべてのゾーン(Z)をアクティブ化にするようにさらに構成される、請求項11から14のいずれか一項に記載のロボット(100)。
【請求項16】
前記
動作は、
前記壁に囲まれた前記コンテナ(30)から前記ターゲット候補箱(24T)を取り出す間、回避する前記壁に囲まれた前記コンテナ(30)の
構成要素を特定する工程と、
前記壁に囲まれた前記コンテナ(30)から前記ターゲット候補箱(24T)を取り出すため、前記壁に囲まれたコンテナ(30)の前記特定された
構成要素を回避する動作パスを決定する工程と、
をさらに含む、請求項11から15のいずれか一項に記載のロボット(100)。
【請求項17】
前記複数のゾーン(Z)は、前記グリッパー(200)の前記複数の真空吸引カップ(210)を横切って連鎖させる、請求項11から16のいずれか一項に記載のロボット(100)。
【請求項18】
サイズが異なる前記複数の箱(22)は直線状のオブジェクトに対応する、請求項
11から17のいずれか一項に記載のロボット(100)。
【請求項19】
サイズが異なる前記複数の箱(22)は、高さが異なる前記複数の箱(22)に対応する、請求項
11から18のいずれか一項に記載のロボット(100)。
【請求項20】
前記把持ポーズ(P
G)は、ターゲット候補箱(24T)の上面に重なる前記複数の真空吸引カップ(210)のうちの真空吸引カップ(210)のセットによって定義される前記グリッパー(200)の位置に対応する、請求項
11から19のいずれか一項に記載のロボット(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ゾーングリッパーを使用して箱を操作することを対象としている。
【背景技術】
【0002】
箱状のオブジェクトは、産業、製造、ロジスティクス、および商業環境でピッキング(つまり、パレットまたは保持コンテナから取りはずす)が必要なオブジェクトの大部分を表している。典型的には、箱状のオブジェクトは、少なくとも1つの実質的に平面のピッキング面によって特徴付けられる。従来、ロボットによるピッキングでは、ピッキングロボットが、構造化されたパレット上に均一に配置された既知のサイズ、数、およびタイプの箱を操作する。一部の現在のシステムは、機械治具を使用して、ロボットが事前にプログラムされた既知の場所から箱を選ぶことができるように、箱のパレットを事前に配置する。箱のサイズ、箱の数、または箱の位置のいずれかで、この既知の構造から逸脱すると、システムに障害が発生する。残念ながら、コンピュータビジョンベースのシステムは、境界にはっきりと縁がある箱に依存することが多く、広告、印刷された文字、印刷されたロゴ、写真、色、またはその他の質感がある箱のサイズや位置を正確に判断できない。このような箱の面には視覚的な縁がある(つまり、箱の実際の物理的な境界に対応しない縁)。現在のコンピュータビジョンベースのシステムでは、2つの異なる箱の物理的な縁を、箱の面の他の視覚的な縁と区別できないため、これらのシステムは、箱のサイズと位置を誤って判断する傾向がある。問題なのは、システムがサイズと場所を誤って判断した箱をピッキングして移動すると、箱がロボットのグリップから外れたり、ロボットが1つの箱のみをピックする必要がある場所で2つ以上の箱をピックする場合がある。
【発明の概要】
【0003】
本開示の一態様は、ゾーングリッパーを使用して箱を操作する方法を提供する。この方法は、制御システムで、サイズが異なる複数の箱の最小箱サイズを受け取ることを含む。ここで、複数の箱は、壁に囲まれたコンテナ内に配置されている。ロボットには、複数の真空吸引カップを備えたグリッパーが含まれている。また、この方法は、制御システムによって、グリッパーのグリップ領域を最小箱サイズに基づいて複数のゾーンへ分割することも含む。さらに、この方法は、制御システムによって、視覚センサーからの画像に基づいて、複数の箱の候補箱のセットを配置することを含む。複数のゾーンの各ゾーンについて、この方法は、制御システムによって、視覚センサーからの画像によって特定される隣接する箱が、候補箱のセットに対する1つ以上の隣接する箱とのそれぞれのゾーンの重なりを決定することをさらに含む。この方法はまた、制御システムによって、壁に囲まれたコンテナの1つ以上の壁を回避する複数の候補箱のセットの、ターゲット候補箱の把持ポーズを決定することを含む。この方法は、制御システムによって、グリッパーでターゲット候補箱を持ち上げるための把持ポーズを実行することをさらに含み、グリッパーは、ターゲット候補箱にそれぞれの隣接する箱と重ならない複数のゾーンのそれぞれをアクティブ化する。
【0004】
