(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-08-31
(45)【発行日】2023-09-08
(54)【発明の名称】樹種特徴量抽出装置、樹種特徴量抽出方法及びプログラム
(51)【国際特許分類】
G06T 7/00 20170101AFI20230901BHJP
G09B 29/00 20060101ALI20230901BHJP
【FI】
G06T7/00 C
G06T7/00 300F
G06T7/00 640
G09B29/00 Z
(21)【出願番号】P 2022147619
(22)【出願日】2022-09-16
【審査請求日】2022-09-16
(73)【特許権者】
【識別番号】000135771
【氏名又は名称】株式会社パスコ
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】福井 翔宇
(72)【発明者】
【氏名】島崎 浩司
【審査官】小池 正彦
(56)【参考文献】
【文献】特開2015-152340(JP,A)
【文献】特開2015-109064(JP,A)
【文献】特開2015-084192(JP,A)
【文献】特開2013-054660(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00
G09B 29/00
(57)【特許請求の範囲】
【請求項1】
上空から照射したレーザによる計測データから地表面高さを取得する取得部と、
前記計測データから、反射パルスにおけるファーストパルスの割合、及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出部と、
対象地点の前記地表面高さと当該対象地点から離隔した周囲の所定数の地点の前記地表面高さとを比較し、前記所定数の地点の前記地表面高さがそれぞれ前記対象地点の前記地表面高さよりも高いか低いかに応じた点数を加算した凹凸点数を求める算出部と、
前記複数種類の特徴量に対し、前記凹凸点数に応じた係数を乗算する乗算部と、
を備えることを特徴とする樹種特徴量抽出装置。
【請求項2】
前記特徴量には、地表面高さの回転対称性の度合を含むことを特徴とする請求項1記載の樹種特徴量抽出装置。
【請求項3】
前記抽出部が抽出する特徴量を各々異なる色成分の輝度に対応付け、
前記乗算部による乗算結果に応じた階調で前記対象地点を各々表した表示画像を生成する画像生成部を備えることを特徴とする請求項1又は2記載の樹種特徴量抽出装置。
【請求項4】
制御部による樹種特徴量抽出方法であって、
上空から照射したレーザによる計測データから地表面高さを取得する取得ステップ、
前記計測データから、前記レーザの反射パルスにおけるファーストパルスの割合、及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出ステップ、
対象地点の前記地表面高さと当該対象地点から離隔した周囲の所定数の地点の前記地表面高さとを比較し、前記所定数の地点の前記地表面高さがそれぞれ前記対象地点の前記地表面高さよりも高いか低いかに応じた点数を加算した凹凸点数を求める算出ステップ、
前記複数種類の特徴量に対し、前記凹凸点数に応じた係数を乗算する乗算ステップ、
を含むことを特徴とする樹種特徴量抽出方法。
【請求項5】
コンピュータを
上空から照射したレーザによる計測データから地表面高さを取得する取得手段、
前記計測データから、前記レーザの反射パルスにおけるファーストパルスの割合、及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出手段、
対象地点の前記地表面高さと当該対象地点から離隔した周囲の所定数の地点の前記地表面高さとを比較し、前記所定数の地点の前記地表面高さがそれぞれ前記対象地点の前記地表面高さよりも高いか低いかに応じた点数を加算した凹凸点数を求める算出手段、
前記複数種類の特徴量に対し、前記凹凸点数に応じた係数を乗算する乗算手段、
として機能させることを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、樹種特徴量抽出装置、樹種特徴量抽出方法及びプログラムに関する。
【背景技術】
【0002】
