IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-運転支援装置 図1
  • 特許-運転支援装置 図2
  • 特許-運転支援装置 図3
  • 特許-運転支援装置 図4
  • 特許-運転支援装置 図5
  • 特許-運転支援装置 図6
  • 特許-運転支援装置 図7
  • 特許-運転支援装置 図8
  • 特許-運転支援装置 図9
  • 特許-運転支援装置 図10
  • 特許-運転支援装置 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-05
(45)【発行日】2023-09-13
(54)【発明の名称】運転支援装置
(51)【国際特許分類】
   B60T 7/12 20060101AFI20230906BHJP
   B60W 30/085 20120101ALI20230906BHJP
【FI】
B60T7/12 C
B60W30/085
【請求項の数】 4
(21)【出願番号】P 2020091555
(22)【出願日】2020-05-26
(65)【公開番号】P2021187207
(43)【公開日】2021-12-13
【審査請求日】2022-05-23
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110000213
【氏名又は名称】弁理士法人プロスペック特許事務所
(74)【代理人】
【識別番号】100184686
【弁理士】
【氏名又は名称】石原 秀樹
(72)【発明者】
【氏名】久野 貴弘
(72)【発明者】
【氏名】岡田 直樹
(72)【発明者】
【氏名】臼井 右
【審査官】山本 健晴
(56)【参考文献】
【文献】国際公開第2017/126225(WO,A1)
【文献】特開2017-114427(JP,A)
【文献】特開2004-345401(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60T 7/12
B60W 30/085
(57)【特許請求の範囲】
【請求項1】
車両が走行すると予想される自車両通過領域に交差するように当該自車両通過領域に接近しつつある物標を検出可能に構成された物標検出装置と、
前記車両に制動力を発生させる制動装置と、
前記制動装置を制御可能に構成された制御ユニットと、
を備え、
前記制御ユニットは、
前記車両が現時点の車両速度を維持し且つ前記物標が現時点の物標速度を維持すると仮定した場合に前記物標が通過すると予想される物標通過領域と前記自車両通過領域とが重複する交差領域において前記車両と前記物標とが衝突することが予想される場合に当該物標を横断物標として特定し、前記車両と前記横断物標とが衝突すると予想される時点である予想衝突時点よりも前の第1時点から前記車両が第1減速度にて減速するように前記制動装置を制御し、
前記第1時点よりも後の時点であって前記車両が前記第1減速度にて減速させられている時点であり且つ当該時点から前記車両が前記第1減速度の絶対値よりも大きい絶対値を有する第2減速度にて減速し始めたと仮定した場合に当該車両が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の第2時点において前記横断物標が依然として存在するとき、前記第2時点から前記車両が前記第2減速度にて減速するように前記制動装置を制御する、
ように構成された、
運転支援装置において、
前記制御ユニットは、前記横断物標が所定の想定物標減速度にて減速し始める時点であって当該横断物標が当該想定物標減速度にて減速し続けたと仮定した場合に当該横断物標が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の物標制動必要時点を前記第2時点として取得するように構成された運転支援装置。
【請求項2】
請求項1に記載の運転支援装置において、
前記制御ユニットは
前記物標制動必要時点が、前記車両が前記第2減速度にて減速し始める時点であって当該車両が当該第2減速度にて減速し続けたと仮定した場合に当該車両が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の高G制動開始時点、よりも前に到来すると予測したとき、前記第1時点から前記車両を前記第1減速度にて減速させることなく、前記高G制動開始時点から前記車両を前記第2減速度にて減速させるように前記制動装置を制御する、
ように構成された、
転支援装置。
【請求項3】
請求項1に記載の運転支援装置において、
前記制御ユニットは、前記横断物標の種別を取得し、前記取得された種別に応じて前記想定物標減速度を変更する、ように構成された運転支援装置。
【請求項4】
車両が走行すると予想される自車両通過領域に交差するように当該自車両通過領域に接近しつつある物標を検出可能に構成された物標検出装置と、
前記車両に制動力を発生させる制動装置と、
前記制動装置を制御可能に構成された制御ユニットと、
を備え、
前記制御ユニットは、
前記車両が現時点の車両速度を維持し且つ前記物標が現時点の物標速度を維持すると仮定した場合に前記物標が通過すると予想される物標通過領域と前記自車両通過領域とが重複する交差領域において前記車両と前記物標とが衝突することが予想される場合に当該物標を横断物標として特定し、前記車両と前記横断物標とが衝突すると予想される時点である予想衝突時点よりも前の第1時点から前記車両が第1減速度にて減速するように前記制動装置を制御し、
前記第1時点よりも後の時点であって前記車両が前記第1減速度にて減速させられている時点であり且つ当該時点から前記車両が前記第1減速度の絶対値よりも大きい絶対値を有する第2減速度にて減速し始めたと仮定した場合に当該車両が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の第2時点において前記横断物標が依然として存在するとき、前記第2時点から前記車両が前記第2減速度にて減速するように前記制動装置を制御する、
ように構成された、
転支援装置において、
前記制御ユニットは
前記横断物標の種別を取得し、
前記取得された種別が歩行者である場合、前記歩行者と前記自車両通過領域との距離が所定の距離閾値よりも小さくなる時点を前記第2時点として取得する、
うに構成された運転支援装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両と物標との衝突が発生する可能性が高い場合に制動力により車両を減速させて当該衝突を回避する、運転支援装置に関する。
【背景技術】
【0002】
この種の運転支援装置の1つ(以下、「従来装置」とも称呼される。)は、車両の予想走行領域内に存在している物体(例えば、自車線内に駐車している他車両)と車両との衝突を回避するため、制動力を自動的に発生させて車両を減速させる(例えば、特許文献1を参照。)。以下、このような運転支援装置を搭載した車両は、他車両と区別するため、便宜上、「自車両」とも称呼される場合がある。更に、自車両の予想走行領域は「自車両通過領域」とも称呼される。
【0003】
より詳細には、従来装置は、強い制動力によって自車両を減速させる高Gブレーキ制御と、比較的弱い制動力によって自車両を減速させる低Gブレーキ制御と、を選択的に実行する。従来装置は、自車両通過領域内に存在している物標と自車両とのラップ率が比較的小さい場合、先に低Gブレーキ制御を実行する。従来装置は、その低Gブレーキ制御の実行中に運転者による旋回操作(操舵操作)が行われず、その結果、低Gブレーキ制御を継続したのでは物標との衝突が回避できない可能性が高くなったとき、高Gブレーキ制御を実行する。
【0004】
従って、従来装置は、運転者が旋回操作によって衝突を回避しようと意図している場合に高Gブレーキ制御が実行されてしまう可能性を低減することができるので、不要な高Gブレーキが運転者に強い不快感を与えてしまう可能性を低減することができる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-114427号公報
【発明の概要】
【0006】
ところで、自車両通過領域に接近している物標(例えば、自車両の前方を横切ろうとしている他車両)と自車両とが衝突する可能性が高い場合にも、その衝突を回避するように運転支援装置が自車両に制動力を付与することが望ましい。なお、以下において、自車両通過領域に交差するように接近している物標は「候補物標」とも称呼される。
【0007】
一方、候補物標である他車両が自車両との衝突を回避するために制動され、それにより、他車両が自車両通過領域に到達する前に停止する場合がある。この場合、衝突が発生しないにも関わらず、運転支援装置が強い制動力によって自車両を急減速させると、自車両の運転者が強い違和感を覚える虞がある。実際には衝突が発生しないにも拘わらず衝突回避のために発生させられる強い制動力を用いた制動は、以下、「不必要強制動」とも称呼される。
【0008】
本発明は、上述した問題に対処するために成されたものである。即ち、本発明の目的の1つは、自車両と候補物標との衝突を回避でき、且つ、候補物標に対する不必要強制動が発生してしまう可能性を低減させることが可能な、運転支援装置を提供することである。
【0009】
上記目的を達成するための運転支援装置(以下、「本開示装置」と称呼される。)は、
車両(10)が走行すると予想される「自車両通過領域」に交差するように当該自車両通過領域に接近しつつある物標(即ち、候補物標)を検出可能に構成された物標検出装置(31)と、
前記車両に制動力を発生させる制動装置(23、45、47)と、
前記制動装置を制御可能に構成された制御ユニット(21)と、
を備えている。
制御ユニットは、所定のプログラム及びゲートアレイ等によってその作動が定められた少なくとも1つのプロセッサーによって実現され得る。
【0010】
前記制御ユニットは、
前記車両が現時点の車両速度を維持し且つ前記物標が現時点の物標速度を維持すると仮定した場合に前記物標が通過すると予想される「物標通過領域」と前記自車両通過領域とが重複する「交差領域(S)」において前記車両と前記物標とが衝突することが予想される場合に当該物標を「横断物標」として特定し、前記車両と前記横断物標とが衝突すると予想される時点である「予想衝突時点」よりも前の「第1時点」(例えば、暫定制動開始時点)から前記車両が「第1減速度」(例えば、Aw)にて減速するように前記制動装置を制御し(ステップ1030、ステップ1070、ステップ1080、ステップ1090)、