本開示の実装形態は、以下の任意選択の特徴のうちの1つ以上を含み得る。また、一部の実装形態では、この方法は、制御システムによって、把持ポーズがターゲット候補箱の最小範囲を含み、最小範囲がターゲット候補箱を持ち上げるのに十分な吸引力を提供する領域に対応することを決定することを含む。いくつかの例では、この方法はさらに、制御システムによって、部品有無センサーがターゲット候補箱と十分なマージンで重なっていることを決定することを含み、十分なマージンが部品有無センサーをトリガーしてターゲット候補箱の存在を伝達する。ターゲット候補箱の把持ポーズを決定することは、壁に囲まれたコンテナの1つ以上の壁の位置に基づいて把持ポーズをオフセットすることを含み得る。いくつかの構成では、この方法はまた、制御システムによって、グリッパーがターゲット候補箱を閾値高さまで持ち上げたことを決定し、制御システムによって、グリッパーのすべてのゾーンをアクティブ化することを含む。いくつかの例では、この方法は、制御システムによって、壁に囲まれたコンテナからターゲット候補箱を削除中に回避するために、壁に囲まれたコンテナの特徴を特定すること、制御システムによって、壁に囲まれたコンテナからターゲット候補箱を削除するための動作パスを決定することをさらに含み、動作パスは壁に囲まれたコンテナの特定された特徴を回避する。
【0005】
任意で、複数のゾーンは、グリッパーの複数の真空吸引カップを横切って連鎖させることができる。サイズが異なる複数の箱は、直線状のオブジェクトに対応し得る。いくつかの例では、サイズが異なる複数の箱は、高さが異なる複数の箱に対応する。把持ポーズは、ターゲット候補箱の上面に重なる複数の真空吸引カップのうちの真空吸引カップのセットによって定義されるグリッパーの位置に対応し得る。
【0006】
本開示の別の態様は、ゾーングリッパーを使用して箱を操作するロボットを提供する。ロボットは、視覚センサー、グリッパー、および制御システムを含む。把持部は複数の真空吸引カップを含み、制御システムは操作を実行するように構成されている。操作は、サイズが異なる複数の箱と、壁に囲まれたコンテナ内に配置された複数の箱の最小箱サイズを受け取ることを含む。操作には、グリッパーのグリップ領域を最小箱サイズに基づいて複数のゾーンに分割することも含まれる。この操作はさらに、視覚センサーからの画像に基づいて、複数の箱の候補箱のセットを配置することを含む。複数のゾーンの各ゾーンについて、この操作は、候補箱のセットに対し、1つ以上の隣接する箱とのそれぞれのゾーンの重なりを決定することをさらに含み、隣接する箱は、視覚センサーからの画像によって特定される。また、この操作は、壁に囲まれたコンテナの1つ以上の壁を回避する候補箱のセットのターゲット候補箱の把持ポーズを決定することを含む。この操作はさらに、グリッパーによってターゲット候補箱を制御システムに持ち上げるため把持ポーズを実行することを含み、把持ポーズは、それぞれの隣接する箱をターゲット候補箱に重ならない複数のゾーンの各ゾーンをアクティブ化する。
【0007】
本態様は、以下の任意選択の機能のうちの1つ以上を含んでもよい。一部の実装形態では、この操作は、把持ポーズがターゲット候補箱の最小範囲を含むことを決定することを含み、最小範囲は、ターゲット候補箱を持ち上げるのに十分な吸引力を提供する領域に対応する。いくつかの例では、この操作は、部品有無センサーがターゲット候補箱と十分なマージンで重なっていることを決定することを含み、十分なマージンが部品有無センサーをトリガーしてターゲット候補箱の存在を伝達する。ターゲット候補箱の把持ポーズを決定することは、壁に囲まれたコンテナの1つ以上の壁の位置に基づいて把持ポーズをオフセットすることを含み得る。また、いくつかの構成では、この操作は、グリッパーがターゲット候補箱を閾値高さまで持ち上げたことを決定し、制御システムによって、グリッパーのすべてのゾーンをアクティブ化することを含む。いくつかの例では、この操作は、壁に囲まれたコンテナからターゲット候補箱を削除中に回避するために、壁に囲まれたコンテナの特徴を特定し、壁に囲まれたコンテナからターゲット候補箱を削除するための動作パスを決定することをさらに含み、動作パスは壁に囲まれたコンテナの特定された特徴を回避する。
【0008】
本開示の1つ以上の実装例の詳細が、添付図面および以下の説明において記述される。他の態様、特徴、および利点は、説明および図面から、ならびに請求の範囲から明らかになり得る。
【図面の簡単な説明】
【0009】
【
図1】箱のある環境でゾーングリッパーを備えたロボット例の概略図である。
【
図2A】グリッパーの従来の配置例の概略図である。
【
図2B】
図1のゾーングリッパーのゾーン例の概略図である。
【
図2C】
図1のゾーングリッパーのゾーン例の概略図である。
【
図2D】
図1のゾーングリッパーのゾーン例の概略図である。
【
