(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-04
(45)【発行日】2023-09-12
(54)【発明の名称】レーザー切削縁部を評価するための方法、移動端末機器およびシステム
(51)【国際特許分類】
B23K 26/00 20140101AFI20230905BHJP
G06T 7/00 20170101ALI20230905BHJP
B23K 26/38 20140101ALI20230905BHJP
B23K 26/03 20060101ALI20230905BHJP
【FI】
B23K26/00 P
G06T7/00 Q
B23K26/38 A
B23K26/03
(21)【出願番号】P 2021576701
(86)(22)【出願日】2020-05-14
(86)【国際出願番号】 EP2020063545
(87)【国際公開番号】W WO2020259920
(87)【国際公開日】2020-12-30
【審査請求日】2021-12-23
(31)【優先権主張番号】102019209088.5
(32)【優先日】2019-06-24
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】502300646
【氏名又は名称】トルンプフ ヴェルクツォイクマシーネン エス・エー プルス コー. カー・ゲー
【氏名又は名称原語表記】TRUMPF Werkzeugmaschinen SE + Co. KG
【住所又は居所原語表記】Johann-Maus-Str. 2, 71254 Ditzingen, Germany
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】レオニー フェリカ タッツェル
(72)【発明者】
【氏名】マヌエル キーファー
(72)【発明者】
【氏名】イェンス オットナード
【審査官】山下 浩平
(56)【参考文献】
【文献】特開平11-129083(JP,A)
【文献】特表2012-533434(JP,A)
【文献】中国実用新案第204997230(CN,U)
【文献】米国特許出願公開第2003/0120714(US,A1)
【文献】米国特許出願公開第2006/0049158(US,A1)
【文献】特開2019-012426(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 26/00 - 26/70
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
ワークピース(12)のレーザー切削縁部(16)を評価するための方法であって、
A)前記レーザー切削縁部(16)およびその周囲の画像データを取得するステップと、
B)前記画像データをセグメント化し、前記画像データの関心セグメントを識別するステップであって、前記関心セグメントは、前記レーザー切削縁部(16)の画像データを含むステップと、
C)前記関心セグメントについて画質認識を実施するステップと、
D)前記画質認識に基づいて、ユーザーのための出力を生成するステップとを含
み、
前記ステップB)において、前記画像データの各ピクセルについて、それが前記レーザー切削縁部(16)の一部を表しているかどうかが求められ、記憶される、方法。
【請求項2】
ワークピース(12)のレーザー切削縁部(16)を評価するための方法であって、
A)前記レーザー切削縁部(16)およびその周囲の画像データを取得するステップと、
B)前記画像データをセグメント化し、前記画像データの関心セグメントを識別するステップであって、前記関心セグメントは、前記レーザー切削縁部(16)の画像データを含むステップと、
C)前記関心セグメントについて画質認識を実施するステップと、
D)前記画質認識に基づいて、ユーザーのための出力を生成するステップとを含み、
前記ステップA)の前に、前記レーザー切削縁部(16)に関するパラメータが受信される、方法。
【請求項3】
前記ステップB)は、ニューラルネットワークを用いて実行される、請求項1または2に記載の方法。
【請求項4】
前記画質認識は、鮮明度認識を含む、請求項1から3までのいずれか一項に記載の方法。
【請求項5】
前記鮮明度認識は、前記関心セグメントの画像データの周波数領域への変換を含み、前記鮮明度認識は、前記周波数領域において実施される、請求項4に記載の方法。
【請求項6】
前記ステップA)の前に、前記レーザー切削縁部(16)は、レーザービームを用いて、特に付加的に圧縮空気ブラストを用いて切削される、請求項1から5までのいずれか一項に記載の方法。
【請求項7】
移動端末機器(10)であって、
・レーザー切削縁部(16)の画像データを周囲とともに取得するように構成されたカメラ(18)を備え、
前記移動端末機器(10)は、
・前記画像データを計算ユニットに伝送し、前記計算ユニットから前記画像データを受信するように構成され、
前記受信された画像データは、セグメント化され、前記受信された画像データ内で関心セグメントが識別され、
前記関心セグメントは、前記レーザー切削縁部(16)の画像データを含み、
前記受信された画像データは、前記関心セグメントについての画質認識の結果を含
み、
前記画像データの各ピクセルについて、それが前記レーザー切削縁部(16)の一部を表しているかどうかが求められ、記憶される、移動端末機器(10)。
【請求項8】
移動端末機器(10)であって、
