(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-01
(45)【発行日】2023-09-11
(54)【発明の名称】非水系二次電池
(51)【国際特許分類】
H01M 50/426 20210101AFI20230904BHJP
H01M 10/0566 20100101ALI20230904BHJP
H01M 10/052 20100101ALI20230904BHJP
H01M 50/443 20210101ALI20230904BHJP
H01M 50/446 20210101ALI20230904BHJP
H01M 50/434 20210101ALI20230904BHJP
H01M 50/489 20210101ALI20230904BHJP
H01M 50/491 20210101ALI20230904BHJP
C08K 3/013 20180101ALI20230904BHJP
C08L 27/16 20060101ALI20230904BHJP
C08K 3/22 20060101ALI20230904BHJP
C08K 3/30 20060101ALI20230904BHJP
【FI】
H01M50/426
H01M10/0566
H01M10/052
H01M50/443 M
H01M50/446
H01M50/434
H01M50/489
H01M50/491
C08K3/013
C08L27/16
C08K3/22
C08K3/30
(21)【出願番号】P 2020127693
(22)【出願日】2020-07-28
【審査請求日】2023-02-03
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】森村 亘
(72)【発明者】
【氏名】西川 聡
【審査官】梅野 太朗
(56)【参考文献】
【文献】特開2015-191710(JP,A)
【文献】特許第4077045(JP,B1)
【文献】特開2005-071978(JP,A)
【文献】特開2014-146616(JP,A)
【文献】特開2013-122009(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M50/40
H01M10/0566、10/052
C08K3/013、3/22、3/30
C08L27/16
(57)【特許請求の範囲】
【請求項1】
正極と、
負極と、
一方の面が前記正極に接し他方の面が前記負極に接する単一層であり、フッ化ビニリデン及び下記の一般式(1)で表される単量体を重合成分に含むポリフッ化ビニリデン系樹脂並びに無機粒子を含有する絶縁層と、
電解液と、
を備える非水系二次電池。
【化1】
一般式(1)中、R
1、R
2及びR
3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH
2)
n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
【請求項2】
前記無機粒子が金属水酸化物粒子及び金属硫酸塩粒子からなる群から選ばれる少なくとも1種を含む、請求項1に記載の非水系二次電池。
【請求項3】
前記絶縁層に含まれる前記無機粒子の平均一次粒径が0.01μm以上1.00μm未満である、請求項1又は請求項2に記載の非水系二次電池。
【請求項4】
前記絶縁層に占める前記無機粒子の質量割合が50質量%以上90質量%未満である、請求項1~請求項3のいずれか1項に記載の非水系二次電池。
【請求項5】
前記絶縁層の厚さが5μm以上30μm以下である、請求項1~請求項4のいずれか1項に記載の非水系二次電池。
【請求項6】
前記絶縁層の空孔率が40%以上80%未満である、請求項1~請求項5のいずれか1項に記載の非水系二次電池。
【請求項7】
前記絶縁層の単位面積当たりの質量が4g/m
2以上40g/m
2未満である、請求項1~請求項6のいずれか1項に記載の非水系二次電池。
【請求項8】
リチウムイオンのドープ及び脱ドープにより起電力を得る、請求項1~請求項7のいずれか1項に記載の非水系二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、非水系二次電池に関する。
【背景技術】
【0002】
非水系二次電池において、正極と負極とを絶縁させる目的で絶縁層又はセパレータが使用されている。
例えば特許文献1又は特許文献2には、正極活物質又は負極活物質を含む活物質層と、この活物質層の上に積層された耐熱性高分子及び無機フィラーを含む耐熱性多孔質層とを備えた非水電解質電池用電極シートが開示されている。
例えば特許文献3には、正極と、負極と、フッ素系樹脂及び絶縁性無機粒子を含有するセラミックセパレータ層と、リチウムイオン伝導性非水電解質とを含む電池要素と、電池要素を収容する外装体と、を備えたリチウムイオン二次電池が開示されている。
例えば特許文献4には、互いに平均粒径の異なる2種以上の樹脂粒子を含有するセパレータ層形成用組成物を電極上に塗工する工程と、電極上に塗工されたセパレータ層形成用組成物を塗工端部から乾燥させて電極上に該電極と一体化したセパレータ層を形成する工程と、セパレータ層が形成された電極と、対極と、電解液とを用いて二次電池を構築する工程と、を有する二次電池の製造方法が開示されている。
例えば特許文献5には、平均粒径0.5μm~3.0μmの水酸化マグネシウムを含む多孔質層であるセパレータと、電極とを接合一体化してなるリチウムイオン二次電池用セパレータ電極一体型蓄電素子が開示されている。
例えば特許文献6には、正極と、負極と、正極と負極との間に配置され正極と負極のうち少なくとも一方を接着する接着性樹脂層とを備えた電池であって、接着性樹脂層が平均径0.01μm~1μmのフィラーと樹脂とを含む電池が開示されている。
例えば特許文献7には、固体粒状材料及びポリマー結合剤を含有するセパレータ前駆体溶液を電極上にスクリーン印刷により配置する工程と、セパレータ前駆体溶液を薄膜の形態の多孔性セパレータに変化させる工程と、を有する多孔性セパレータの製造方法が開示されている。
例えば特許文献8には、多孔質基材と、ポリフッ化ビニリデン系樹脂を含み結晶サイズが1nm~13nmである接着性多孔質層と、を備えたセパレータを用いた非水系二次電池が開示されている。
例えば特許文献9には、多孔質基材と、重量平均分子量60万~300万のポリフッ化ビニリデン系樹脂を含み空孔率が30%~60%である接着性多孔質層と、を備えたセパレータを用いた非水系二次電池が開示されている。
例えば特許文献10には、無機粒子及び有機バインダを含む複合材料からなり、顔料体積濃度と臨界顔料体積濃度との比が0.7~1.15であるセパレータを用いた蓄電デバイスが開示されている。
例えば特許文献11には、集電体と、集電体の一面に形成された電極活物質層と、電極活物質層上に形成され、無機粒子及びバインダ高分子を含む有無機多孔性層と、有無機多孔性層上に形成された多孔性の第1支持層と、を含むシート型の二次電池用電極が開示されている。