図3A】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3B】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3C】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3D】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3E】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3F】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3G】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3H】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3I】ターゲット候補箱の把持ポーズ例の概略図である。
【
図3J】ターゲット候補箱の把持ポーズ例の概略図である。
【
図4A】ターゲット候補箱に対するゾーングリッパーの作動例の概略図である。
【
図4B】ターゲット候補箱に対するゾーングリッパーの作動例の概略図である。
【
図4C】ターゲット候補箱に対するゾーングリッパーの作動例の概略図である。
【
図4D】ターゲット候補箱に対するゾーングリッパーの作動例の概略図である。
【
図5A】コンテナ内から箱を取りはずすための移動パスの例を示すコンテナの断面図である。
【
図5B】コンテナ内から箱を取りはずすための移動パスの例を示すコンテナの断面図である。
【
図6】コンベヤを備えたピッキング環境例の概略図である。
【
図7】ゾーングリッパーを使用してターゲット候補箱を把持および移動する操作方法の配置例についてのフローチャートである。
【0010】
様々な図面中の同様の参照符号は、同様の要素を示す。
【発明を実施するための形態】
【0011】
ここでの実装形態は、1つ以上の側面に壁がある密閉されたパレットまたはコンテナから、様々なサイズ、形状、および/または向きの個々の箱を確実にピッキングできるロボットピッキングソフトウェアソリューションおよびゾーングリッパーを対象としている。米国特許公開第2017/0246744号には、混合在庫最小管理単位(SKU)パレット(例えば、異なるサイズの箱を備えたパレット)からピッキングできるシステムが記載されているが、混合SKU(つまり、異なるサイズの箱を含む少なくとも1つの壁を持つコンテナ)からピッキングしようとすると、追加の問題が発生する。ロボットによるピッキングプロセスの一部は、混合SKUのピッキングの側面を利用するため、米国特許公開第2017/0246744号は、参照によりその全体が本明細書に組み込まれる。
【0012】
産業および/またはロジスティクス環境でのロボットによる箱のピッキングは、通常、固定サイズのシングルゾーングリッパーを使用して実行される。ここで、箱の固定サイズが異なる場合は、バキュームグリッパーの位置を調整して、ピッキングする箱のみと重なるようにすることができる。一般に、ピッキングされる箱の重量とサイズ、および箱を移動するために必要な速度によって、真空グリッパーのサイズが決まる。例えば、米国特許公開第2017/0246744号には、オープンパレットから混合SKU箱をピッキングするためのプロセスの例が含まれている。
【0013】
壁のあるコンテナまたは構造物から個々の箱をピッキングするには、壁との衝突を回避し、コンテナの他の内容物への影響を最小限に抑えて一つの箱をピッキングするピッキングロボットが必要である。このシナリオでは、様々なサイズの箱をピッキングするときに、コンテナの壁に衝突せずに、グリッパーを1つの箱と重なるように配置できないことがよくある。
【0014】
図1に示されるように、環境10は、コンテナ30を支持するパレット20を含み、コンテナ30は、複数の混合SKU箱22、22a~nを含む。点線の隠線で示されるように、箱22のサイズ(例えば、寸法)は異なってもよい。ここで、コンテナ30は、4つの壁30w
1-4と、パレット20の反対側の壁30w
1-4の上部の周りのリップ32とを含む。リップ32は、積み重ねられた箱22の中心に向かって延びるように示されている。積み重ねられた箱22は、1つ以上の階層(例えば、3つの階層として示す)を有してもよく、一番上の階層において、箱22の上面は、ロボット100の一部(すなわち、ロボット100のグリッパー200)に面する。コンテナ30は、複数の壁30wで示されているが、コンテナ30は、環境10内の箱22をピッキングするときにロボット100が回避すべき少なくとも1つの壁を有する任意の容器(例えば、ビン、容量の大きいビン、滑材の箱、八角形の箱、容量の大きい箱、ケージ、木箱、トラックの荷台、トレーラー、輸送コンテナ、小部屋など)であってもよい。