・レーザー切削縁部(16)の画像データを周囲とともに取得するように構成されたカメラ(18)を備え、
前記移動端末機器(10)は、
・前記画像データを計算ユニットに伝送し、前記計算ユニットから前記画像データを受信するように構成され、
前記受信された画像データは、セグメント化され、前記受信された画像データ内で関心セグメントが識別され、
前記関心セグメントは、前記レーザー切削縁部(16)の画像データを含み、
前記受信された画像データは、前記関心セグメントについての画質認識の結果を含み、
前記カメラ(18)による前記レーザー切削縁部(16)の画像データの取得前に、前記レーザー切削縁部(16)に関するパラメータが受信される、移動端末機器(10)。
【請求項9】
ユーザーのための出力を生成するように構成された出力インターフェース(24)を備え、前記出力は、前記画質認識の結果に基づいている、請求項
7または8に記載の移動端末機器。
【請求項10】
前記移動端末機器(10)は、携帯電話、タブレットコンピュータ、またはウェブカメラとして構成可能である、請求項
7から9までのいずれか一項に記載の移動端末機器。
【請求項11】
前記計算ユニットは、前記画像データをセグメント化し、前記画像データの関心セグメントを識別するように構成されており、前記関心セグメントは、前記レーザー切削縁部(16)の画像データを含み、前記計算ユニットは、前記関心セグメントについて画質認識を実施するように構成されている、請求項
7から10までのいずれか一項に記載の移動端末機器。
【請求項12】
前記レーザー切削縁部(16)に関するパラメータを受信するための少なくとも1つのインターフェース(20,22,24)を備える、請求項
7から11までのいずれか一項に記載の移動端末機器。
【請求項13】
前記少なくとも1つのインターフェースは、ユーザーのための入力インターフェース(20,22)として、かつ/またはレーザー切削機械(14)と通信するための通信インターフェース(24)として構成されている、請求項12に記載の移動端末機器。
【請求項14】
前記移動端末機器は、計算ユニットを備えている、請求項
7から13までのいずれか一項に記載の移動端末機器。
【請求項15】
システムであって、
・レーザービームを用いて、レーザー切削縁部(16)が、ワークピース(12)内へ切削するように構成されたレーザー切削機械(14)と、
請求項
7から14までのいずれか一項に記載の移動端末機器(10)とを含んでいる、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザー切削縁部を評価するための方法、移動端末機器、ならびに本方法のステップを実施するためのシステムに関する。
【0002】
レーザービームカッティングとも称されるレーザー切削は、連続的なもしくはパルス制御されたレーザービームを用いた材料切除による固形物の切断を指す。このようにして、金属、プラスチック、ガラス、および有機材料を切削することができる。その際、波長などのレーザービームのパラメータは、平均出力、パルスエネルギー、およびパルス持続時間を用いて用途に応じて適合化する必要がある。付加的に、多くはレーザーと同心円状に配置される切削ノズルは、集束光学系を蒸気や飛沫から保護し、さらに除去された材料を切り口から吹き飛ばすプロセスガスを提供する。切削縁部の切れ味は、特に金属、とりわけ板金を切削するときに大きく異なる可能性がある。作用領域内で到達した温度と、供給されるプロセスガスの種類とに応じて、接合材料の様々な凝固状態が生じる。高い切削品質は、切削縁部におけるすじ傷形成の少なさと、切削部下側のバリ形成の無さとによって特徴付けられる。連続的な進行とその結果として生じる材料の溶融とにより、材料は切削縁部において硬化し得る。この場合、凝固は波状に起こる可能性があり、これによって特徴的なすじ傷構造もしくは切削の粗さが伴う可能性がある。まくれやバリの形成の原因は、多くの場合、ガス流の少なくすべき噴出力にある。切削下方縁部における溶融液滴は、凝固して、多かれ少なかれ強固に付着するまくれ/バリを形成する可能性がある。切削品質に影響を与えるパラメータには、焦点位置、送り速度、レーザー出力、強度分布、または切削ガス圧などが挙げられる。切削縁部の評価は、多くの場合、作業者の観察または手作業感覚によって、あるいは高価な測定センサシステムを用いた高さプロファイルの測定によって行われる。切削されたワークピースのその後の使用目的に応じて、切削縁部の品質には非常に異なる、時には非常に高い要件が課せられる。
【0003】
米国特許出願公開第2006/0049158号明細書には、自動レーザープロセスを制御するための方法が開示されており、この方法では、カメラを用いてプロセスの結果が撮像され、プロセスのさらなる制御のために使用される。
【0004】
それに対して、本発明の課題は、プロセス結果の評価の際の品質をさらに向上させることにある。
【0005】
この課題は、請求項1による方法、請求項8による移動端末機器、ならびに請求項15によるシステムによって解決される。従属請求項は、本発明の好適な発展形態に関する。
【0006】
ワークピースのレーザー切削縁部を評価するための方法は、少なくとも以下のステップを含む。すなわち、
A)レーザー切削縁部およびその周囲の画像データを取得するステップと、
B)画像データをセグメント化し、画像データの関心セグメントを識別するステップであって、ここで、関心セグメントは、レーザー切削縁部の画像データを含むステップと、
C)関心セグメントについて画質認識を実施するステップと、