従来、森林を上空から計測したデータに基づいて当該森林の林分ごとの境界などを判定可能な画像を生成する技術がある。特許文献1では、レーザ計測により得られた特徴量や樹種の分布データに基づいて着色した画像により、森林地の立体画像をより見やすく生成する技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の技術では、同一の樹種であっても樹高が異なると異なる系統の色表示がなされやすい。したがって、生成された画像から樹種を見分けるのが容易ではないという課題があった。
【0005】
この発明の目的は、より容易に各樹種の領域を識別可能な特徴量の分布を得ることのできる樹種特徴量抽出装置、樹種特徴量抽出方法及びプログラムを提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明は、
上空から照射したレーザによる計測データから地表面高さを取得する取得部と、
前記計測データから、前記レーザの反射パルスにおけるファーストパルスの割合、及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出部と、
対象地点の前記地表面高さと当該対象地点から離隔した周囲の所定数の地点の前記地表面高さとを比較し、前記所定数の地点の前記地表面高さがそれぞれ前記対象地点の前記地表面高さよりも高いか低いかに応じた点数を加算した凹凸点数を求める算出部と、
前記複数種類の特徴量に対し、前記凹凸点数に応じた係数を乗算する乗算部と、
を備えることを特徴とする樹種特徴量抽出装置である。
【発明の効果】
【0007】
本発明に従うと、より容易に各樹種の領域を識別可能な特徴量の分布を得ることができるという効果がある。
【図面の簡単な説明】
【0008】
【
図1】情報処理装置の機能構成を示すブロック図である。
【
図2】特徴量画像の生成手順の概略を示す図である。
【
図3】回転対称性の度合の算出例について説明する図である。
【
図4】回転対称性の度合の算出例について説明する図である。
【
図8】樹種特徴抽出制御処理の制御手順を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の樹種特徴量抽出装置である情報処理装置1の機能構成を示すブロック図である。
本実施形態の樹種特徴量抽出装置である情報処理装置1は、上空から照射したレーザ光による計測データの処理を行う。情報処理装置1は、通常のPC(Personal Computer)などであってよい。情報処理装置1は、制御部11(取得部、抽出部、算出部、画像生成部)と、記憶部12と、入出力インターフェイス13(I/F)と、操作受付部14と、表示部15などを備える。
【0010】
制御部11は、情報処理装置1の動作を統括制御する。制御部11は、演算処理を行うプロセッサを有する。プロセッサは、単一の汎用CPU(Central Processing Unit)であってもよいし、複数のCPUが並列に又は用途などに応じて独立に演算処理を行うものであってもよい。プロセッサには、特定の演算処理や画像処理などに特化したものが含まれていてもよい。制御部11は、記憶部12からプログラム121などを読み込んで実行することで各種制御処理を行う。
【0011】
記憶部12は、RAM(Random Access Memory)と不揮発性メモリとを有し、各種データを記憶する。RAMは、制御部11に作業用のメモリ空間を提供し一時データを記憶する。不揮発性メモリは、プログラム121や設定データなどを記憶保持する。不揮発性メモリは、例えば、フラッシュメモリやHDD(Hard Disk Drive)などであるがこれに限られない。記憶部12は、ROM(Read Only Memory)を有していてもよい。ROMには、初期制御プログラムなどが記憶され得る。
【0012】
入出力インターフェイス13は、情報処理装置1の外部(周辺機器を含む)との間でデータの入出力を行う。入出力インターフェイス13は、接続端子131及び通信部132を有する。接続端子131には、例えば、USB(Universal Serial Bus)端子やLAN(Local Area Network)コネクタなどが含まれる。通信部132は、例えば、TCP/IPなどのLANに係る通信規格による通信を制御する。
【0013】
周辺機器としては、補助記憶装置であるデータベース装置21、並びにCDROM、DVD及びBlu-ray(登録商標)などの可搬型記憶媒体(光学ディスク)を読み取る光学読取装置(22)などが含まれていてもよい。また、可搬型記憶媒体に磁気テープが含まれ、この磁気テープを読み取る読取装置が周辺機器に含まれていてもよい。
