(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-01
(45)【発行日】2023-09-11
(54)【発明の名称】医用画像診断装置
(51)【国際特許分類】
A61B 6/00 20060101AFI20230904BHJP
A61B 5/055 20060101ALI20230904BHJP
G01R 31/34 20200101ALI20230904BHJP
【FI】
A61B6/00 320Z
A61B6/00 300D
A61B6/00 300X
A61B5/055 390
G01R31/34 A
(21)【出願番号】P 2018093586
(22)【出願日】2018-05-15
【審査請求日】2021-03-16
【審判番号】
【審判請求日】2022-09-28
(31)【優先権主張番号】P 2017096947
(32)【優先日】2017-05-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】野田 浩二
(72)【発明者】
【氏名】小室 新
(72)【発明者】
【氏名】小嶋 剛
(72)【発明者】
【氏名】石崎 智子
(72)【発明者】
【氏名】石井 毅
(72)【発明者】
【氏名】加藤 祐樹
(72)【発明者】
【氏名】長江 智美
【合議体】
【審判長】石井 哲
【審判官】渡戸 正義
【審判官】▲高▼見 重雄
(56)【参考文献】
【文献】特開2013-273(JP,A)
【文献】特開2010-75551(JP,A)
【文献】特開2017-41159(JP,A)
【文献】米国特許出願公開第2012/0321036(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B6/00-6/14
A61B5/055
(57)【特許請求の範囲】
【請求項1】
対象を撮像する撮像部と、
可動の部分を含む機構部と、
前記撮像部の出力に基づいて前記対象の画像を生成する画像生成手段と、
前記機構部の動作に関する情報に基づいて、前記機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する処理実行手段と
を具備し、
前記動作に関する情報は、前記可動の部分の動作量に関する情報を含む、医用画像診断装置。
【請求項2】
前記処理実行手段は、前記発生データの処理として、前記発生データの収集、保存、送信及び解析のうちの少なくとも一つを実行する、請求項1に記載の医用画像診断装置。
【請求項3】
前記処理実行手段は、前記送信を実行する場合において、前記発生データ及び前記動作に関する情報を送信する、請求項2に記載の医用画像診断装置。
【請求項4】
前記動作に関する情報は、前記機構部を駆動するモータの電流値を含む、請求項1乃至3のいずれか一項に記載の医用画像診断装置。
【請求項5】
前記処理実行手段は、前記発生データ及び前記動作に関する情報を収集し、前記電流値に関する条件が満たされたことを契機として、前記発生データの処理を実行する、請求項4に記載の医用画像診断装置。
【請求項6】
前記処理実行手段は、前記対象の画像の解析結果に基づいて、画像間の位置ずれを特定し、前記位置ずれに関する条件が満たされたことを契機として、前記発生データの処理を実行する、請求項1乃至3のいずれか一項に記載の医用画像診断装置。
【請求項7】
前記画像生成手段は、前記撮像された複数の画像から画像の再構成を実行し、
前記処理実行手段は、前記再構成された画像のアーチファクトに関する条件が満たされたことを契機として、前記発生データの処理を実行する、請求項1乃至3のいずれか一項に記載の医用画像診断装置。
【請求項8】
前記動作に関する情報は、前記撮像部が所定区間を移動するときの移動時間を含んでおり、
前記処理実行手段は、前記発生データ及び前記動作に関する情報を収集及び保存し、前記移動時間に関する条件が満たされたことを契機として、前記保存した発生データ及び前記動作に関する情報を送信する、請求項1乃至3のいずれか一項に記載の医用画像診断装置。
【請求項9】
対象を撮像する撮像部と、
可動の部分を含む機構部と、
前記撮像部の出力に基づいて前記対象の画像を生成する画像生成手段と、
前記対象の画像の解析結果に基づいて、画像間の位置ずれの値が許容値以上の場合に、前記機構部の動作に関する情報の処理を実行する処理実行手段と
を具備する医用画像診断装置。
【請求項10】
前記処理実行手段は、前記動作に関する情報の処理として、前記動作に関する情報の収集、保存及び送信のうちの少なくとも一つを実行する、請求項9に記載の医用画像診断装置。
【請求項11】
対象を撮像する撮像部と、
可動の部分を含む機構部と、
前記撮像部の出力に基づいて前記対象の画像を生成する画像生成手段と、
前記機構部の動作に関する情報に基づいて、前記機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する処理実行手段と
を具備し、
前記動作に関する情報は、前記機構部を駆動するモータの電流値を含む、医用画像診断装置。
【請求項12】
前記処理実行手段は、前記発生データ及び前記動作に関する情報を収集し、前記電流値に関する条件が満たされたことを契機として、前記発生データの処理を実行する、請求項11に記載の医用画像診断装置。
【請求項13】
対象を撮像する撮像部と、
可動の部分を含む機構部と、
前記撮像部の出力に基づいて前記対象の画像を生成する画像生成手段と、
前記対象の画像の解析結
果に基づいて、前記機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する処理実行手段と
を具備し、
前記処理実行手段は、画像間の位置ずれを特定し、前記位置ずれに関する条件が満たされたことを契機として、前記発生データの処理を実行する、医用画像診断装置。
【請求項14】
対象を撮像する撮像部と、
可動の部分を含む機構部と、
前記撮像部の出力に基づいて前記対象の画像を生成する画像生成手段と、
前記機構部の動作に関する情
報に基づいて、前記機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する処理実行手段と
を具備し、
前記動作に関する情報は、前記撮像部が所定区間を移動するときの移動時間を含んでおり、
前記処理実行手段は、前記発生データ及び前記動作に関する情報を収集及び保存し、前記移動時間に関する条件が満たされたことを契機として、前記保存した発生データ及び前記動作に関する情報を送信する、医用画像診断装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、医用画像診断装置に関する。
【背景技術】
【0002】
医用画像診断装置としては、例えば、X線診断装置、X線コンピュータ断層撮影(Computed Tomography:CT)装置及び磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置などがある。これらの装置は、互いに動作が異なるものの、稼働時に機械系の動作音が発生する点で共通する。以下、機械系の動作音を伴う医用画像診断装置についてX線診断装置を例に挙げて述べる。
【0003】
X線診断装置は、通常、被検体に対して好適な位置や方向からのX線撮影を可能とするため、X線発生部及びX線検出部などの撮像系を保持する保持部を所定方向に移動又は回動可能な機械系を備えている。機械系は、駆動モータの回転力を動力伝達機構を介して動作軸に伝達する回動機構部を有している。ここで、動力伝達機構は、ベルト、ギア及びチェーン等といった要素部品から構成されている。また、「動作軸」は「電動動作軸」と呼んでもよい。
【0004】
このようなX線診断装置では、ベルト、ギア及びチェーン等のテンションやバックラッシュといった組付け状態の変化に起因して機械系のガタが増大すると、モータ動作の追従性が低下して撮像系の位置決め精度が悪化してしまう。その結果、画像サブトラクションを行う撮影等において画像アーチファクトが生じて画質が低下する場合がある。なお、機械系のガタの増大時には、画質の低下に加え、動作音が変化して異常音(以下、異音ともいう)が発生する場合がある。また、異音に加え、振動が発生する場合もある。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
このような異音などの発生時には、速やかに原因を特定して除去するように保守作業を行う必要がある。ここで、異音の原因を特定する方式としては、例えば、異音の周波数や波形などの特徴的な成分と正常時の動作音との比較照合により、異音を検出及び判定することが考えられる。具体的には例えば、常時、X線診断装置の近傍で収集した動作音データをホスト側に送信し、ホスト側から動作音データを監視することにより、動作音データから異音を検出及び判定することが考えられる。同様に、振動の原因を特定する方式としては、例えば、回転機構部の近傍で収集した振動データをホスト側に送信し、ホスト側から振動データを監視することにより、振動データから異常振動を検出及び判定することが考えられる。なお、動作音データ及び振動データは、少なくとも一方を監視すればよい。
【0007】
しかしながら、以上のようなX線診断装置は、通常は特に問題ないが、本発明者の検討によれば、以下の点で改善の余地がある。例えば、X線診断装置は、常時、動作音データ及び振動データのうちの少なくとも一方をホスト側に送信するため、送信量が膨大になり、非効率な保守管理が行われる点で改善の余地がある。これは、X線診断装置に限らず、X線CT装置又はMRI装置などの如き、他の医用画像診断装置でも同様である。また、医用画像診断装置が動作音データ及び/又は振動データをサーバ装置に常時送信する場合に限らず、医用画像診断装置が動作音データ及び/又は振動データを常時解析する場合でも同様である。すなわち、送信及び解析のいずれの処理にしても、医用画像診断装置が処理するデータ量が膨大になり、非効率な保守管理が行われる。
【0008】
目的は、処理するデータ量を削減し、効率的な保守管理を実現することである。
【課題を解決するための手段】
【0009】
実施形態に係る医用画像診断装置は、撮像部、機構部、画像生成手段及び処理実行手段を備えている。
前記撮像部は、対象を撮像する。
前記機構部は、可動の部分を含む。
前記画像生成手段は、前記撮像部の出力に基づいて前記対象の画像を生成する。
前記処理実行手段は、前記対象の画像の解析結果と前記機構部の動作に関する情報との少なくとも一方に基づいて、前記機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する。
【図面の簡単な説明】
【0010】
【
図1】一実施形態に係る医用画像診断システムの構成を示す模式図である。
【
図2】同実施形態における医用画像診断装置の構成を示す模式図である。
【
図3】同実施形態における医用画像診断装置の構成を示す斜視図である。
【
図4】同実施形態における機械系の構成例を示す模式図である。
【
図5】同実施形態における各エンコーダのパルス信号の波形図である。
【
図6】同実施形態における医用画像診断装置のストレージを説明するための模式図である。
【
図7】同実施形態におけるサーバ装置の構成を示す模式図である。
【
図8】同実施形態におけるサーバ装置のストレージを説明するための模式図である。
【
図9】同実施形態における医用画像診断装置の全体動作を説明するためのフローチャートである。
【
図10】同実施形態における医用画像診断装置の調整モードの動作を説明するためのフローチャートである。
【
図11】同実施形態における医用画像診断装置の動作音処理に関する動作を説明するためのフローチャートである。
【
図12】同実施形態における始業前点検に関する動作を説明するためのフローチャートである。
【
図13】同実施形態におけるサーバ装置の動作を説明するためのフローチャートである。
【
図14】同実施形態の第1変形例の構成を示す模式図である。
【
図15】同実施形態の第1変形例の変形構成を示す模式図である。
【
図16】同実施形態の第2変形例の構成を示す模式図である。
【
図17】同実施形態の第3変形例におけるサーバ装置のストレージ及び学習済みモデルを説明するための模式図である。
【
図18】同実施形態の第3変形例における学習済みモデルを説明するための模式図である。