【0015】
環境10はまた、制御システム110を備えたロボット100、視覚センサー120、およびグリッパー200を備えたアーム130を含む。ロボット100は静止ロボット100として示されているが、ロボット100は、本開示の範囲から逸脱することなく移動ロボットを含むことができる。制御システム110は、例えば、環境内の箱22を操作するためのグリッパー200の動作によって、ロボット100を制御するように構成される。制御システム110は、計算装置40と通信するように構成される。
図1に示されるように、計算装置40は、制御システム110の一部であってもよく、制御システム110の外部(例えば、制御システム110から離れた場所)であってもよい。計算装置40は、制御システム110との通信を介してロボット100の自動制御を可能にすることができる。また、計算装置40は、オペレーターがロボット100とやり取りし、または操作/制御するための1つ以上のユーザインターフェースを提供してもよい。計算装置40は、様々な計算装置40のいずれかであってもよく、制御システム110に直接接続、または介在するデバイスおよびネットワークを介して制御システム110と通信してもよい。
【0016】
本明細書における特定のコンピューティングパラダイムおよびソフトウェアツールへの言及にもかかわらず、様々な実装の基礎となるコンピュータプログラム命令は、多種多様なプログラミング言語、ソフトウェアツールおよびデータフォーマットのいずれかに対応し得、任意のタイプの持続性コンピュータ可読ストレージメディアまたはメモリデバイスに格納されてもよく、例えば、クライアント/サーバーモデル、ピアツーピアモデル、スタンドアロン計算装置、または様々な機能が異なる場所で実行または使用される分散型計算モデルを含む様々な計算モデルに従って実行されてもよい。当業者に知られている適切な代替物を使用することができる。
【0017】
視覚センサー120は、ロボット100によってピッキングされる箱22を観察する場所に配置されている。例えば、
図1に示すように、視覚センサー120は、グリッパー200上またはその近くに取り付けられて、箱22を上から観察する(例えば、箱22に対して上から見下ろす視点)。示される例では、視覚センサー120は、グリッパー200に取り付けられているが、視覚センサー120は、センサー120が固定プラットフォームに取り付けられている場合、グリッパー200またはロボットアーム130の他の部分に取り付けられている場合、またはロボットアーム130も取り付けられている移動プラットフォーム(移動ロボット)に取り付けられている場合を含む、複数のセンサー配置構成に適用することができる。他のバリエーションは当業者には明らかであろう。
【0018】
図2Aを参照すると、ゾーン真空グリッパーは、グリッパーが他の吸引カップゾーンZとは独立して必要なときに各ゾーンZをオンまたはオフにできるように個々に制御できる複数の吸引カップゾーンZを含み得る。例えば、
図2Aは、6つのゾーンZ、Z
1-6(異なる灰色の色合いで示されている)を示しており、各ゾーンZは、9つの吸引カップを含む。パレット20から箱22をピックアップするために、ゾーングリッパーは、主に箱のサイズが事前に分かる単一のSKUパレットからピックアップするために使用されてきた。箱のサイズを事前に知ることにより、ゾーンZは、パレット20上の箱22のサイズに一致するように明示的に設計され得る。単一のSKUパレット20から箱22を輸送する場合、ゾーングリッパー200のすべてのゾーンZをアクティブ化(例えば、オン)して、グリッパー200と重なる複数の箱をピッキングできるようにしてもよい。次に、個々のゾーンZは、コンベヤ50(
図6)上に個々の箱22を降ろすために、順番に非アクティブ化(例えば、スイッチオフ)してもよい。
【0019】
残念ながら、混合SKUパレット20の場合、混合SKUパレット20上の箱22の異なるサイズおよび/または配置の混合について利用可能な事前情報は、通常ほとんど、もしくはまったくない。さらに、その性質上、混合SKUパレット20は、箱22の混合層を有し、同じ層内に異なる高さの箱22を含み得る。このシナリオでゾーングリッパー200を配置するには、(a)同じ層のうち、数の箱からピックアップするために適切/正確な箱22を選択/選別する、(b)選択した箱22をピッキングするためにオンにする必要があるゾーンZを正しく選択する、(c)壁30wおよび/または他の箱22との接触/干渉を回避しながら、選択された箱22をコンテナ30から削除することを可能にするパス500を計画および/または実行する、ことが必要な場合がある。
【0020】