例えば特許文献12には、多孔質基材と、バインダ樹脂及び平均一次粒径が0.01μm以上0 .30μm未満である硫酸バリウム粒子を含み硫酸バリウム粒子の体積割合が50体積%~90体積%である耐熱性多孔質層と、を備えたセパレータを用いた非水系二次電池が開示されている。
例えば特許文献13には、正極活物質層を有する正極と、負極活物質層を有する負極と、セパレータと、電解液と、正極活物質層又は負極活物質層とセパレータとの間に配置されたAl2O3及びポリフッ化ビニリデンを含有する無機粒子層と、を有するリチウムイオン二次電池が開示されている。
例えば特許文献14には、多孔質基材と、単量体成分としてフッ化ビニリデン及びアクリル系モノマーを含み融点が130℃~148℃であるポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えたセパレータを用いた非水系二次電池が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2010-056037号公報
【文献】特開2011-108516号公報
【文献】特開2015-191710号公報
【文献】特開2016-177962号公報
【文献】特開2017-123269号公報
【文献】特許第4077045号公報
【文献】特許第4790880号公報
【文献】特許第4988972号公報
【文献】特許第5129895号公報
【文献】特許第5880555号公報
【文献】特許第5938523号公報
【文献】特許第6526359号公報
【文献】特許第6597267号公報
【文献】国際公開第2018/212252号
【発明の概要】
【発明が解決しようとする課題】
【0004】
非水系二次電池は、放電特性、クーロン効率、セル強度のいずれにも優れ、すなわち信頼性が高いことが望まれる。非水系二次電池を構成する部材の一つである絶縁層には、非水系二次電池の信頼性を高めるために、電気的絶縁性、イオン透過性、電極に対する接着性などが要求される。
【0005】
本開示の実施形態は、上記状況のもとになされた。
本開示の実施形態は、信頼性の高い非水系二次電池を提供することを目的とし、これを達成することを課題とする。
【課題を解決するための手段】
【0006】
前記課題を解決するための具体的手段には、以下の態様が含まれる。
【0007】
<1> 正極と、負極と、一方の面が前記正極に接し他方の面が前記負極に接する単一層であり、フッ化ビニリデン及び下記の一般式(1)で表される単量体を重合成分に含むポリフッ化ビニリデン系樹脂並びに無機粒子を含有する絶縁層と、電解液と、を備える非水系二次電池。
【0008】
【化1】
一般式(1)中、R
1、R
2及びR
3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH
2)
n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
【0009】
<2> 前記無機粒子が金属水酸化物粒子及び金属硫酸塩粒子からなる群から選ばれる少なくとも1種を含む、<1>に記載の非水系二次電池。
<3> 前記絶縁層に含まれる前記無機粒子の平均一次粒径が0.01μm以上1.00μm未満である、<1>又は<2>に記載の非水系二次電池。
<4> 前記絶縁層に占める前記無機粒子の質量割合が50質量%以上90質量%未満である、<1>~<3>のいずれか1つに記載の非水系二次電池。
<5> 前記絶縁層の厚さが5μm以上30μm以下である、<1>~<4>のいずれか1つに記載の非水系二次電池。
<6> 前記絶縁層の空孔率が40%以上80%未満である、<1>~<5>のいずれか1つに記載の非水系二次電池。
<7> 前記絶縁層の単位面積当たりの質量が4g/m2以上40g/m2未満である、<1>~<6>のいずれか1つに記載の非水系二次電池。
<8> リチウムイオンのドープ及び脱ドープにより起電力を得る、<1>~<7>のいずれか1つに記載の非水系二次電池。
【発明の効果】
【0010】
本開示によれば、信頼性の高い非水系二次電池が提供される。
【図面の簡単な説明】
【0011】
【
図1】本開示の非水系二次電池の実施形態例を示す模式図である。
【発明を実施するための形態】
【0012】
以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
【0013】
本開示において「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。
【0014】
本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
【0015】
本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
【0016】
本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
【0017】
本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
【0018】
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
【0019】
<非水系二次電池>
本開示の技術は、電解液に水を含まない二次電池、すなわち非水系二次電池に関する。本開示の非水系二次電池の実施形態の一例は、リチウムイオンのドープ及び脱ドープによって起電力を得るリチウムイオン二次電池である。
【0020】
本開示の非水系二次電池は、正極と、負極と、絶縁層と、電解液とを備える。絶縁層は、一方の面が正極に接し他方の面が負極に接する単一層である。絶縁層は、フッ化ビニリデン及び下記の一般式(1)で表される単量体を重合成分に含むポリフッ化ビニリデン系樹脂と、無機粒子とを含有する。以下、フッ化ビニリデン及び下記の一般式(1)で表される単量体を重合成分に含むポリフッ化ビニリデン系樹脂を「PVDF系樹脂(1)」という。
【0021】
【化2】
一般式(1)中、R
1、R
2及びR
3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH
2)
n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
【0022】
以下、「正極」と「負極」とを総称して「電極」という。また、「非水系二次電池」を単に「電池」ともいう。
【0023】
本開示の電池において絶縁層は、単一層であるゆえ、(1)絶縁層の内部に層間の境界がないので、電池の放電特性及びクーロン効率を高めることができ、(2)絶縁層の内部で層間剥離を起こすことがないので、絶縁層の電気抵抗を低く抑えることができ、電池のクーロン効率及びセル強度を高めることができる。
【0024】