【
図19】同実施形態の第4変形例における動作を説明するためのフローチャートである。
【発明を実施するための形態】
【0011】
以下、一実施形態について図面を用いて説明する。
図1は、一実施形態に係る医用画像診断システムの構成を示す模式図であり、
図2及び
図3は、一実施形態に係る医用画像診断装置の構成を示す模式図及び斜視図である。
図4は同装置における機械系の構成例を示す模式図である。医用画像診断システムは、医用画像診断装置100と、少なくとも一つのサーバ装置300を含むサーバシステムとを備えている。本明細書中では、サーバ装置300が一つの場合を例に挙げて述べる。医用画像診断装置100と、サーバ装置300とは、互いにネットワークNwを介して通信可能となっている。医用画像診断装置100としては、X線診断装置、X線CT装置及びMRI装置のいずれでもよいが、この実施形態ではX線診断装置を例に挙げて述べる。医用画像診断装置100は、X線撮影部1、画像生成回路6、ディスプレイ7、保持装置8及び寝台部9を備えている。ここで、X線撮影部1(撮像部)は、被検体150に対しX線を照射すると共に被検体150を透過したX線を検出して投影データを生成する。撮像部が撮像する対象は、被検体150に限らず、ファントムの場合もある。「撮像部」は「撮像系」ともいう。画像生成回路6は、投影データに基づいて画像データを生成する。ディスプレイ7は、得られた画像データを表示する。保持装置8は、X線撮影部1(撮像部)のX線発生部2及びX線検出器3を保持し被検体150の周囲で所定方向に移動あるいは回動させる保持部を備える。寝台部9は、被検体150を載置した天板を所定方向へ移動させる。なお、保持装置8は、保持部を移動又は回動させるための、可動の部分を含む機構部を含んでいる。画像生成回路6は、撮像部の出力に基づいて対象の画像を生成する画像生成部を構成している。
【0012】
更に、医用画像診断装置100は、保持装置8及び寝台部9の各々に設けられた後述の各種移動機構部に対し駆動信号を供給する機構駆動部10と、機構駆動部10を介してX線撮影部1を制御するための制御装置20とを備えている。制御装置20は、位置情報検出部21、ストレージ22、処理回路23、警報発生部24、入力インタフェース25、システム制御回路26及びネットワークインタフェース27を備えている。なお、位置情報検出部21は、保持部及びこの保持部に取り付けられた撮像系の位置情報や寝台部9に設けられた天板の位置情報を検出する。入力インタフェース25は、被検体情報の入力、X線照射条件を含むX線撮影条件の設定、各種コマンド信号の入力等を行なう。システム制御回路26は、上述の各部を統括的に制御して被検体150に対し安全かつ効率のよいX線撮影を可能にする。ネットワークインタフェース27は、ネットワークNwを介してサーバ装置300に通信するための回路である。
【0013】
X線撮影部1は、X線発生部2、X線検出器3、投影データ生成回路4及び高電圧発生部5を備え、被検体150を透過したX線量に基づいて投影データを生成する機能を有している。
【0014】
X線発生部2は、天板91上に載置された被検体150に照射するX線を発生する。X線発生部2は、X線管と、X線管から照射されたX線に対してX線錘(コーンビーム)を形成するX線絞り器を備えている。X線管は、X線を発生する真空管であり、陰極(フィラメント)より放出された電子を高電圧によって加速させてタングステン陽極に衝突させX線を発生させる。なお、タングステン陽極(ターゲット)は、ベアリングで支持された軸の回転に応じて回転する。すなわち、X線発生部2は、タングステン陽極を回転させるための、可動の部分を含む機構部を備えている。X線絞り器は、X線管と被検体150の間に位置し、X線管から照射されたX線ビームを所定の照射視野のサイズに絞り込む。
【0015】
X線検出器3は、被検体150を透過したX線を検出する。このようなX線検出器3としては、X線を直接電荷に変換するものと、光に変換した後、電荷に変換するものとが使用可能であり、ここでは前者を例に説明するが後者であっても構わない。即ち、本実施形態に係るX線検出器3は、被検体150を透過したX線を電荷に変換して蓄積する平面検出器と、この平面検出器に蓄積された電荷を読み出すための駆動パルスを生成するゲートドライバを備えている。
【0016】
平面検出器は、微小な検出素子を2次元的に配列して構成される。各々の検出素子は、図示しない光電膜、電荷蓄積コンデンサ及びTFT(薄膜トランジスタ)を備えている。光電膜は、X線を感知し入射X線量に応じて電荷を生成する。電荷蓄積コンデンサは、この光電膜に発生した電荷を蓄積する。TFTは、電荷蓄積コンデンサに蓄積された電荷を所定のタイミングで読み出す。詳しくは、蓄積された電荷はゲートドライバが供給する駆動パルスによって順次読み出される。
【0017】
次に、投影データ生成回路4は、電荷・電圧変換器、A/D変換器及びパラレル・シリアル変換器を備えている。電荷・電圧変換器は、平面検出器から行単位あるいは列単位でパラレルに読み出された電荷を電圧に変換する。A/D変換器は、この電荷・電圧変換器の出力をデジタル信号に変換する。パラレル・シリアル変換器は、デジタル変換されたパラレル信号を時系列的なシリアル信号に変換する。
【0018】
高電圧発生部5は、高電圧発生器及びX線制御部を備えている。高電圧発生器は、X線管の陰極から発生する熱電子を加速するために、陽極と陰極の間に印加する高電圧を発生させる。X線制御部は、システム制御回路26から供給される指示信号に従い、高電圧発生器における管電流、管電圧、照射時間、照射タイミング等のX線照射条件を制御する。
【0019】
画像生成回路6は、図示しない投影データ記憶回路と画像演算回路を備える。投影データ記憶回路は、X線撮影部1の投影データ生成回路4から供給される時系列的な投影データを順次保存して2次元投影データを生成する。一方、画像演算回路は、投影データ記憶回路にて生成された2次元投影データに対しフィルタリング処理等の画像処理を行なって画像データを生成し、更に、得られた複数の画像データに対し合成処理や減算(サブトラクション)処理等を行なう。画像生成回路6は、例えば、2次元のX線透視像、3次元のDSA(Digital Subtraction Angiography)画像、3次元のLCI(Low contrast imaging)画像、X線断層像といった所望のX線画像を生成可能である。
【0020】
ディスプレイ7は、医用画像などを表示するディスプレイ本体と、ディスプレイ本体に表示用の信号を供給する内部回路、ディスプレイ本体と内部回路とをつなぐコネクタやケーブルなどの周辺回路から構成されている。内部回路は、画像生成回路6の画像演算回路から供給される画像データに被検体情報や投影データ生成条件等の付帯情報を重畳して表示データを生成し、得られた表示データに対しD/A変換とTVフォーマット変換を行なってディスプレイに表示する。また、ディスプレイ7は、処理回路23から受けたエラー出力に基づいて、エラーメッセージを表示してもよい。
【0021】
一方、機構駆動部10は、撮像系移動機構駆動部11、天板移動機構駆動部12及び機構駆動制御部13を備えている。撮像系移動機構駆動部11は、撮像系を所望の方向へ移動させるために保持装置8に設けられた各種移動機構部に対して駆動信号を供給する。天板移動機構駆動部12は、被検体150を載置した天板を所望の方向へ移動させるために寝台部9に設けられた移動機構部に対し駆動信号を供給する。機構駆動制御部13は、撮像系移動機構駆動部11及び天板移動機構駆動部12を制御する。機構駆動制御部13は、例えば、システム制御回路26から供給される制御情報に基づいて撮像系移動機構駆動部11を制御し、保持部に取り付けられた撮像系の移動あるいは回動させる機能を有している。
【0022】
次に、保持装置8及び寝台部9の構成とこれらを構成する各ユニットの移動あるいは回動につき
図3を用いて説明する。以下の説明では、床置きCアームを保持部とする循環器用のX線診断装置について述べるが、これに限らず、例えば、保持部が天井吊りのCアームやΩアームであってもよく、又、循環器診断と消化器診断に対応した汎用の医用画像診断装置であっても構わない。
図3は、X線発生部2及びX線検出器3がその端部に取り付けられたCアームを保持部81とする保持装置8と被検体150が載置された天板91を有する寝台部9を示している。同図では、理解を容易にするために被検体150の体軸方向(即ち、天板91の長手方向)をy軸、保持部(Cアーム)81を保持するスタンド83の中心軸(動作軸)方向をz軸、y軸及びz軸と直交する方向をx軸としている。
【0023】
保持部81は、一方の端部にX線発生部2が、他の端部にX線検出器3が対向して取り付けられている。保持部81は、保持部ホルダ82を介してスタンド83に保持され、保持部ホルダ82の側面には保持部81が矢印aの方向に対してスライド自在に取り付けられている。一方、保持部ホルダ82は、スタンド83に対し矢印bの方向に回動自在に取りつけられ、この保持部ホルダ82の回動に伴って保持部81もx軸を中心として回動する。又、保持部81の端部には撮像系がe方向に対しスライド自在に取り付けられている。そして、a方向に対する保持部81のスライド、b方向に対する保持部ホルダ82の回動及びe方向に対する撮像系のスライドにより、保持部81の端部に取り付けられた撮像系を天板91に載置された被検体150に対して任意の位置及び方向に設定できる。
【0024】
一方、床面160に配置された床旋回アーム84の一方の端部は、床面160に対して動作軸z1で回動自在に取り付けられ、床旋回アーム84の他の端部にはスタンド83が、動作軸z2を中心に回動自在に取り付けられている。この場合、床旋回アーム84の動作軸z1及びスタンド83の動作軸z2は何れもz方向に対して設定される。
【0025】
即ち、撮像系の位置情報は、次の[i]~[v]によって一義的に決定される。[i]保持部ホルダ82に対する保持部81のスライド移動距離。[ii]保持部ホルダ82のb方向に対する回動角度。[iii]床旋回アーム84のd方向に対する回動角度。[iv]スタンド83のc方向に対する回動角度。[v]保持部81に対する撮像系のスライド移動距離。
【0026】
従って、保持部81、保持部ホルダ82、スタンド83及び床旋回アーム84を所定方向へ移動あるいは回動させるために撮像系移動機構駆動部11から保持装置8の各種移動機構部へ供給される駆動信号を検出(例えば、駆動パルス数を計数)することにより撮像系の位置情報を検出可能となる。ここでいう各種移動機構部は、保持部81をスライド移動させる保持部スライド機構部、保持部ホルダ82をb方向へ回動させる保持部ホルダ回動機構部、スタンド83をc方向へ回動させるスタンド回動機構部、床旋回アーム84をd方向へ回動させる床旋回アーム回動機構部、及び撮像系をe方向へスライドさせる撮像系スライド機構部である。また、寝台部9の寝台92には、被検体150を載置した天板91を体軸方向(f方向)へ水平移動させるための水平移動機構部とg方向へ垂直移動させるための垂直移動機構部が設けられている。
【0027】
なお、本実施形態では、駆動信号による位置検出に代えて、駆動信号により駆動される駆動モータの回転を検出する第1エンコーダの出力と、負荷側の動作軸の回動を検出する第2エンコーダの出力とに基づいて、撮像系の位置情報を検出している。補足すると、回動機構部は、
図4に一例を示すように、駆動モータmtrの回転力を第1ベルトvlt1、ウォーム減速機wrg、第1タイミングベルトプーリtvp1、第2ベルトvlt2及び第2タイミングベルトプーリtvp2等による動力伝達機構を介して動作軸eに伝達する。
図4に示す例の場合、動作軸eの回動に応じて、図示しないX線検出器3が動作軸eを中心に回動する。
【0028】