堅牢性のために、グリッパー200は、箱22をピッキングした後に箱22の有無を検出するため、グリッパー200に組み込まれる市販の部品有無センサー220(例えば、光学センサー)を含むことが多い。これにより、ロボット100による把持の成功または失敗の確認が可能になる。混合SKU箱のピッキングの場合、部品有無センサー220は、部品有無センサー220が箱22の有無に適切に反応するように、ピッキングされる箱22に対して正しく配置される必要がある。
【0021】
対象ここでの実装形態は、ロボット100を使用して、コンテナ30、ケージ、または少なくとも1つの壁30w、特徴、もしくは箱22をピッキングしている間、ロボット100の動きを妨害する可能性が潜在的にある他の構成要素、を有する任意の種類の構造内にある箱22の混合SKUの集まりから、個々の箱22をピッキングすることを対象としている。
【0022】
いくつかの実装形態では、システム(例えば、制御システム110)が利用可能な唯一の事前情報は、ピッキングされる箱22の最小および最大サイズである。ゾーングリッパー200は、ゾーンZの連鎖されたセットとして構成されてもよい(例えば、最小および最大サイズに基づく)。例えば、
図2B~2Dは、3つのゾーンZ、Z
1-3を含み、ゾーンZの連鎖されたセットを形成するゾーングリッパー200を示す。より具体的には、
図2Bは、
図2Bの図に関連する、グリッパー200の左上角でオンにされた3行および3列の吸引カップ210を含む、連鎖されたゾーンZのセットの第1のゾーンZ、Z
1を示す。
図2Cは、グリッパー200の第2のゾーンZ、Z
2は、次の行と列をオンにするグリッパー200の吸引カップ210を含むL字型構成を含むことによって第1のゾーンZ
1とは異なる寸法を含む。
図2Dは、
図2Cと同様に、グリッパー200の吸引カップ210の次の行および列をオンにすることにより、第3のゾーンZ、Z
3が、前のゾーンZから吸引カップ210をオンすることを含まず、第2のゾーンZ
2よりも大きいL字型構成を含む。
【0023】
いくつかの例では、グリッパー200の全体的なサイズは、ピッキングされる最大の箱22のサイズによって決定される。例えば、
図2B~2Dのグリッパー200は、最大の箱22が、吸引カップ210の5×5の配置以下のサイズを有するため、吸引カップの5×5の配置を含む。グリッパー200を構成することができる最小のゾーンZは、ピッキングされる最小の箱22のサイズに基づいていてもよい。
【0024】
追加の実装形態では、制御システム110は、コンテナ30の上に(例えば、頭上および/またはロボット100自体に)取り付けられた視覚センサー120から得られたデータを使用して、候補箱24、24
setのセット(例えば、
図1を参照)を積み重ねられた箱22の最上部に設置する。箱22は、サイズ、視覚的外観(例えば、色、質感、デザインなど)が異なってもよく、また、各層において異なる高さを有してもよい。さらに、箱22および/またはそれらのそれぞれの表面は、3次元空間内で様々な方向にあり得る(例えば、必ずしもコンテナ内に平らに配置された直線状のオブジェクトに限定されない)。
【0025】
図3A~3Jを参照すると、制御システム110および/または計算装置40は、各候補箱24の把持ポーズP
Gのセットを計算してもよい。把持ポーズP
Gは、サブセットまたはピッキングされるオブジェクトの上面に(部分的または完全に)重なるグリッパー200上のすべての吸引カップ210のグリッパー200の位置である。例えば、複数の把持ポーズP
Gは、ピッキングされる箱24の各コーナーの上に配置されたグリッパー200の一つのコーナーとの完全な重なりから各ボックス24について計算され得るが、ピッキングされる箱24の一部が、吸引カップ210によって覆われる部分的な重なりも含む。例えば、
図3Aおよび
図3Bは、把持ポーズP
Gが小さいターゲット候補箱24、24Tに完全に重なる場合、ターゲット候補箱24、24Tのための単一の把持ポーズP
Gを示す。ここで、把持ポーズP
Gは、
図3Aでは、ターゲット候補箱24、24Tの上端と左端に位置合わせし、
図3Bでは、ターゲット候補箱24、24Tの下端および右端と位置合わせをする。部品有無センサー220は、円形のマークで(例えば、基準登録ターゲットと同様)
図3A~3Jの全体に示されている。いくつかの実装形態では、
図3Cのように、制御システム110および/または計算装置40は、ターゲット候補箱24、24Tを持ち上げるための代替把持ポーズP
Gとして、オフセット把持ポーズP
Goffを生成する(例えば、把持ポーズP
Gに基づく)。例えば、
図3Cは、2つのオフセット把持ポーズP
Goff,1-2を示している。
図3Cおよび3Dにおいて、どちらの把持ポーズP
Gも完全にはターゲット候補箱24、24Tに重なっておらず、つまり、これらの把持ポーズP
Gは、部分的に把握ポーズP