D)画質認識に基づいて、ユーザーのための出力を生成するステップとを含む。
【0007】
ワークピースは、好適には、固体材料、特に、例えばガラスまたは金属、とりわけ板金などの反射率の高い材料からなる。
【0008】
本発明の方法において、ステップA)では、カメラを用いてレーザー切削縁部およびその周囲の画像が取得される。この取得された画像は、デジタル化された形態で画像データとして画像ファイルに格納される。1つのピクセルは、この場合、画像の個々の画素である。カメラによって取得された画像区分には、レーザー切削縁部に関係するのではなく、むしろレーザー切削縁部から離れたワークピース上かまたはワークピース外でさえも存在する領域が含まれる可能性がある。このレーザー切削縁部のいわゆる周囲は、レーザー切削縁部に直接関係する画像区分よりも画質の評価にとってあまり関連性がない。
【0009】
ステップB)での画像データのセグメント化は、電子画像処理を用いて行われ、画像の関心セグメントの識別をもたらし、ここで、画像の関心セグメントは、レーザー切削縁部の画像データを有する。この方法が良好に機能するためには、関心セグメントの大多数がレーザー切削縁部の画像データを含むべきであるが、ごくわずかな部分についてだけはレーザー切削縁部の周囲の画像データを含むべきである。
【0010】
好適には、ステップB)では、画像データの各ピクセルについて、当該ピクセルがレーザー切削縁部の一部であるか、またはレーザー切削縁部の周囲の一部であるかどうかが求められる。さらに好適には、ステップB)の結果として、画像データの各ピクセルについて、それがレーザー切削縁部の一部であるか、またはレーザー切削縁部の周囲の一部であるかどうかかが格納される。
【0011】
本発明の一実施形態では、ステップB)は、ニューラルネットワークを用いて実行される。このニューラルネットワークは、人工ニューラルネットワークとも称され、通常、コンピュータ上で動作するアルゴリズムである。これには入力層と出力層、ならびに任意選択的に1つ以上の中間層が含まれ、それらは例えば「Deep Learning」によってトレーニング可能である。入力層では、ニューラルネットワークに、例えば画像データなどのデータを供給することができる。出力層では、ニューラルネットワークは、結果についての提案、例えば画像データのセグメント化についての提案を出力することができる。これらの提案は、ニューラルネットワークによって付加的にそれぞれ、アルゴリズムがセグメント化を成功裡に実施すると評価される確率を出力する値を備えていてもよい。次いで、出力データの適正さがユーザーによって評価され得る。ユーザーのこの評価は、ニューラルネットワークが1つもしくは複数の自身のアルゴリズムの改善のために利用することができる。この目的のために、中間層において、入力層のデータを、係数や計算機能を用いて他のデータと結合させて、それによる新たなデータを中間層において生成することができる。他のデータは、この中間層やさらなる中間層のデータ、あるいは出力層のデータであってもよい。これらの係数や計算機能の適合化は、ニューラルネットワークの「トレーニング」と称することもできる。ニューラルネットワークをトレーニングすることにより、このニューラルネットワークを過去の経験から学習させることができる。ニューラルネットワークの学習段階では、トレーニングデータベースの例示的画像を使用することもでき、この例示的画像では、レーザー切削縁部が(例えばモノクロの、特に緑色の)背景の前に結像されている。これらの例示的画像については、画像処理によって、どのピクセルがレーザー切削縁部に属し、どのピクセルが(例えば緑色の)背景に属するかを示すラベルをピクセルに付加することができる。これらのラベルや所属するピクセルのコレクションは、所属する例示的画像の「Ground Truth」とも称される。その上さらに、緑色の背景は他の背景によって置き換えることができ、それによって、現実の撮像シーンをシミュレートすることができる。これにより、トレーニングデータベースを拡大することができる。
【0012】
本発明の一実施形態では、関心セグメントの認識のために、「Spatial Pyramid Pooling」アルゴリズムと「Encoder Decoder」アルゴリズムとの組み合わせが使用される。好適には、2つのアルゴリズムは、多様な意味的情報がエンコーダモジュールに含まれかつ詳細な対象の境界、例えばレーザー切削縁部の境界が簡素で効果的なデコーダーモジュールから得られるように組み合わされる。このエンコーダモジュールは、「Atrous Convolution」アルゴリズムを用いて、特徴を任意の分解能で抽出することを可能にさせる。適切なアルゴリズムの一例には、例えば、Chen,L.-C.、Zhu,Y.、Papandreou,G.、Schroff,F.、Adam,H.らによる文献「Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(arXiv:1802.02611v3 [cs.CV] 22 Aug 2018)」に記載されるようなDeepLabV3+Netzがある。
【0013】
ステップC)では、関心セグメントの画質認識が実施される。この画質認識は、ここでは、関心セグメントに絞られる。なぜなら、これが主としてレーザー切削縁部を示すからである。レーザー切削縁部の周囲についての、つまりレーザー切削縁部を示さない画像の領域についての画質認識は、レーザー切削縁部の品質の評価についてのものとあまり関連性がない。