この種の回動機構部では、駆動側の駆動モータ(サーボモータ)mtrには、第1エンコーダenc1が内蔵されている。負荷側の動作軸の近傍には、第2エンコーダ(外部エンコーダ)enc2が設けられている。このように、駆動側及び負荷側の各エンコーダenc1,enc2 により回転又は回動を検出する構成は、いずれの動作軸に関しても同様である。例えば、保持部ホルダ回動機構部は、駆動モータの回転力を、動力伝達機構を介して動作軸に伝達することにより、保持部81を保持する保持部ホルダ82をb方向へ回動させる。このような保持部ホルダ回動機構部についても、駆動モータの回転を検出する第1エンコーダと、動作軸の回動を検出する第2エンコーダとが設けられている。第1エンコーダは、駆動モータの回転の検出結果に応じて、パルス列からなる第1パルス信号を出力する。第1パルス信号は、撮像系移動機構駆動部11を介して位置情報検出部21に供給される。第2エンコーダは、動作軸の回転の検出結果に応じて、パルス列からなる第2パルス信号を出力する。第2パルス信号は、撮像系移動機構駆動部11を介して位置情報検出部21に供給される。
【0029】
位置情報検出部21は、保持装置8の各種移動機構部から検出された各々のパルス信号を撮像系移動機構駆動部11を介して受け取り、各々のパルス信号に基づいて保持部81及びこの保持部81に取り付けられた撮像系の位置情報を検出する。検出した位置情報は、ストレージ22に書き込まれる。
【0030】
ここで、位置情報検出部21は、位置情報を検出するため、各々のパルス信号が示す各々のパルス数を計測する第1計測回路21aと、当該計測された各々のパルス数から各々の回動角を計測する第2計測回路21bと有している。なお、各々のパルス数及び回動角は位置情報に相当する。回動角は、パルス数を角度に換算した値であり、ディスプレイ7に表示するための位置情報である。「計測する」及び「計測回路」の用語は、それぞれ「検出する」及び「検出回路」等といった他の用語に読み替えてもよい。
【0031】
なお、
図5(a)及び
図5(b)には、第1エンコーダenc1から出力された第1パルス信号のうちの先頭パルスと、第2エンコーダenc2から出力された第2パルス信号のうちの先頭パルスとの時間差Δtを模式的に示す。この時間差Δtに対応する差分値は、動力伝達機構のゆるみ及びガタ量に対応するので、小さい方が好ましい。この差分値は、駆動モータと動作軸との間の動力伝達機構の構成にもよるが、第1パルス信号から計測される第1パルス数と、第2パルス信号から計測される第2パルス数との差分に対応する。例えば、駆動モータの回転に応じた第1パルス数が10000パルスであり、動作軸の回動に応じた第2パルス数が9998パルスである場合、差分値は、両者の差分である2パルスに対応する。機械系にガタがなければ、第1パルス数及び第2パルス数は、一対一に対応する。
【0032】
このような第1計測回路21a及び第2計測回路21bは、例えば、プログラムを記録したROM(図示せず)と、ROM内のプログラムを実行するプロセッサ(図示せず)とにより実装可能となっている。
【0033】
更に、位置情報検出部21は、天板移動機構駆動部12から寝台部9の各種移動機構部の各々に供給される駆動信号に基づいて寝台部9に設けられた天板91の位置情報を検出する。
【0034】
ストレージ22は、HDD(Hard Disk Drive)など電気的情報を記録するメモリと、それらメモリに付随するメモリコントローラやメモリインタフェースなどの周辺回路とを備えている。ストレージ22は、システム制御回路26及び処理回路23に実行されるプログラムと、処理回路23から書き込まれた各種情報とを保存している。各種情報としては、例えば
図6に示すように、ログテーブル22a、動作音管理テーブル22b、正常音管理テーブル22c、各種の閾値及び許容値などがある。動作音管理テーブル22b及び正常音管理テーブル22cは、任意の付加的事項であり、省略してもよい。
【0035】
ログテーブル22aは、例えば、装置ID、時刻、操作、動作情報(例、動作軸、位置情報、回転数、電流値)、発生データ(例、動作音データ、振動データ)及びエラーフラグを互いに関連付けて記憶するテーブルである。「装置ID」は、医用画像診断装置100を一意的に識別する識別子である。「時刻」は、年、月、日、時、分及び秒を含む時間情報である。「操作」は、入力インタフェース25の操作内容を示す情報である。動作情報は、医用画像診断装置100の動作状態を示す情報であり、例えば、「動作軸」毎に、動作軸の「位置情報」、動作軸の「回転数」、及び動作軸を回転させる駆動モータの「電流値」、などがある。「動作情報」は、「動作に関する情報」と読み替えてもよい。駆動モータの電流値は、図示しない電流計により計測され、処理回路23によりログテーブル22aに保存される。「動作軸」は、動作情報の対象の軸を識別する軸識別子である。「位置情報」は、前述したエンコーダのパルス数と、パルス数から換算した角度とを含む。但し、角度は、省略してもよい。「回転数」は、パルス数から換算した角度を360度毎に1回転として計数した値である。「位置情報」及び「回転数」の各々は、可動の部分の動作量に関する情報の一例である。発生データは、動作音データ及び振動データのうちの少なくとも一方を含む。本実施形態では、発生データの一例として、「動作音データ」を用いる場合について説明する。「動作音データ」は、機構部が発生する動作音をデジタル化したデータであり、図示しない集音装置により収集され、処理回路23によりログテーブル22aに保存される。集音装置は、医用画像診断装置100に取り付けられてもよく、医用画像診断装置100を配置した検査室内に配置されてもよい。振動データは、機構部が発生する振動をデジタル化したデータであり、図示しない加速度センサにより収集され、処理回路23によりログテーブル22aに保存してもよい。加速度センサは、保持装置8において、機構部の振動を検出可能な位置に取り付けられており、保持装置8を円滑に動作させる制御に用いられている。前述した発生データとしては、機構部の異常検出のために、この加速度センサが収集する振動データを用いてもよい。「エラーフラグ」は、エラーの有無を示すフラグである。エラーフラグがエラーを示すとき、ログテーブル22aは、当該エラーに対応する「閾値」を更に記憶してもよい。
【0036】
動作音管理テーブル22bは、例えば、装置ID、特定の動作パターン、動作軸、位置情報、回転数、動作音データ、動作音データの閾値、周波数帯域のずれ量の閾値を互いに関連付けて記憶するテーブルである。なお、「動作音データ」は、前述した通り、発生データの一例である。このような動作音管理テーブル22bは、例えば、特定の動作パターンに対応した位置情報や回転数と動作音の関係を記録しておき、対応する動作パターンでの動作音データが閾値を超えたときにサーバ装置300への送信や、動作音データのスペクトル解析を実施する、といった動作に使用可能である。このスペクトル解析結果から得られる周波数帯域のずれ量が既存のずれ量の閾値より小さい場合には、操作者の操作により、既存のずれ量の閾値が当該スペクトル解析結果から得られたずれ量に、適宜更新される。また、原因が分かっていて故障・修理する場合でも動作音データを保存しておき、異音データを蓄積するといった動作に用いてもよい。これら動作音データに関する説明は、「動作音」、「動作音データ」及び「異音データ」をそれぞれ「振動」、「振動データ」及び「異常振動データ」に読み替えることにより、振動データについても同様に適用される。「装置ID」、「動作軸」、「位置情報」、「回転数」及び「動作音データ」は、それぞれ前述した通りである。「特定の動作パターン」は、例えば、3D-DSA撮影又は3D-LCI撮影のように、決まった動作パターンで医用画像診断装置100が稼働する場合の当該動作パターンを表す識別情報である。「動作音データの閾値」は、正常な動作音の最大値(dB)であり、これを超えた動作音を異音と判定するための値である。「周波数帯域のずれ量の閾値」は、予め記憶した正常な動作音データの周波数帯域と、今回収集した動作音データの周波数帯域とのずれ量の最大値であり、これを超えた動作音を異音と判定するための値である。
【0037】
正常音管理テーブル22cは、例えば、動作パターン、動作軸、開始位置、目標位置、動作音データ、動作速度、第1パルス数、第2パルス数を互いに関連付けて記憶するテーブルである。「動作パターン」は、医用画像診断装置100の動作のパターンを識別する情報である。「動作軸」及び「動作音データ」は、それぞれ前述した通りである。「開始位置」は、「動作パターン」に対応する動作を開始するときの動作軸の位置情報である。「目標位置」は、「動作パターン」に対応する動作を終了するときの動作軸の位置情報である。「動作速度」は、「動作パターン」に対応する動作中の速度である。「動作速度」としては、例えば、単位時間当たりに計測されたパルス数を角度に換算した角速度(例、50°/sec、10°/sec、など)が使用可能となっている。「第1パルス数」は、駆動モータの回転に応じた第1パルス信号から計測されたパルス数である。「第2パルス数」は、動作軸の回動に応じた第2パルス信号から計測されたパルス数であり、「開始位置」と「目標位置」との間の「位置情報」に相当する。なお、第1パルス数と第2パルス数との差分が閾値よりも大きい場合には、機械系の異常の可能性がある。
【0038】
各種の閾値は、正常範囲と異常範囲との境界を示す値である。各種の閾値としては、例えば、装置ID及び機能に関連付けられたピクセルシフト(画像データに対し合成処理や減算(サブトラクション)処理等で得られた画像にずれやアーチファクトがある場合に画像を画素(ピクセル)単位で補正する操作)の閾値、装置ID及び機能に関連付けられた動作時間の閾値、並びに装置ID及び動作軸に関連付けられた電流値の閾値などが適宜、使用可能となっている。ここで、ピクセルシフトの閾値に関連付けられた機能は、例えば、3D-DSA撮影の機能である。補足すると、機械系のガタが大きい場合には、位置決め精度や応答性が低下し、3D-DSA及び3D-LCIにおいてアーチファクトが発生する。このアーチファクトに対し、3D-DSAでは、画像を補正するためのピクセルシフトが行われる。逆に言えば、ピクセルシフトの値が設定した閾値を超えた場合には、機械系の異常の可能性がある。すなわち、機械系の異常を検出するためのパラメータとして、ピクセルシフトの閾値が使用可能となっている。なお、本実施形態中、機械系の異常は、機構部の異常を意味している。例えば、機械系のガタが大きいことは、可動の部分を含む機構部のガタが大きいことを意味している。
【0039】
また、動作時間の閾値に関連付けられた機能は、例えば、3D-DSA撮影の機能、又は3D-LCI撮影の機能である。補足すると、3D-DSA、3D-LCI撮影などでは特定の動作パターンが決まっている。このため、機械系のガタが大きい場合には、動作時間などの応答性が低下する。従って、機械系の異常検出のパラメータとして、動作時間の閾値が使用可能となっている。
【0040】
また、動作軸に関連付けられた電流値は、当該動作軸を回動させるための駆動モータの電流値であり、動作軸の機械抵抗が増加して動作軸が動きにくくなると、過大になる傾向がある。従って、機械系の異常検出のパラメータとして、動作軸に関連付けられた電流値が使用可能となっている。なお、駆動モータの電流値は、図示しない電流計により計測されている。
【0041】
許容値は、正常範囲を示す値である。許容値としては、例えば、管球焦点サイズの変化の許容範囲を示す値が適宜、使用可能となっている。補足すると、ファントムを用いて管球焦点サイズの変化を測定した際に、測定結果が許容値を超えた場合には、機械系に異常が発生している。詳しくは、管球焦点サイズの変化が、ベアリングで支持されたターゲットの軸が移動(振動)していることに起因するためである。なお、ターゲットの軸が移動していると、異音が生じる。
【0042】
このような許容値は、前述した閾値で区切られた正常範囲に対応する。補足すると、機構部が正常動作から異常動作に移行する際に、画像の解析結果及び動作を示す情報の各々は、許容値、閾値、異常値の順に移行する。許容値と閾値とは、許容値の限界が閾値であるという関係がある。このため、許容値及び閾値のいずれを用いても異常検出が可能な場合には、適宜、許容値と閾値とを読み替えてもよい。例えば、「許容値を超えた場合」を「閾値を超えた場合」に読み替えてもよい。同様に、「閾値を超えた場合」を「許容値を超えた場合」に読み替えてもよい。
【0043】
処理回路23(第1処理回路)は、ストレージ22内の処理プログラムを呼び出し実行することにより、プログラムに対応する動作音処理機能23a及び受信機能23bを実現するプロセッサである。なお、受信機能23bは、任意の付加的事項であり、省略してもよい。また、
