(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-05
(45)【発行日】2023-09-13
(54)【発明の名称】摺動部材
(51)【国際特許分類】
F16C 33/20 20060101AFI20230906BHJP
C08L 101/00 20060101ALI20230906BHJP
C08K 7/02 20060101ALI20230906BHJP
B32B 15/08 20060101ALI20230906BHJP
B32B 27/18 20060101ALI20230906BHJP
【FI】
F16C33/20 A
C08L101/00
C08K7/02
B32B15/08 E
B32B27/18 Z
(21)【出願番号】P 2019202228
(22)【出願日】2019-11-07
【審査請求日】2022-08-02
(73)【特許権者】
【識別番号】591001282
【氏名又は名称】大同メタル工業株式会社
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】伊藤 良文
(72)【発明者】
【氏名】鈴木 悠
(72)【発明者】
【氏名】山内 貴文
【審査官】松江川 宗
(56)【参考文献】
【文献】特開2018-146060(JP,A)
【文献】特開2013-204807(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16C 17/00-17/26,33/00-33/28
C08K 3/00-13/08
C08L 1/00-101/14
B32B 1/00-43/00
(57)【特許請求の範囲】
【請求項1】
裏金層と、該裏金層上の摺動層とを備え、該摺動層が摺動面を有する摺動部材であって、
前記摺動層は、合成樹脂と、該合成樹脂中に分散された繊維状粒子とからなり、該繊維状粒子の前記摺動層中の体積割合は1~15%であり、
前記繊維状粒子はナノインデンター硬さが1000~5000MPaであるセミグラファイトからなり、
前記繊維状粒子は、前記摺動面から見た繊維状粒子の長軸と短軸との比により表される平均アスペクト比が5以上であり、
前記摺動面に垂直な断面視での前記繊維状粒子の平均粒径が5~50μmである、摺動部材。
【請求項2】
前記摺動部材が略円筒形状または略半円筒形状を有する、請求項1に記載された摺動部材。
【請求項3】
前記合成樹脂は、PTFE(ポリテトラフルオロエチレン)、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上である請求項1または請求項2に記載された摺動部材。
【請求項4】
前記合成樹脂がPTFEである請求項1または請求項2に記載された摺動部材。
【請求項5】
前記合成樹脂は、
PTFEと、
PFA、FEP、PVDF、ETFE及びPVF
から選ばれる1種または2種以上を
、前記合成樹脂の全体の体積を基準として0を超えて40%体積以下と
からなる請求項1または請求項2に記載された摺動部材。
【請求項6】
前記摺動層が、MoS
2、WS
2、グラファイト及びh-BNから選ばれる1種または2種以上の固体潤滑剤を
、前記摺動層の全体の体積を基準として1~20体積%をさらに含む、請求項1から請求項5までのいずれか1項に記載された摺動部材。
【請求項7】
前記摺動層が、CaF
2、CaCo
3、硫酸バリウム、酸化鉄、リン酸カルシウム、SnO
2及び芳香族ポリエステルから選ばれる1種または2種以上の充填材を
、前記摺動層の全体の体積を基準として1~10体積%をさらに含む、請求項1から請求項6までのいずれか1項に記載された摺動部材。
【請求項8】
前記裏金層は、前記摺動層との界面となる表面に多孔質金属部を有する、請求項1から請求項7までのいずれか1項に記載された摺動部材。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、摺動部材に関するものであり、詳細には、裏金層と、合成樹脂からなる摺動層とを備えた摺動部材に係るものである。
【背景技術】
【0002】