Gと重なっている。
【0026】
いくつかの例では、ターゲット候補箱24、24Tが、
図3Eに示されるように、グリッパー200およびコンテナ30の内部よりも小さい場合、制御システム110および/または計算装置40は、複数の把持ポーズP
G(例えば、オフセット把持ポーズP
Goffを含む)を生成するように構成されている。例えば、複数の把持ポーズP
Gの生成は、各候補把持ポーズP
Gにオフセット把持ポーズP
Goffを生成することを含んでもよい(例えば、
図3Eは3つの把握ポーズP
G1-3をともなう3つの候補把持ポーズP
Goff1-3を示している)。複数の把持ポーズP
Gおよび/またはオフセット把持ポーズP
Goffを有することによって、グリッパー200は、ターゲット候補箱24Tをピッキング中にコンテナ30との衝突や妨害を回避するためのオプションを有してもよい。
【0027】
また、実行可能な把持ポーズP
Gの計算は、コンテナ30の壁30wの存在を考慮する。グリッパー200が、実行可能な把持ポーズP
Gである場合、壁30w(または他の箱22)と衝突しないことが好ましい。把持ポーズP
Gはまた、箱22の向きとコンテナ30の向きから、向きがオフセットされてもよい(例えば、
図3E)。
図3Eとは対照的に、
図3Fはグリッパー200がターゲット候補箱24Tよりも小さい例(すなわち、ターゲット候補箱24、24Tがグリッパー200よりも大きい)を示す。ここで、制御システム110および/または計算装置40は、ターゲット候補箱24、24Tを持ち上げるのに十分な、複数もしくはセットの把持ポーズP
G(例えば、4つの候補把握ポーズP
G1-4として示される)を生成するように構成されている。
図3Fはまた、コンテナ30内の箱22を操作するときのグリッパー200の潜在的な障害物を示すために、コンテナ30のリップ32を示している。
【0028】
同様に、
図3G~3Jは、グリッパー200がターゲット候補箱24Tよりも小さい例を示している。これらの例は、部品有無センサー220の位置は、例えば、把持ポーズP
Gまたはターゲット候補箱24、24Tの大きさに応じて変更し得ることを示している。各把持ポーズP
Gの部品感センサー220の位置を変えても、計算装置40および/または制御システム110は、部品有無センサー220が十分なマージンで箱24Tと重なっているかをチェックするように構成されている。ここで、箱24Tと十分なマージンで重なることにより、箱がセンサー220に近いときに部品有無センサー220をトリガーすることができる。
【0029】
図3Aから3Jに戻り参照すると、候補把握ポーズP
Gの結果の数値に関係なく、すべての把持ポーズP
Gは、箱22をピッキングするのに十分な吸引力があることを確実にするために、ピッキングされる箱24、24Tの最小の範囲を有するように制限され得る。さらに、またはもしくは、各把持ポーズP
Gのため、制御システム110および/または計算装置40は、ピッキングされる箱24、24Tと各種グリッパーゾーンZとの重なりを計算してもよい。いくつかの実装形態では、ロボット100のシステム(制御システム110および/または計算装置40)は、ピッキングの候補ではない隣接する箱26と各グリッパーゾーンZとの重なりを計算する。例えば、各把持ポーズP
Gのため、システムは、ピッキングの候補ではない隣接する箱26と各グリッパーゾーンZとの重なりを計算するために、視覚コンポーネント120によって提供された箱22のリストを使用する。
【0030】
ピッキングの候補ではない隣接する箱26と、グリッパーゾーンZとの間に重なりがない場合、真空グリッパー200内のすべてのゾーンZは、特定の候補箱24、24Tのピッキングプロセス中はアクティブ化(例えば、スイッチオン)されてもよい。例えば、
図4A~4Cは、
図2B~2DのゾーンZ、Z
1-3の連鎖されたセットをアクティブ化する単一のターゲット候補箱24、24Tを示す。例えば、
図4Aのターゲット候補箱24、24Tは、第1のゾーンZ
1のみのアクティブ化を必要とするサイズを含む。
図4Bのターゲット候補箱24、24Tでは、ターゲット候補箱24、24Tを持ち上げるために第1のゾーンZ
1および第2のゾーンZ
2の両方のアクティブ化を必要とするより大きなサイズを含む。
図4Cでは、ターゲット候補箱24、24Tは、
図4Aおよび
図4Bのサイズよりも大きいため、ターゲット候補箱24、24Tを持ち上げるために、すべてのゾーンZ
1-3のアクティブ化を必要とする。ピッキングの候補ではない隣接する箱26との重なりのトラッキングは、混合SKUの集まり内の個々の箱24ごとに、グリッパーに最大のピッキング範囲を有利に提供する。
【0031】