図2においては単一の処理回路23にて動作音処理機能23a及び受信機能23bが実現される旨を説明したが、これに限定されない。例えば、複数の独立したプロセッサを組み合わせて処理回路23を構成し、各プロセッサがプログラムを実行することにより各機能を実現するものとしても構わない。
【0044】
ここで、動作音処理機能23aは、X線撮影部1の出力に基づいて対象の画像を生成し、対象の画像の解析結果と機構部の動作に関する情報との少なくとも一方に基づいて、機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する。このとき、動作音処理機能23aは、発生データの処理として、発生データの収集、保存、送信及び解析のうちの少なくとも一つを実行してもよい。動作音処理機能23aは、当該送信を実行する場合において、発生データ及び動作に関する情報を、ネットワークインタフェース27を介してサーバ装置300に送信する機能を含んでもよい。本実施形態中、「動作に関する情報」は「動作情報」ともいう。
【0045】
ここで、発生データの収集、保存及び送信のうち、少なくとも一つは、例えば、以下の(A)~(D)の各々に示すように実行可能である。発生データの解析も同様である。
【0046】
(A)動作情報に含まれる位置情報として第1パルス数及び第2パルス数を用いた場合に、第1パルス列の先頭パルスと第2パルス列の先頭パルスとの時間差Δtが閾値より大きいことをトリガとして、発生データが収集、保存及び送信される。すなわち、上記(A)では、動作情報に基づいて、発生データの収集、保存及び送信を実行する。なお、収集された発生データは、ドライブレコーダのように、一定量がストレージ22の一部領域に書き込まれると共に、古い順に上書き更新される。ここでいうストレージ22への書き込みは、「発生データの収集、保存及び送信」でいう「保存」とは異なる。
【0047】
(B)常に発生データを収集しておき、電流値の異常をトリガとして、発生データの保存及び送信が実行される。すなわち、上記(B)では、動作情報に基づいて、発生データの保存及び送信を実行する。
【0048】
(C)常に発生データを収集及び保存しておき、画像の解析結果の異常をトリガとして、発生データの送信が実行される。すなわち、上記(C)では、被検体の画像の解析結果に基づいて、発生データの送信を実行する。
【0049】
(D)常に発生データを収集及び保存しておき、所定区間の移動時間の異常をトリガとして、発生データの送信が実行される。すなわち、上記(D)では、動作情報に基づいて、発生データの送信を実行する。
【0050】
なお、画像の解析結果及び動作情報に基づく上記(A)~(D)とは異なり、発生データに基づく場合もある。この場合、常に発生データを収集しておき、発生データの異常をトリガとして、発生データの保存及び送信が実行される。すなわち、この場合、発生データに基づいて、発生データの保存及び送信を実行する。
【0051】
同様に、発生データの解析は、上記(A)~(D)の各々のトリガ、又は発生データの異常に基づくトリガに応じて実行可能である。
【0052】
このような動作音処理機能23aとしては、例えば、以下の(a)~(f)のいずれかに示す動作を実行してもよい。
【0053】
(a)動作情報が、機構部を駆動するモータの電流値を含んでもよい。この場合、動作音処理機能23aは、発生データ及び動作情報を収集し、当該電流値に関する条件が満たされたことを契機として、発生データの処理を実行する。例えば、動作音処理機能23aは、当該電流値が閾値を超えたとき、当該収集した発生データを保存及び送信する。あるいは、動作音処理機能23aは、当該電流値が閾値を超えたとき、当該収集した発生データを解析する。
【0054】
(b)対象の画像が、画像のずれを修正するピクセルシフトの値を付帯情報に含む場合、動作音処理機能23aは、発生データ及び動作情報を収集及び保存し、当該ピクセルシフトの値が許容値以上のとき、当該保存した発生データを送信する。
【0055】
(c)動作情報が、撮像部が所定区間を移動するときの移動時間を含んでいる場合、動作音処理機能23aは、発生データ及び動作情報を収集及び保存し、当該移動時間に関する条件が満たされたことを契機として、当該保存した発生データ及び動作情報を送信する。例えば、動作音処理機能23aは、当該移動時間が閾値を超えたとき、当該保存した発生データ及び動作情報を送信する。
【0056】
(d)動作音処理機能23aは、収集された発生データと閾値との比較結果に応じて、前述した送信を実行する。
【0057】
(e)動作音処理機能23aは、画像間の位置ずれを特定し、当該位置ずれに関する条件が満たされたことを契機として、発生データの処理を実行する。例えば、動作音処理機能23aは、当該位置ずれの大きさが許容値以上のとき、発生データの処理を実行する。
【0058】
(f)動作音処理機能23aは、撮像された複数の画像から画像の再構成を実行し、当該再構成された画像のアーチファクトに関する条件が満たされたことを契機として、発生データの処理を実行する。例えば、動作音処理機能23aは、当該再構成された画像からアーチファクトが検出されたことを契機として、発生データの処理を実行する。
【0059】
なお、動作音処理機能23aは、発生データ等をサーバ装置300に送信する場合、別途、エラーを出力してもよい。エラーの出力先としては、例えば、ディスプレイ7、警報発生部24及びシステム制御回路26が適用可能となっている。
【0060】
また、動作音処理機能23aは、InnerVision(登録商標)等の遠隔保守システムを用い、ネットワークインタフェース27からインターネット回線等のネットワークNwを介してサーバ装置300に情報を出力してもよい。この場合、判定結果に応じて、サーバ装置300から連絡を受けた装置メーカの技術者が保守作業を開始できるので、より効率的に保守を行うことができる。
【0061】
受信機能23bは、動作音処理機能23aにより送信した発生データ及び動作情報に関連する保守管理情報をサーバ装置300から受信する機能である。
【0062】
警報発生部24は、例えば、図示しないブザー又はスピーカを備え、処理回路23から受けたエラー出力に基づいて、警報音を発生する。
【0063】
入力インタフェース25は、関心領域(ROI)の設定などを行うためのトラックボール、スイッチボタン、マウス、キーボード、操作面へ触れることで入力操作を行うタッチパッド、及び表示画面とタッチパッドとが一体化されたタッチパネルディスプレイ等によって実現される。入力インタフェース25は、システム制御回路26に接続されており、操作者から受け取った入力操作を電気信号へ変換し、システム制御回路26へと出力する。なお、本明細書において入力インタフェース25はマウス、キーボードなどの物理的な操作部品を備えるものだけに限られない。例えば、装置とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号をシステム制御回路26へ出力する電気信号の処理回路も入力インタフェース25の例に含まれる。
【0064】
システム制御回路26は、図示しないプロセッサとメモリを備え、入力インタフェース25にて入力あるいは設定された上述の各種情報がメモリに保存される。そして、プロセッサは、これらの入力情報や設定情報に基づいて医用画像診断装置100の各ユニットを統括的に制御し、被検体150に対し安全かつ効率のよいX線撮影を行なう。なお、システム制御回路26は、処理回路23から受けたエラー出力に基づいて、X線撮影を中止する機能を有してもよい。
【0065】
ネットワークインタフェース27は、医用画像診断装置100をネットワークNwに接続してサーバ装置300と通信するための回路である。ネットワークインタフェース27としては、例えば、ネットワークインタフェースカード(NIC)が使用可能となっている。以下の説明では、医用画像診断装置100とサーバ装置300等との通信にネットワークインタフェース27が介在する旨の記載を省略する。
【0066】
一方、サーバ装置300は、ストレージ31、処理回路32及びネットワークインタフェース33を備えている。
【0067】
ストレージ31は、HDD(Hard Disk Drive)など電気的情報を記録するメモリと、それらメモリに付随するメモリコントローラやメモリインタフェースなどの周辺回路とを備えている。ストレージ31は、処理回路32に実行されるプログラムと、処理回路32から書き込まれた各種情報とを保存している。各種情報としては、例えば
図8に示すように、履歴テーブル31a、動作音管理テーブル31b、各種の閾値及び許容値などがある。ストレージ31内の動作音管理テーブル31b、各種の閾値及び許容値は、閾値更新指示が更新前後の閾値を含む場合に、更新前の閾値を処理回路32が参照するために記憶されている。なお、ストレージ31内の動作音管理テーブル31b、各種の閾値及び許容値は、任意の付加的事項であり、省略してもよい。
【0068】
履歴テーブル31aは、過去の発生データ及び動作に関する情報と、機構部の保守管理情報とを関連付けて記憶するテーブルである。例えば、履歴テーブル31aは、装置ID、時刻、操作、保守管理情報(例、エラー名、エラー原因、交換部品)、動作情報(例、動作軸、位置情報、回転数、電流値)、動作音データ、閾値及びエラーフラグを互いに関連付けて記憶するテーブルである。ここで、「装置ID」、「時刻」、「操作」、「動作情報」、「動作軸」、「位置情報」、「回転数」、「電流値」、「動作音データ」、「エラーフラグ」は、前述した通りである。「閾値」は、エラーフラグがエラーを示す場合の当該エラーの検出に用いた閾値である。保守管理情報は、例えば、エラー名毎に、エラー原因及び交換部品を含んでいる。「エラー名」は、エラーを生じた動作音データ又は動作情報に関する名称である。「エラー名」としては、例えば、過大な動作音に対応する「動作音エラー」、過電流に対応する「電流値エラー」、過大なピクセルシフトの値に対応する「画像ずれ」、動作時間の遅延に対応する「動作時間エラー」、管球焦点サイズの過大な変化に対応する「管球焦点サイズエラ-」などが適宜、使用可能となっている。「エラー原因」は、エラーの原因を表す情報であり、例えば、「チェーンの緩み」、「ガタの増大」などが適宜、使用可能となっている。なお、ガタとは、機構部の緩み、遊び、隙間による動きであり、例えば、ベアリングや、ギアのバックラッシュ、軸などに起因する。「交換部品」は、エラーを解消するための交換部品を示す情報である。なお、「交換部品」に示された部品は、必ずしも交換しなくてもよい。例えば、「交換部品」に「チェーンの型番」が示されたとき、当該型番のチェーンの緩みを調整して機械系のエラーが解消される場合には、当該型番のチェーンを必ずしも交換しなくてもよい。従って、「交換部品」は、「エラー解消情報」又は「エラー原因の部品」などのように、必ずしも「交換」の意味を含まない用語に読み替えてもよい。
【0069】
動作音管理テーブル31bは、例えば、装置ID、特定の動作パターン、動作軸、位置情報、回転数、動作音データ、動作音データの閾値、周波数帯域のずれ量の閾値を互いに関連付けて記憶するテーブルである。ここで、「装置ID」、「特定の動作パターン」、「動作軸」、「位置情報」、「回転数」、「動作音データ」、「動作音データの閾値」及び「周波数帯域のずれ量の閾値」については、前述した通りである。
【0070】
各種の閾値としては、例えば、装置ID及び機能に関連付けられたピクセルシフトの閾値、装置ID及び機能に関連付けられた動作時間の閾値、並びに装置ID及び動作軸に関連付けられた電流値の閾値などが適宜、使用可能となっている。これら各種の閾値については、前述した通りである。
【0071】
許容値としては、例えば、管球焦点サイズの変化の許容範囲を示す値が適宜、使用可能となっている。この許容値については、前述した通りである。
【0072】
処理回路32(第2処理回路)は、ストレージ31内のプログラムを呼び出し実行することにより、プログラムに対応する取得機能32a、送信機能32b及び閾値更新機能32cを実現するプロセッサである。但し、閾値更新機能32cは、任意の付加的事項であり、省略してもよい。また、
図7においては単一の処理回路32にて取得機能32a、送信機能32b及び閾値更新機能32cが実現される旨を説明したが、これに限定されない。例えば、複数の独立したプロセッサを組み合わせて処理回路32を構成し、各プロセッサがプログラムを実行することにより各機能を実現するものとしても構わない。