前記第1時点よりも後の時点であって前記車両が前記第1減速度にて減速させられている時点であり且つ当該時点から前記車両が前記第1減速度の絶対値よりも大きい絶対値を有する「第2減速度」(例えば、Amx)にて減速し始めたと仮定した場合に当該車両が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の「第2時点」(例えば、物標制動必要時点)において前記横断物標が依然として存在するとき、前記第2時点から前記車両が前記第2減速度にて減速するように前記制動装置を制御する(ステップ1030、ステップ1055、ステップ1060、ステップ1090)、
ように構成されている。
【0011】
本開示装置によれば、候補物標が横断物標として特定されたとき、予想衝突時点よりも前の第1時点から車両が比較的穏やかに減速させられ始める。その後、第2時点が到来するまでに、候補物標が減速せず、その候補物標が第2時点においても依然として横断物標であると特定される場合、車両は交差領域に到達する直前の位置にて停止するように第2時点から急減速させられ始める。よって、横断物標であると特定された物標が減速しない場合であっても、車両と横断物標との衝突が回避され得る。これに対し、第1時点から第2時点までの間に横断物標であると特定されていた物標が減速を開始し、その結果、「その物標が交差領域には進入しない」と第2時点において予想される場合(即ち、その物標がもはや横断物標であると特定されない場合)、車両は急減速されない。
【0012】
これにより、横断物標であると特定された物標が減速を行って交差領域に進入しない場合(即ち、衝突が発生しない場合)に、車両が急減速される事態が生じない。よって、本開始装置は、不必要強制動が発生してしまう可能性を低減させることができるので、運転者に強い違和感を与える可能性を低減することができる。
【0013】
本開示装置の一実施形態において、
前記制御ユニットは、前記横断物標が所定の「想定物標減速度」(At)にて減速し始める時点であって当該横断物標が当該想定物標減速度にて減速し続けたと仮定した場合に当該横断物標が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の「物標制動必要時点」を前記第2時点として取得するように構成されている。
【0014】
この実施形態においては、横断物標が想定物標減速度にて減速を開始しても交差領域に進入する直前に停止することができない蓋然性が高い時点が第2時点として使用される。よって、不必要強制動が発生してしまう可能性を効果的に低減させることができ、且つ、横断物標と車両との衝突を回避することができる。
【0015】
本開示装置の一実施形態において、
前記制御ユニットは、
前記物標制動必要時点が、前記車両が前記第2減速度にて減速し始める時点であって当該車両が当該第2減速度にて減速し続けたと仮定した場合に当該車両が前記交差領域に進入する直前の位置にて停止することができなくなる時点の直前の「高G制動開始時点」、よりも前に到来すると予測したとき、前記第1時点から前記車両を前記第1減速度にて減速させることなく、前記高G制動開始時点から前記車両を前記第2減速度にて減速させるように前記制動装置を制御する、
ように構成されている。
【0016】
物標制動必要時点が高G制動開始時点よりも前の時点であれば高G制御開始時点において「横断物標が交差領域に進入する可能性は極めて大きい」と判定できる。従って、この場合、高G制動開始時点から車両を第2減速度にて減速させ始めたとしても、その制動は不必要強制動にはならない。
【0017】
本開示装置の一実施形態において、
前記制御ユニットは、前記横断物標の「種別」を取得し、前記取得された種別に応じて前記想定物標減速度を変更する、ように構成されている。
【0018】
横断物標の種別は、例えば、「他車両」及び「他車両以外の物標」であっても良い。他車両は、更に、普通乗用車、大型車両及び自動二輪車等を含んでいても良く、「他車両以外の物標」は更に「歩行者」を含んでいてもよい。この態様によれば、想定物標減速度を、横断物標の種別に応じた適切な減速度に設定することができる。想定物標減速度は、例えば、横断物標が他の車両(この場合、本開示装置を搭載した自車両)との衝突を避ける際の当該横断物標の典型的な減速度である。よって、この態様は、物標制動必要時点を精度良く特定することができる。
【0019】
本開示装置の一実施形態において、
前記制御ユニットは、
前記横断物標の種別を取得し、
前記取得された種別が「歩行者」である場合、前記歩行者と前記自車両通過領域との距離(物標横距離Dtx)が所定の距離閾値(Lth)よりも小さくなる時点を前記第2時点として取得する、
ように構成されている。
【0020】
歩行者は、一般に、減速を開始してから停止するまでの時間が車両と比較して非常に短い。換言すると、歩行者の想定物標減速度は、ある値に設定することが困難であり、むしろ無限大であると考えられる。
【0021】
一方、車両の接近に気づいた歩行者は、一般に、車両の自車両通過領域から所定の余裕距離だけ離れた位置にて停止する。そこで、上記距離閾値は「上記余裕距離に基づいた距離」に設定され得る。この場合において歩行者と自車両通過領域との距離が距離閾値よりも短ければ、歩行者が自車両の接近に気づいていない可能性が高い。そこで、この態様に係る本開示装置は、歩行者と自車両通過領域との距離が距離閾値よりも小さくなる時点を第2時点として用いている。これにより、自車両通過領域に接近してくる歩行者との衝突を回避可能であり、且つ、自車両通過領域に接近してくる歩行者に対して不必要強制動が発生する可能性を低減することができる。
【0022】
上記説明においては、本発明の理解を助けるために、後述される実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、前記名称及び/又は符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
【図面の簡単な説明】
【0023】
図1】本発明の実施形態に係る運転支援装置(本支援装置)が搭載される車両(本車両)の概略図である。
図2】本支援装置のブロック図である。
図3】第1制動制御の対象となる通過領域内物標の例を示した図である。
図4】第1制動制御が実行される場合における本車両の走行速度(車速)、本車両の減速度及び物標縦距離の変化を表したタイムチャートである。
図5】車速と制動開始時間との関係を表したグラフである。
図6】第2制動制御の対象となる横断物標の例を示した図である。
図7図6の横断物標に対して第2制動制御が実行される場合における車速、物標横速度、物標縦距離、及び、物標横距離の変化を表したタイムチャートである。
図8】第2制動制御の対象となる横断物標の他の例を示した図である。
図9図8の横断物標に対して第2制動制御が実行される場合における車速、物標横速度、物標縦距離、及び、物標横距離の変化を表したタイムチャートである。
図10】本支援装置が実行する自動制動処理ルーチンを表したフローチャートである。
図11】本支援装置が実行する制動縦距離取得処理ルーチンを表したフローチャートである。
【発明を実施するための形態】
【0024】
(構成)
以下、図面を参照しながら本発明の実施形態に係る運転支援装置(以下、「本支援装置」とも称呼される。)について説明する。本支援装置は、図1に示される自車両10に適用される。本支援装置のブロック図である図2から理解されるように、本支援装置は、それぞれが電子制御ユニット(ECU:Electronic Control Unit)である「運転支援ECU21、駆動制御ECU22、制動制御ECU23及びEPS-ECU24」を含んでいる。
【0025】
運転支援ECU21は、CPU、不揮発性メモリ及びRAMを備えたマイクロコンピュータを主要素として含んでいる。CPUは、所定のプログラム(ルーチン)を逐次実行することによってデータの読み込み、数値演算、及び、演算結果の出力等を行う。不揮発性メモリは、ROM及び書き換え可能なフラッシュメモリ等により構成され、CPUが実行するプログラム及びプログラムの実行時に参照されるルックアップテーブル(マップ)等を記憶する。RAMは、CPUによって参照されるデータを一時的に記憶する。
【0026】
駆動制御ECU22、制動制御ECU23及びEPS-ECU24のそれぞれは、運転支援ECU21と同様に、マイクロコンピュータを主要素として含んでいる。これらのECUは、CAN(Controller Area Network)25を介して互いにデータ通信可能(データ交換可能)となっている。
【0027】
加えて、これらのECUは、他のECUに接続されたセンサの出力値をその「他のECU」からCAN25を介して受信することができる。例えば、駆動制御ECU22、制動制御ECU23及びEPS-ECU24のそれぞれは、運転支援ECU21に接続された後述される車速センサ32によって検出された車速Vsを、CAN25を介して運転支援ECU21から受信することができる。更に、これらのECUのうちの総て又は幾つかは1つのECU(制御ユニット)に統合されてもよい。
【0028】
運転支援ECU21は、以下、単にECU21とも称呼される。ECU21は、前方カメラ31、車速センサ32、ディスプレイ33及びスピーカー34と接続されている。
【0029】
前方カメラ31は、自車両10の車室内上部のルームミラー(不図示)近傍の位置に配設されている(図1を参照。)。前方カメラ31は、自車両10の前方にある領域を撮影した「前方画像」を所定の時間間隔ΔTc(固定値)が経過する毎に取得し、前方画像を表す信号をECU21へ出力する。
【0030】
車速センサ32は、自車両10の走行速度である車速Vsを検出し、車速Vsを表す信号をECU21へ出力する。
【0031】
ディスプレイ33は、自車両10の車室内であって運転者によって視認可能な位置に配設された液晶ディスプレイ(LCD)である。ディスプレイ33に表示される文字及び図形等は、ECU21によって制御される。
【0032】
スピーカー34は、自車両10の車室内に配設されている。スピーカー34によって再生される警告音及び音声メッセージ等は、ECU21によって制御される。
【0033】
(駆動力の制御)