本開示の電池において絶縁層は、PVDF系樹脂(1)を含む。電極活物質層のバインダ樹脂としてポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体などが用いられるところ、PVDF系樹脂(1)は、ポリフッ化ビニリデン系樹脂であることにより、電極活物質層のポリフッ化ビニリデン系樹脂に対して親和性を示し、一般式(1)で表される単量体由来の部位を有することにより、電極活物質層のスチレン-ブタジエン共重合体に対して親和性を示す。電極活物質層のバインダ樹脂に対して親和性が高い当該樹脂を含む絶縁層は、電極に良好に接着し、電池のクーロン効率及びセル強度を高める。
加えて、電池の製造時に電極と絶縁層との積層体に熱プレスが行われるところ、電極活物質層のバインダ樹脂に対して親和性が高い当該樹脂を含む絶縁層は、熱プレスの温度及び圧力を比較的穏やかな条件で行っても電極に良好に接着する。したがって、電極活物質層のバインダ樹脂に対して親和性が高い当該樹脂を含む絶縁層は、電池の製造時に絶縁層の空孔が閉塞されることなくイオン透過性が保たれ、その結果、電池の放電特性を高める。
【0025】
以上の各構成の作用が相乗して、本開示の非水系二次電池は、放電特性、クーロン効率及びセル強度に優れ、したがって、信頼性が高い。
【0026】
以下、本開示の非水系二次電池が備える構成を詳細に説明する。
【0027】
[正極]
正極は、例えば、集電体と、集電体の片面又は両面に配置された正極活物質層とを備える。
【0028】
正極の集電体としては、例えば、金属箔が挙げられる。金属箔としては、例えば、アルミニウム箔、チタン箔、ステンレス箔等が挙げられる。正極の集電体の厚さは、5μm~20μmが好ましい。
【0029】
正極活物質層は、正極活物質と樹脂とを含むことが好ましい。正極活物質層は、さらに導電助剤を含んでもよい。
【0030】
正極活物質としては、例えば、リチウム含有遷移金属酸化物が挙げられる。リチウム含有遷移金属酸化物としては、例えば、LiCoO2、LiNiO2、LiMn1/2Ni1/2O2、LiCo1/3Mn1/3Ni1/3O2、LiMn2O4、LiFePO4、LiCo1/2Ni1/2O2、LiAl1/4Ni3/4O2等が挙げられる。
【0031】
樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、アルギン酸塩等が挙げられる。
【0032】
導電助剤としては、例えば、炭素材料が挙げられる。炭素材料としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維等が挙げられる。
【0033】
[負極]
負極は、例えば、集電体と、集電体の片面又は両面に配置された負極活物質層とを備える。
【0034】
負極の集電体としては、例えば、金属箔が挙げられる。金属箔としては、例えば、銅箔、ニッケル箔、ステンレス箔等が挙げられる。負極の集電体の厚さは、5μm~20μmが好ましい。
【0035】
負極活物質層は、負極活物質と樹脂とを含むことが好ましい。負極活物質層は、さらに導電助剤を含んでもよい。
【0036】
負極活物質としては、例えば、リチウムイオンを電気化学的に吸蔵し得る材料が挙げられる。当該材料としては、例えば、炭素材料;ケイ素、ケイ素化合物、スズ、アルミニウム等とリチウムとの合金;ウッド合金;などが挙げられる。
【0037】
樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体、カルボキシメチルセルロース等が挙げられる。
【0038】
導電助剤としては、例えば、炭素材料が挙げられる。炭素材料としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維等が挙げられる。
【0039】
[絶縁層]
絶縁層は、内部に多数の微細孔を有し、これら微細孔が連結された多孔構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となっている単一層である。
【0040】
絶縁層の実施形態の一例は、一方の面が正極活物質層に接し、他方の面が負極活物質層に接する。
【0041】
絶縁層は、PVDF系樹脂(1)と無機粒子とを含有する。絶縁層は、PVDF系樹脂(1)以外のその他の樹脂、有機フィラー等を含んでもよい。
【0042】
-PVDF系樹脂(1)-
絶縁層は、PVDF系樹脂(1)を含有する。PVDF系樹脂(1)は、少なくとも、フッ化ビニリデン(VDFともいう。)と、下記の一般式(1)で表される単量体とを重合成分に含む。
【0043】
【化3】
一般式(1)中、R
1、R
2及びR
3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH
2)
n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
【0044】
一般式(1)中、R1、R2及びR3が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよく、フッ素原子が好ましい。
【0045】
一般式(1)中、R1、R2及びR3が表す炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。R1、R2及びR3における炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
【0046】
一般式(1)中、R1、R2及びR3が表すカルボキシ基の誘導体としては、例えば、-C(=O)-OR4(R4はアルキル基を表す。)が挙げられる。R4としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。R4としては、炭素数1~5のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、炭素数1~3のアルキル基が更に好ましい。
【0047】
一般式(1)中、Xが表す炭素数1~5のアルキレン基としては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Xにおける炭素数1~5のアルキレン基としては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
【0048】
一般式(1)中、Xが表す置換基を有する炭素数1~5のアルキレン基における置換基としては、例えば、ハロゲン原子が挙げられ、フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい。Xにおける置換されている炭素数1~5のアルキレン基としては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Xにおける置換されている炭素数1~5のアルキレン基としては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