【0073】
ここで、取得機能32aは、医用画像診断装置100から発生データ及び動作に関する情報(動作情報)を受信したことに応じて、受信した発生データ及び動作に関する情報に関連する保守管理情報を取得する機能である。例えば、取得機能32aは、医用画像診断装置100から送信された発生データ及び動作情報に関連する保守管理情報をストレージ31から取得してもよい。ここで、取得機能32aは、照合機能及び読出機能を含んでもよい。照合機能は、医用画像診断装置100から受信した発生データ及び動作に関する情報と、ストレージ31内の過去の発生データ及び動作に関する情報とを照合する機能である。読出機能は、照合機能により照合した結果、当該受信した発生データ及び動作に関する情報に略一致する過去の発生データ及び動作に関する情報があるとき、当該略一致する過去の発生データ及び動作に関する情報に関連する保守管理情報をストレージ31から読み出して取得する機能である。なお、取得機能32aは、過去の情報に関連する保守管理情報を記憶したストレージ31から保守管理情報を読み出す場合に限らず、人工知能(Artificial intelligence:AI)を用いて保守管理情報を取得してもよい。
【0074】
送信機能32bは、取得機能32aにより取得した保守管理情報を、ネットワークインタフェース33を介して医用画像診断装置100に送信する機能である。
【0075】
閾値更新機能32cは、照合機能により照合した結果、当該送信された発生データ及び動作に関する情報に略一致する過去の発生データ及び動作に関連する情報が無いとき、閾値を更新するための閾値更新指示を、ネットワークインタフェース33を介して医用画像診断装置100に送信する機能である。ここで、閾値としては、例えば、発生データをサーバ装置300に送信するか否かを医用画像診断装置100が判定するための基準値が、使用可能となっている。
【0076】
ネットワークインタフェース33は、サーバ装置300をネットワークNwに接続して医用画像診断装置100と通信するための回路である。ネットワークインタフェース33としては、例えば、ネットワークインタフェースカード(NIC)が使用可能となっている。以下の説明では、サーバ装置300と医用画像診断装置100等との通信にネットワークインタフェース33が介在する旨の記載を省略する。
【0077】
次に、以上のように構成された医用画像診断装置の動作を
図9乃至
図13のフローチャートを用いて説明する。以下の説明は、医用画像診断装置に関し、[全体動作:
図9]、[調整モードの動作:
図10]並びに[動作音処理及び始業前点検等に関する動作:
図11及び
図12]について述べる。しかる後、サーバ装置300に関し、
図13を用いて述べる。また、発生データとしては、前述した通り、動作音データを例に挙げて述べる。なお、発生データが振動データの場合には、以下の説明中、「動作音」及び「動作音データ」を適宜、「振動」及び「振動データ」に読み替えればよい。発生データが動作音データ及び振動データの場合にも同様に、「動作音」及び「動作音データ」を適宜、「動作音及び振動」及び「動作音データ及び振動データ」に読み替えればよい。以下、順次、説明する。
【0078】
[全体動作:
図9]
医用画像診断装置100は、操作者の操作により、
図9に示すように、CPU(Central Processing Unit)又はPWB(Printed Wired Board)を初期化した後(ステップST1)、ステップST2~ST9を繰り返し実行する。
【0079】
すなわち、ステップST1の後、イベント入力_GetEvent(ステップST2)、各軸位置情報の入力_GetAxis(ステップST3)、エラー検出処理_ErrControl(ステップST4)、動作モード別の制御_ModeSel(ステップST5)、絞り制御_ColliCtrl(ステップST6)、動作制限(干渉制御)_MoveCtrl(ステップST7)、各イベント出力_PutEvent(ステップST8)、モニタリング表示_PutInfo(ステップST9)といった各処理が繰り返し実行される。
【0080】
また、ステップST5における動作モードとしては、サービス_SRVC(ステップST5-0)、ダウン_DOWN(ステップST5-1)、調整_DIAG(ステップST5-2)、オーバーライド_OVRD(ステップST5-3)、タッチセンサ_SAFE(ステップST5_4)、マニュアル_MANU(ステップST5-5)、オート_AUTO(ステップST5-6)、ランニング(デモ)_DEMO(ステップST5-7)がある。
【0081】
ステップST5-0のサービスモードは、サービスマン(以下、サービスエンジニアという)が用いるモードである。
【0082】
ステップST5-1のダウンモードは、縮退運転を実行するモードである。ダウンモードでは、例えば、どこかにエラーが発生している場合、エラーが発生した軸の動作速度を安全な速度まで減速または、停止させ、他の軸を動作させる。これは、全ての軸を止めると、被検体に入れたカテーテル等をブラインドで引き抜く必要があるので、限定的に検査を続行させる方が好ましいからである。
【0083】
このようなダウンモードは、例えば、オートモード又はマニュアルモードでエラーが発生すると、当該エラーが発生したモードから移行されて実行される。また例えば、ダウンモードは、エラーが発生した動作軸に対する動作を減速または停止し、且つ他の動作軸に対する動作を可能とするモードでもある。
【0084】
ステップST5-2の調整モードは、点検、調整時のモードであり、例えば、バックラッシュの調整に関係するモードである。この調整モードでは、例えばサービスエンジニアが機械系を調整し、正常状態の機械系が発生する動作音が収集される。
【0085】
ステップST5-3のオーバーライドモードは、干渉領域に入って停止した保持部81を、コンソールのオーバーライドスイッチの操作により、警報音を出しながらゆっくり動かすときのモードである。
【0086】
ステップST5-4のタッチセンサモードは、X線発生部2、X線検出器3及び保持部81に付いている接触安全スイッチが接触して検出信号を出力しているときに、当該動作軸を停止させたり、当該動作軸の接触から離れる方向に自動で動かすといった特殊なモードである。
【0087】
ステップST5-5のマニュアルモードは、操作者による操作レバーの操作により、ラジコンのように保持部81等を動作させるモードである。
【0088】
ステップST5-6のオートモードは、番号を選択して、メモリされたプログラムに従って、動作させるモードである。このようなオートモードでは、例えば、選択された所定の撮影シーケンスに従ってX線撮影を実行する。
【0089】
ステップST5-7のランニング(デモ)モードは、実演用に、所定の動作を実行させるモードである。
【0090】
以上のような各モードのうち、例えば、所定の撮影シーケンスに従ってX線撮影を実行するオートモード中に、又は操作者の操作に応じて動作するマニュアルモード中に、処理回路23の動作音処理機能23aが、動作音データの収集、保存、送信又は解析の少なくとも一つを実行する。これについては、後で
図11により詳述する。
【0091】
[調整モードの動作:
図10]
次に、ステップST5-2の調整モードの動作について述べる。
【0092】
医用画像診断装置100の入力インタフェース25は、サービスエンジニアの操作に応じて、動作パターンをストレージ22内の正常音管理テーブル22cに読み込む(ステップST5-2a)。
【0093】
入力インタフェース25は、サービスエンジニアの操作に応じて、当該動作パターンに関し、各動作軸の開始位置(位置情報)を正常音管理テーブル22cに入力する(ステップST5-2b)。入力する開始位置は、動作軸の角度でよい。動作軸の角度は、システム制御回路26により、制御用のパルス数に換算される。
【0094】
続いて、入力インタフェース25は、サービスエンジニアの操作に応じて、当該動作パターンに関し、各動作軸の目標位置を正常音管理テーブル22cに設定する(ステップST5-2c)。設定する目標位置は、動作軸の角度でよい。動作軸の角度は、システム制御回路26により、制御用のパルス数に換算される。
【0095】
しかる後、処理回路23の動作音処理機能23aは、各動作軸の開始位置から目標位置に至る動作を、システム制御回路26を介して制御する(ステップST5-2d)。この制御は、動作軸毎に実行する。このとき、内部エンコーダとも呼ばれる第1エンコーダは、駆動信号により駆動される駆動モータの回転を検出し、検出結果に応じたパルス列の第1パルス信号を、撮像系移動機構駆動部11を介して位置情報検出部21に入力する。また、負荷エンコーダとも呼ばれる第2エンコーダは、負荷側の動作軸の回動を検出し、検出結果に応じたパルス列の第2パルス信号を、撮像系移動機構駆動部11を介して位置情報検出部21に入力する。位置情報検出部21は、第1パルス信号から第1パルス数を計測し、第2パルス信号から第2パルス数を計測し、当該計測結果を正常音管理テーブル22cに書き込む。また、動作音処理機能23aは、第2パルス数に基づいて動作速度を計算して正常音管理テーブル22cに書き込む。ここで、第1パルス数と第2パルス数との差分が閾値より大きければ、機械系のガタが増大しており、モータ動作の追従性が低下して位置決め精度が悪化していることが分かる。このため、サービスエンジニアは、当該動作軸に関する機械系の調整を行い、再度、ステップST5-2dが実行される。これにより、当該動作軸に関する機械系は、第1パルス数と第2パルス数との差分が閾値以下である正常状態に調整される。
【0096】
ステップST5-2dの終了後、動作音処理機能23aは、正常状態の動作軸に関する機械系について、当該動作軸の動作音データを収集する(ステップST5-2e)。
【0097】
以上のステップST5-2a~ST5-2eの動作は、対象となる全ての動作パターンに関して、各動作軸の動作音を収集するまで繰り返し実行される。
【0098】
[動作音処理及び始業前点検等に関する動作:
図11及び
図12]
医用画像診断装置100は、
図11に示すように、据付モード又は始業前点検モードの場合(ステップST11/ST12:Yes)には、ステップST13の動作軸選択及びデータ収集の動作を実行する。なお、据付モード及び始業前点検モードのいずれでもない場合には、ステップST15に移行する。
【0099】
ステップST13において、医用画像診断装置100は、
図12に示すように、例えば、動作軸A~Cのいずれかを選択する(ステップST13-1)。この例では、動作軸Aを選択したとする。
【0100】
処理回路23は、動作軸Aに関し、位置情報、回転数及び電流値といった動作情報を収集すると共に(ステップST13-2A)、動作音データを収集し(ステップST13-3A)、時刻、動作音データ及び動作情報をログテーブル22aに保存する。入力インタフェース25は、操作者の操作に応じて、異常時の閾値をストレージ22に設定する(ステップST13-4A)。
【0101】
ステップST13-5では、ログテーブル22aに基づいて、全ての動作軸を選択したか否かが判定される(ステップST13-5)。全ての動作軸A,B,Cを選択した場合には、ステップST13-6に移行し、他の場合には、ステップST13-1に戻る。これにより、動作軸Bに関するステップST13-2B~ST13-4Bと、動作軸Cに関するステップST13-2C~ST13-4Cが、前述したステップST13-2A~ST13-4Aと同様に、順次実行される。
【0102】
次に、ステップST13-6では、据付モード又は始業前点検モードで用いられるファントムにX線を照射した場合に、X線発生部2の管球焦点サイズの変化が測定される。なお、この測定に並行して、ベアリングで支持されたターゲットの軸が回転する際に発生する動作音データが収集され、前述同様に、時刻、動作音データ及び動作情報がログテーブル22aに保存される。
【0103】
処理回路23は、この測定結果がストレージ22内の閾値を超えたか否かを判定し(ステップST13-7)、測定結果が閾値を超えた場合には、エラー出力をディスプレイ7及び警報発生部24に送出する。これにより、ディスプレイ7及び警報発生部24は、それぞれエラーメッセージ及び警告音を出力し、サービスエンジニアに対してX線発生部2の機械系の調整を促す。サービスエンジニアは、管球焦点サイズの変化を減らす観点から、ベアリングで支持されたターゲットの軸の振動を抑えるように、X線発生部2の機械系を調整する。しかる後、機械系が調整されると(ステップST13-8)、医用画像診断装置100は、ステップST13-6に戻って動作する。