【0014】
入出力インターフェイス13を介して情報処理装置1が外部から取得可能なデータには、レーザ計測データ201が含まれる。レーザ計測データ201は、上空から航空機などによりレーザ照射を行ってその反射波を受信することで地上の各点の高度情報を特定したものである。照射されるレーザ光としては、特に限定するものではないが、近赤外線が広く利用されている。なお、レーザ光の照射及び計測は、例えば、ヘリコプター、低高度衛星、ドローンなどの航空機以外で行われてもよい。
【0015】
また、入出力インターフェイス13を介して取得可能なデータには、レーザ計測データ201の解析データ202が含まれていてもよい。解析データ202は、例えば、DSM(Digital Surface Model)データ(地表面高さ)などである。DSMデータは、樹木などの地上の繁殖物や構造物を含めた高度(標高)の分布データである。すなわち、森林では、DSMにより樹木の上端に沿った樹冠の高度分布が得られる。これらのデータは、一度解析された後繰り返し利用され得るので、作成したものを消去せずにそのままデータベースなどに保持してもよい。
【0016】
次に、本実施形態の情報処理装置1における特徴量データ及び特徴量画像の生成について説明する。
図2は、特徴量画像の生成手順の概略を示す図である。
情報処理装置1では、レーザ計測データ201からDSMデータD0、反射強度分布データD1、ファーストパルスの割合分布データD2が得られる。また、DSMデータD0から回転対称性分布データD3及び凹凸個数分布データD4が生成される。
【0017】
反射強度分布データD1、ファーストパルスの割合分布データD2及び回転対称性分布データD3の3種類(複数種類)が樹種に係る特徴量とされて、独立の3パラメータとして割り当てられる(PRA)。特徴量画像データの生成では、各画素に対応する位置におけるこれら3個の特徴量がそれぞれRGBの輝度値に対応付けられる。
【0018】
各画素において、得られたRGBの輝度値に対し、凹凸個数分布データD4に応じた係数が乗算されることで輝度値が補正される(PRB)。このように補正された輝度値の分布に応じた特徴量画像が得られる(PRC)。
【0019】
次に、生成される各データについて説明する。
反射強度分布データD1は、各地点に照射したレーザ光の反射強度の分布である。レーザ光の反射強度は、反射する樹種によって異なる。これは、葉や幹の反射しやすさ(吸収率や散乱の度合)、及び反射面積などに依存する。葉の大きさや密度などに応じて地表まで届くレーザ光が多くなると、レーザ光の反射率は低下する。例えば、スギの反射強度は、ヒノキや各種広葉樹などと比較して高い。
【0020】
ファーストパルスの割合分布データD2は、ある幅を持って地上に到達して樹木などにより反射されるレーザ光(反射パルス)における最上層で反射されるレーザ光(反射パルス)の割合の分布を示す。葉の隙間が大きい樹種、複数段状に葉が茂る樹種などでは、ファーストパルスの割合が低くなり、最上部に密集して葉が広がる樹種ではファーストパルスの割合が高くなる。例えば、ヒノキのファーストパルスの割合は、スギや各種広葉樹などと比較して高い。
【0021】
回転対称性分布データD3は、上空から平面視で樹木を見た場合に、樹木の中心に対して周囲に均等に茂る度合の分布を示す。上記のように、樹冠の高度分布はDSMデータD0で表されているので、この回転対称性分布データD3は、DSMデータD0を用いて生成される。樹冠が樹木の中心位置に対して円錐形、卵型、平面状などで周囲に均等に広がる場合には、回転対称性の度合が高い。樹冠においてランダムに近い凹凸が生じるなど複雑に広がる場合には、回転対称性の度合が低い。円錐形の樹冠を有するスギは、回転対称性の度合が高い。広葉樹は、一般的に回転対称性の度合が低い。
【0022】
回転対称性の高い樹木の場合には、対象点を中心に任意の角度回転させたときの高さ分布と、元の位置での高さ分布との間の差異が小さい。回転対称性の低い樹木の場合には、対象点を中心に回転させたときの高さ分布と、元の位置での高さ分布との間の差異が大きくなる。
【0023】