【0049】
一般式(1)中、Yが表す炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
【0050】
一般式(1)中、Yが表す少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基における、置換されている炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける置換されている炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。ヒドロキシ基の置換数としては、1つ又は2つが好ましく、1つがより好ましい。
【0051】
一般式(1)中、Yが表す少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基としては、例えば、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基が挙げられる。
【0052】
一般式(1)中、Yが表す少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基における、置換されている炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける置換されている炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。カルボキシ基の置換数としては、1つ又は2つが好ましく、1つがより好ましい。
【0053】
一般式(1)中、Yが表す少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基としては、例えば、2-カルボキシエチル基、2-カルボキシプロピル基、4-カルボキシブチル基が挙げられる。
【0054】
一般式(1)中、Yが表す-R-O-C(=O)-(CH2)n-C(=O)-OHにおいて、Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。
Rとしては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Rとしては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
nとしては、0~5の整数が好ましく、1~4の整数がより好ましく、2又は3が更に好ましい。
当該基の具体例としては、例えば、-(CH2)2-O-C(=O)-(CH2)2-C(=O)-OHが挙げられる。
【0055】
一般式(1)で表される単量体としては、例えば、R1、R2及びR3がそれぞれ独立に、水素原子又は炭素数1~4のアルキル基であり、Xが単結合であり、Yが炭素数1~4のアルキル基又は少なくとも1つのヒドロキシ基で置換された炭素数1~3のアルキル基である単量体が挙げられる。
【0056】
一般式(1)で表される単量体としては、例えば、アクリル系単量体、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が挙げられる。
【0057】
アクリル系単量体の例としては、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-カルボキシエチル、(メタ)アクリル酸2-カルボキシプロピル、(メタ)アクリル酸4-カルボキシブチル、ブテン酸、ペンテン酸、ヘキセン酸、(メタ)アクリロイルオキシエチルコハク酸等が挙げられる。本開示において「(メタ)アクリル」との表記は「アクリル」及び「メタクリル」のいずれでもよいことを意味する。
【0058】
不飽和二塩基酸の例としては、不飽和ジカルボン酸が挙げられ、より具体的には、マレイン酸、無水マレイン酸、シトラコン酸、イタコン酸等が挙げられる。
【0059】
不飽和二塩基酸のモノエステルの例としては、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、イタコン酸モノメチルエステル、イタコン酸モノエチルエステル等が挙げられ、中でも、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステルが好ましい。
【0060】
PVDF系樹脂(1)において、全重合成分に占める一般式(1)で表される単量体の割合は、電極活物質層に含まれる樹脂に対する親和性の観点から、0.1モル%以上が好ましく、0.2モル%以上がより好ましく、0.5モル%以上が更に好ましい。
PVDF系樹脂(1)において、全重合成分に占める一般式(1)で表される単量体の割合は、電極活物質に対する影響の低さの観点から、5.0モル%以下が好ましく、4.0モル%以下がより好ましく、3.0モル%以下が更に好ましい。
【0061】
PVDF系樹脂(1)は、VDF及び一般式(1)で表される単量体以外のその他の単量体を重合成分に含んでいてもよい。その他の単量体としては、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、トリクロロエチレン等の含ハロゲン単量体が挙げられる。
【0062】
PVDF系樹脂(1)としては、ヘキサフルオロプロピレン(HFPともいう。)を重合成分に含む樹脂が好ましい。PVDF系樹脂(1)は、全重合成分に占めるHFPの割合を増減することによって、当該樹脂の結晶性、電極活物質層に対する接着性、電解液に対する耐溶解性などを適度な範囲に制御できる。
PVDF系樹脂(1)において、全重合成分に占めるHFPの割合は、2.0モル%超が好ましく、3.5モル%超がより好ましく、4.0モル%以上が更に好ましく、4.5モル%以上が更に好ましく、7.0モル%以下が好ましく、6.5モル%以下がより好ましく、6.0モル%以下が更に好ましい。
【0063】
PVDF系樹脂(1)において、全重合成分に占めるVDFの割合は、70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上が更に好ましく、99モル%以下が好ましく、98モル%以下がより好ましい。
【0064】
PVDF系樹脂(1)としては、VDFと、HFPと、一般式(1)で表される単量体とからなる三元共重合体が好ましい。当該三元共重合体において、全重合成分に占める一般式(1)で表される単量体の割合は、0.1モル%以上が好ましく、0.2モル%以上がより好ましく、0.5モル%以上が更に好ましく、5.0モル%以下が好ましく、4.0モル%以下がより好ましく、3.0モル%以下が更に好ましく、且つ、全重合成分に占めるHFPの割合は、2.0モル%超が好ましく、3.5モル%超がより好ましく、4.0モル%以上が更に好ましく、4.5モル%以上が更に好ましく、7.0モル%以下が好ましく、6.5モル%以下がより好ましく、6.0モル%以下が更に好ましい。
【0065】