【0104】
また、処理回路23は、ステップST13-7の判定の結果、否の場合には、ステップST14に移行する。以上により、
図12に示したステップST13の処理が終了する。
【0105】
ステップST13の終了後、処理回路23の動作音処理機能23aは、ステップST13で収集した情報をサーバ装置300に送信する(ステップST14)。具体的には、動作音処理機能23aは、ログテーブル22a内の情報のうち、今回保存した情報と、装置IDとを送信する。なお、サーバ装置300側の動作については、
図13と共に後述する。
【0106】
ステップST14の後、処理回路23及びシステム制御回路26は、被検体150をX線撮影すると共に、機械系のエラーを検出するように、医用画像診断装置100の動作を制御する(ステップST15~ST30)。
【0107】
例えば、被検体150のX線撮影に先立ち、医用画像診断装置100の操作者は、入力インタフェース25を介して被検体情報の入力やX線照射条件の設定を行なう。更に、操作者は、入力インタフェース25の操作により、保持装置8の保持部(Cアーム)81に取り付けられた撮像系や被検体150が載置された寝台部9の天板91を所定の位置(初期位置)に移動/回動させる。
【0108】
このとき、位置情報検出部21は、上述の天板91及び撮像系の移動/回動に際し機構駆動部10の天板移動機構駆動部12から寝台部9の水平移動機構部及び垂直移動機構部に供給される駆動信号に基づいて天板91の初期位置情報を検出する。
【0109】
一方、撮像系移動機構駆動部11から保持装置8の保持部スライド機構部、保持部ホルダ回動機構部、スタンド回動機構部、床旋回アーム回動機構部及び撮像系スライド機構部の各々に供給される駆動信号に基づいて保持部81及びこの保持部81に取り付けられた撮像系の駆動モータが回転する。各回動機構部では、駆動モータの回転力を、動力伝達機構を介して動作軸に伝達することにより、保持装置8を回動させる。スライド機構部も同様に、駆動モータの回転力を、動力伝達機構を介して伝達することにより、保持部81又は撮像系をスライドさせる。
【0110】
また、保持装置8の回動機構部の各々は、駆動モータの回転を検出する第1エンコーダから出力された第1パルス信号と、負荷側の動作軸の回動を検出する第2エンコーダから出力された第2パルス信号とを、撮像系移動機構駆動部11を介して位置情報検出部21に供給する。
【0111】
位置情報検出部21は、供給された第1パルス信号及び第2パルス信号に基づいて、初期位置情報を検出する。同様に、位置情報検出部21は、撮像系の移動に応じて撮像系移動機構駆動部11から供給された第1パルス信号及び第2パルス信号と、保持部81及び撮像系の初期位置情報とに基づき、移動中の保持部81及び撮像系の位置情報を検出する。
【0112】
次に、操作者は、入力インタフェース25においてX線透視の開始コマンドを入力することにより被検体150に対するX線透視を開始する。このとき、医用画像診断装置100は、X線撮影部1及び画像生成回路6によって生成される透視画像データの観測下にて撮像系を所望位置に向けて移動させる。
【0113】
次いで、X透視画像データの観察下にて撮像系の低速度移動/回動を行なう。撮像系が被検体150の所望位置に設定されると、入力インタフェース25から撮像系の移動/回動を停止させるためのコマンド信号とX線撮影を開始するためのコマンド信号が入力される。
【0114】
そして、これらのコマンド信号を受信したシステム制御回路26は、予め設定されたX線撮影条件に基づいて被検体150に対するX線撮影を実行するように、医用画像診断装置100の動作を制御する(ステップST15)。
【0115】
これらX線透視及びX線撮影の際にも、後でステップST19~ST20又はST23~ST24に述べるように、保持装置8の動作に伴う動作音データ及び動作情報が収集され、ログテーブル22aが更新される。
【0116】
なお、ステップST15~ST30の動作のうち、ステップST15~ST22を繰り返す動作は、特定の動作モードでない場合に、機械系のエラーをリアルタイムで検出可能な動作である。このリアルタイムは、所定の短時間を意味する。特定の動作モードでない場合とは、例えばステップST5の動作モードのうち、オートモードを除く各モードである場合を意味する。言い換えると、特定の動作モードは、例えば、ステップST5-6のオートモードを意味する。また、ステップST15~ST18→ST23~ST30を繰り返す動作は、特定の動作モードの場合に、機械系のエラーを被検体の画像生成後に検出可能な動作である。以下、ステップ番号の順に説明する。
【0117】
処理回路23は、ステップST14,ST22,ST25,ST30におけるサーバ装置300への送信の後、サーバ装置300から情報を受信したとする(ステップST16)。ステップST16で受信する情報は、例えば、エラー名、エラー原因及び交換部品を含む保守管理情報であるか、又は閾値の更新を指示する閾値更新指示である。
【0118】
医用画像診断装置100は、サーバ装置300から受信した情報に応じた処理などを実行する(ステップST17)。例えば、保守管理情報を受信した場合には、医用画像診断装置100は、保守管理情報をディスプレイ7に表示し、機械系の保守作業を促す処理を実行する。あるいは、例えば、閾値更新指示を受信した場合には、処理回路23は、閾値更新指示に基づいて、ストレージ22内の閾値を更新する処理を実行する。これにより、サービスエンジニアが設定した閾値より低い値でもエラーが発生した場合に、当該閾値を低い値に更新可能となっている。例えば、予め設定された電流値の閾値より低い電流値でも、動作音データのエラーが発生した場合には、サーバ装置300からの閾値更新指示により、当該電流値の閾値を低い値に更新することができる。すなわち、閾値更新指示は、いずれかの閾値によりエラーが検出された場合に、他の閾値を更新するために用いられる。
【0119】
次に、処理回路23は、現在、医用画像診断装置100の動作が特定の動作モードにあるか否かを判定し(ステップST18)、特定の動作モードにある場合にはステップST23に移行する。
【0120】
一方、ステップST18の判定の結果、否の場合には、処理回路23の動作音処理機能23aが、機械系の動作音を収集すると共に(ステップST19)、位置情報、回転数及び電流値といった動作情報を収集し(ステップST20)、時刻、動作音データ及び動作情報をストレージ22の一部領域に上書き更新する。
【0121】
ステップST21において、動作音処理機能23aは、ログテーブル22a内の動作軸及び電流値と、ストレージ22内の動作軸及び電流値の閾値とを比較することにより、機械系のエラーが発生したか否かを判定する。このとき、特定の動作モード以外でも特定の動作パターンを用いる場合には、動作音処理機能23aは、ステップST19で収集した動作音データと、動作音管理テーブル22b内の動作音データの閾値とを比較することにより、機械系のエラーが発生したか否かを更に判定することができる。ステップST21の判定の結果、否の場合には、エラー無しを示すエラーフラグ“0”をストレージ22の一部領域に上書き更新した後、ステップST15に戻り、ステップST15~ST21の処理を繰り返し実行する。
【0122】
これに対し、ステップST21の判定の結果、機械系のエラーが発生した場合には、動作音処理機能23aは、ステップST19~ST21で上書き更新した情報と、エラー有りを示すエラーフラグ“1”とをログテーブル22aに保存する。しかる後、動作音処理機能23aは、当該ログテーブル22aに保存した情報及びエラーフラグと、エラー判定に用いた閾値と、装置IDとをサーバ装置300に送信する(ステップST22)。また、エラーが発生した場合には、動作音処理機能23aは、ログテーブル22aに保存した動作音データを解析してもよい。なお、サーバ装置300側の動作については、
図13と共に後述する。
【0123】
次に、ステップST18の判定の結果、特定の動作モードにある場合には、動作音処理機能23aは、機械系の動作音を収集すると共に(ステップST23)、位置情報、回転数及び電流値といった動作情報を収集し(ステップST24)、時刻、動作音データ及び動作情報をログテーブル22aに保存する。なお、動作音処理機能23aは、ステップST23で収集した動作音データと、動作音管理テーブル22b内の動作音データの閾値との比較により、エラーが発生したか否かを判定し、判定結果に応じたエラーフラグをログテーブル22aに保存してもよい。しかる後、動作音処理機能23aは、エラーが発生した場合には、ステップST23~ST24でログテーブル22aに保存した情報と、エラー判定に用いた閾値と、装置IDとをサーバ装置300に送信する(ステップST25)。また、エラーが発生した場合には、動作音処理機能23aは、ログテーブル22aに保存した動作音データを解析してもよい。但し、ステップST25による送信は、エラーが発生しなかった場合には実行されない。また、サーバ装置300側の動作については、
図13と共に後述する。
【0124】
ステップST25の後、画像生成回路6は、撮像系であるX線撮影部1の出力に基づいて被検体の画像を生成する画像処理を実行する(ステップST26)。画像処理としては、例えば、3D-DSA撮影や3D-LCI撮影の如き、撮影機能に応じた処理が実行される。例えば、3D-DSA撮影において、機械系のガタが大きいときには、位置決め精度、応答性の低下に起因して、マスク像とコントラスト像の画像不一致(画像ずれ)により、画像にアーチファクトを生じて鮮明な画像が得られなくなる場合がある。この場合、画像生成回路6は、画像を補正するためのピクセルシフトを実行し、補正後の画像の付帯情報に、ピクセルシフトの値を含める。これにより、被検体の画像は、画像のずれを修正するピクセルシフトの値を付帯情報に含むことになる。
【0125】
ステップST26の後、動作音処理機能23aは、画像ずれ(ピクセルシフトの値)が閾値以上か否かを判定し(ステップST27)、閾値以上の場合にはステップST30に移行する。
【0126】
ステップST27の判定の結果、否の場合、処理回路23は、画像にボケがあるか否かを判定し(ステップST28)、画像にボケがある場合にはステップST30に移行する。なお、「画像にボケがある場合」は、画像の周波数分析により判定してもよく、画像にボケがある旨を操作者に入力させてもよい。
【0127】
ステップST28の判定の結果、否の場合、動作音処理機能23aは、ステップST29を実行する。ステップST29は、動作情報が、撮像系が所定区間を移動するときの移動時間を含んでいる場合の処理である。すなわち、動作音処理機能23aは、当該移動時間が閾値を超えたか否かを判定し(ステップST29)、否の場合には、ステップST15に戻る。
【0128】
一方、ステップST29の判定の結果、当該移動時間が閾値を超えたとき、動作音処理機能23aは、ステップST30に移行する。
【0129】
ステップST30では、動作音処理機能23aは、エラー有りを示すエラーフラグ“1”をログテーブル22aに保存した後、ステップST23~ST30でログテーブル22aに保存した情報と、エラー判定に用いた閾値と、装置IDとをサーバ装置300に送信する。また、エラー有りの場合には、動作音処理機能23aは、ログテーブル22aに保存した動作音データを解析してもよい。なお、ステップST30の終了後、医用画像診断装置100は、ステップST15に移行する。また、サーバ装置300側の動作については、
図13と共に後述する。
【0130】
[サーバ装置300の動作:
図13]
サーバ装置300は、ステップST14,ST22,ST25又はST30の後、医用画像診断装置100から情報を受信したとする(ステップST40)。この受信情報は、例えば、装置ID、時刻、操作、動作軸、位置情報、回転数、電流値、動作音データ、閾値及びエラーフラグを含んでいる。なお、「操作」は、例えば、マニュアルモードの場合に含まれる。「閾値」は、例えば、エラーが判定された場合に含まれる。