駆動制御ECU22は、エンジン41及びトランスミッション42を制御することにより、自車両10の駆動力を調整する。駆動制御ECU22は、種々の駆動制御センサ43と接続され、これらのセンサの出力値を受信する。駆動制御センサ43は、エンジン41の運転状態量(パラメータ)及び駆動制御に係る運転者による操作を検出するセンサである。
【0034】
駆動制御センサ43は、アクセルペダルの操作量(踏み込み量)センサ、シフトレバーの操作状態を検出するシフトポジション・センサ、スロットル弁開度センサ、機関回転速度センサ及び吸入空気量センサ等を含んでいる。駆動制御ECU22は、車速Vs及び駆動制御センサ43の出力値等に基づいて(後述される駆動トルクFdの要求値である)要求駆動トルクFrqを決定する。
【0035】
更に、駆動制御ECU22は、スロットル弁アクチュエータ及び燃料噴射弁等を含むエンジンアクチュエータ44と接続され、これらのアクチュエータを制御することによってエンジン41の発生トルクを制御する。駆動制御ECU22は、自車両10の駆動輪に伝達される駆動トルクFdが要求駆動トルクFrqと一致するようにエンジンアクチュエータ44及びトランスミッション42を制御し、以て、車速Vsの単位時間あたりの変化量である加速度Acを制御する。
【0036】
更に、駆動制御ECU22は、ECU21から目標駆動トルクFtgを含む「駆動力制御要求」を受信すると、実際の駆動トルクFdが目標駆動トルクFtgと一致するようにエンジンアクチュエータ44及びトランスミッション42を制御する。駆動制御ECU22は、駆動力制御要求を受信した後、ECU21から駆動力制御要求を新たに受信しない状態が所定の時間継続すると、上述した駆動トルクFdが要求駆動トルクFrqと一致するように加速度Acを制御する処理を再開する。
【0037】
(制動力の制御)
制動制御ECU23は、自車両10に搭載された油圧式摩擦制動装置(制動機構)であるブレーキ機構45を制御する。制動制御ECU23は、種々の制動制御センサ46と接続され、これらのセンサの出力値を受信する。制動制御センサ46は、ブレーキ機構45を制御するために使用される状態量及び制動制御に係る運転者による操作を検出するセンサであり、ブレーキペダルの操作量センサ及びブレーキ機構45に作用するブレーキオイルの圧力センサ等を含んでいる。制動制御ECU23は、車速Vs及び制動制御センサ46の出力値等に基づいて(後述される制動力Bfの要求値である)要求制動力Brqを決定する。
【0038】
加えて、制動制御ECU23は、ブレーキ機構45の油圧制御アクチュエータである種々のブレーキアクチュエータ47と接続されている。制動制御ECU23は、自車両10が備える車輪のそれぞれが発生させる摩擦制動力の総量である制動力Bfが要求制動力Brqと一致するようにブレーキアクチュエータ47を制御し、以て、加速度Acを制御する。なお、この場合、加速度Acは負の値である。ブレーキ機構45の作動によって車速Vsが減少する場合における加速度Acの大きさは、以下、減速度Asとも称呼される。
【0039】
更に、制動制御ECU23は、ECU21から目標減速度Atgを含む「制動力制御要求」を受信すると、実際の減速度Asが目標減速度Atgと一致するようにブレーキアクチュエータ47を用いて制動力Bfを発生させる。制動制御ECU23は、制動力制御要求を受信した後、ECU21から制動力制御要求を新たに受信しない状態が所定の時間継続すると、上述した制動力Bfが要求制動力Brqと一致するように減速度Asを制御する処理を再開する。なお、目標減速度Atgに基づいて発生される制動力Bfが要求制動力Brqよりも小さければ、制動制御ECU23は、実際の制動力Bfが要求制動力Brqと一致するようにブレーキアクチュエータ47を制御する。
【0040】
(転舵角度の制御)
EPS-ECU24は、自車両10に搭載された操舵機構48と接続された操舵電動機49を制御する。操舵機構48は、ステアリングホイール51(図1を参照。)を含み、ステアリングホイール51の回転角度である操舵角度に応じて自車両10の操舵輪(即ち、前輪)の転舵角度θsを変化させる機構である。
【0041】
EPS-ECU24は、ハンドルセンサ52と接続され、ハンドルセンサ52の出力値を受信する。ハンドルセンサ52は、ステアリングホイール51の操舵角度、及び、ステアリングホイール51に連結されたステアリングシャフトに加えられているトルクである操舵トルクを検出する。
【0042】
EPS-ECU24は、車速Vs、操舵角度及び操舵トルク等に基づいて(後述されるアシストトルクFwの目標値である)目標アシストトルクFwtを決定する。加えて、EPS-ECU24は、操舵電動機49が発生させる「ステアリングシャフトを回転させるアシストトルクFw」が目標アシストトルクFwtと一致するように操舵電動機49を制御する。
【0043】
(自動制動制御)
ECU21が実行する前方画像に含まれる立体物標を検出する処理、及び、検出された立体物標との衝突を回避するためにECU21が実行する「自動制動制御」について説明する。
【0044】
以下の説明において、自車両10の左右方向中心の前端部を原点とするX-Y座標系が使用される(図1を参照。)。自車両10の車幅方向に伸びる軸がX軸であり、自車両10の前後方向に伸びる軸がY軸である。X軸とY軸とは互いに直交する。X座標値は、自車両10の進行方向に対して右方向において正の値となり、自車両10の進行方向に対して左方向において負の値となる。Y座標値は、自車両10の前方向において正の値となり、自車両10の後ろ方向において負の値となる。
【0045】
ECU21は、前方カメラ31から受信した前方画像(前方画像を表す信号)に基づいて他車両及び歩行者等の立体物標を検出(抽出)する。より具体的に述べると、ECU21は、周知のテンプレート・マッチング手法を用いて前方画像から立体物標を検出する。そのため、ECU21は、他車両及び歩行者等に対応する種々の「テンプレート」を不揮発性メモリに予め記憶している。
【0046】
記憶されたテンプレートの1つに類似する領域が前方画像に含まれていれば、ECU21は、そのテンプレート(対応テンプレート)に対応する立体物標がその領域に含まれていると判定する。即ち、この場合、ECU21は、前方画像から立体物標を検出(抽出)する。
【0047】
ECU21は、前方画像から立体物標を検出すると、その立体物標に対応するテンプレート(即ち、対応テンプレート)の種別を立体物標の種別として取得する。本実施形態において、立体物標の種別(即ち、ECU21に予め記憶されたテンプレートの種別)は、「他車両」及び「歩行者」を含んでいる。
【0048】
更に、ECU21は、周知の手法により、検出された立体物標の自車両10に対する左端位置及び右端位置を取得する。左端位置及び右端位置のそれぞれは、X座標値とY座標値との組合せによって表される。
【0049】
ECU21は、自車両10の前端と立体物標とのY軸方向の距離を物標縦距離Dtyとして取得する。具体的には、ECU21は、立体物標の左端位置のY座標値と、右端位置のY座標値と、の内の小さい値を物標縦距離Dtyとして取得する。
【0050】
加えて、ECU21は、自車両10の左端又は右端と、立体物標と、のX軸方向の距離を物標横距離Dtxとして取得する。具体的には、ECU21は、立体物標の左端位置のX座標値の大きさと、右端位置のX座標値の大きさと、の内の小さい値を基準値Lqとして取得する。更に、ECU21は、基準値Lqと「自車両10の自車幅Wd(図1を参照。)の半分の長さ」との差分を物標横距離Dtxとして取得する(即ち、Dtx=Lq-(1/2)・Wd)。
【0051】
ECU21が前方カメラ31から最後に受信した前方画像(最新画像)から検出された立体物標が前回受信した画像(即ち、最新画像が取得された時点よりも時間間隔ΔTcだけ以前に取得された画像)からも検出されていれば、ECU21は、立体物標の移動速度を取得する。立体物標の移動速度は、物標縦速度Vty及び物標横速度Vtxの組合せによって表される。
【0052】
ECU21は、物標縦速度Vtyを、「物標縦距離Dtyの時間間隔ΔTcが経過する間の変化量ΔDty」を時間間隔ΔTcによって除することによって取得する(即ち、Vty=ΔDty/ΔTc)。加えて、ECU21は、物標横速度Vtxを、「物標横距離Dtxの時間間隔ΔTcが経過する間の変化量ΔDtx」を時間間隔ΔTcによって除することによって取得する(即ち、Vtx=ΔDtx/ΔTc)。
【0053】
次に、ECU21が実行する自動制動制御について説明する。自動制動制御は、自車両10が立体物標(具体的には、後述される、通過領域内物標及び横断物標)と衝突する可能性が高いと判定されたとき、運転者による自車両10のブレーキペダルに対する操作(即ち、制動操作)がなくてもブレーキ機構45に制動力Bfを発生させる制御である。ECU21が実行する自動制動制御は、「第1制動制御」及び「第2制動制御」を含んでいる。
【0054】
第1制動制御は、自車両10が走行すると予想される領域(即ち、自車両通過領域)内にその一部又は全部が存在し且つ停止している物標(以下、「通過領域内物標」とも称呼される。)との衝突を回避するために実行される制動制御である。第2制動制御は、自車両10の自車両通過領域に交差するように接近しつつある物標(即ち、候補物標)であって、後述するように、自車両10と衝突する可能性が高いと判定される候補物標(以下、「横断物標」と称呼する。)との衝突を回避するために実行される制動制御である。候補物標には他車両及び歩行者が含まれる。
【0055】
自動制動制御の実行時にECU21が実行する最大減速度Amxにて自車両10を減速させる制御は、以下、「最大制動制御」とも称呼される。最大減速度Amxは、正の値であり、便宜上、「第2減速度」と称呼される場合がある。最大減速度Amxは、多くの場合においてブレーキ機構45が発生させることができる最大の減速度Asと等しい値に予め定められている。最大制動制御は、便宜上、「高G制動のための制動制御」とも称呼される。
【0056】
一方、自動制動制御の実行時にECU21が実行する「暫定減速度Aw」にて自車両10を減速させる制御は、以下、「暫定制動制御」とも称呼される。暫定減速度Awは、「最大減速度Amxの大きさよりも小さい大きさを有する正の値(0<Aw<Amx)」であり、便宜上、「第1減速度」と称呼される場合がある。従って、上述の第2減速度(最大減速度Amx)の大きさ(|Amx|)は、上記第1減速度(暫定減速度Aw)の大きさ(|Aw|)よりも大きい。暫定減速度Awの取得(算出)方法は、後述される。
【0057】