【0014】
ステップC)は、好適には、画質の1つ以上の態様、例えば露出認識および/または鮮明度認識を含む。
【0015】
鮮明度認識については、好適には、画像の画像データが、周波数領域に変換される。周波数領域への変換は、例えば、フーリエ変換を用いて行うことができる。次いで、鮮明度認識は、好適には、周波数領域における画像データに基づいて行われる。本発明の一実施形態では、周波数領域における鮮明度認識について、関心セグメント内の撮像された画像データを用いて単独で作業する、つまり良好なもしくは満足のいく鮮明度を有する比較画像を必要としないアルゴリズムが使用される。適切なアルゴリズムの一例には、例えば、De,K.、Masilamani,V.らによる文献「Image Sharpness Measure for Blurred Images in Frequency Domain(Procedia Engineering 64(2013)149-158)」に記載されるようなNR-IQA法がある。
【0016】
この方法は、ユーザーに、切削縁部自体の品質を求めるのに十分な品質のレーザー切削縁部の画像の撮像を可能にさせることができる。ステップD)では、ユーザーは、この場合、例えば、カメラのための最良のパラメータの設定に関するフィードバック、および/または例えば、
3次元の鮮明度、静止した最良のコントラスト比、モーション鮮明度、
照度:露出過多および露出不足の回避ならびに最大動特性を拡大するためのHDR(High Dynamic Range)法の使用、
ノイズ:ISOパラメータ化の最適化、
ガンマ補正:周囲光、例えば、よりリアルな色再現のための昼光、ネオンランプなどへの自動的なパラメータ適合化、
絞り:可及的に深い被写界深度への適合化、
の最適化に関するフィードバックを受け取る。
【0017】
次いで、切削縁部自体の品質を求めることは、方法のステップE)で、例えば、レーザー切削縁部の画像を観察することによって行うことができ、かつ/または画像処理によって機械的に行うことができる。
【0018】
本方法の一実施形態では、ステップA)の前に、レーザー切削縁部がレーザービームを用いて、特に圧縮空気ブラストを使用して切削される。このレーザー切削は、好適には、レーザー切削機械を用いて実施される。好適には、レーザー切削縁部の品質の評価結果は、レーザー切削機械にフィードバック結合され、それによって、今後の切削過程に影響を与えることができる。
【0019】
本方法の一実施形態では、ステップA)の前に、レーザー切削縁部および/またはワークピースに関するパラメータが受信される。この受信は、例えば、ユーザーによる入力によって行うことができる。受信は、レーザー切削機械または上位の制御部からのデータの受信によって行うこともできる。付加的に、例えばワークピースの識別子またはワークピースの形状をカメラによって取得することができ、ユーザーにパラメータについての提案を表示することができる。
【0020】
画像データの撮像は、カメラを用いて行われる。このカメラは、特に可視領域での画像撮像機器である。カメラは、複数の撮像装置と、複数の画像から全体画像を生成する画像処理コンポーネントとからなるシステムであってもよい。好適には、カメラは、画像データをデジタル形式で出力するように構成されている。
【0021】
レーザー切削縁部の画像データを周囲とともに取得するように構成されたカメラを備えた移動端末機器は、本方法の実行の際に使用することができる。
【0022】
この移動端末機器は、画像データを計算ユニットに伝送し、計算ユニットから画像データを受信するように構成され、ここで、受信された画像データは、セグメント化され、受信された画像データ内で関心セグメントが識別され、ここで、関心セグメントは、レーザー切削縁部の画像データを含み、ここで、受信された画像データは、関心セグメントの画質認識の結果を含む。したがって、この移動端末機器は、方法のステップB)およびC)に従って計算ユニット内で処理される画像データを受信するように構成されている。
【0023】
計算ユニットは、ここでは、例えば、レーザー切削機械内に配置されてもよいし、あるいは、例えば、上位の制御部の上位の制御ユニット内に配置されてもよい。これは、例えば、移動端末機器がウェブカメラとして構成されている場合に当てはまり得る。
【0024】
本発明の一実施形態では、本方法のステップB)およびC)が実行される計算ユニットが、移動端末機器内に配置されてもよい。これは、例えば、移動端末機器が携帯電話またはタブレットコンピュータとして構成されている場合に当てはまり得る。
【0025】
本移動端末機器は、一実施形態では、ユーザーのための出力を生成するように構成された出力インターフェースを備えることができ、ここで、この出力は、画質認識の結果に基づいている。そのような出力インターフェースは、例えば、携帯電話として構成されている場合、移動端末機器内に存在している。次いで、ユーザーは、携帯電話のカメラを用いてレーザー切削縁部の画像を撮像することができ、同じ携帯電話を介して、画像の品質が十分であるかどうか、ならびに次の撮像でより良好な画質を得るためには、どのパラメータ、例えば画像区分、照明などをユーザーはさらに変更する必要があるかどうかについてフィードバックを受け取る。
【0026】