なお、回転対称性の度合が高い樹木の中心位置Pからずれた対象点Pcでは、周囲が反対称に近い分布となる。したがって、回転対称性の度合が極大となる対象点Pcの周囲には、回転対称性が極小となる領域に囲まれやすい。回転対称性の度合が低い樹木の場合には、樹木の中心からずれた位置でも回転対称性の度合が低いままであるので、全体として類似した回転対称性を示す範囲が広がる。
【0024】
図3及び
図4は、回転対称性の度合の算出例について説明する図である。これらの図では、各メッシュ(格子点で囲まれたエリア)に対してハッチ濃度によりDSMにおける高さが簡略に示されている。各図では、座標系の回転を示すために、直交するXY軸の向きを付している。
【0025】
図3(a)に示すように、円錐形の樹冠を有する樹木では、中心位置Pに対して回転対称な高さ分布となる。したがって、中心位置Pを対象点Pcとした場合、
図3(b)に示すように分布を中心位置Pに対して90度回転させても分布の形状に大きな差が生じない。
図3(a)に示した元の各位置の高さから
図3(b)に示した90度回転後の各位置の高さをそれぞれ差し引くと、
図3(c)に示すように、高度差は全体で小さく(ゼロに近く)なる。元の分布を中心位置Pに対して180度又は270度(-90度)回した場合も同様である。
【0026】
一方、
図4(a)に示すように、上記円錐形の樹冠を有する樹木の中心位置Pから外れた位置を対象点Pcとした場合、その直近の高さの頂点は、対象点Pcのいずれかの方向に位置する。対象点Pcに対して頂点とは反対側は、高さが低い樹間である。このような対象点Pcに対して分布を90度回転させると、
図4(b)に示すように、高さの高い方向及び低い方向が変化するので、その差分がゼロ付近の値とならない部分が生じる。
図4(c)に示すように、対象点Pcに対して180度回転させた場合も同様に差分がゼロ付近の値とならない部分が生じる。
【0027】
また、
図4(d)に示すように、樹木の樹冠が円錐形状ではない場合には、樹木の中心付近を対象点Pcとしても、対象点に対して回転させた分布は、元の分布とは異なる。
【0028】
このようなある範囲の差分値に基づく代表値、例えば、単純な加算値や平均値を回転対称性の指標とすることができる。
図3の例のように回転対称性の度合が高い場合には、回転対称性の指標値がゼロに近くなる。
図4の例にように回転対称性の度合が低い、特に反対称性が高い場合には、回転対称性の指標値が高くなる。すなわち、回転対称性の度合の高い樹木が並ぶ林分では、指標値が高い部分の周囲を低い部分が取り囲むように周期的に並ぶことになる。
【0029】
これに対し、回転対称性の度合が低く、かつ反対称性も低い場合には、中程度の回転対称性の指標値が得られる。すなわち、回転対称性の度合の低い樹木が並ぶ林分では、指標値が中程度の領域が全体的に広がることになる。
【0030】
図5は、回転対称性の度合の分布例を示す図である。
林分Faでは、中央に指標値が高く、その周囲に指標値が低い場所が多数存在している。これらは、各々が回転対称性の度合の高いスギなどの樹木に対応する。林分Fbでは、回転対称性の度合の低い(反対称性の)一つながりの領域内に、当該領域の境界よりは若干回転対称性の度合の高い部分が位置している。上記領域の境界外側の回転対称性の度合の高い領域は、樹木の隙間で地盤面が見えている部分に該当する。
【0031】
これら3種類のパラメータを組み合わせることで、日本の森で多く分布するスギ、ヒノキ及び広葉樹の林分がレーザ観測画像から識別しやすくなる。3種類のパラメータの値は、例えば、それぞれRGBの3色(異なる色成分)の輝度に対応付けられる。すなわち、樹種に応じて各色の強度が変わるので、色に応じて樹種が容易に判別される。
【0032】
情報処理装置1では、樹高は、色系統を規定するパラメータとして用いられない。上述のように、同一の樹種であっても樹齢や日照状況(斜面の向きなど)などに応じて樹高に差が生じる。したがって、樹高が色系統を規定するパラメータに含まれると、画像の色合いから樹種が容易に識別されづらくなる。
【0033】
情報処理装置1では、樹冠の凹凸度合に基づいて、上記で表される色合の中で高さに応じた濃度(明度)のコントラストを加えた表示とする。
【0034】
図6は、凹凸度合について説明する図である。
図6(a)に示すように、樹冠が円錐形を示す樹種の木T1では、顕著に樹木の中心において樹冠が周囲よりも高い。一方、
図6(b)に示すように、広く周囲に枝葉を伸ばす樹種の木T2では、広がり方がランダムになりやすく、必ずしも中心で樹冠が高くならない。