ゾーンZとピッキングの候補ではない隣接する箱26との間に重なりがある場合、隣接する箱26と重なるゾーンZは、個々の箱22をピッキングするときに最初はアクティブ化されない。ターゲット候補箱24Tと重なる最小のゾーンZは、ターゲット候補箱24Tを最初に把持すると、常にアクティブ化(例えば、オン)される。個々のターゲット候補箱24Tがピッキングされ、短い距離(例えば、ある閾値距離)だけ動かされると、追加(~すべて)のゾーンZがオンになってもよく、それにより箱24Tを把持するための最大の範囲を確実にする。
図4Dを参照すると、いくつかの実装形態では、隣接する箱26が、ターゲット候補箱24Tのサイズに基づいて最大のピッキング範囲を提供するために必要とされるグリッパー200の1つ以上のゾーンZ(例えば、第2のゾーンZ
2および第3のゾーンZ
3)と重なる場合、制御システム110および/または計算装置40は、第1および第2のゾーンZ
2 、Z
3を非アクティブのままにしながら、最初は第1のゾーンZ
1のみをアクティブにして、ターゲット候補箱24Tを把持する。ここで、グリッパー200が、第1のゾーンZ
1のみがアクティブ化された状態でターゲット候補箱24Tを特定の高さまで持ち上げると、制御システム110および/または計算装置40は、次に、すべてのゾーンZをアクティブ化(例えば、第1のゾーンZ
1のアクティブ化を維持)し、第2と第3のゾーンZ
2、Z
3をオンにしてもよい。特定の高さは、重なり合うゾーンZのアクティブ化する時に、1つ以上の隣接する箱26の把持を妨げる閾値高さを含み得る。
【0032】
把持計画フェーズが完了(すなわち、各把持ポーズとP
Gが計算され、特定の箱24Tのためにアクティブ化されるゾーンZの選択が決定)したとき、システム(例えば、制御システム110または計算装置40)はパス計画段階に進む。
図5Aおよび5Bは、サイズの異なる箱24、26を保持するコンテナ30の断面図を示す例示的なロボット環境10を示す。パス計画段階では、システムはパス500を計算して、オブジェクト(すなわち、箱22)をコンテナ30から取り出して、ターゲット位置に輸送する。例えば、ロボット100は、パレット30からターゲット候補箱24Tを取り出して、ターゲット候補箱24Tをコンベヤ50(
図6)上に配置してもよい。いくつかの例では、パス500を計算するとき、システムはピッキングされるターゲット候補箱24Tのサイズを考慮する(その高さを固定された最大高さであると仮定するいくつかの実装形態による)。
【0033】
計算されたパス500の第1の部分は、箱24Tの直線または直線運動のセットであり、それは、コンテナ30内の他の箱22から、および/またはコンテナ壁30wから離れて移動する。この動きは、コンテナ30の性質を考慮に入れて計算される。例えば、いくつかの容器は、「リップ」32または壁30wの突起を有する。ターゲット候補箱24Tを移動している間にコンテナ30の特徴と衝突する可能性を低減するために、システムは、コンテナ30の特徴との衝突を回避するために、ターゲット候補箱24Tの動きを計算する。例えば、リップ32の場合(例えば、
図5Aおよび5Bに示されるように)、ピッキングされた箱24Tの計算された動きは、少なくともリップ32の幅よりも大きい(または等しい)距離だけ、コンテナ30の中心に向かって内側に移動し、コンテナ30の上部に向かって上昇する可能性がある。上向きの動きの量は、
図5Aおよび5Bの間に比較して示されるように、コンテナ30内の箱24Tの位置に基づいて調整されてもよい。例えば、
図5Aは、リップ32に近い箱24Tが、リップ32を通過するためにほとんど横方向に移動することを示している(例えば、
図5A)。一方で、
図5Bは、コンテナ30の底部近くに配置された箱22、24Tが、コンテナ30の上部中央に向かって上方および内側に移動することを示している(例えば、
図5B)。ここで、ロボット100は、リップ32などのコンテナ30の特徴を回避するときに、箱24Tをコンテナ30から取り出すために箱24Tと共に移動するのに必要な高さを考慮する。この例では、ロボット100は、箱24Tを2つの軸に沿って同時に移動させ、コンテナ30の特徴を回避するときに突然の動きを潜在的に最小化してもよい。いくつかの実装形態では、各箱24Tを移動するための移動パス500は、コンテナ30の上部中央に内側に移動し、リップ32および/または壁30wを通過する前に、まず箱24Tを移動(例えば、真上に)して他の箱22(例えば、隣接する箱26)を通過する。さらに、またはもしくは、一度ロボット100が箱24Tをコンテナ30から移動させると、ロボット100は、箱24Tを目標位置(例えば、コンベヤ50)に移動することができる。
【0034】