本発明の一実施形態では、移動端末機器は、レーザー切削縁部および/またはワークピースに関するパラメータを受信するための少なくとも1つのインターフェースを備える。好適には、これらのパラメータを、本方法のステップA)の前に受信する。受信は、例えば、入力インターフェースを介したユーザーによる入力によって行うことができる。受信は、レーザー切削機械または上位の制御部から例えば無線通信インターフェースを介してデータを受信することによって行うこともできる。
【0027】
本方法のステップは、システムの要素上で実行できる。このシステムは、ここでは、レーザー切削機械と移動端末機器とを含むことができる。レーザー切削機械は、ここでは、レーザービームを用いて、特に付加的に、圧縮空気ブラストを用いて、レーザー切削縁部が、ワークピース内へ切削するように構成されてもよい。移動端末機器は、上記で説明したように構成されてもよい。
【0028】
説明された方法、説明された移動端末機器、および説明されたシステムは、画像データの処理と、ユーザーへの所期のフィードバック結合とによって、関連する画像領域内で最良の画質の達成を可能にすることができる。したがって、達成可能な最良の画質は、撮像された対象、例えばレーザー切削縁部の品質を評価するためのさらなるステップE)のための良好な基礎となり得る。次いで、ステップE)の評価は、手動または自動で行うことができる。説明された方法は、例えば、スマートフォンをレーザー切削縁部の撮像のために使用することも同様に可能にする。この方法は、スマートフォンのオートフォーカスが、例えば、場合によって画像のごく一部しか占めていないレーザー切削縁部に焦点を合わせない場合や、ユーザーがスマートフォンを手の中で完全に静止させ続けることができない場合でも、ユーザーが、レーザー切削縁部の良好な品質の画像を撮像することの支援を受けられるという利点を提供する。フィードバックにより、ユーザーは、撮像を繰り返す機会を得る。
【0029】
一実施形態では、本発明は、レーザー切削縁部を評価するための方法のステップを実施するためのプロセッサ可読命令で符号化された、コンピュータ可読の、特に不揮発性の、特に有形の記憶媒体として存在する。
【0030】
本発明のさらなる利点は、説明および図面から明らかになる。同様に、上記で述べた特徴、ならびにさらに引き続き説明する特徴は、本発明に従って、それぞれ、それ自体個別にまたは複数の任意の組み合わせで使用することができる。図示され、説明された実施形態は、網羅的な列挙として理解されるべきではなく、むしろ、本発明の説明のための例示的な特徴を有している。
【図面の簡単な説明】
【0031】
【
図2】移動端末機器(10)およびレーザー切削機械(14)を備えたシステムを概略的に示す。
【
図3】タッチセンシティブディスプレイ(24)上で可能な表示を概略的に示す。
【
図5】レーザー切削機械(14)を備えたシステム(100)の実施形態の概略図を示す。
【
図6】制御システム(600)の実施形態の概略図を示す。
【0032】
図1は、ステップA)、B)、C)、およびD)による、ワークピース12(
図5)のレーザー切削縁部16(
図5)を評価するための方法のフローチャートを概略的に示す。ステップA)では、レーザー切削縁部16およびその周囲の画像データが、カメラ18を用いて撮像される。ステップB)では、画像データが、特にニューラルネットワークを用いてセグメント化され、このセグメント化によって画像データの関心セグメントが求められる。レーザー切削縁部の品質を評価するための方法にとって、レーザー切削縁部自体が画像の重要な領域である。それゆえ、画像データのセグメント化の際には、レーザー切削縁部16上にある画像データの画素、ピクセルが、関心セグメントに割り当てられる。他の画素、ピクセルは、レーザー切削縁部16の周囲に割り当てられる。次いで、ステップC)では、関心セグメントについて、画質認識、特に画像鮮明度認識が好適には周波数範囲において実施される。ステップD)では、ユーザーのための出力が生成され、好適には、ディスプレイ24(
図2)上に出力される。この出力では、ユーザーは、画質認識の結果に関して情報提供され、それによって、画像の品質が、場合によってはその後のステップE)でのレーザー切削縁部16の品質の評価について十分であるかどうかの示唆を得ることができる。画質がレーザー切削縁部16の品質の評価について十分でない場合は、画像の撮像の繰り返しをユーザーに提案することができる。さらにこのことは、画像が十分になるまで、例えば少なくとも1つの画像が十分な品質で利用可能になるまで続く。
【0033】
図2は、移動端末機器10およびレーザー切削機械14を備えたシステムを概略的に示す。移動端末機器10は、カメラ18、任意選択的に入力インターフェースとしてのキーボード20、例えば無線通信用の通信インターフェース22、ならびにタッチセンシティブディスプレイ24を有する。このディスプレイ24は、タッチセンシティブな表面なしの、つまり入力機能性を持たないディスプレイとして構成されてもよい。移動端末機器は、通信インターフェース22を介してレーザー切削機械14または他のユニットと通信するように構成されている。この通信は、好適には、無線で行われるが、有線通信が設けられてもよい。通信インターフェース22を介して、移動端末機器は、例えば、レーザー切削縁部16、ひいてはワークピース12に関するパラメータを、例えば、レーザー切削機械14から受信することができる。これらのパラメータは、例えば、ワークピース12の材料の種類、切削方法の種類、および/またはワークピース12の厚さに関するデータを含む。
【0034】