VDFと、HFPと、一般式(1)で表される単量体とからなる三元共重合体としては、VDF-HFP-アクリル酸三元共重合体が好ましい。アクリル酸三元共重合体において、全重合成分に占めるアクリル酸の割合は、0.1モル%以上が好ましく、0.2モル%以上がより好ましく、0.5モル%以上が更に好ましく、5.0モル%以下が好ましく、4.0モル%以下がより好ましく、3.0モル%以下が更に好ましく、且つ、全重合成分に占めるHFPの割合は、2.0モル%超が好ましく、3.5モル%超がより好ましく、4.0モル%以上が更に好ましく、4.5モル%以上が更に好ましく、7.0モル%以下が好ましく、6.5モル%以下がより好ましく、6.0モル%以下が更に好ましい。
【0066】
PVDF系樹脂(1)の重量平均分子量(Mw)は、電池の製造時に絶縁層に熱を印加した際に、絶縁層の空孔の閉塞が起きにくい観点から、30万以上が好ましく、50万以上がより好ましく、100万以上が更に好ましい。
PVDF系樹脂(1)の重量平均分子量(Mw)は、電池の製造時に絶縁層に熱を印加した際に、当該樹脂が適度に軟化し、絶縁層と電極とが良好に接着する観点から、300万以下が好ましく、250万以下がより好ましく、230万以下が更に好ましい。
【0067】
絶縁層に占めるPVDF系樹脂(1)の質量割合は、10質量%~50質量%が好ましく、15質量%~50質量%がより好ましく、20質量%~50質量%が更に好ましい。
【0068】
絶縁層に含まれるPVDF系樹脂(1)の含有量は、絶縁層に含まれる全樹脂の全量に対して、85質量%~100質量%が好ましく、90質量%~100質量%がより好ましく、95質量%~100質量%が更に好ましい。
【0069】
-その他の樹脂-
絶縁層は、PVDF系樹脂(1)以外のその他の樹脂を含んでいてもよい。その他の樹脂としては、例えば、分子内にエステル結合を有しないポリフッ化ビニリデン系樹脂(VDFの単独重合体(即ちポリフッ化ビニリデン);VDFと、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、トリクロロエチレン等の含ハロゲン単量体との共重合体;これらの混合物)、アクリル系樹脂、フッ素系ゴム、スチレン-ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)、ポリアミド、全芳香族ポリアミド(アラミドともいう。)、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、及びこれらの混合物が挙げられる。
【0070】
絶縁層に含まれるPVDF系樹脂(1)以外のその他の樹脂の含有量は、絶縁層に含まれる全樹脂の全量に対して、0質量%~15質量%が好ましく、0質量%~10質量%がより好ましく、0質量%~5質量%が更に好ましい。
【0071】
-無機粒子-
無機粒子の粒子形状に限定はなく、球状、板状、針状、不定形状のいずれでもよい。無機粒子は、電池の短絡抑制の観点又は絶縁層に緻密に充填されやすい観点から、球状又は板状の粒子であることが好ましい。
【0072】
無機粒子の材質は制限されるものではない。無機粒子としては、金属水酸化物粒子、金属硫酸塩粒子、金属酸化物粒子、金属炭酸塩粒子、金属窒化物粒子、金属フッ化物粒子、粘土鉱物の粒子等が挙げられる。無機粒子は、1種を単独で使用してもよく、材質が異なる2種以上を組み合わせて使用してもよい。
【0073】
金属水酸化物粒子としては、例えば、水酸化マグネシウム(Mg(OH)2)、水酸化アルミニウム(Al(OH)3)、水酸化カルシウム(Ca(OH)2)、水酸化ニッケル(Ni(OH)2)等の粒子が挙げられる。金属水酸化物粒子としては、水酸化マグネシウム粒子が好ましい。
【0074】
金属硫酸塩粒子としては、例えば、硫酸バリウム(BaSO4)、硫酸ストロンチウム(SrSO4)、硫酸カルシウム(CaSO4)、硫酸カルシウム二水和物(CaSO4・2H2O)、ミョウバン石(KAl3(SO4)2(OH)6)、ジャロサイト(KFe3(SO4)2(OH)6)等の粒子が挙げられる。金属硫酸塩粒子としては、硫酸バリウム粒子が好ましい。
【0075】
金属酸化物粒子としては、例えば、酸化マグネシウム、アルミナ(Al2O3)、ベーマイト(AlOOH、アルミナ1水和物)、チタニア(TiO2)、シリカ(SiO2)、ジルコニア(ZrO2)、チタン酸バリウム(BaTiO3)、酸化亜鉛等の粒子が挙げられる。
【0076】
金属炭酸塩粒子としては、例えば、炭酸マグネシウム、炭酸カルシウム等の粒子が挙げられる。
【0077】
金属窒化物粒子としては、例えば、窒化マグネシウム、窒化アルミニウム、窒化カルシウム、窒化チタン等の粒子が挙げられる。
【0078】
金属フッ化物粒子としては、例えば、フッ化マグネシウム、フッ化カルシウム等の粒子が挙げられる。
【0079】
粘土鉱物の粒子としては、例えば、ケイ酸カルシウム、リン酸カルシウム、アパタイト、タルク等の粒子が挙げられる。
【0080】
無機粒子としては、難燃性の観点から、金属水酸化物粒子が好ましく、電解液に対して安定でありガス発生を抑制する観点から、金属硫酸塩粒子が好ましい。無機粒子は、金属水酸化物粒子及び金属硫酸塩粒子からなる群から選ばれる少なくとも1種を含むことが好ましい。
【0081】
絶縁層に含まれる無機粒子の平均一次粒径は、絶縁層を多孔質化してイオン透過性を高める観点から、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上が更に好ましい。
絶縁層に含まれる無機粒子の平均一次粒径は、絶縁層を薄膜化して電池のエネルギー密度を高める観点から、1.00μm未満が好ましく、0.95μm未満がより好ましく、0.90μm未満が更に好ましい。
【0082】
無機粒子として平均一次粒径が異なる無機粒子を2種以上併用してもよく、その場合、それぞれの平均一次粒径が上記範囲であることが好ましく、且つ、全体の平均一次粒径が上記範囲であることが好ましい。
【0083】
無機粒子の平均一次粒径は、走査型電子顕微鏡(SEM)による観察において無作為に選んだ一次粒子100個の長径を計測し、100個の長径を平均することで求める。無機粒子の一次粒径が小さくSEMでは一次粒子の長径が測定困難な場合及び/又は無機粒子の凝集が顕著でありSEMでは一次粒子の長径が測定困難な場合は、無機粒子のBET比表面積(m2/g)を測定し、無機粒子を真球と仮定して、下記の式に従い平均一次粒径を求める。
平均一次粒径(μm)=6÷[比重(g/cm3)×BET比表面積(m2/g)]
BET比表面積(m2/g)は、窒素ガスを用いたガス吸着法であってBET多点法により求める。ガス吸着法による測定の際、窒素ガスは、無機粒子に液体窒素の沸点(-196℃)で吸着させる。
【0084】