(自動制動制御-第1制動制御)
ECU21は、自車両10が、現時点における「車速、ヨーレート及び操舵角」を維持しながら走行するとの仮定に基づいて自車両通過領域を予測する。自車両通過領域は、自車両10の左前端部と右前端部とが通過するラインの間の領域(即ち、自車両10の前面が通過する領域)である。
【0058】
通過領域内物標が検出されると、ECU21は、後述する最大制動開始必要時点と、後述する操舵開始必要時点と、の何れが前に(早期に)到来するかを判定する。
ECU21は、最大制動開始必要時点が操舵開始必要時点よりも前に到来すると判定した場合、最大制動制御の代わりに暫定制動制御を「後述する暫定制動開始時点」から開始し、その後、必要に応じて操舵開始必要時点にて最大制動制御を開始する。
ECU21は、操舵開始必要時点が最大制動開始必要時点よりも前に到来すると判定した場合、暫定制動制御を実行することなく、最大制動開始必要時点にて最大制動制御を開始する。
【0059】
以下、図3に示した例(以下、便宜上、「第1例」と称呼する。)を用いて第1制動制御について詳述する。第1例において、自車両10は時刻t0において直進している。よって、自車両通過領域は破線(直線)Lr1と破線(直線)Lr2との間の領域である。他車両61は自車両通過領域内に停止している。よって、他車両61は通過領域内物標である。図4に示したように、時刻t0における自車両10の車速Vsは速度Voであり、物標縦距離Dtyは縦距離Ly1である。
【0060】
物標縦距離Dtyが「0」になる時点において車速Vsが「0」よりも大きければ、自車両10は他車両61と衝突する。換言すると、車速Vsが「0」にまで低下する時点よりも前の時点にて物標縦距離Dtyが「0」になると、自車両10は他車両61と衝突する。
【0061】
時刻t0以降において、自車両10が減速しなければ(即ち、車速Vsが速度Voに維持されると)、物標縦距離Dtyは、図4(C)の一点鎖線Ld0に示したように、時刻t5にて「0」に到達する。時刻t5は、時刻t0から衝突余裕時間TTC1(=Ly1/Vo)が経過した時点である。この場合、時刻t5における車速Vsは速度Voであるから、自車両10は時刻t5にて他車両61と衝突する。このように車速Vsが変化(減少)せずに維持された場合に「自車両10が通過領域内物標と衝突する時点(第1例の時刻t5)」は、以下、「予想衝突時点」とも称呼される。
【0062】
次に、自車両10と他車両61との衝突を回避するための最大制動制御について検討する。最大制動制御によって自車両10と他車両61との衝突を回避するためには、自車両10をある時点から最大減速度Amxにて減速させた場合に車速Vsが「0」となったとき、物標縦距離Dtyが「0」(実際には、後述するマージン距離Lm)以上の値であることが必要である。
【0063】
以下、速度Voにて走行している自車両10が最大減速度Amxにて減速し始めた時点から自車両10が停止する時点までに走行する距離を「制動縦距離Lsy」と称呼する。自車両10が最大減速度Amxにて減速し始めた時点から自車両10が停止する時点までの時間は「Vo/Amx」であり、更に、下式(1)が成立する。第1例における制動縦距離Lsyは、図3及び図4に示したように、縦距離Ly2である。

Lsy=(1/2)・(Vo)/Amx ……(1)
【0064】
よって、物標縦距離Dtyが制動縦距離Lsyに一致した時点にて最大制動制御が開始されれば(自車両10が最大減速度Amxにて減速され始めれば)、自車両10は他車両61に衝突しない。この場合の車速Vsは図4(A)における破線Lv1によって示され、この場合の減速度Asは図4(B)における破線La1によって示され、この場合の物標縦距離Dtyは図4(C)における破線Ld1によって示されている。以下、物標縦距離Dtyが制動縦距離Lsyに一致する時点は、「最大制動開始必要時点」、又は「高G制動開始時点」とも称呼される。最大制動開始必要時点が到来した後(即ち、最大制動開始必要時点よりも後の時点にて)最大制動制御が開始されても物標縦距離Dtyが「0」になるまでに車速Vsを「0」とすることができない可能性が高い。
【0065】
ところで、自車両10の運転者は、他車両61の存在に気付いていて、ステアリングホイール51に対する操作(即ち、旋回操作)により他車両61との衝突を回避しようと意図している場合がある。この場合、旋回操作が必要となる時点(以下、「操舵開始必要時点」とも称呼される。)が最大制動開始必要時点よりも後の時点であると、最大制動制御が運転者の旋回操作よりも前に実行されてしまい、運転者は最大制動制御を煩わしいと感じる可能性が高くなる。
【0066】
そこで、ECU21は、操舵開始必要時点が到来したときの物標縦距離Dty(以下、旋回縦距離Lrとも称呼される。)を以下に述べるようにして算出し、旋回縦距離Lrと制動縦距離Lsyとを比較することによって、操舵開始必要時点と最大制動開始必要時点とのうちの何れが前に(先に、早期に)到来するかを判定する。更に、ECU21は、最大制動開始必要時点が操舵開始必要時点よりも前に到来する場合、最大制動開始必要時点にて最大制動制御を開始しないように構成されている。
【0067】
操舵開始必要時点は、その時点よりも後の時点にて自車両10が所定の回避旋回半径Rsにて旋回し始めたとしても通過領域内物標との衝突が回避できない、時点である。換言すれば、操舵開始必要時点よりも前の時点において自車両10が回避旋回半径Rsにて旋回し始めた場合、通過領域内物標との衝突を回避することができる。回避旋回半径Rsは、典型的な運転者が旋回操作によって通過領域内物標との衝突を回避するときの典型的な車両の旋回半径に予め設定されている。
【0068】
操舵開始必要時点が到来した時点(即ち、物標縦距離Dtyが旋回縦距離Lrと等しくなった時点)から自車両10が回避旋回半径Rsにて旋回する場合における自車両通過領域は、以下、「旋回通過領域」とも称呼される。旋回通過領域は、自車両10が他車両61の端部(左端又は右端)と接する領域となるように規定される。
【0069】
ECU21は、自車両10が左方に旋回する場合における暫定的な旋回通過領域、及び、自車両10が右方に旋回する場合における暫定的な旋回通過領域のうち、旋回縦距離Lrが小さくなるほうを「最終的な旋回通過領域」として決定する。第1例において、最終的な旋回通過領域は、自車両10が右方に旋回する場合における暫定的な旋回通過領域であり、図3において破線Lr3と破線Lr4との間の領域になる。この場合、旋回縦距離Lrは縦距離Ly3である。
【0070】
旋回縦距離Lrが縦距離Ly3である場合、旋回縦距離Lrが制動縦距離Lsyよりも短いと仮定する。この場合、最大制動開始必要時点が操舵開始必要時点よりも前に到来する。そのため、ECU21は、最大制動開始必要時点にて最大制動制御を開始しない。その代わり、ECU21は、図4に示したように、前述した予想衝突時点(時刻t5)よりも制動開始時間Tiだけ手前の時点である「暫定制動開始時点(時刻t1)」にて暫定制動制御を開始して、自車両10を暫定減速度Awにて減速させる。制動開始時間Ti及び暫定減速度Awの決定方法については後述する。暫定減速度Awの大きさは最大減速度Amxの大きさに比べて小さいので、運転者が旋回操作を開始するまえに暫定制動制御が実行されても運転者が違和感を覚える可能性は小さい。暫定制動開始時点は、便宜上、「第1時点」とも称呼される。
【0071】
暫定制動開始時点が到来したときの物標縦距離Dtyは、暫定制動距離Liとも称呼される。第1例における暫定制動距離Liは、縦距離Ly4である(図3を参照。)。ECU21は、車速Vs(本例においては、速度Vo)に制動開始時間Tiを乗じることによって暫定制動距離Liを算出する(即ち、Li=Vs・Ti)。ECU21は、物標縦距離Dtyが暫定制動距離Liに一致した時点が到来したとき、暫定制動開始時点が到来したと判定する。
【0072】
その後、操舵開始必要時点(即ち、物標縦距離Dtyが旋回縦距離Lrに一致する時点、時刻t4)が到来するまでの期間において運転者が旋回操作を行わなければ、ECU21は、操舵開始必要時点(時刻t4)にて最大制動制御を開始する。この場合の車速Vsが図4(A)における実線Lv2によって示され、この場合の減速度Asが図4(B)における実線La2によって示され、この場合の物標縦距離Dtyが図4(C)における実線Ld2によって示されている。実線Lv2及び実線Ld2から理解されるように、時刻t7にて「車速Vs及び物標縦距離Dty」の何れもが「0」となっている。換言すれば、操舵開始必要時点(時刻t4)にて最大制動制御を開始することにより自車両10が他車両61に衝突しないように、暫定減速度Awが決定される。
【0073】
なお、暫定制動制御及び最大制動制御のそれぞれが開始されるタイミングの決定に際して、所定のマージン距離Lm(図1を参照。)を、それらの制御タイミングを決定する時点の車速Vs、により除して得られる時間であるマージン時間Tm(即ち、Tm=Lm/Vs)が考慮される。しかし、図4のタイムチャート(並びに、後述される図7及び図9のタイムチャート)ではマージン時間Tmは「0」として扱われている。
【0074】
前述したように、暫定制動開始時点は、予想衝突時点から制動開始時間Tiだけ手前の時点であるように定められる。制動開始時間Tiは、下式(2)に基づいて取得(算出)される。式(2)において、係数k1及び係数k2は、「1」より小さい正の係数(固定値)であり、係数k2は係数k1よりも大きい(即ち、0<k1<k2<1)。

Ti=1/(k2-k1・Vs) ……(2)
【0075】
図5は、式(2)に基づいて決定される「車速Vsと制動開始時間Tiとの関係」を示している。図5から理解されるように、車速Vsが大きくなるほど制動開始時間Tiが長くなる。係数k1及び係数k2は、典型的な運転者が通過領域内物標(及び、横断物標)の存在に気づいた場合において、衝突を余裕をもって回避するために行う運転操作(制動操作及び/又は旋回操作)を開始するタイミングよりも後に暫定制動制御が開始されるように予め適合されている。
【0076】
暫定減速度Awは、後述される走行距離Ds1と、後述される走行距離Ds2と、が互いに等しくなるように算出される。
【0077】
走行距離Ds1は、暫定制動開始時点にて暫定制動制御が開始され、次いで、操舵開始必要時点にて最大制動制御が開始される場合に、暫定制動開始時点から自車両10が停止するまでの期間(時刻t1から時刻t7までの期間)に自車両10が走行する距離である。