軸受等に使用する摺動部材として、金属製の裏金層上に樹脂組成物からなる摺動層を被覆したものが使用されている。このような摺動部材において、樹脂組成物として、炭素繊維粒子を合成樹脂中に分散させて摺動層の耐摩耗性や強度を高めたものが知られている(例えば、特許文献1、特許文献2参照)。あるいは、鋼板などに多孔質層を設け、その多孔質層にPTFE等の合成樹脂を含む樹脂組成物を含浸被覆させてなる複層軸受においても、炭素繊維粒子を合成樹脂中に分散させた樹脂組成物が提案されている。例えば、特許文献3では耐摩耗、特許文献4では樹脂層の強度向上を目的に炭素繊維を合成樹脂中に分散させている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平10-204282号公報
【文献】特開2013-194204号公報
【文献】特開2001-132756号公報
【文献】特開2010-159808号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
合成樹脂に炭素繊維を分散させることは、炭素繊維の硬度が大きいことから耐摩耗性を向上させることや、その繊維状の形状により合成樹脂摺動層の強度を向上させるという利点がある。しかし、炭素繊維が硬すぎるため、相手軸に損傷を与える場合がある。更には、合成樹脂マトリクスが摩耗しても、それに合わせて炭素繊維自体が摩耗しないために、摩耗が進むと炭素繊維が摺動面から突出して、さらには炭素繊維が合成樹脂から抜け落ちて、その抜け落ちた炭素繊維が摺動面に入り込み、アブレッシブ摩耗を促進させてしまうという問題があった。
【0005】
したがって、本発明の目的は、従来技術の上記欠点を解決して、繊維状粒子が適度に摩耗する摺動部材を提供し、それにより摺動層の耐摩耗性を向上させつつも、相手軸を損傷させ難い摺動部材を提供することである。
【課題を解決するための手段】
【0006】
本発明の一観点によれば、裏金層と、この裏金層上に設けられた摺動層とを備える摺動部材が提供される。この摺動層の表面が摺動面となる。摺動層は、合成樹脂と、この合成樹脂中に分散された繊維状粒子とからなる。繊維状粒子の摺動層中の体積割合は1~15%であり、繊維状粒子はナノインデンター硬さが1000~5000MPaであるセミグラファイトからなる。繊維状粒子は、摺動面で見た繊維状粒子の長軸と短軸との比により表される平均アスペクト比が5以上であり、摺動面に垂直な断面視での繊維状粒子の平均粒径が5~50μmである。
【0007】
本発明の一具体例によれば、摺動部材が略円筒形状または略半円筒形状を有することが好ましい。
【0008】
本発明の一具体例によれば、合成樹脂は、PTFE(ポリテトラフルオロエチレン)、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上であることが好ましい。
【0009】
本発明の一具体例によれば、合成樹脂がPTFEであることが好ましい。
【0010】
本発明の一具体例によれば、合成樹脂は、PTFEと、PFA、FEP、PVDF、ETFE及びPVFから選ばれる1種または2種以上を0を超えて40%体積以下とからなることが好ましい。
【0011】
本発明の一具体例によれば、摺動層が、MoS2、WS2、グラファイト及びh-BNから選ばれる1種または2種以上の固体潤滑剤を1~20体積%をさらに含むことが好ましい。
【0012】
本発明の一具体例によれば、摺動層が、CaF2、CaCo3、硫酸バリウム、酸化鉄、リン酸カルシウム、SnO2及び芳香族ポリエステルから選ばれる1種または2種以上の充填材を1~10体積%さらに含むことが好ましい。
【0013】
本発明の一具体例によれば、裏金層は、摺動層との界面となる表面に多孔質金属部を有することが好ましい。
【図面の簡単な説明】
【0014】
【
図1】本発明の一例による摺動部材の断面を示す図。
【
図2】本発明の他の例による摺動部材の断面を示す図。
【発明を実施するための形態】
【0015】
図1に本発明による摺動部材1の一例の断面を概略的に示す。摺動部材1は、裏金層2上に摺動層3が設けられている。摺動層3は、繊維状粒子5が合成樹脂4中に分散されている。摺動層3の表面が摺動面7になる。
【0016】
繊維状粒子5を合成樹脂4中に分散させることにより、摺動層3の強度および耐荷重性が向上する。繊維状粒子5は、合成樹脂4の1~15体積%で分散される。繊維状粒子5が1体積%未満では充分な強度向上効果はなく、また15体積%を超えると合成樹脂層の低摩擦性を損なう。3~15体積%であるとこの効果が更に向上し、5~15体積%であるとこの効果が一層向上する。