SEMによる観察又はBET比表面積の測定に供する試料は、絶縁層を形成する材料である無機粒子、又は、絶縁層から取り出した無機粒子である。絶縁層から無機粒子を取り出す方法に制限はなく、例えば、絶縁層を800℃程度に加熱してバインダ樹脂を消失させ無機粒子を取り出す方法、絶縁層を有機溶剤に浸漬して有機溶剤でバインダ樹脂を溶解させ無機粒子を取り出す方法などが挙げられる。
【0085】
絶縁層に占める無機粒子の質量割合は、絶縁層の電気的絶縁性を高める観点と、絶縁層の空孔率を高めてイオン透過性を良好にし、電池の放電特性を高める観点とから、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましい。
絶縁層に占める無機粒子の質量割合は、絶縁層の機械強度を高め、絶縁層と電極との接着を良好にして、電池のクーロン効率及びセル強度を高める観点から、90質量%未満が好ましく、88質量%未満がより好ましく、85質量%未満が更に好ましい。
【0086】
-有機フィラー-
有機フィラーとしては、例えば、架橋ポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子からなる粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール等の耐熱性高分子からなる粒子;などが挙げられる。これら有機フィラーは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0087】
-その他の成分-
絶縁層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。これらは、絶縁層を形成するための塗工液に添加されることがある。
【0088】
[絶縁層の特性]
絶縁層の厚さは、絶縁層の電気的絶縁性及び機械的強度の観点から、5μm以上が好ましく、イオン透過性及び電池のエネルギー密度の観点から、30μm以下が好ましく、25μm以下がより好ましく、20μm以下が更に好ましい。
【0089】
絶縁層の単位面積当たりの質量は、絶縁層の電気的絶縁性及び機械的強度の観点から、4g/m2以上が好ましく、8g/m2以上がより好ましく、10g/m2以上が更に好ましく、イオン透過性及び電池のエネルギー密度の観点から、40g/m2未満が好ましく、35g/m2未満がより好ましく、30g/m2未満が更に好ましい。
【0090】
絶縁層の空孔率は、イオン透過性の観点から、40%以上が好ましく、45%以上がより好ましく、50%以上が更に好ましく、絶縁層の電気的絶縁性及び機械的強度の観点から、80%未満が好ましく、75%未満がより好ましく、70%未満が更に好ましい。
【0091】
絶縁層の空孔率ε(%)は、下記の方法で求める。
絶縁層の単位面積当たりの質量を絶縁層の厚さで除算し、絶縁層の嵩密度d1を求める。絶縁層の真密度d0を、下記の式(1)から算出する。そして、絶縁層の空孔率ε(%)を、下記の式(2)から算出する。
式(1)・・・d0=100/(絶縁層の樹脂固形分比/樹脂の密度+絶縁層の無機粒子固形分比/無機粒子の密度)
式(2)・・・ε=(1-d1/d0)×100
【0092】
[電解液]
電解液としては、例えば、リチウム塩を非水系溶媒に溶解した溶液が挙げられる。
リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4等が挙げられる。
非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;などが挙げられる。これらは単独で用いても混合して用いてもよい。
【0093】
リチウムイオン二次電池の電解液としては、環状カーボネートと鎖状カーボネートとを環状カーボネート:鎖状カーボネート=20:80~40:60(質量比)で混合し、リチウム塩を0.5mol/L~1.5mol/Lの範囲にて溶解した溶液が好適である。
【0094】
図1は、本開示の非水系二次電池の実施形態の一例である。
図1は、電池の断面を模式的に示した図である。
図1は、非水系二次電池の実施形態の例示であり、実施形態を限定するものではない。
【0095】
図1に示す非水系二次電池100は、電池素子10と、電解液50と、外装材90とを備える。外装材90の内部に電池素子10及び電解液50が収容されている。
【0096】
電池素子10は、正極20と絶縁層30と負極40とを備える。電池素子10は、正極20と絶縁層30と負極40とがこの順に少なくとも1層ずつ積層した構造を有する。
【0097】
正極20は、正極集電体22と、正極集電体22の両面に配置された正極活物質層24とを備える。正極集電体22の一端は、正極活物質層24が配置されておらず、例えば、タブの形状になっている。
【0098】
負極40は、負極集電体42と、負極集電体42の両面に配置された負極活物質層44とを備える。負極集電体42の一端は、負極活物質層44が配置されておらず、例えば、タブの形状になっている。
【0099】
絶縁層30は、一方の面が正極活物質層24に接し、他方の面が負極活物質層44に接している。絶縁層30は、多孔質層であり、絶縁層30には電解液50が含浸している。
【0100】
外装材90としては、金属缶、アルミニウムラミネートフィルム製パック等が挙げられる。
【0101】
非水系二次電池100は、外装材90の外部に正極端子(図示せず)と負極端子(図示せず)とを備える。正極端子には、複数の正極集電体22が連結し、負極端子には、複数の負極集電体42が連結している。正極端子と正極集電体22との間(又は、負極端子と負極集電体42との間)には、リードタブが介在していてもよい。
【0102】
非水系二次電池100の形状としては、例えば、角型、円筒型、コイン型などが挙げられる。
【0103】
[非水系二次電池の製造方法]
本開示の非水系二次電池は、例えば、下記の製造方法によって製造可能である。すなわち、
絶縁層を支持体上に湿式塗工法又は乾式塗工法で形成する工程Aと、
正極と負極との間に絶縁層を配置した積層体を製造する工程Bと、
積層体にウェットヒートプレス及び/又はドライヒートプレスを行う工程Cと、
を含む製造方法である。
【0104】
-工程A-
支持体とは、絶縁層形成用の塗工液を塗工するシート状の材料を意味する。支持体としては、例えば、正極、負極、剥離シートが挙げられる。
【0105】
湿式塗工法とは、塗工層を凝固液中で固化させる方法を意味し、乾式塗工法とは、塗工層を乾燥させて固化させる方法を意味する。
【0106】
工程Aの実施形態例として、絶縁層を正極の活物質層上に湿式塗工法又は乾式塗工法で形成する工程;絶縁層を負極の活物質層上に湿式塗工法又は乾式塗工法で形成する工程;絶縁層を剥離シート上に湿式塗工法又は乾式塗工法で形成する工程;が挙げられる。
【0107】
以下、絶縁層を支持体上に湿式塗工法で形成する実施形態例を説明する。
【0108】
湿式塗工法の実施形態例として、樹脂及び無機粒子を含有する塗工液を支持体上に塗工し、凝固液に浸漬して塗工層を固化させ、凝固液から引き揚げ水洗及び乾燥を行う形態が挙げられる。
【0109】