本発明の一実施形態では、移動端末機器10は、同様に通信インターフェース22を介してカメラ18によって撮像された画像データを計算ユニットに送信し、この計算ユニットから画像データを受信することができる。受信された画像データは、セグメント化され、受信された画像データ内で関心セグメントが識別される。受信された画像データは、関心セグメントの画質認識の結果を有する。計算ユニットも、画像データをセグメント化し、画像データの関心セグメントを識別するように構成されており、ここで、関心セグメントは、レーザー切削縁部の画像データを有し、ここで、計算ユニットは、関心セグメントについて画質認識を実施するように構成されている。前述の計算ユニットは、例えば、
図5に示される計算ユニット122内で実現されてもよい。
【0035】
本発明のさらなる実施形態では、計算ユニットは、移動端末機器10内に実現される。この実施形態については、移動端末機器と計算ユニットとの間の通信は、移動端末機器10内で行われる。
【0036】
図3は、特にタッチセンシティブディスプレイ24、例えば携帯電話またはタブレットコンピュータ上で可能な表示を概略的に示す。画像(表示)26では、本方法のステップA)の前の状況が例示的に示され、使用される材料、使用される材料厚さ、ならびに使用されるプロセスに関するパラメータが既に受信されている。これは、例えば、ユーザーによる入力によって、または通信インターフェースを介した受信によって行われてもよい。同時に、画像26では、カメラが撮像のための準備を完了していることが認識できる。
【0037】
画像(表示)28には、本方法のステップA)の結果が例示的に示され、すなわち、カメラによって撮像された画像が表示される。画像(表示)30には、本方法のステップB)の結果が例示的に示され、すなわち、画像のどの領域において本方法がレーザー切削縁部を局在化したかをユーザーが識別できるようにセグメント化の結果が表示される。
【0038】
画像(表示)32には、本方法のステップC)およびD)の結果が例示的に示され、すなわち、画質認識の結果がユーザーに出力される。図示の例では、様々なグレーの色調で、実際には好適な様々な色合いで、様々な画像領域内での画像の鮮明度や、それで十分かどうか、あるいはさらなる写真の撮像が推奨されるかどうかが示される。
【0039】
図4は、セグメント化の例示的な結果を示す。画像34.1、34.2、および34.3は、レーザー切削縁部の例示的な検査画像である。画像36.1、36.2、36.3は、それぞれ割り当てられたGround Truthデータ、すなわち、切削縁部が一義的に識別される「適正な」所望のセグメント化である。画像38.1、38.2、38.3は、第1のセグメント化アルゴリズムの結果を示し、画像40.1、40.2、40.3は、第2のセグメント化アルゴリズムの結果を示す。画像38.1、38.2、38.3、40.1、40.2、40.3では、2つのアルゴリズムの各々が、レーザー切削縁部を伴う関心セグメントを識別していたことが認識でき、各画像38.1、38.2、38.3、40.1、40.2、40.3におけるより明るく着色された領域において認識できる。
【0040】
図5は、レーザー切削機械14を備えた、ワークピース12を加工処理するためのシステム100を例示的に示す。
【0041】
入力ユニット116を介して、使用されるワークピース材料および/またはその厚さを特に特徴付ける少なくとも1つの材料パラメータ118、使用されるレーザー切削機械14を特に特徴付ける少なくとも1つの機械パラメータ120、ならびに好適には、少なくとも1つの所望の切削縁部品質特徴が入力される。さらに、入力ユニット116を介して少なくとも1つの所望の方法パラメータ、特に、レーザー出力、焦点深度、送り速度、および/またはガス流を入力することができる。
【0042】
システム100は、使用される材料パラメータ118を、測定技術的捕捉、特に重量測定および格納された材料特性データとの比較によって、ならびにワークピース12のワークピース寸法、特にワークピース12の測定によって、自主的に決定するように構成されてもよい。さらに、システム100は、使用されるレーザー切削機械14を自主的に決定するように構成されてもよい。そのような構成により、レーザー切削機械14によるワークピース加工処理の前段階における入力コストを低減する。
【0043】
方法パラメータアルゴリズム124を有する計算ユニット122は、入力された材料パラメータ118および機械パラメータ120、ならびに特に所望の切削縁部品質特徴および/または所望の方法パラメータを読み取り、これらの情報をデータベース128のデータレコード126に格納される。入力された情報に基づいて、方法パラメータアルゴリズム124は、改善された、好適には最適な方法パラメータ、および/または所望の切削縁部品質特徴を達成するために必要な方法パラメータを求める。
【0044】
方法パラメータアルゴリズムは、この目的のためにデータ集約ルーチン127を有している。好適には、方法パラメータアルゴリズムは、データ集約ルーチン127の形態で形成されている。
【0045】
そのように求められた方法パラメータは、表示部130を介して出力され、かつ/またはレーザー切削機械14を制御するための制御部132に転送される。改善された、好適には最適な方法パラメータが通知された後、ユーザーは、方法パラメータの推奨事項を適用可能にするか、方法パラメータの他の設定を実施して方法プロセスを開始することができる。続いて、ワークピース12は、レーザー切削機械14により、予め定められた方法パラメータに基づいて加工処理される。レーザー切削機械14によるワークピース12の加工処理に決定的な方法パラメータ、ならびに方法パラメータアルゴリズム124によって提案された方法パラメータが、このワークピース加工処理のデータレコード126に付加される。