【0078】
走行距離Ds2は、暫定制動制御が実行されることなく、最大制動開始必要時点にて最大制動制御が開始される場合に、暫定制動開始時点から自車両10が停止するまでの期間(時刻t1から時刻t6までの期間)に自車両10が走行する距離である。
【0079】
以下、暫定減速度Awの算出方法について更に詳述する。
走行距離Ds1は、図4(A)における実線Lv2、補助線Lp1及び補助線Lp2に囲まれる領域の面積に等しい。
【0080】
具体的には、この領域の面積は、時刻t1から時刻t4までの期間(即ち、暫定制動制御が実行されている期間である暫定制動期間Tt)における実線Lv2を一辺とする台形の面積と、時刻t4から時刻t7までの期間における実線Lv2を斜辺とする直角三角形の面積と、の和に等しい。よって、走行距離Ds1は、下式(3)によって算出される。

Ds1=(1/2)・{Vo+(Vo-Aw・Tt)}・Tt
+(1/2)・(Vo-Aw・Tt)/Amax ……(3)
【0081】
走行距離Ds2は、破線Lv1、補助線Lp1及び補助線Lp2に囲まれる領域の面積に等しい。そのため、走行距離Ds2は、下式(4)によって算出される。式(4)において、Tpは「先行制動期間」と称呼される期間の長さである。先行制動期間は、暫定制動開始時点(時刻t1)から最大制動開始必要時点(時刻t3)までの期間である。

Ds2=Vo・Tp+(1/2)・Vo/Amax ……(4)
【0082】
上述したように、暫定減速度Awは、走行距離Ds1と走行距離Ds2とが互いに等しい場合の減速度である。よって、式(3)の右辺と式(4)の右辺とを互いに等しいとおくと、下式(5)が得られる。式(5)における速度Vo(即ち、本例の時刻t0における車速Vs)を車速Vsに置き換えることにより下式(5a)が得られる。

Tt・Aw-(Amax・Tt+2・Vo・Tt)・Aw
+2・Amax・Vo(Tt-Tp)=0 ……(5)
Tt・Aw-(Amax・Tt+2・Vs・Tt)・Aw
+2・Amax・Vs(Tt-Tp)=0 ……(5a)
【0083】
式(5a)は暫定減速度Awにつての2次方程式である。ECU21は、式(5a)の解であり且つ「0」から最大減速度Amxまでの範囲に含まれる値を暫定減速度Awとして取得する。
【0084】
次に、操舵開始必要時点が最大制動開始必要時点よりも前(先)に到来する場合に実行される第1制動制御について説明する。例えば、図3に示したように、他車両61aが他車両61に比べて、自車両通過領域のより多くの部分を占有する位置に停止している場合、旋回通過領域は、一点鎖線Lr5及び一点鎖線Lr6との間の領域になる。
【0085】
この場合、図3に示したように、旋回縦距離Lrは「縦距離Ly3よりも長い縦距離Ly5」となる。その結果として操舵開始必要時点が「時刻t4よりも前の時刻t2(図4を参照。)」であると仮定する。この場合、操舵開始必要時点(即ち、時刻t2)が最大制動開始必要時点(即ち、時刻t3)よりも前に到来する。
【0086】
従って、他車両61aとの衝突を回避するために自車両10の運転者が旋回操作を開始する必要がある時点よりも前の時点にて最大制動制御が開始される事象(即ち、不必要強制動)は発生しない。そこで、この場合、暫定制動制御が実行されない。加えて、運転者による旋回操作が開始されないまま制動開始必要時間(時刻t3)が到来したとき、ECU21は、最大制動開始必要時点にて最大制動制御を開始する。
【0087】
(自動制動制御-第2制動制御-他車両)
次に、図6に示した例(以下、便宜上、「第2例」と称呼する。)を用いて、横断物標(候補物標)の種別が車両(他車両62)である場合の第2制動制御について詳述する。
上述した第1制動制御は、自車両10が衝突回避のために旋回させられる場合を考慮した制動制御であった。これに対し、第2制動制御は、横断物標(候補物標)が減速する場合を考慮した制動制御である。
【0088】
第2例においても第1例と同様に自車両10は時刻t0において直進している。よって、自車両通過領域は破線(直線)Lr7と破線(直線)Lr8との間の領域である。
【0089】
候補物標である他車両62は、時刻t0において自車両通過領域と交差する方向にて直進している。候補物標の走行速度は、物標速度Vtとも称呼される。よって、他車両62の予想走行領域(以下、「横断物標通過領域」とも称呼される。)は、破線(直線)Lr9と破線(直線)Lr10との間の領域である。横断物標通過領域は、便宜上、「物標通過領域」とも称呼される。
【0090】
図6に示したように、自車両通過領域と横断物標通過領域とは交差角度θiをもって交差している。仮に、自車両通過領域と横断物標通過領域とが互いに並行であれば、交差角度θiは0°である。
【0091】
交差角度θiと物標縦速度Vty(即ち、物標速度VtのY軸成分)と物標横速度Vtx(即ち、物標速度VtのX軸成分)と、の間には以下の式(6a)、式(6b)及び式(6c)の関係が成立する。物標速度Vt、物標縦速度Vty及び物標横速度Vtxの間には下式(7)の関係が成立する。

Vtx=Vt・sin(θi) ……(6a)
Vty=Vt・cos(θi) ……(6b)
tan(θi)=Vtx/Vty ……(6c)
Vt=Vty+Vtx ……(7)
【0092】
自車両通過領域と横断物標通過領域とが重複する領域は、「交差領域S」とも称呼される。図6において交差領域Sにはハッチングが施されている。
【0093】
自車両通過領域と横断物標通過領域とが交差する場合、物標縦距離Dtyは、自車両10と横断物標とのY軸方向の距離ではなく、交差領域Sに属する点であって「自車両10とのY軸方向の距離が最も短い点Ps」と自車両10とのY軸方向の距離である。従って、第2例において、物標縦距離Dtyは、破線Lr7と破線Lr10との交点である点Psと、自車両10と、のY軸方向の距離である。
【0094】
第2例において、他車両62は自車両10の左側に位置している。よって、物標横距離Dtxは、他車両62の前端(正確には、右前端又は左前端)と自車両10の左端とのX軸方向の距離である。なお、横断物標である他車両が自車両10の右側に位置している場合、物標横距離Dtxは、他車両の前端と自車両10の右端とのX軸方向の距離である。
【0095】
図6に示したように、時刻t0において、車速Vsは速度Voであり、物標縦距離Dtyは縦距離Ly6であり、物標横距離Dtxは横距離Lx1である。時刻t0における物標速度Vtは速度Vt0であり、物標横速度Vtxは速度Vtx0である。
【0096】
自車両10及び他車両62の何れもが減速することなく時刻t0のそれぞれの速度を維持した場合、自車両10が交差領域Sに到達(進入)した時点(即ち、物標縦距離Dtyが「0」に到達した時点)において他車両62が交差領域S内に位置していると、両車両が衝突する。同様に、自車両10及び他車両62の何れもが減速することなく時刻t0のそれぞれの速度を維持した場合、他車両62が交差領域Sに到達(進入)した時点(即ち、物標横距離Dtxが「0」に到達した時点)において自車両10が交差領域S内に位置していると、両車両が衝突する。
【0097】
第2例は、自車両10及び他車両62の何れもが減速することなく時刻t0のそれぞれの速度を維持した場合、自車両10が交差領域Sに進入し始めたとき、他車両62が既に交差領域Sに進入していて且つ交差領域S内に位置している例である。
【0098】
時刻t0以降において、自車両10が減速しなければ(即ち、車速Vsが速度Voに維持されると)、物標縦距離Dtyは、図7(B)の一点鎖線Ld3に示したように、時刻t6にて「0」に到達する。即ち、自車両10は時刻t6にて交差領域Sに進入する。時刻t6は、時刻t0から衝突余裕時間TTC2(=Ly6/Vo)が経過した時点である。
【0099】
時刻t0以降において、他車両62が減速しなければ、物標横速度Vtxは速度Vtx0に維持される。この場合、物標横距離Dtxは、図7(C)の一点鎖線Le1に示したように、時刻t5にて「0」に到達する。即ち、他車両62は時刻t5にて交差領域Sに進入する。時刻t5は、時刻t0から他車両余裕時間TTCT(=Lx1/Vtx0)が経過した時点であり、第2例においては時刻t6よりも前の時刻である。
【0100】
その後、自車両10が交差領域Sに進入する時刻t6にて、物標横距離Dtxは横距離Lx2となる。この時点における他車両62の位置は、図6において車両位置62aによって示されている。第2例において、この横距離Lx2は、「0」よりも大きく且つ「自車幅Wdと、他車両62の前後長Ltgとsin(θi)との積と、所定値αと、の和」以下である(即ち、0<Lx2≦Wd+Ltg・sin(θi)+α)。つまり、第2例において、自車両10が交差領域Sに進入した時点において他車両62は実質的に交差領域S内に位置している。よって、自車両10は時刻t6にて他車両62に衝突する。即ち、第2例においては、時刻t6が予想衝突時点である。なお、所定値αは、前方画像に基づいて取得される立体物標の位置及び移動速度の誤差(取得誤差)に基づいて予め設定されている。
【0101】
第2例における制動縦距離Lsyは、上記式(1)に基づいて求められ、ここでは縦距離Ly7である(図6を参照。)。よって、物標縦距離Dtyが縦距離Ly7に一致した時点が最大制動開始必要時点である。最大制動開始必要時点にて最大制動制御が開始された場合の車速Vsは図7(A)における破線Lv3によって示され、この場合の物標縦距離Dtyは図7(B)における破線Ld4によって示されている。破線Lv3に示されるように、時刻t8にて、車速Vsが「0」に到達して自車両10は停止し、物標縦距離Dtyが「0」に到達する。よって、自車両10は交差領域Sに進入する直前の位置にて停止し、他車両62と衝突しない。
【0102】
ところで、他車両62の運転者、又は、他車両62に搭載されている自動ブレーキ装置等は、自車両10との衝突を回避するために他車両62を制動して他車両62を減速させる場合がある。他車両62の制動が適切な時点(以下、「物標制動必要時点」とも称呼する。)までに行われれば、他車両62は交差領域Sに進入しない。よって、このような場合に自車両10が最大制動制御によって減速されることは好ましいとは言えない。つまり、物標制動必要時点が最大制動開始必要時点よりも後の時点である場合、不必要な最大制動制御(不必要強制動)が行われ、自車両10の運転者に強い違和感を与える可能性がある。
【0103】