絶縁層形成用の塗工液は、樹脂及び無機粒子を溶媒に溶解又は分散させて作製する。塗工液には、必要に応じて、樹脂及び無機粒子以外のその他の成分を溶解又は分散させる。
【0110】
塗工液の調製に用いる溶媒は、樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含む。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。
【0111】
塗工液の調製に用いる溶媒は、良好な多孔構造を有する絶縁層を形成する観点から、相分離を誘発させる相分離剤を含むことが好ましい。したがって、塗工液の調製に用いる溶媒は、良溶媒と相分離剤との混合溶媒であることが好ましい。相分離剤は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。
【0112】
塗工液の調製に用いる溶媒としては、良好な多孔構造を有する絶縁層を形成する観点から、良溶媒と相分離剤との混合溶媒であって、良溶媒を60質量%以上含み、相分離剤を5質量%~40質量%含む混合溶媒が好ましい。
【0113】
塗工液の樹脂濃度は、良好な多孔構造を有する絶縁層を形成する観点から、3質量%~10質量%であることが好ましい。塗工液の無機粒子濃度は、良好な多孔構造を有する絶縁層を形成する観点から、2質量%~50質量%であることが好ましい。
【0114】
塗工液は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤等を含有していてもよい。これらの添加剤は、非水系二次電池の使用範囲において電気化学的に安定で電池内反応を阻害しないものであれば、絶縁層に残存するものであってもよい。
【0115】
支持体への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、ロールコーター、グラビアコーター、ナイフコーター等が挙げられる。
【0116】
塗工層の固化は、塗工層を形成した支持体を凝固液に浸漬し、塗工層において相分離を誘発しつつ樹脂を固化させることで行われる。これにより、支持体上に絶縁層が配置された複合体を得る。
【0117】
凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水とを含むことが一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、絶縁層の多孔構造の形成及び生産性の観点から好ましい。凝固液の温度は、例えば20℃~50℃である。
【0118】
凝固液中で塗工層を固化させた後、複合体を凝固液から引き揚げ、水洗する。水洗することによって、複合体から凝固液を除去する。さらに、乾燥することによって、複合体から水を除去する。水洗は、例えば、複合体を水浴中を搬送することによって行う。乾燥は、例えば、複合体を高温環境中を搬送すること、複合体に風をあてること、複合体をヒートロールに接触させること等によって行う。乾燥温度は40℃~80℃が好ましい。絶縁層中の水を電解液と接触させないために、絶縁層から水をできる限り除去する観点から、高温下(例えば80℃~110℃)の減圧乾燥を行うことが好ましい。
【0119】
絶縁層は、乾式塗工法でも形成し得る。乾式塗工法の実施形態例として、塗工液を支持体に塗工し、塗工層を乾燥させて溶媒を揮発除去することにより、絶縁層を支持体上に形成する形態が挙げられる。
【0120】
-工程B-
工程Bの実施形態例として、正極と、負極活物質層上に絶縁層を形成した負極とを重ねる実施形態;負極と、正極活物質層上に絶縁層を形成した正極とを重ねる実施形態;正極と、剥離シートから剥離した絶縁層と、負極とを重ねる実施形態;などが挙げられる。
【0121】
正極と負極との間に絶縁層を配置する方式は、正極、絶縁層、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)でもよく、正極、絶縁層、負極、絶縁層をこの順に重ね、長さ方向に捲回する方式でもよい。
【0122】
-工程C-
ウェットヒートプレスとは、絶縁層に電解液を含浸させて熱プレス処理を行うことを意味し、ドライヒートプレスとは、塗工層に電解液を含浸させずに熱プレス処理を行うことを意味する。
【0123】
工程Cの実施形態例として、下記の(1)~(3)が挙げられる。
【0124】
(1)積層体を外装材(例えばアルミニウムラミネートフィルム製パック。以下同じ)に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の上から積層体をウェットヒートプレスし、電極と絶縁層との接着と、外装材の封止とを行う。
【0125】
(2)積層体をドライヒートプレスして電極と絶縁層とを接着した後、外装材に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の封止を行う。
【0126】
(3)積層体をドライヒートプレスして電極と絶縁層とを接着した後、外装材に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の上からさらに積層体をウェットヒートプレスし、電極と絶縁層との接着と、外装材の封止とを行う。
【0127】
上記(1)~(3)の製造方法における熱プレスの条件としては、ドライヒートプレス及びウェットヒートプレスそれぞれ、プレス圧は0.1MPa~10.0MPaが好ましく、温度は60℃~100℃が好ましい。
【実施例】
【0128】
以下に実施例を挙げて、本開示の非水系二次電池をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示の非水系二次電池の範囲は、以下に示す具体例により限定的に解釈されるべきではない。
【0129】
<測定方法、評価方法>
実施例及び比較例に適用した測定方法及び評価方法は、以下のとおりである。
【0130】
[ポリフッ化ビニリデン系樹脂を構成する単量体の割合]
ポリフッ化ビニリデン系樹脂10mgを重ジメチルスルホキシド0.6mLに100℃にて溶解し、100℃で19F-NMRスペクトルを測定し、室温で1H-NMRスペクトルを測定した。NMRスペクトルにおける単量体由来のピーク強度の比から、ポリフッ化ビニリデン系樹脂を構成する単量体の割合を求めた。
【0131】
[絶縁層の厚さ]
電極の厚さ(μm)と、電極上に絶縁層が配置された複合体の厚さ(μm)とは、接触式の厚み計(株式会社ミツトヨ、LITEMATIC VL-50)にて5cm×3cmの長方形の中の20点を測定し、これを平均することで求めた。測定端子は直径5mmの円柱状の端子を用い、測定中に0.01Nの荷重が印加されるように調整した。そして、複合体の厚さから電極の厚さを減算した値を絶縁層の厚さ(μm)とした。
【0132】
[絶縁層の単位面積当たりの質量]