【0131】
サーバ装置300の処理回路32は、受信情報から装置IDを確認(検出)できたか否かを判定し(ステップST41)、否の場合には受信情報を破棄して(ステップST42)、ステップST40に戻る。また、ステップST41の結果、装置IDを確認できた場合には、装置IDに対応した履歴テーブル31aに受信情報を記憶する(ステップST43)。なお、この履歴テーブル31aは、過去の情報に対して定期的又は不定期に、サーバ管理者の操作により、エラー名、エラー原因及び交換部品を示す保守管理情報が編集されている(ステップST44)。
【0132】
処理回路32の取得機能32aは、医用画像診断装置100からの受信情報と、履歴テーブル31a内の過去の情報とを比較(照合)し(ステップST45)、両者が一致(略一致)するか否かを判定する(ステップST46)。詳しくは、ステップST45では、医用画像診断装置100から送信された動作音データ及び動作情報と、ストレージ31内の過去の過去の動作音データ及び動作情報とが照合される。ステップST46では、当該送信された動作音データ及び動作情報に略一致する過去の動作音データ及び動作情報があるか否かを判定する。
【0133】
ステップST46の判定の結果、受信情報に略一致する過去の情報がある場合には、取得機能32aは、履歴テーブル31a内で当該過去の情報に関連付けられた保守管理情報を確認する(ステップST47)。
【0134】
確認の結果、保守管理情報がステップST44で編集済みか否かを判定し(ステップST48)、否の場合にはステップST40に戻る。これに対し、ステップST48の判定の結果、編集済みの場合には、取得機能32aは、当該保守管理情報をストレージ31から読み出して取得する。
【0135】
処理回路32の送信機能32bは、当該取得した保守管理情報を医用画像診断装置100に送信する(ステップST49)。しかる後、ステップST40に戻る。
【0136】
一方、ステップST46の判定の結果、否の場合(送信された動作音データ及び動作情報に略一致する過去の動作音データ及び動作情報が無いとき)には、取得機能32aは、受信情報内のエラーフラグがエラーを示すか否かを判定する(ステップST50)。ステップST50の判定の結果、否の場合にはステップST40に戻る。また、ステップST50の判定の結果、エラーフラグがエラーを示す場合には、閾値を更新するための閾値更新指示を医用画像診断装置100に送信する(ステップST51)。しかる後、ステップST40に戻る。
【0137】
上述したように本実施形態の医用画像診断装置によれば、撮像部の出力に基づいて対象の画像を生成し、対象の画像の解析結果と機構部の動作に関する情報との少なくとも一方に基づいて、機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの処理を実行する。
【0138】
従って、常に動作音データ及び振動データのうちの少なくとも一方の処理を実行していた従来とは異なり、処理するデータ量を削減し、効率的な保守管理を実現することができる。
【0139】
また、処理回路は、発生データの処理として、当該発生データの収集、保存、送信及び解析のうちの少なくとも一つを実行してもよい。例えば、処理回路は、ログに関する処理(収集、保存、送信)に限らず、解析に関する処理を実行することができる。
【0140】
また例えば、処理が送信を含む場合、常に発生データを送信していた従来とは異なり、発生データの送信量を削減し、効率的な保守管理を実現することができる。同様に、処理が解析を含む場合、常に発生データを解析していた従来とは異なり、発生データの解析量を削減し、効率的な保守管理を実現できる。これに加え、発生データのみを監視していた従来とは異なり、対象の画像の解析結果と動作に関する情報との少なくとも一方の異常に基づいて、発生データの送信などを実行することができる。
【0141】
なお、上記送信を実行する場合には、発生データ及び動作に関する情報を送信してもよい。この場合には、サーバ装置300で受信情報と過去の情報とを照合する際に、動作に関する情報を照合対象にすることができるので、過去の情報の照合が容易になることを期待できる。
【0142】
これに加え、一実施形態の医用画像診断装置によれば、動作に関する情報が、機構部を駆動するモータの電流値を含んでいてもよい。この場合、機構部の機械抵抗が増加して機構部が動きにくくなった際に、モータの電流値が過大な値として検出される。従って、動作に関する情報に基づいて、機構部の異常を検出できる。また、機構部の異常を検出した際に、発生データの処理を実行できる。
【0143】
このとき、処理回路は、発生データ及び動作に関する情報を収集し、当該電流値に関する条件が満たされたことを契機として、発生データの処理を実行してもよい。なお、例えば、電流値が閾値を超えたとき、電流値に関する条件が満たされる。これにより、発生データとは独立して、リアルタイムに機構部の異常を検出することができる。また、電流値に関する条件が満たされたとき、処理としては、例えば、発生データの保存及び送信を実行してもよく、発生データの解析を実行してもよい。
【0144】
また、一実施形態の医用画像診断装置によれば、対象の画像がピクセルシフトの値を付帯情報に含む場合には、発生データ及び動作に関する情報を収集及び保存し、ピクセルシフトの値が許容値以上のとき、保存した発生データ及び動作に関する情報を送信する。これにより、発生データとは独立して、画像生成後に機構部の異常を検出することができる。
【0145】
また、処理回路は、画像間の位置ずれを特定し、位置ずれに関する条件が満たされたことを契機として、発生データの処理を実行してもよい。これにより、発生データとは独立して、画像生成後に機構部の異常を検出することができる。
【0146】
また、処理回路は、撮像された複数の画像から画像の再構成を実行し、再構成された画像のアーチファクトに関する条件が満たされたことを契機として、発生データの処理を実行してもよい。発生データとは独立して、画像生成後に機構部の異常を検出することができる。
【0147】
また、一実施形態の医用画像診断装置によれば、動作に関する情報が、撮像部が所定区間を移動するときの移動時間を含んでいる場合には、発生データ及び動作に関する情報を収集及び保存し、移動時間に関する条件が満たされたことを契機として、保存した発生データ及び動作に関する情報を送信してもよい。なお、例えば、移動時間が閾値を超えたとき、移動時間に関する条件が満たされる。これにより、発生データとは独立して、動作時間などの応答性から機構部の異常を検出することができる。
【0148】
一方、一実施形態の医用画像診断システムによれば、医用画像診断装置が、対象の画像の解析結果と機構部の動作に関する情報との少なくとも一方に基づいて、機構部の動作音データ及び振動データのうちの少なくとも一方を含む発生データの収集、保存、送信及び解析のうち、少なくとも一つを実行する。ここで、送信を実行する場合には、医用画像診断装置は、発生データ及び動作に関する情報をサーバ装置に送信する。サーバ装置が、医用画像診断装置から発生データ及び動作に関する情報を受信したことに応じて、受信した発生データ及び動作に関する情報に関連する保守管理情報を取得し、当該取得した保守管理情報を医用画像診断装置に送信する。
【0149】
従って、常に発生データを送信及び/又は解析していた従来とは異なり、発生データの送信量及び/又は解析量を削減し、効率的な保守管理を実現することができる。これに加え、サーバ装置が、関連する保守管理情報を医用画像診断装置に送信するので、より一層、効率的な保守管理を実現することができる。
【0150】
また、サーバシステムは、過去の発生データ及び動作に関する情報と、機構部の保守管理情報とを関連付けて記憶するストレージをいずれかのサーバ装置に備えてもよい。サーバ装置の処理回路は、受信した発生データ及び動作に関する情報に関連する保守管理情報をストレージから取得してもよい。この場合、現在の発生データ及び動作に関する情報に基づいて、過去に用いた保守管理情報をストレージから取得することができる。
【0151】
また、一実施形態の医用画像診断システムによれば、サーバ装置が、前述した保守管理情報を取得するとき、受信した発生データ及び動作に関する情報と、ストレージ内の過去の発生データ及び動作に関する情報とを照合してもよい。また、照合した結果、受信した発生データ及び動作に関する情報に略一致する過去の発生データ及び動作に関する情報があるとき、略一致する過去の発生データ及び動作に関する情報に関連する保守管理情報をストレージから読み出して取得してもよい。この場合、発生データのみを照合する場合に比べ、容易に照合を実施することができる。
【0152】
また、一実施形態の医用画像診断システムによれば、医用画像診断装置が、収集された発生データと閾値との比較結果に応じて送信を実行してもよい。この場合、サーバ装置が、前述した照合の結果、受信した発生データ及び動作に関する情報に略一致する過去の発生データ及び動作に関する情報が無いとき、閾値を更新するための閾値更新指示を医用画像診断装置に送信してもよい。これにより、過去の情報が無かった異常の場合に、次回から同様の異常を検出できるように閾値を更新することができる。
【0153】
<第1変形例>
次に、以上のような一実施形態における第1変形例について
図14を用いて述べる。
第1変形例は、前述した医用画像診断装置100に代えて、X線診断装置100a、X線CT装置100b又はMRI装置100cがネットワークNwを介してサーバ装置300に接続されている。なお、X線診断装置100a、X線CT装置100b及びMRI装置100cについては、対象の画像、機構部の動作に関する情報、及び発生データに関する概略構成のみを図示し、他の詳細な構成の図示を省略している。
【0154】
図14中、機械系101a,101b,101cの各々は、被検体を撮像する撮像部を含んでおり、X線診断装置100a、X線CT装置100b及びMRI装置100cのうちのいずれかに用いられ、被検体150の撮像中又は撮像前に動作音及び振動を発生する。
【0155】
例えば、機械系101aは、X線診断装置100aに用いられ、X線発生部及びX線検出器を有する撮像部101a1並びに当該撮像部101a1を移動可能に支持するアームを含んでいる。アームは、可動の部分を含む機構部101a2の一例である。
【0156】
機械系101bは、X線CT装置100bに用いられ、X線発生部及びX線検出器を有する撮像部101b1並びに当該撮像部101b1を回転可能に支持する回転フレームを含んでいる。回転フレームは、可動の部分を含む機構部101b2の一例である。
【0157】
機械系101cは、MRI装置に用いられ、被検体150が載置される電動の寝台を含んでいる。電動の寝台は、可動の部分を含む機構部101c2の一例である。
【0158】
画像生成部102a,102b,102cの各々は、撮像部101a1,101b1,101c1の出力に基づいて対象の画像を生成する回路である。
【0159】
動作音処理部103a,103b,103cの各々は、対象の画像の解析結果と機構部101a2,101b2,101c2の動作に関する情報との少なくとも一方に基づいて、機構部101a2,101b2,101c2の発生データの収集、保存、送信及び解析のうち、少なくとも一つを実行する。なお、動作音処理部103a,103b,103cの各々は、送信を実行する場合には発生データ及び動作に関する情報をサーバ装置300に送信する。
【0160】
サーバ装置300の構成は、一実施形態と同様である。
【0161】
以上のような第1変形例によれば、機械系が、X線診断装置、X線CT装置及びMRI装置のうちのいずれかに用いられ、対象の撮像中又は撮像前に動作音及び振動を発生する構成としても、一実施形態と同様の効果を得ることができる。
【0162】
なお、第1変形例は、画像生成部102a,102b,102c及び動作音処理部103a,103b,103cに代えて、
図15に示すように、変形してもよい。すなわち、第1変形例は、処理回路104a,104b,104cが、対応する機能104a1,104a2,104b1,104b2,104c1,104c2を実行するように変形してもよい。
【0163】