【0035】
図6(c)は、樹木の凹凸度合の算出方法の一例を示す図である。
凹凸度合の算出は、DSMデータD0を用いて行われる。凹凸度合を求める対象点Pc(対象地点)からある距離離隔した周囲の点Prを複数個(所定数の地点)対称な位置に設定する。ここでは、対象点Pcから45度ずつの間隔で8方位に点Prが定められている。対象点Pcは、メッシュで区切られた領域の代表位置であってもよい。ある距離としては、平面視で木の(半径)より小さい程度とされる。言い換えると、ある距離は、平均的な木の間の距離の半分より小さい程度である。木の間の距離は、樹高が低いほど小さくなる傾向がある。低い樹高の木に合わせてある距離が設定されることで、低い木だけではなく高い木についても凹凸度合を判断することができる。
【0036】
DSMにより対象点Pcの高さと各点Prの点の高さが比較される。具体的には、対象点Pcよりも低い点Prが1つについて1点(点Prがそれぞれ高いか低いかに応じた点数)を加算した合計点が凹凸個数(凹凸点数)とされる。凹凸個数が大きい(8に近い)場合には、対象点は、周囲に対して高い位置(樹冠の極大位置)にあり、樹木の中心位置にあることが分かる。凹凸個数が小さい(0に近い)場合には、対象点は、周囲に比して低い位置にある。これは、対象点が複数の樹木の中間付近などの場合である。樹冠の凹凸度合の大きい樹種では、樹木の中間では明確に高さが低くなりやすいので、凹凸個数が小さい領域は、凹凸個数の極大の位置を取り囲むように現れ得る。
【0037】
また、樹冠の低い若い木の多い林分では、樹木の間隔に応じて凹凸個数の極大位置間の幅も狭くなる。スギやヒノキは、樹冠が略円錐形状を示す傾向があるので、凹凸の大きい分布が得られやすい。このときに、上記の樹木の高さに応じて樹木の中央と周縁との間でのコントラストに差が出て、また、樹木の中央となる凹凸個数の極大位置間の間隔が変化する。したがって、これらにより、色合いには変化を生じさせずに樹木の高さについての情報も付加的に得ることが可能となる。
【0038】
一方で、広葉樹では幅広く上方に枝を伸ばすので、凹凸個数が大きい領域が円状に分布しにくい。また、これに応じて凹凸個数が小さい領域がきれいな円環状にもなりづらい。すなわち、この場合には、凹凸個数の極大領域や極小領域が不規則な形となりやすく、状況によっては明確に分かれにくい場合が生じ得る。
【0039】
ここで、凹凸個数は、高さの差の大きさ、すなわち傾斜角度などには依存しない。上記のように、凹凸個数分布データD4により凹凸度合を表現することで、樹木の生育度合(樹齢、樹高)などによるばらつきが低減される。したがって、凹凸個数分布データD4は、各樹木を各々特定するのに好適である。
【0040】
情報処理装置1では、この凹凸個数を点Prの数(ここでは8個)で正規化したうえで、上記3つのパラメータに応じた輝度値に対して係数として乗算する。すなわち、全ての点Prの高さが対象点Pcより低い場合には、係数が1となり、全ての点Prの高さが対象点Pcより高い場合には、係数が0となる。
【0041】
なお、係数には、更に定数が乗じられてもよい。例えば、上記正規化した値が一律に2倍されてもよい。この場合、点Prのうち過半においてその高さが対象点Pcよりも低い場合には、1より大きい係数が上記輝度値に乗じられる。元々大きい輝度値に対して1よりも大きい係数が乗じられた補正値は、最大輝度値を超える場合がある。この場合には、輝度値は最大輝度値に設定される。あるいは、係数は、凹凸個数に応じた線形なものでなくてもよい。例えば、凹凸個数が対象点Pcの数の半分の場合を基準(係数が1)として、凹凸個数が上記半分からずれたずれ量に応じた比率で係数が定められてもよい。
【0042】
図7は、凹凸個数の分布例を示す図である。この分布例は、
図5と同一範囲について示されている。ここでは、凹凸個数が多いほど輝度が高い濃淡画像を示している。林分Faの領域では、凹凸個数が極大の領域(白い領域)が略均等に分布し、これら極大の領域から略等方に凹凸個数が周囲に向けて低下していくのが明瞭に見られる。
【0043】
林分Fbの領域では、凹凸個数が極大の領域の範囲が林分Faの領域よりも狭く、またその間隔も林分Faよりも狭い。これら極大の領域の周囲では、急激に凹凸個数が極小の領域に変化している。これらのことから、この