電極と、電極上に絶縁層が配置された複合体とを、それぞれ5cm×3cmの長方形に切り出し、質量(g)をそれぞれ測定し、その質量を面積(0.0015m2)で除算して単位面積当たりの質量(g/m2)を求めた。そして、複合体の単位面積当たりの質量から電極の単位面積当たりの質量を減算した値を、絶縁層の単位面積当たりの質量(g/m2)とした。
【0133】
[絶縁層の空孔率]
先述の方法で絶縁層の空孔率ε(%)を求めた。
【0134】
[無機粒子の平均一次粒径]
無機粒子の平均一次粒径は、絶縁層を形成するための塗工液に添加する前の無機粒子を試料とし、走査型電子顕微鏡(SEM)による観察において無作為に選んだ一次粒子100個の長径を計測し、100個の長径を平均することで求めた。
【0135】
[放電特性]
電池に、下記(a)の充放電を5サイクル行った後、下記(b)の充放電を1サイクル行った。
(a)4mA/4.2Vで15時間の定電流定電圧充電、及び、4mA/2.5Vカットオフで定電流放電
(b)8mA/4.2Vで8時間の定電流定電圧充電、及び、200mA/2.5Vカットオフで定電流放電
上記(b)の放電容量を上記(a)の5サイクル目の放電容量で除算し、得られた値を電池の放電特性とした。参考例1の放電特性を基準値とし、実施例及び比較例の放電特性それぞれについて参考例1に対する百分率を算出し、下記のとおり分類した。
A:95%以上
B:85%以上95%未満
C:70%以上85%未満
D:70%未満
【0136】
[クーロン効率]
上記(a)の1サイクル目の放電容量を充電容量で除算し、得られた値を電池のクーロン効率とした。参考例1のクーロン効率を基準値とし、実施例及び比較例のクーロン効率それぞれについて参考例1に対する百分率を算出し、下記のとおり分類した。
A:95%以上
B:85%以上95%未満
C:70%以上85%未満
D:70%未満
【0137】
[セル強度]
電池に、ISO178に準じて3点曲げ試験を行い、電池が破壊に至ったときの最大荷重(N)を求めた。参考例1の最大荷重を基準値とし、実施例及び比較例の最大荷重それぞれについて参考例1に対する百分率を算出し、下記のとおり分類した。
A:90%以上
B:90%未満
【0138】
<非水系二次電池の製造>
[実施例1]
-正極の作製-
コバルト酸リチウム粉末94質量部と、アセチレンブラック3質量部と、ポリフッ化ビニリデン樹脂3質量部と、適量のN-メチル-2-ピロリドンとを混練し、スラリーを作製した。スラリーを厚さ20μmのアルミニウム箔上に塗布し、乾燥後プレスし、正極(片面塗工、目付20.5mg/cm2、密度2.95g/cm3)を得た。
【0139】
-負極の作製-
グラファイト粉末96.2質量部と、スチレン-ブタジエン共重合体の変性体2.8質量部と、カルボキシメチルセルロース1.0質量部と、適量の水とを混練し、スラリーを作製した。スラリーを厚さ15μmの銅箔上に塗布し、乾燥後プレスし、負極(片面塗工、目付10.0mg/cm2、密度1.60g/cm3)を得た。
【0140】
-絶縁層の作製-
全重合成分に占めるHFPの割合が2.4モル%であり、全重合成分に占めるアクリル酸の割合が0.5モル%であるVDF-HFP-アクリル酸三元共重合体を用意した。この樹脂を、PVDF系樹脂(A)という。
【0141】
PVDF系樹脂(A)を、濃度が5質量%となるように、ジメチルアセトアミド(DMAc)及びトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解した後、水酸化マグネシウム粒子(平均一次粒径0.88μm)を加えて攪拌混合し、塗工液(A)を得た。PVDF系樹脂(A)と水酸化マグネシウム粒子との質量比(PVDF系樹脂(A):水酸化マグネシウム粒子)が20:80であった。
【0142】
ナイフコーターを用いて塗工液(A)を負極の活物質層上に塗工した。これを、凝固液(DMAc:水=50:50(質量比)、液温25℃)に5分間浸漬し塗工層を固化させ、次いで、水温25℃の水洗槽で1分間洗浄した。これを水洗槽から引き上げ、70℃の恒温槽に入れて15分間乾燥した後、110℃で3時間減圧乾燥した。こうして、負極上に絶縁層が配置された複合体を得た。
【0143】
-電池の作製-
正極を5.0cm×3.0cmに切り出し、負極上に絶縁層が配置された複合体を5.2cm×3.2cmに切り出して、それぞれにリードタブを溶接した。正極活物質層と絶縁層とが接するように、正極と複合体とを重ね、積層体を得た。積層体に電解液を含浸させ、アルミニウムラミネートフィルムの外装材に封入した。外装材の上から熱プレス(85℃、0.5MPa、2分間)して、電極と絶縁層との接着を行い、電池を得た。電解液には1mol/L LiPF6-エチレンカーボネート:エチルメチルカーボネート(質量比3:7)を用いた。電池の設定容量は40mAh(4.2V-2.5Vの範囲)とした。
【0144】
[実施例2~9、比較例1~3]
実施例1と同様にして、但し、絶縁層の材料、組成及び厚さを表1に記載の仕様にして各電池を作製した。
実施例6等において使用したPVDF系樹脂(B)は、全重合成分に占めるHFPの割合が5.7モル%であり、全重合成分に占めるアクリル酸の割合が0.8モル%であるVDF-HFP-アクリル酸三元共重合体である。
比較例3において使用したPVDF系樹脂(C)は、全重合成分に占めるHFPの割合が2.5モル%であるVDF-HFP二元共重合体である。
実施例5及び実施例9においては、水酸化マグネシウム粒子と硫酸バリウム粒子とを、水酸化マグネシウム粒子:硫酸バリウム粒子=50:50(質量比)で併用した。
【0145】
[参考例1]
-3層からなるセパレータの作製-
リバースロールコーターを用いて塗工液(A)をポリエチレン微多孔膜(厚さ7μm、空孔率36%、ガーレ値120秒/100mL)の両面に等量塗工した。これを、凝固液(DMAc:水=50:50(質量比)、液温40℃)に浸漬し塗工層を固化させ、次いで、水温40℃の水洗槽で洗浄し、乾燥した。こうして、ポリエチレン微多孔膜の両面に塗工層が形成されたセパレータを得た。
【0146】
-電池の作製-
実施例1における正極及び負極を用意した。正極を5.0cm×3.0cmに切り出し、負極を5.2cm×3.2cmに切り出して、それぞれにリードタブを溶接した。セパレータを5.4cm×3.4cmに切り出した。
電極活物質層とセパレータとが接するように、正極、セパレータ、負極の順に重ね、積層体を得た。積層体に電解液(実施例1で使用したものと同じ電解液である。)を含浸させ、アルミニウムラミネートフィルムの外装材に封入した。外装材の上から熱プレス(85℃、0.5MPa、2分間)して、電極とセパレータとの接着を行い、電池を得た。
【0147】
実施例1~9、比較例1~3及び参考例1の各電池の組成、物性及び評価結果を表1に示す。
【0148】
【符号の説明】
【0149】
100 非水系二次電池
10 電池素子
20 正極
22 正極集電体
24 正極活物質層
30 絶縁層
40 負極
42 負極集電体
44 負極活物質層
50 電解液
90 外装材