図6を参照すると、コンベヤセンサー300(例えば、レーザー距離センサーなどの距離/位置センサー)は、コンベヤ50の下に取り付けられ、グリッパー200が、箱24Tをコンベヤ50に移動させたとき、コンベヤセンサー300に対する箱24Tの底面の高さHを測定するように構成される。ここで、高さHは、箱24Tの底面とコンベヤ50の支持面(例えば、コンベヤベルト)との間の距離を指す。高さHを伝達するこのデータは、その時点でのロボット100の位置に関する情報と同期されている。例えば、制御システム110は、箱24Tの上面の位置および/または配置を認識している。より具体的には、ロボット100は、把握ポーズP
G(例えば、視覚センサー120を使用)に応じ箱24Tを持ち上げるため、箱24T上の位置を認識する。いくつかの構成では、コンベヤセンサー300からの高さH、箱24Tの上面に係合するグリッパー200の位置、および箱24Tの移動のための制御座標(例えば、パス500および/またはコンベヤ50沿う)により、ロボット100(例えば、制御システム110または計算装置40)は、箱24T
hの高さhを決定する。言い換えれば、システムは、ロボット100に関するコンベヤセンサー300および他の制御データ(例えば、運動学および/または動力学)との関係に基づいて、箱24Tの高さ24T
hをおおよそ推測する。ロボット100は、高さHおよび/または箱高さ24T
hを使用して、ロボット100がグリッパー200の1つ以上のゾーンZを非アクティブ化して箱24Tをリリースする、コンベヤ50上の落下高さを最小化してもよく、それにより、箱24Tのソフトランディングを生成する。落下高さを最小化することにより、ロボット100は、箱24Tおよび/または箱24T内に含まれるアイテムへの損傷を防ぎ得る。ここで、落下高さは、高さHと同等であり得、これは、コンベヤ50の表面に対するコンベヤセンサー300の取り付け位置を考慮するオフセット距離を含んでも、含まなくてもよい。いくつかの例では、制御システム110および/または計算装置40は、箱24Tをコンベヤ50上に配置するためのパス500を変更して、各箱22がコンベヤ50からほぼ同じ距離でリリースされるようにする。
図6は、コンベヤ50に関するソフトランディング技術を示しているが、この概念は、ロボット100が箱24Tを把持からリリースしようとする任意の配置面に転換されてもよい。いくつかの実装形態では、コンベヤセンサー300は、超音波センサー、3Dカメラ、ステレオビジョン、または他の任意の距離測定装置を含む。
【0035】
図7は、ゾーングリッパー200を使用してターゲット候補箱24Tを把持および移動する方法700の動作の配置例についてのフローチャートである。動作702において、方法700は、ロボット100のシステム(例えば、制御システム110または計算装置40)において、壁に囲まれたコンテナ30内に配置されているサイズが異なる複数の箱22の最小箱サイズを受け取る。ここで、ロボット100は、複数の真空吸引カップ210を備えたグリッパー200を含む。動作704において、方法700は、グリッパー200のグリップ領域を、最小箱サイズに基づいて複数のゾーンZに分割する。動作706において、方法700は、視覚センサー120からの画像に基づいて、複数の箱22の候補箱24のセットを配置する。複数のゾーンZの各ゾーンZについて、動作708において、方法700は、候補箱24のセットに対して、1つ以上の隣接する箱26とそれぞれのゾーンZとの重なりを決定する。ここで、隣接する箱26は、視覚センサー120からの画像によって特定される。操作710において、方法700は、壁に囲まれたコンテナ30の1つ以上の壁30wを回避する候補箱24のセットのターゲット候補箱24T用の把持ポーズP
Gを決定する。操作712において、方法700は、グリッパー200によってターゲット候補箱24Tを持ち上げる把持ポーズP
Gを実行する。ここで、グリッパー200は、それぞれの隣接する箱26とターゲット候補箱24Tとが重ならない複数のゾーンZの各ゾーンZをアクティブ化させる。
【0036】
ロボット100は、コンテナに対して様々な向きのいずれかであってもよく、場合によっては移動可能でもよい実装形態が検討されていることに留意されたい。異なるロボット100のタイプを使用することもできる(例えば、シリアルアームロボット、パラレルまたは「デルタ」ロボットなど)。
【0037】
本明細書に記載の実装形態の形式および詳細の変更は、本開示の範囲から逸脱することなく行うことができることが当業者によって理解されるであろう。さらに、様々な利点、態様、およびオブジェクトが様々な実装形態を参照して説明されてきたが、本開示の範囲は、そのような利点、態様、およびオブジェクトの参照に限定されるべきではない。
【0038】
多数の実装例が説明されてきた。それでもなお、本発明の趣旨および範囲から逸脱することなく、様々な修正が行われ得ることが理解されよう。したがって、他の実装は、以下の特許請求の範囲内にある。