【0046】
データレコード126へのワークピース12の一義的な割り当てを可能にするために、ワークピース12の特徴付けを、特にレーザー切削過程中に、特にレーザー彫刻、好適にはQRコードにより、プロセス内で手動もしくは自動で実施することができる。さらに、この種の特徴付けは、さらなるプロセス経過におけるワークピース12の単なる走査によるワークピースの自動割り当ての利点を有する。ワークピース12の対応する特徴付けが実施される場合、このワークピース加工処理のデータレコード126に対応する情報が付加される。
【0047】
ワークピース12の加工処理に続いて、生じる切削縁部の品質、特に異なる切削縁部品質特徴が求められる。これは、ステップA)、B)、C)、およびD)を含む本方法を使用して行うことができる。ユーザーには、ステップD)を用いて、切削縁部16の光学的撮像品質が十分に良好であるかどうか、あるいはユーザーが撮像過程を繰り返すべきかどうかが示される。切削縁部16の品質を表す画像データは、このワークピース加工処理のデータレコード126に付加される。好適には、レーザー切削機械14によるワークピース12の加工処理に続いて、切削縁部品質特徴の客観的決定が、本方法のステップE)で実施される。その際、画像データに基づいて、切削縁部16の品質は、ステップE)での画像加工処理方法を用いて自動で求められる。好適には、測定結果は、ワークピース加工処理の対応するデータレコード126に付加される。
【0048】
データベース128は、ワークピース加工処理のすべてのデータレコード126を格納するように構成されている。それにより、データベース128は、方法パラメータアルゴリズム124の変更、特に改善、好適には最適化のための基礎を形成する。
【0049】
好適には、既に加工処理されたワークピース12は、それらの切削縁部品質特徴に関して評価され、後続のワークピース12の加工処理に関して方法の改善のために使用される。
【0050】
例えばセンサによるレーザー切削の場合、測定された非定常的方法パラメータ136も同様にデータベース128に格納することができ、現下のワークピース加工処理のデータレコード126を補足することができる。このことは、特に、レーザー切削中の方法パラメータにおける変動を決定し、切断縁部品質の評価に含めるという利点を提供する。これにより、切削縁部品質と機械状態とに関して、特に高い予測可能性を達成することができる。
【0051】
データベース128に格納されたデータレコード126に基づいて、方法パラメータアルゴリズム124の少なくとも1つの、特にすべてのデータ集約ルーチン127の変更、特に改善、好適には最適化を行うことができる。この場合、システム100の異なるユーザーのデータレコード126も、少なくとも1つのデータ集約ルーチン127の入力パラメータと出力パラメータとの間の改善された、特に最適な関係を決定するために一緒に使用することができる。
【0052】
図6は、デバイス内で本方法の1つ以上の態様を実行するための命令を実行するのに適した制御システム600の実施形態の概略図を示す。コンポーネントは例として理解されるべきであり、本発明の特定の実施形態を実装するためのハードウェア、ソフトウェア、ファームウェア、組み込まれた論理コンポーネント、または複数のそのようなコンポーネントの組み合わせの使用もしくは機能性の範囲を限定するものではない。図示されたコンポーネントのいくつかまたはすべてが、制御システム600の一部であってもよい。
【0053】
制御システム600は、この実施形態では、例えば中央処理装置(CPU,DSP)またはプログラマブルロジックモジュール(PLD,FPGA)のような少なくとも1つのプロセッサ601を含む。制御システム600は、作業メモリ603やデータメモリ608も含むことができ、これらはどちらも、バス640を介して相互に通信し、他のコンポーネントとも通信する。バス640は、表示部632、1つ以上の入力デバイス633、1つ以上の出力デバイス634、1つ以上の記憶デバイス635、ならびに様々な記憶媒体636を相互に接続し、さらにプロセッサ601の1つ以上のデバイス、作業メモリ603、およびデータメモリ608に接続することもできる。これらのすべての要素は、バス640に直接結合することも、1つ以上のインターフェース622、623、624、625、626、またはアダプタを介して結合することもできる。
【0054】
制御システム600は、1つ以上の集積回路(IC)、プリント回路基板(PCB)、モバイルハンディ機器、ラップトップもしくはノートブックコンピュータ、分散型コンピュータシステム、計算グリッド、またはサーバーを含めて、何らかの適切な物理的形態を有することができるが、これらに限定されない。プロセッサ601または中央処理装置(CPU)は、場合によっては命令、データ、もしくはプロセッサアドレスを一時的に局所的に格納するためのキャッシュメモリユニット602を含む。プロセッサ601は、少なくとも1つの記憶媒体に格納された命令の実行を支援するように構成されている。
【0055】