そこで、ECU21は、物標制動必要時点が到来するときの物標横距離Dtxを物標制動横距離Ltxとして以下に述べるようにして算出し、物標横距離Dtxが物標制動横距離Ltxと一致する時点(即ち、物標制動必要時点)と、物標縦距離Dtyが制動縦距離Lsy(第2例においては縦距離Ly7)と一致する時点(即ち、最大制動開始必要時点)と、を比較することによって、物標制動必要時点と最大制動開始必要時点とのうちの何れが先に到来するかを判定する。更に、ECU21は、最大制動開始必要時点が物標制動必要時点よりも前に到来する場合、最大制動開始必要時点にて最大制動制御を開始しないように構成されている。物標制動必要時点は、便宜上、「第2時点」とも称呼される。
【0104】
なお、実際には、ECU21は、物標横距離Dtxが物標制動横距離Ltxと一致する時点の物標縦距離Dtyを物標制動縦距離Ltyとして求め、物標縦距離Dtyが物標制動縦距離Ltyと一致する時点(即ち、物標制動必要時点)と、物標縦距離Dtyが制動縦距離Lsyと一致する時点(即ち、最大制動開始必要時点)と、を比較することによって、物標制動必要時点と最大制動開始必要時点とのうちの何れが先に到来するかを判定する。
【0105】
具体的には、第2例における物標制動横距離Ltxは横距離Lx3であり、物標制動縦距離Ltyは縦距離Ly8である(図6を参照。)。横距離Lx3を速度Vtx0によって除して得られる時間と、縦距離Ly8を速度Voによって除して得られる時間と、は共に時刻t4から時刻t6までの期間の長さと等しい(即ち、Lx3/Vtx0=Ly8/Vo=t6-4)。
【0106】
物標制動必要時点は、他車両62が所定の物標減速度(想定物標減速度)Atにて減速し始めたとしても、他車両62が交差領域Sの直前の位置にて停止できなくなる時点の直前の時点である。換言すれば、物標制動必要時点よりも前の時点において他車両62が物標減速度Atにて減速し始めた場合、他車両62は交差領域Sに進入せず、自車両10との衝突を回避することができる。物標減速度Atは、典型的な運転者が衝突を回避するために車両に発生させる典型的な減速度に予め設定されている。
【0107】
横断物標が他車両である場合の物標制動横距離Ltxは、横断物標(第2例における他車両62)が物標減速度Atにて減速し始めた時点から横断物標が停止する時点までの期間における物標横距離Dtxの減少量(減少量の大きさ)に等しい。
【0108】
物標速度Vt(第2例においては、速度Vt0)にて走行している横断物標が「物標減速度Atにて減速することにより物標速度Vtが「0」となるまでの期間」に走行する制動距離Loは、上記式(1)から類推される下式(8)に基づいて計算される。そのため、物標制動横距離Ltxは、下式(9)に基づいて算出される。

Lo=(1/2)・(Vt)/At ……(8)
Ltx=Lo・sin(θi)
={(1/2)・(Vt)/At}・sin(θi) ……(9)
【0109】
物標横距離Dtxが物標制動横距離Ltxと等しくなる時点(即ち、物標制動必要時点)は、図7の時刻t4であり、物標制動横距離Ltxは横距離Lx3であると仮定する。時刻t4にて他車両62が物標減速度Atにて減速し始める場合の物標横速度Vtxは図7(A)における破線Lv4によって示され、この場合の物標横距離Dtxは図7(C)における実線Le2によって示されている。破線Lv4に示されるように、時刻t10にて物標横速度Vtxが「0」に到達して他車両62は停止し、物標横距離Dtxが「0」に到達する。よって、他車両62は交差領域Sに進入する前に停止し、自車両10と衝突しない。
【0110】
最大制動開始必要時点(時刻t3)が物標制動必要時点(時刻t4)よりも前(先)に到来する場合、ECU21は、最大制動開始必要時点にて最大制動制御を開始しない。その代わり、ECU21は、図7に示したように、予想衝突時点(時刻t6)よりも制動開始時間Tiだけ手前の時点である「暫定制動開始時点(時刻t1)」にて暫定制動制御を開始して、自車両10を暫定減速度Awにて減速させる。制動開始時間Ti及び暫定減速度Awは第1制動制御と同様に算出される。ECU21は、車速Vs(本例においては、速度Vo)に制動開始時間Tiを乗じることによって暫定制動距離Liを算出し(即ち、Li=Vs・Ti)、物標縦距離Dtyが暫定制動距離Liに一致した時点が到来したとき、暫定制動開始時点が到来したと判定する。第2例における暫定制動距離Liは縦距離Ly9である。
【0111】
なお、第2制動制御における暫定制動期間(暫定制動制御が実行されている期間)Ttは、暫定制動開始時点(時刻t1)から物標制動必要時点(時刻t4)までの期間である。
【0112】
その後、物標制動必要時点(時刻t4)が到来するまでの期間において他車両62が減速を開始しなければ、ECU21は、物標制動必要時点にて最大制動制御を開始する。この場合の車速Vsが図7(A)における実線Lv5によって示され、この場合の物標縦距離Dtyが図7(B)における実線Ld5によって示されている。実線Lv5及び実線Ld5から理解されるように、時刻t9にて「車速Vs及び物標縦距離Dty」の何れもが「0」となっている。よって、自車両10は交差領域Sに進入する前に停止し、他車両62と衝突しない。
【0113】
次に、物標制動必要時点が最大制動開始必要時点よりも前に到来する場合に実行される第2制動制御について説明する。例えば、図7に示したように、時刻t0における他車両62の物標横速度Vtxが「速度Vtx0よりも高い速度Vtx1」であり、それ故、物標制動必要時点が「時刻t4より前の時刻t2」となったと仮定する。この場合、物標制動横距離Ltxは横距離Lx4である。
【0114】
物標制動必要時点(時刻t2)にて他車両62が物標減速度Atにて減速を開始すると、物標横速度Vtxは図7(A)における一点鎖線Lv6に示したように変化し、物標横距離Dtxは図7(C)の一点鎖線Le3に示したように変化する。この場合、時刻t7にて物標横速度Vtxが「0」に到達して他車両62は停止し、物標横距離Dtxが「0」に到達する。よって、他車両62は交差領域Sに進入する前に停止し、自車両10と衝突しない。
【0115】
換言すると、他車両62が速度Vtx1にて走行している状態にて時刻t2(即ち、物標制動必要時点)までに減速を開始しない場合、他車両62は交差領域Sに進入する可能性が高い。そこで、この場合(即ち、物標制動必要時点が最大制動開始必要時点よりも先に到来する場合)、ECU21は、暫定制動制御を実行しない。加えて、ECU21は、最大制動開始必要時点(即ち、時刻t3)にて最大制動制御を開始する。
【0116】
(自動制動制御-第2制動制御-歩行者)
次に、図8に示した例(以下、便宜上、「第3例」と称呼する。)を用いて、横断物標の種別が歩行者63である場合の第2制動制御について詳述する。
【0117】
第3例においても第1例及び第2例と同様に自車両10は時刻t0において直進している。よって、自車両通過領域は破線(直線)Lr11と破線(直線)Lr12との間の領域である。
【0118】
歩行者63は、時刻t0において自車両通過領域と交差角度θiをもって交差する方向に物標速度Vtにて直進している。よって、歩行者63の予想走行領域(横断物標通過領域)は、破線(直線)Lr13と破線(直線)Lr14との間の領域である。
【0119】
図8に示したように、時刻t0において、車速Vsは速度Voであり、物標縦距離Dtyは縦距離Ly10であり、物標横距離Dtxは横距離Lx5である。時刻t0における物標横速度Vtxは速度Vtx2である。
【0120】
図9に示したように、第3例において、自車両10が減速することなく時刻t0の速度Voを維持した場合、物標縦距離Dtyは、図9(B)の一点鎖線Ld6に示したように、時刻t6にて「0」に到達する。即ち、自車両10は時刻t6にて交差領域Sに進入する。時刻t6は、時刻t0から衝突余裕時間TTC3(=Ly10/Vo)が経過した時点である。
【0121】
更に、時刻t0以降において、歩行者63が減速しなければ、物標横速度Vtxは速度Vtx2に維持される。この場合、物標横距離Dtxは、図9(C)の一点鎖線Le4に示したように、時刻t5にて「0」に到達する。即ち、歩行者63は時刻t5にて交差領域Sに進入する。時刻t5は、時刻t0から歩行者余裕時間TTCP(=Lx5/Vtx2)が経過した時点であり、第3例においては時刻t6よりも前の時刻である。
【0122】
その後、自車両10が交差領域Sに進入する時刻t6にて、物標横距離Dtxは横距離Lx6となる。この時点における歩行者63の位置は、図8において歩行者位置63aによって示されている。第3例において、この横距離Lx6は、「自車両10の自車幅Wdと所定値αとの和(=Wd+α)」以下である。つまり、第3例において、自車両10が交差領域Sに進入した時点において歩行者63は実質的に交差領域S内に位置している。よって、自車両10は時刻t6にて歩行者63に衝突する。即ち、第3例においては、時刻t6が予想衝突時点である。
【0123】
第3例における制動縦距離Lsyは、上記式(1)により求められ、ここでは縦距離Ly11である(図8を参照。)。よって、物標縦距離Dtyが縦距離Ly11に一致した時点が最大制動開始必要時点である。最大制動開始必要時点にて最大制動制御が開始された場合の車速Vsは図9(A)における破線Lv7によって示されている。破線Lv7に示されるように、時刻t8にて、車速Vsが「0」に到達して自車両10は停止する。このとき、物標縦距離Dtyは「0」になる。よって、自車両10は交差領域Sに進入する前に停止し、歩行者63と衝突しない。
【0124】
ところで、歩行者63は自車両10との衝突を回避するために停止する場合がある。ECU21は、横断物標の種別が「歩行者」である場合、物標制動横距離Ltxを予め定められた距離閾値Lthに設定している(図8を参照)。距離閾値Lthは、歩行者自身と交差するように接近する車両との衝突を回避するために、典型的な歩行者が停止する位置に基づいて予め定められている。距離閾値Lthは、典型的な歩行者が車両との衝突を回避するために停止したときの当該歩行者と自車両通過領域との距離(所定余裕距離)と略等しいか、所定余裕距離に所定のマージンを加えた距離に設定される。
【0125】
横断物標の種別が「歩行者」である場合、物標横距離Dtxが「物標制動横距離Ltxである距離閾値Lth」に到達する時点(即ち、物標制動必要時点)より前に横断物標が減速を開始すれば、最大制動制御が実行されなくても自車両10と歩行者63とは衝突しない。なお、物標制動必要時点(第3例において時刻t3)にて歩行者63が減速し始める場合における物標横速度Vtxが図9(A)の破線Lv8によって示されている。破線Lv8によって示されるように、歩行者63が減速し始めてから停止するまでの期間は極めて短い。