図7からは、林分Faの領域は、林分Fbの領域よりも樹齢が高く、これに伴って樹高も高くなって樹木間の間隔が開いていることを読み取ることができる。
【0044】
林分Fcの領域では、林分Fa、Fbと比較して凹凸個数が極大の領域の形状がきれいな円状となっていない場合が多い。また、林分Fc内では、明確な極大の領域を有さず中程度の凹凸個数の領域(灰色)が伸びている部分がある。上記のように、凹凸個数の極大パターンが不明確な領域は、広葉樹に広くみられる。
【0045】
このようにして設定された輝度値分布に対して適切な付加情報を加えて表示画像データが生成される。また、表示画像を画像ファイルとして記憶保持する場合には、表示画像データが必要に応じて符号化してもよい。これにより、色系統に応じて樹種ごとに林分が識別されやすく、同時に階調表現(輝度階調)により樹高についての情報も付加的に得られる表示画像が生成される。
【0046】
図8は、本実施形態の情報処理装置1で実行される樹種特徴抽出制御処理の制御部11による制御手順を示すフローチャートである。この樹種特徴抽出制御処理は、例えば、ユーザにより処理対象の範囲のデータの指定とともに処理を開始する入力操作が操作受付部14により受け付けられることで開始される。
【0047】
制御部11は、処理対象の範囲を含むレーザ計測データ201を取得する(ステップS101)。上記のようにレーザ計測データ201は、データベース装置21や、光学読取装置22などにセットされた記録媒体などから取得されればよい。
【0048】
制御部11は、対象範囲のレーザ計測データ201からDSMデータD0を生成する(ステップS102;取得ステップ、取得手段)。なお、既に何らかの処理でDSMデータD0が生成されている場合には、制御部11は、生成済みのDSMデータD0を取得してもよい。
【0049】
制御部11は、レーザ計測データ201から反射強度分布データを生成する(ステップS103)。制御部11は、レーザ計測データ201からファーストパルス割合分布データを生成する(ステップS104)。
【0050】
制御部11は、DSMデータD0から回転対称性分布データを生成する(ステップS105)。ステップS103~S105の処理が本実施形態の抽出ステップ及び抽出手段を構成する。
制御部11は、DSMデータD0から各点の凹凸個数を算出する(ステップS106;算出ステップ、算出手段)。制御部11は、凹凸個数に基づいて、係数を設定する。
【0051】
制御部11は、ステップS103~S105で得られた各パラメータの分布データに基づいて、各位置の輝度値分布を設定する(ステップS107、PRAに対応)。制御部11は、各輝度値に対して、ステップS106で設定された係数を各々乗じて輝度値を補正する(ステップS108;乗算ステップ、乗算手段。PRBに対応)。上記のように、補正された輝度値が設定可能な最大値を超えている場合には、制御部11は、当該点の輝度値を最大値に設定する。
【0052】
制御部11は、得られた補正済の輝度分布を予め定められたデータフォーマットにより画像データ化して特徴量画像データを得る(ステップS109、PRCに対応)。制御部11は、生成した特徴量画像データを出力する。出力先は、外部機器であってもよいし、表示部15の表示画面やプリンタであってもよい。そして、制御部11は、樹種特徴抽出制御処理を終了する。
【0053】
図9は、上記の手順で得られた特徴量画像の例を示す図である。この例は、
図5、
図7に示した範囲と同一の範囲について得られたものである。
図9(a)に示すように、林分Fa、Fbは、いずれも同色系であり、上記で求めた凹凸個数に従って林分Faの方が個々のサイズが大きくかつ間隔が広い並びであることが分かる。一方で、林分Fcでは、凹凸個数のピークが明瞭ではないが、上記林分Fa、Fbとは異なる系統の色となっている。したがって、林分Fa、Fbとは異なる樹種の林分であることが容易に視認可能である。
【0054】
図9(b)は、上記の
図9(a)に対し、凹凸個数に基づく輝度値の補正を行わなかった場合の比較結果である。この
図9(b)でも、
図9(a)と同様に、樹種による色の差異は概ね視認可能である。一方で、林分Faの左側や林分Fb、Fcなどでは、個々の樹木中心位置はあまり明確に分離されていない。したがって、この
図9(b)では、樹高の差異を読み取るには、若干の技術と手間を要する。
【0055】