作業メモリ603およびデータメモリ608は、それぞれ、コンピュータ可読の、特に不揮発性の、特に有形の記憶媒体として構成されてもよい。それらは、ダイレクトアクセス記憶コンポーネント、例えばRAM604、特に静的RAM「SRAM」、動的RAM「DRAM」など、読み取り専用コンポーネント(例えばROM605)、ならびにそれらの任意の組み合わせを含めて様々なコンポーネントを有することができるが、これらに限定されない。ROM605は、1つ以上のプロセッサ601にデータおよび命令を一方向に通信するために機能することもでき、RAM604は、1つ以上のプロセッサ601にデータおよび命令を双方向に通信するために機能することもできる。
【0056】
メモリ603、608、および記憶媒体は、1つ以上のプロセッサ601と双方向に、メモリ制御ユニット607によって選択的に接続されてもよい。両方のメモリ608,603は、オペレーティングシステム609、プログラム610、データ611、アプリケーション612、アプリケーションプログラムなどを格納するために使用することができる。常にではないが、多くの場合、メモリ603、608は、一次記憶装置(例えば、メモリ603)よりも速度の遅い二次記憶媒体(例えばハードディスクドライブ)によって支援されている。これらのメモリ603,608は、例えば、磁気的、光学的、またはトランジスタ化された、ソリッドステート記憶デバイス(例えば、フラッシュベースのシステム)、または上記の要素の任意の組み合わせを含むこともできる。
【0057】
バス640は、複数のサブシステムを接続する。バス640は、任意の複数のタイプのバス構造部、例えば、メモリバス、メモリコントローラ、ペリフェラルバス、ローカルバス、ならびに複数のバスアーキテクチャを使用するそれらの全ての組み合わせであってもよい。情報およびデータは、表示部632を介して表示することもできる。表示部632の例には、液晶表示部(LCD)、有機液晶ディスプレイ(OLED)、ブラウン管(CRT)、プラズマ表示部、およびそれらの任意の組み合わせが含まれるが、これらに限定されない。表示部632は、プロセッサ601、メモリ603,608、入力機器633、ならびにさらなるコンポーネントにバス640を介して接続されてもよい。
【0058】
バス640は、前述の全てのコンポーネントを、ネットワークインターフェース620を用いて外部ネットワーク630に接続することができる。これは、例えばLAN、WLANなどであってよい。さらなる記憶媒体、サーバー、プリンター、表示機器への接続を構築することができる。通信デバイスやインターネットへのアクセスを有することもできる。バス640は、前述の全てのコンポーネントを、グラフィックス制御部621およびグラフィックスインターフェース622に接続することができ、これらは、少なくとも1つの入力デバイス633に接続可能である。
【0059】
バス640は、前述の全てのコンポーネントを、入力インターフェース623に接続することができ、入力インターフェース623は、少なくとも1つの入力デバイス633に接続可能である。入力デバイスは、例えば、キーパッド、キーボード、マウス、ペン、タッチスクリーンなどを含むことができる。
【0060】
バス640は、前述の全てのコンポーネントを、出力インターフェース624に接続することができ、出力インターフェース624は、少なくとも1つの出力デバイス634に接続可能である。出力デバイス634は、照明付き表示部、LED表示部、ディスプレイ、例えば、LCD、OLEDなど、またはそのようなデバイスへのインターフェースを有することができる。
【0061】
バス640は、前述の全てのコンポーネントを、メモリアクセスインターフェース625に接続することができ、メモリアクセスインターフェース625は、少なくとも1つの記憶デバイス635に接続可能である。バス640は、前述の全てのコンポーネントを、さらなるメモリアクセスインターフェース626に接続することができ、このさらなるメモリアクセスインターフェース626は、少なくとも1つの記憶媒体636に接続可能である。記憶デバイス635または記憶媒体636は、例えば、ソリッドステートメモリ、磁気的メモリ、または光学的メモリであってもよく、特に不揮発性メモリを有し得る。記憶媒体は、データを失うことなく、制御システムの動作中に制御システムから分離することができる。記憶媒体は有形であってもよく、つまり物質的に存在する対象物であってもよい。
【0062】
バス640は、全体的または部分的にケーブルまたは回線(例えば、LAN、RS232など)によって実現されてもよいし、あるいは全体的または部分的にワイヤレス無線接続など(例えば、WLAN(登録商標)、WIFI(登録商標)、Buetooth(登録商標)、NFC(登録商標)など)によって実現されてもよい。
【0063】
表示部632、入力デバイス633、出力デバイス634、記憶デバイス635、および/または記憶媒体636は、それぞれ、制御システム600外に配置されてよいし、あるいは制御システム600内に統合されてもよい。それらは、インターネットもしくは他のネットワークインターフェースへの接続路を介して制御システム600に接続されてもよい。
【0064】
本発明で説明される制御は、そのような制御システム600内で実現されてもよい。本発明で説明される方法ステップは、少なくとも部分的にそのような制御システム600上で実施することができる。
【0065】
本発明で説明される計算ユニットは、そのようなプロセッサ601内で実現されてもよい。
【0066】
本発明で説明される入力ユニット116は、そのような入力デバイス633内で実現されてもよい。
【0067】
本発明で説明されるディスプレイ24は、そのような表示部632内で実現されてもよい。