【0126】
そこで、ECU21は、「物標横距離Dtxが物標制動横距離Ltxである距離閾値Lthに一致する時点(即ち、物標制動必要時点)」と「物標縦距離Dtyが制動縦距離Lsy(第3例においては縦距離Ly11)に一致する時点(即ち、最大制動開始必要時点)」とを比較することによって、物標制動必要時点と最大制動開始必要時点とのうちの何れが先に到来するかを判定する。
【0127】
最大制動開始必要時点が到来した時点において、自車両通過領域に接近しつつある歩行者の物標横距離Dtxが距離閾値Lthよりも大きければ、その後に歩行者が交差領域Sに進入する前に停止する可能性がある。
【0128】
従って、最大制動開始必要時点(時刻t2)が「自車両通過領域に接近しつつある歩行者の物標横距離Dtxが距離閾値Lthに一致する時点である物標制動必要時点(時刻t3)」よりも前に到来する場合、ECU21は、最大制動開始必要時点にて最大制動制御を開始しない。その代わり、ECU21は、図9に示したように、予想衝突時点(時刻t6)よりも制動開始時間Tiだけ手前の時点である「暫定制動開始時点(時刻t1)」にて暫定制動制御を開始して、自車両10を暫定減速度Awにて減速させる。制動開始時間Ti及び暫定減速度Awは第1制動制御と同様に算出される。
【0129】
その後、物標制動必要時点(時刻t3)が到来するまでの期間において歩行者63が停止しなければ、ECU21は、物標制動必要時点にて最大制動制御を開始する。この場合の車速Vsが図9(A)における実線Lv9によって示されている。前述したように、このような制動制御の結果、時刻t9にて「車速Vs及び物標縦距離Dty」の何れもが「0」になる。よって、自車両10は交差領域Sに進入する前に停止し、歩行者63と衝突しない。
【0130】
これに対し、物標制動必要時点(自車両通過領域に接近しつつある移動中の歩行者の物標横距離Dtxが距離閾値Lthに一致した時点)が最大制動開始必要時点よりも前に到来している場合、その歩行者は自車両10の存在に気づいておらず、そのため、交差領域Sに進入する可能性が高い。
【0131】
このような場合の車速Vsの例が、図9(A)における一点鎖線Lv10によって示される。この場合、時刻t0における車速Vsは、速度Voよりも小さい速度V1である。この場合、ECU21は、暫定制動制御を実行しない。加えて、ECU21は、歩行者63との物標横距離Dtxが距離閾値Lthとなったとき(即ち、最大制動開始必要時点である時刻t4にて)、最大制動制御を開始する。
【0132】
(具体的作動)
次に、ECU21の具体的作動について説明する。ECU21のCPU(以下、単に「CPU」とも称呼される。)は、図10にフローチャートにより表された「自動制動処理ルーチン」を所定の時間が経過する毎に実行する。なお、CPUは、図示しないルーチンを所定時間が経過する毎に実行し、前方画像に含まれる立体物標の「左端位置、右端位置及び移動速度等」を前方画像に基づいて取得するようになっている。
【0133】
従って、適当なタイミングとなると、CPUは、図10のステップ1000から処理を開始してステップ1005に進み、通過領域内物標が存在しているか否かを判定する。
【0134】
通過領域内物標が存在していれば、CPUは、ステップ1005にて「Yes」と判定してステップ1010に進み、通過領域内物標の制動縦距離Lsyを上記式(1)に基づいて取得する。
【0135】
次いで、CPUは、ステップ1015に進み、上述したように旋回縦距離Lrを取得する。即ち、CPUは、通過領域内物標との衝突を回避できる「回避旋回半径Rsの旋回通過領域」であって且つ「旋回縦距離Lrが最も小さい旋回通過領域」を取得し、その旋回通過領域に対応する旋回縦距離Lrを取得する。
【0136】
更に、CPUは、ステップ1020に進み、制動縦距離Lsyが旋回縦距離Lrよりも大きいか否か(即ち、最大制動開始必要時点が操舵開始必要時点よりも先に到来するか否か)を判定する。制動縦距離Lsyが旋回縦距離Lrよりも大きければ、CPUは、ステップ1020にて「Yes」と判定してステップ1025に進み、上述したように通過領域内物標に対する暫定制動距離Liを取得する。
【0137】
より具体的に述べると、CPUは、車速Vsを上記式(2)に適用することによって制動開始時間Tiを取得する。加えて、CPUは、車速Vsに制動開始時間Tiを乗じることによって暫定制動距離Liを取得する(即ち、Li=Vs・Ti)。更に、CPUは、ステップ1030に進む。なお、CPUはステップ1025の処理を終了した後、後述するステップ1055に直接進んでもよい。この場合、後述するステップ1047の処理は省略される。
【0138】
一方、制動縦距離Lsyが旋回縦距離Lr以下であれば、CPUは、ステップ1020にて「No」と判定してステップ1030に直接進む。なお、ステップ1005の判定条件が成立していなければ(即ち、通過領域内物標が存在していなければ)、CPUは、ステップ1005にて「No」と判定してステップ1030に直接進む。
【0139】
ステップ1030にてCPUは、横断物標が存在しているか否かを判定する。より具体的に述べると、CPUは、自車両通過領域に接近している物標(即ち、候補物標)が存在しているか否かを判定し、候補物標が存在している場合にはその候補物標の種別が「他車両」又は「歩行者」であるか否かを判定する。なお、本実施形態において、他車両には、自動二輪車両も含まれる。更に、CPUは、自車両10が現在の車速Vs(車両速度)を維持した場合に自車両10が交差領域内に存在している期間と、候補物標が現在の物標速度Vt(候補物標速度)を維持した場合に候補物標が交差領域内に存在している期間と、が重複した部分(以下、「重複期間」と称呼する。)を有しているか否かを判定する。
【0140】
重複期間が存在していれば、その重複期間を有する候補物標が横断物標であると認定する。この場合、CPUは、ステップ1030にて「Yes」と判定してステップ1035に進む。ステップ1035にてCPUは、その横断物標についての制動縦距離Lsyを上記式(1)に基づいて取得する。
【0141】
次いで、CPUは、ステップ1040に進み、横断物標の物標制動縦距離Ltyを取得する。より具体的に述べると、CPUは、図11にフローチャートにより表される「物標制動縦距離取得処理ルーチン」を実行する。従って、CPUは、図11のステップ1100から処理を開始してステップ1105に進み、横断物標の種別が「他車両」であるか否かを判定する。
【0142】
横断物標の種別が「他車両」であれば、CPUは、ステップ1105にて「Yes」と判定して以下に説明するステップ1110乃至ステップ1125の処理を順に実行する。次いで、CPUは、ステップ1195に進んで図11のルーチンの処理を終了し、図10のステップ1045に進む。
【0143】
ステップ1110:CPUは、上記式(6c)に基づいて交差角度θiを取得する。
ステップ1115:CPUは、上記式(7)に基づいて物標速度Vtを取得する。
ステップ1120:CPUは、交差角度θi及び物標速度Vtを上記式(9)に代入することによって物標制動横距離Ltxを取得する。
【0144】
ステップ1125:CPUは、物標制動横距離Ltxに基づいて物標制動縦距離Ltyを取得する。即ち、CPUは、物標横距離Dtxが物標制動横距離Ltxとなる時点における物標縦距離Dtyを物標制動縦距離Ltyとして取得する。本実施形態において、CPUは、物標制動縦距離Ltyを、物標制動横距離Ltxと「車速Vsを物標横速度Vtxにより除して得られる値」との積として取得(算出)する(即ち、Lty=Ltx・Vs/Vtx)。
【0145】
一方、横断物標の種別が「他車両」でなければ(即ち、横断物標の種別が「歩行者」であれば)、CPUは、ステップ1105にて「No」と判定してステップ1130に進み物標制動横距離Ltxを距離閾値Lthに等しい値に設定する。次いで、CPUは、ステップ1125に進む。
【0146】
CPUは、図10のステップ1045にて、制動縦距離Lsyが物標制動縦距離Ltyよりも大きいか否か(即ち、最大制動開始必要時点が物標制動必要時点よりも前に到来するか否か)を判定する。制動縦距離Lsyが物標制動縦距離Ltyよりも大きければ、CPUは、ステップ1045にて「Yes」と判定してステップ1047に進み、暫定制動距離Liが取得されていない状態であるか否かを判定する。
【0147】
即ち、CPUは、本ルーチンの処理が今回実行されている間にステップ1025の処理は実行されておらず、そのため、暫定制動距離Liが取得されていない状態であるか否かを判定する。暫定制動距離Liが取得されていなければ、CPUは、ステップ1047にて「Yes」と判定してステップ1050に進み、ステップ1025と同様の処理により暫定制動距離Liを取得する。次いで、CPUは、ステップ1055に進む。
【0148】
一方、暫定制動距離Liが取得されていれば、CPUは、ステップ1047にて「No」と判定してステップ1055に直接進む。なお、ステップ1030の判定条件が成立していなければ(即ち、横断物標が存在していなければ)、CPUは、ステップ1030にて「No」と判定してステップ1055に直接進む。加えて、ステップ1045の判定条件が成立していなければ(即ち、制動縦距離Lsyが物標制動縦距離Lty以下であれば)、CPUは、ステップ1045にて「No」と判定してステップ1055に直接進む。
【0149】
ステップ1055にてCPUは、「最大制動条件」が成立しているか否かを判定する。最大制動条件は、最大制動制御が実行されているべき状態(即ち、自車両10が最大減速度Amxにて減速しているべき状態)であるときに成立する条件である。具体的には、最大制動条件は、以下の(条件a)乃至(条件c)の少なくとも1つが成立しているときに成立する条件である。
【0150】
(条件a):通過領域内物標に対して暫定制動制御が開始された後、通過領域内物標の物標縦距離Dtyが「旋回縦距離Lrにマージン距離Lmを加えた距離」以下となっている(即ち、Dty≦Lr+Lm)。
【0151】
(条件b):横断物標に対して暫定制動制御が開始された後、横断物標の物標縦距離Dtyが「物標制動縦距離Ltyにマージン距離Lmを加えた距離」以下となっている(即ち、Dty≦Lty+Lm)。