以上のように、本実施形態の情報処理装置1は、制御部11を備える。制御部11は、取得部として、上空から照射したレーザによる計測データから地表面高さ(DSMデータD0)を取得する。制御部11は、抽出部として、計測データから、レーザの反射パルスにおけるファーストパルスの割合及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する。制御部11は、算出部として、DSMに基づいて対象点Pcの地表面高さと当該対象点Pcから離隔した周囲の所定数(例えば8点)の点Prの地表面高さとを比較し、各点Prの地表面高さが対象点Pcの地表面高さよりそれぞれ高いか低いかに応じた点数(ここでは、高い場合に1点、低い場合に0点)を加算した凹凸点数(すなわち、対象点Pcの地表面高さよりも低い点Prの数である凹凸個数)として求める。制御部11は、乗算部として、上記複数種類の特徴量に対し、凹凸個数に応じた係数を乗算する。
このように、情報処理装置1は、樹種に係る特徴量のみを複数組み合わせたデータを生成することで、樹種の範囲を容易に認識しやすい情報を得る。特に、1種類の特徴量で全ての樹種を識別するのは難しいので、複数の特徴量の組み合わせで樹種を識別可能に表現することで、樹種の識別がより容易になる。特に、レーザ計測では可視光撮影画像と異なり、影などの影響を受けずに識別を行うことができる。これとともに、情報処理装置1は、計測された各点の凹凸状況を周囲との高低差の数のみによって表現し、これを上記特徴量に係数として乗算する。これにより、特徴量の変動幅(コントラスト、濃淡)から高度情報を付加的に得ることもできる。さらに、樹木の頂点と周囲とでも大きなコントラストが見られるので、凹凸状況により樹木の間隔も特定しやすくなる。樹木の高さと間隔には相関があるので、濃淡だけではなく樹木の間隔からも高さの情報をユーザが知得しやすくなる。したがって、情報処理装置1は、より容易に各樹種の領域の識別が可能な特徴量の分布を得ることができる。特に、情報処理装置1によれば、樹高を含む情報量自体を減少させないようにしつつ、樹種の判別がより容易に可能となる。
【0056】
また、特徴量には、地表面高さの回転対称性の度合を含んでもよい。樹種に応じて樹冠の回転対称性が異なるので、情報処理装置1では、この回転対称性を樹種の識別情報として用いることで、識別精度を向上させることができる。また、回転対称性は、DSMにより求められるので、処理が容易である。
【0057】
また、情報処理装置1は、画像生成部としての制御部11が、抽出した特徴量を各々異なる色成分(RGB)の輝度に対応付け、また、乗算結果に応じた階調(輝度階調)で対象点Pcを各々表した表示画像を生成する。すなわち、情報処理装置1では、樹種の特徴がRGBで表される色合、すなわち色相に対応付けられ、凹凸個数に応じた係数に応じた明度の濃淡(コントラスト)により高さが表される。すなわち、情報処理装置1では、樹種の表現軸と樹高の表現軸とが分離される。したがって、情報処理装置1によれば、生成される画像により、より容易に樹種ごとの範囲(林分)をユーザが視認して識別することが容易になる。
【0058】
また、本実施形態の制御部11による樹種特徴量抽出方法は、上空から照射したレーザによる計測データから地表面高さ(DSMデータD0)を取得する取得ステップ、計測データから、レーザの反射パルスにおけるファーストパルスの割合及び反射強度のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出ステップ、対象点Pcの地表面高さと当該対象点Pcから離隔した周囲の所定数の点Prの地表面高さとを比較し、各点Prの地表面高さが対象点Pcの地表面高さよりそれぞれ高いか低いかに応じた点数(ここでは、高い場合に1点、低い場合に0点)を加算した凹凸点数(すなわち、対象点Pcの地表面高さよりも低い点Prの数である凹凸個数)として求める算出ステップ、複数種類の特徴量に対し、凹凸個数に応じた係数を乗算する乗算ステップ、を含む。
このような樹種特徴量抽出方法によれば、ユーザは、樹種に係る特徴量の組み合わせにより、より容易かつ明確に樹種ごとの領域を識別可能になる。
【0059】
また、上記樹種特徴量抽出方法に係るプログラム121をコンピュータにインストールして実行することで、ソフトウェア制御により容易に樹種ごとの領域を識別可能なデータを得ることができる。
【0060】