ここで、処理回路104a,104b,104cは、図示しないストレージ内のプログラムを呼び出し実行することにより、プログラムに対応する画像生成機能104a1,104b1,104c1及び動作音処理機能104a2,104b2,104c2を実現するプロセッサである。
【0164】
画像生成機能104a1,104b1,104c1は、前述した画像生成部102a,102b,102cに対応する機能である。
【0165】
動作音処理機能104a2,104b2,104c2は、前述した動作音処理部103a,103b,103cに対応する機能である。
【0166】
他の構成は、第1変形例と同様である。
【0167】
以上のように変形しても、第1変形例と同様の効果を得ることができる。
【0168】
<第2変形例>
次に、一実施形態における第2変形例について
図16を用いて述べる。
第2変形例は、前述した画像生成回路6、位置情報検出部21及びシステム制御回路26に代えて、処理回路23が、画像生成機能23c、位置情報検出機能23d及びシステム制御機能23eを実行する。
【0169】
すなわち、処理回路23は、ストレージ22内のプログラムを呼び出し実行することにより、プログラムに対応する動作音処理機能23a、受信機能23b、画像生成機能23c、位置情報検出機能23d及びシステム制御機能23eを実現するプロセッサである。
【0170】
ここで、画像生成機能23cは、前述した画像生成回路6に相当する機能である。
【0171】
位置情報検出機能23dは、前述した位置情報検出部21に相当する機能である。
【0172】
システム制御機能23eは、前述したシステム制御回路26に相当する機能である。
【0173】
他の構成は、一実施形態と同様である。
【0174】
以上のような第2変形例によれば、処理回路23が、画像生成機能23c、位置情報検出機能23d及びシステム制御機能23eを実行する構成により、一実施形態と同様の効果を得ることができる。
【0175】
<第3変形例>
次に、一実施形態における第3変形例について
図17及び
図18を用いて述べる。
第3変形例では、サーバ装置300がAIを用いて保守管理情報を取得する。具体的には、第3変形例は、サーバ装置300のストレージ31が、前述した履歴テーブル31a、動作音管理テーブル31b、各種の閾値及び許容値に代えて、
図17及び
図18に示す如き、学習済みモデル31cと、図示しないモデル学習プログラムとを記憶する。学習済みモデル31cは、過去の発生データ及び動作に関する情報と、過去の動作に関する情報に関連する保守管理情報とを用いて学習されている。
【0176】
ここで、学習済みモデル31cは、学習データに基づいて、モデル学習プログラムに従い機械学習モデルに機械学習を行わせることにより、得られた学習済みの機械学習モデルである。学習データは、発生データ及び動作に関する情報である入力データと、保守管理情報である出力データとを含んでいる。なお、学習データは、入力データとして、発生データ及び動作に関する情報に加え、医用画像診断装置100の型番又は装置IDを含んでもよい。機械学習モデルは、発生データ及び動作に関する情報を入力として保守管理情報を出力する、複数の関数が合成されたパラメータ付き合成関数である。パラメータ付き合成関数は、複数の調整可能な関数及びパラメータの組合せにより定義される。本実施形態に係る機械学習モデルは、上記の要請を満たす如何なるパラメータ付き合成関数であっても良いが、多層のネットワークモデル(以下、多層化ネットワークと呼ぶ)であるとする。この場合、学習済みモデル31cは、発生データ及び動作に関する情報を入力する入力層と、当該発生データ及び動作に関する情報に関連する保守管理情報を出力する出力層と、入力層と出力層との間に設けられる少なくとも1層の中間層とを有する。多層化ネットワークとしては、例えば、深層学習(Deep Learning)の対象となる多層ニューラルネットワークである深層ニューラルネットワーク(DNN:Deep Neural Network)を用いている。DNNとしては、例えば、音声、言語、動画像などの系列データを対象とする再帰型ニューラルネットワーク(RNN:recurrent Neural Network)を用いてもよい。当該学習済みモデル31cは、人工知能ソフトウエアの一部であるプログラムモジュールとしての利用が想定される。学習済みモデル31cは、処理回路32にて用いられる。
【0177】
処理回路32は、学習済みモデル31cを用いることにより、発生データと動作に関する情報とから保守管理情報を取得する。具体的には、処理回路32は、ストレージ31に記憶された学習済みモデル31cからの指令に従って、当該入力層に入力された発生データ及び動作に関する情報に対し、学習済みのパラメータに基づく演算を行い、当該出力層から保守管理情報を出力するように動作する。
【0178】
他の構成は、一実施形態と同様である。
【0179】
以上のような第3変形例によれば、学習済みモデルを用いることにより、発生データと動作に関する情報とから保守管理情報を取得する。これにより、発生データ、動作に関する情報及び保守管理情報を関連付けて記憶しない構成にもかかわらず、一実施形態と同様の効果を得ることができる。
【0180】
また、学習済みモデルは、過去の発生データ及び動作に関する情報と、過去の動作に関する情報に関連する保守管理情報とを用いて学習されている。これにより、サーバ管理者による保守管理情報の編集の手間を省略しつつ、一実施形態と同様の効果を得ることができる。
【0181】
なお、この第3変形例は、前述した履歴テーブル31a、動作音管理テーブル31b、各種の閾値及び許容値を必ずしも省略しなくてもよい。この場合、処理回路32は、学習済みモデル31cを用いることにより、保守管理情報を取得及び更新し、当該更新した保守管理情報に基づいて閾値を更新するように、閾値更新指示を医用画像診断装置100に送信する。このようにしても、サーバ管理者による保守管理情報の編集の手間を省略しつつ、一実施形態と同様の効果を得ることができる。
【0182】
<第4変形例>
次に、一実施形態の第2変形例における第4変形例について
図16及び
図19を用いて述べる。
第4変形例は、機構部の動作音データ及び振動データの両者が必須ではなく、省略可能である。理解を容易にするため、ここでは、動作音データ及び振動データの両者を省略した場合を例に挙げて述べる。これに伴い、
図16に示すように、医用画像診断装置100の処理回路23は、画像生成機能23cにより、X線撮影部1の出力に基づいて対象の画像を生成し、動作音処理機能23aにより、当該対象の画像の解析結果に基づいて、機構部の動作に関する情報の処理を実行する。ここでいう処理は、動作に関する情報の収集、保存及び送信のうち、少なくとも一つである。なお、動作音データ及び振動データを省略しない場合には、処理回路23は、当該動作に関する情報の処理に加え、発生データの収集、保存、送信及び解析のうち、少なくとも一つを実行すればよい。また、動作に関する情報は、機構部の可動の部分の動作量に関する情報を含んでもよい。動作量に関する情報としては、前述した通り、位置情報及び回転数の各々が使用可能となっている。なお、動作音データを用いていないことから、「動作音処理機能」の名称は、「情報処理機能」のように、適宜、変更してもよい。
【0183】
他の構成は、一実施形態の第2変形例と同様である。
【0184】
以上のような第4変形例によれば、
図19に示すように、動作音データ及び振動データに関する前述したステップST19~ST25を実行せず、ステップST11~ST17、ST26~ST29を前述同様に実行した後、ステップST30aを実行する。ステップST30aにおいて、処理回路23は、対象の画像の解析結果に基づいて、機構部の動作に関する情報の処理を実行する。すなわち、対象の画像の解析結果が異常を示す場合には、機構部の動作に関する情報の処理を実行する。なお、異常を示す場合には、前述同様に、ピクセルシフトの値が許容値以上の場合、画像間の位置ずれの値が許容値以上の場合、アーチファクトが検出された場合などがある。また、ステップST30aで実行可能な処理は、動作に関する情報の収集、保存及び送信のうち、少なくとも一つである。ステップST30aの例では、動作に関する情報の収集、保存及び送信の全てを実行する。すなわち、ステップST30aにおいて、医用画像診断装置100は、動作に関する情報を収集及び保存し、動作に関する情報をサーバ装置300に送信する。
【0185】
これに対し、対象の画像の解析結果が異常を示さない場合には、動作に関する情報の処理を実行しない。また、画像の解析結果が異常を示すか否かによらず、動作音データ及び振動音データの両者について、収集、保存、送信及び解析のいずれも実行しない。このため、第4変形例によれば、動作音データ、振動データ及び動作に関する情報について、処理するデータ量を削減し、効率的な保守管理を実現することができる。
【0186】
また、動作に関する情報は、可動の部分の動作量に関する情報であってもよい。これにより、対象の画像の解析結果が異常を示す場合に、可動の部分の動作量に関する情報の処理を実行することができる。
【0187】
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC))、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサはストレージに保存されたプログラムを読み出し実行することで機能を実現する。なお、ストレージにプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。なお、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つのプロセッサとして構成し、その機能を実現するようにしてもよい。さらに、
図2又は
図7における複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。
【0188】
一実施形態における医用画像診断装置100は、特許請求の範囲における医用画像診断装置の一例である。一実施形態におけるX線撮影部1は、特許請求の範囲における撮像部の一例である。一実施形態におけるX線発生部2及び保持装置8は、特許請求の範囲における機構部の一例である。一実施形態における画像生成回路6及び画像生成機能23cは、特許請求の範囲における画像生成手段の一例である。一実施形態における動作音処理機能23a及び処理回路23は、特許請求の範囲における処理実行手段及び比較手段の一例である。一実施形態におけるストレージ31は、特許請求の範囲における記憶手段の一例である。一実施形態における取得機能32a及び処理回路32は、特許請求の範囲における取得手段、照合手段及び読出手段の一例である。一実施形態における送信機能32b及び処理回路32は、特許請求の範囲における送信手段の一例である。一実施形態における閾値更新機能32c及び処理回路32は、特許請求の範囲における閾値更新手段の一例である。
【0189】
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0190】
1…X線撮影部、2…X線発生部、3…X線検出器、4…投影データ生成回路、5…高電圧発生部、6…画像生成回路、7…ディスプレイ、8…保持装置、9…寝台部、10…機構駆動部、11…撮像系移動機構駆動部、12…天板移動機構駆動部、13…機構駆動制御部、20…制御装置、21…位置情報検出部、21a…第1計測回路、21b…第2計測回路、22,31…ストレージ、23,32…処理回路、23a…動作音処理機能、23b…受信機能、23c…画像生成機能、23d…位置情報検出機能、23e…システム制御機能、24…警報発生部、25…入力インタフェース、26…システム制御回路、27…ネットワークインタフェース、31c…学習済みモデル、32a…取得機能、32b…送信機能、32c…閾値更新機能、81…保持部、82…保持部ホルダ、83…スタンド、84…床旋回アーム、91…天板、92…寝台、100…医用画像診断装置、100a…X線診断装置、100b…X線CT装置、100c…MRI装置、101a~101c…機械系、101a1~101c1…撮像部、101a2~101c2…機構部、102a~102c…画像生成部、103a~103c…動作音処理部、
150…被検体、160…床面、300…サーバ装置、mtr…駆動モータ、enc1…第1エンコーダ、enc2…第2エンコーダ。