【0152】
(条件c):暫定制動制御が開始されておらず、且つ、物標縦距離Dtyが「制動縦距離Lsyにマージン距離Lmを加えた距離」以下となっている(即ち、Dty≦Ly+Lm)。
【0153】
例えば、第2制動制御の対象となる横断物標が存在しており、且つ、制動縦距離Lsyが物標制動縦距離Ltyよりも小さければ、その横断物標に対して暫定制動制御は実行されない。この場合、横断物標との物標縦距離Dtyが「制動縦距離Lsyにマージン距離Lmを加えた距離」と等しくなったとき、(条件c)が成立する。換言すれば、最大制動開始必要時点よりも上述したマージン時間Tmだけ前の時点にて(条件c)が成立する。
【0154】
なお、「(条件a)、(条件b)及び(条件c)」、並びに、後述される「(条件d)及び(条件e)」が成立するか否かは、本ルーチンが今回実行されたときに取得された各種のパラメータ(旋回縦距離Lr及び物標制動縦距離Lty等)が使用される。換言すれば、これらの条件の成否の判定において、本ルーチンが前回(或いは、それ以前)に実行されたときに取得されたパラメータは参照されない。
【0155】
(条件a)、(条件b)及び(条件c)の何れもが成立していない場合、CPUは、ステップ1055にて「No」と判定してステップ1070に進み、「暫定制動条件」が成立しているか否かを判定する。
【0156】
暫定制動条件は、暫定制動制御が実行されているべき状態(即ち、自車両10が暫定減速度Awにて減速しているべき状態)であるときに成立する条件である。より具体的に述べると、暫定制動条件は、以下の(条件d)及び(条件e)の少なくとも1つが成立しているときに成立する条件である。
【0157】
(条件d):通過領域内物標の物標縦距離Dtyが「通過領域内物標についての暫定制動距離Liにマージン距離Lmを加えた距離」以下となっている(即ち、Dty≦Li+Lm)。
(条件e):横断物標の物標縦距離Dty(即ち、交差領域Sと自車両10とのY軸方向距離)が「横断物標についての暫定制動距離Liにマージン距離Lmを加えた距離」以下となっている(即ち、Dty≦Li+Lm)。
【0158】
(条件d)及び(条件e)の何れもが成立していない場合、暫定制動条件が成立していないので、CPUは、ステップ1070にて「No」と判定してステップ1095に直接進み、本ルーチンの処理を一旦終了する。即ち、この場合、自動制動制御は実行されない。
【0159】
一方、最大制動条件が成立しない状態において暫定制動条件が成立した場合、CPUはステップ1055にて「No」と判定し、更に、ステップ1070にて「Yes」と判定して、以下に説明するステップ1075乃至ステップ1092の処理を順に実行する。その後、CPUはステップ1095に進む。
【0160】
ステップ1075:CPUは、上記式(5a)に基づいて暫定減速度Awを取得する。
ステップ1080:CPUは、目標減速度Atgの値を暫定減速度Awに設定する。
ステップ1085:CPUは、暫定制動制御の通知を行う。具体的には、CPUは、ディスプレイ33に、暫定制動制御が実行されていることを表す記号を所定時間が経過するまで表示する。加えて、CPUは、スピーカー34に、暫定制動制御が実行されていることを表す警告音を所定時間が経過するまで再生させる。
【0161】
ステップ1090:CPUは、目標減速度Atgを含む制動力制御要求を制動制御ECU23へ送信する。
ステップ1095:CPUは、目標駆動トルクFtgの値が「0」に設定された駆動力制御要求を駆動制御ECU22へ送信する。
【0162】
この結果、自車両10の減速度が暫定減速度Awに一致するように自車両10が制御される。即ち、暫定制動制御が開始される。その後、通過領域内物標に対する衝突回避のための旋回操作が開始されず、或いは、横断物標が減速しなければ、最大制動条件が成立するまでの期間において暫定制動制御が実行される。
【0163】
他方、最大制動条件が成立すると、CPUは、ステップ1055にて「Yes」と判定してステップ1060に進み、目標減速度Atgの値を最大減速度Amxに設定する。次いで、CPUは、ステップ1065に進み、最大制動制御の通知を行う。より具体的に述べると、CPUは、ディスプレイ33に、最大制動制御が実行されていることを表す記号を所定時間が経過するまで表示する。加えて、CPUは、スピーカー34に、最大制動制御が実行されていることを表す警告音を所定時間が経過するまで再生させる。
【0164】
更に、CPUは、ステップ1090に進む。この場合、暫定制動制御に代わり、自車両10が停止するまで最大制動制御が開始される。
【0165】
以上、説明したように、横断物標の種別が「他車両」であるとき、ECU21は、物標減速度Atに基づいて物標制動必要時点を特定する。一方、横断物標の種別が「歩行者」であるとき、ECU21は、距離閾値Lthに基づいて物標制動必要時点を特定する。そのため、本支援装置によれば、横断物標との衝突を回避することが可能となり且つ不必要強制動の発生を回避することが可能となる。
【0166】
以上、本発明に係る運転支援装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的に逸脱しない限りにおいて種々の変更が可能である。例えば、本実施形態において、第2制動制御の対象となる横断物標の種別は、「他車両」及び「歩行者」であった。しかし、第2制動制御の対象となる横断物標の種別は、これらの種別とは異なっていても良い。
【0167】
例えば、第2制動制御の対象となる横断物標の種別は、「他車両」に代わり、「普通乗用車」、「自動二輪車」及び「大型車両」を含んでいても良い。この場合、これらの種別のそれぞれに対して適用される物標減速度Atは、互いに異なる値であっても良い。
【0168】
加えて、本実施形態において、横断物標の種別が「歩行者」であるとき、物標横距離Dtx(即ち、横断物標と、自車両10の左端又は右端と、のX軸方向の距離)が距離閾値Lthと等しくなる時点が物標制動必要時点であった。しかし、横断物標とY軸(即ち、自車両10の車幅方向の中心軸)との距離が所定の閾値と等しくなる時点が、物標制動必要時点として取得されても良い。
【0169】
加えて、本実施形態に係るECU21は、上記式(5a)に基づいて暫定減速度Awを取得していた。より具体的に述べると、暫定減速度Awの取得に際してブレーキ機構45のブレーキオイルの昇圧速度が考慮されていなかった。換言すれば、制動制御ECU23がブレーキ機構45の制御を開始してから制動力Bfが所望の値と等しくなるまでの時間が考慮されていなかった。しかし、ECU21は、暫定減速度Awの取得に際してブレーキオイルの昇圧速度を考慮しても良い。例えば、ECU21は、走行距離Ds1及び走行距離Ds2の取得に際して単位時間あたりの制動力Bfの増加量(即ち、ブレーキオイルの昇圧速度)を考慮しても良い。
【0170】
加えて、本実施形態に係るECU21は、最大制動条件及び暫定制動条件のそれぞれが成立しているか否かを通過領域内物標及び横断物標の物標縦距離Dtyに基づいて判定していた。例えば、横断物標の物標横距離Dtxが「物標制動縦距離Ltyにマージン距離Lmを加えた距離」以下となっていると、ECU21は、(条件b)が成立していると判定していた。しかし、ECU21は、時間の経過に基づいて最大制動条件及び暫定制動条件のそれぞれが成立しているか否かを判定しても良い。例えば、ECU21は、ある時点(例えば、図7における時刻t0)において時刻t1までの時間(即ち、時刻t1と時刻t0との差分)を取得し、車速Vs及び物標速度Vtが変化しないまま時刻t1が到来したとき、(条件b)が成立していると判定しても良い。
【0171】
加えて、ECU21のCPUは、暫定制動制御及び最大制動制御のそれぞれが開始されるタイミングの決定に際してマージン時間Tmを考慮していた。しかし、マージン時間Tmを考慮する処理は割愛されても良い。例えば、ECU21は、最大制動開始必要時点又は物標制動必要時点にて最大制動制御を開始しても良い。
【0172】
加えて、ECU21は、上記式(2)に対して、車速Vsに代えて物標縦速度Vtyを代入することにより、制動開始時間Tiを取得(算出)しても良い。
【0173】
加えて、本実施形態に係る最大減速度Amxは固定値であった。しかし、最大減速度Amxは、変化する値であっても良い。例えば、ECU21は、自車両10が備える車輪と路面との間の摩擦係数を周知の方法により取得(推定)し、取得された摩擦係数が大きくなるほど最大減速度Amxを大きな値に設定しても良い。
【0174】
加えて、本実施形態に係るECU21は、物標縦速度Vty及び物標横速度Vtxに基づいて交差角度θiを取得し(上記式(6c)を参照。)、交差角度θiに基づいて物標制動横距離Ltxを取得していた(上記式(9)を参照。)。換言すれば、ECU21は、横断物標通過領域を直線形状の領域として取得していた。しかし、ECU21は、物標縦速度Vty及び物標横速度Vtxの単位時間あたりの変化量に基づいて横断物標通過領域を直線形状又は円弧形状の領域として取得し且つ取得された横断物標通過領域に基づいて物標制動横距離Ltxを取得しても良い。更に、ECU21は、転舵角度θsに基づいて自車両通過領域を直線形状又は円弧形状の領域とし且つ取得された自車両通過領域に基づいて物標制動横距離Ltxを取得しても良い。
【0175】
加えて、本実施形態に係る本支援装置は、立体物標を検出するためのセンサ(物標検出装置)として前方カメラ31を備えていた。しかし、本支援装置は、物標検出装置として、前方カメラ31に代えて、或いは、前方カメラ31に加えて、ミリ波レーダ装置、及び、LIDAR(Light Detection and Ranging)装置等を備えていても良い。
【0176】
加えて、ECU21によって実現されていた機能は、複数のECUによって実現されても良い。例えば、立体物標を検出し且つ立体物標に関する情報(即ち、物標縦距離Dty及び物標横距離Dtx等)を取得する処理は、前方カメラ31に搭載されるECUによって実現されても良い。
【符号の説明】
【0177】
10…車両、21…運転支援ECU、22…駆動制御ECU、23…制動制御ECU、24…EPS-ECU、25…CAN、31…前方カメラ、32…車速センサ、33…ディスプレイ、34…スピーカー、51…操舵ハンドル、61…他車両、62…他車両、63…歩行者。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11