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、対象点Pcよりも地表面高さ(DSM)の低い周囲の点Prの数を単純に計数して凹凸個数(凹凸点数)としたが、これに限られない。反対に対象点Pcよりも地表面高さの高い周囲の点Prの数を計数してもよい。あるいは、対象点Pcよりも地表面高さの高い周囲の点Prが1点ごとに0.25点を加算し、対象点Pcよりも地表面高さの低い周囲の点Prが1点ごとに0.75点を加算する、というような非整数での点数計算がなされてもよい。特に、後に凹凸個数に定数を乗じたりオフセットを付したりしてから係数として特徴量に乗じる代わりに、予めこれらの処理がなされた点数を単純に加算して利用してもよい。
【0061】
また、凹凸点数を求める際に比較される周囲の点の数は、略均等に取得される限りにおいて適宜変更されてもよい。
【0062】
また、上記実施の形態では、回転対称性の特徴量を求めるために、実際に周囲の画素配置を回転させて差分を算出したが、これに限られない。例えば、対象点Pcの周囲を複数の方向に分割し、各方向についてDSMの平均及び分散などの統計値を算出してその差異を求めることとしてもよい。
【0063】
また、上記実施の形態ではRGBの3色に3種類の樹種に係る特徴量が割り当てられたが、これに限られない。特徴量は上記3種類のうちのいずれか2種類であってもよいし、上記3種類以外の樹種の識別に利用可能な特徴量が含まれていてもよい。あるいは、利用される特徴量は、4種類以上であってもよい。また、対応付けられる3色は、RGBの代わりにCMY(シアン、マゼンタ、イエロー)などであってもよい。また、対応付けられる輝度の範囲を制限して、4種類以上の特徴量の組み合わせが一意の色を生成するように対応付けが行われてもよい。
【0064】
また、上記実施の形態では、単一の情報処理装置1により樹種特徴量の抽出及び画像生成がなされたが、これらの処理は複数の情報処理装置に分散されて行われてもよい。また、情報処理装置1は、樹種特徴量のデータのみを生成して外部機器に出力し、外部機器でプリントされてもよい。また、上記処理のうち一部又は全部は、汎用のCPUではなく、専用の又は対応する処理に好適に設計されたプロセッサや論理回路などを利用して行われてもよい。
【0065】
また、以上の説明では、本発明の樹種特徴抽出制御に係るプログラム121を記憶するコンピュータ読み取り可能な媒体としてHDDやフラッシュメモリなどの不揮発性メモリなどからなる記憶部12を例に挙げて説明したが、これらに限定されない。その他のコンピュータ読み取り可能な媒体として、MRAMなどの他の不揮発性メモリや、CD-ROM、DVDディスクなどの可搬型記憶媒体を適用することが可能である。また、本発明に係るプログラムのデータを、通信回線を介して提供する媒体として、キャリアウェーブ(搬送波)も本発明に適用される。
その他、上記実施の形態で示した具体的な構成、処理動作の内容及び手順などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。本発明の範囲は、特許請求の範囲に記載した発明の範囲とその均等の範囲を含む。
【符号の説明】
【0066】
1 情報処理装置
11 制御部
12 記憶部
121 プログラム
13 入出力インターフェイス
131 接続端子
132 通信部
14 操作受付部
15 表示部
21 データベース装置
22 光学読取装置
201 レーザ計測データ
202 解析データ
D0 DSMデータ
D1 反射強度分布データ
D2 割合分布データ
D3 回転対称性分布データ
D4 凹凸個数分布データ
Pc 対象点
【要約】
【課題】より容易に各樹種の領域を識別可能な特徴量の分布を得ることのできる樹種特徴量抽出装置、樹種特徴量抽出方法及びプログラムを提供する。
【解決手段】樹種特徴量抽出装置は、上空から照射したレーザによる計測データからDSMデータ(D0)を取得する取得部と、計測データから、反射強度(D1)及びレーザの反射パルスにおけるファーストパルスの割合(D2)のうち少なくとも一方を含む樹種に係る複数種類の特徴量を抽出する抽出部と、対象地点のDSMと対象地点から離隔した周囲の所定数の地点のDSMとを比較し、所定数の地点のDSMがそれぞれ対象地点のDSMよりも高いか低いかに応じた点数を加算した凹凸点数を求める算出部と、複数種類の特徴量に対し、凹凸点数に応じた係数を乗算する乗算部(PRB)と、を備える。
【選択図】
図2