【0017】
繊維状粒子5はセミグラファイトからなる。セミグラファイトは、炭素原子がほぼ100%に近い無定形炭素である炭素質を、1800℃以上2000℃未満の温度で焼成して作られた材料であり、炭素質の硬さもある程度保持しながら、黒鉛質の柔らかさも併せ持つ材料である。セミグラファイトからなる繊維状粒子6は、1000~5000MPaのナノインデンター硬さを有する。
繊維状粒子5を含む合成樹脂の摩耗においては、繊維状粒子5は合成樹脂4よりも硬いために、合成樹脂4の摩耗を抑制する。繊維状粒子5のノインデンター硬さが1000MPa未満と小さすぎると摩耗の進行が早くなり摺動層3の耐摩耗性が劣化する。しかし、繊維状粒子5のノインデンター硬さが5000MPa超と従来の炭素繊維のように大きすぎると、摺動時に合成樹脂4がまず摩耗して繊維状粒子が摺動面から突出して、相手軸に損傷を与えるのみならず、その繊維状粒子が摩耗(破損や部分的せん断)しないで、繊維状粒子の全体が合成樹脂4から抜け落ちてしまう。その結果、アブレッシブ摩耗を引き起こし摩耗が促進されてしまう。繊維状粒子5のナノインデンター硬さが1000~5000MPaであれば、耐摩耗性を維持しつつ、繊維状粒子5が合成樹脂4とともに摩耗するために、上記のアブレッシブ摩耗を防止できる。繊維状粒子5のナノインデンター硬さは、1500~5000MPaがさらに好ましく、2000~5000MPaがさらに好ましい。
【0018】
摺動面7に垂直な断面視での繊維状粒子5の平均粒径は5~50μmである。繊維状粒子5の平均粒径が5μm未満であると、摺動時に、摺動面7に露出する繊維状粒子5の一部が摺動面7から脱落しやすくなり、摺動層3の耐摩耗性が低下することがある。繊維状粒子5の平均粒径が50μmを超えると、相手軸の表面に傷が発生する場合がある。
【0019】
摺動面7で見た繊維状粒子5の平均アスペクト比は5以上である。平均アスペクト比が5以上であると、平均アスペクト比が5未満である場合よりも、耐摩耗性がさらに向上する。これは、繊維状粒子5の表面積が大きくなることにより、合成樹脂4と繊維状粒子5の接触面積が大きくなり、合成樹脂4との密着性が大きくなるために摺動時に摺動面7から脱落し難くなるからと考えられる。
【0020】
以上の構成を有する摺動部材1は、充分な強度および耐摩耗効果を有しつつも、相手軸に損傷を与え難い。
【0021】
合成樹脂4は、特に限定はされない。しかし、合成樹脂4は、PTFE(ポリテトラフルオロエチレン)、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。
とりわけ、合成樹脂4はPTFEであることが好ましい。PTFEは、摩擦が小さく摺動特性に優れる。あるいは、合成樹脂4はPTFEを主体とし、さらに溶融フッ素樹脂であるPFA(パーフルオロアルコキシアルカンポリマー)、FEP(パーフルオロエチレンプロペンコポリマー)、PVDF(ポリビニリデンフルオライド)、ETFE(エチレンテトラフルオロエチレンコポリマー)及びPVF(ポリビニルフロライド)から選ばれる1種または2種以上を0を超え40%体積以下を加えることも好ましい。溶融フッ素樹脂を加えることで、耐摩耗性を向上させることに寄与できる。
【0022】
任意で、摺動層3は、MoS2、WS2、グラファイト、及びh-BNから選ばれる1種または2種以上の固体潤滑剤を1~20体積%をさらに含むことができる。この固体潤滑剤を含有することにより、摺動層の摺動特性を高めることができる。
【0023】
任意で、摺動層3は、CaF2、CaCo3、硫酸バリウム、酸化鉄、リン酸カルシウム、SnO2及び芳香族ポリエステルうちから選ばれる1種または2種以上の充填材を1~10体積%を含むことができる。この充填材を含有することにより、摺動層の耐摩耗性を高めることが可能となる。
【0024】
裏金層2は、摺動層3を支持し、摺動部材の強度を担保する。その材料は特に限定されないが、Fe合金、Cu、Cu合金、Al、Al合金等の金属板を用いることができる。
【0025】
本発明による摺動部材1の他の例の断面を
図2に概略的に示す。この例では、裏金層2は、摺動層3との界面となる表面に多孔質金属部6を有する。その他の構成は上記で説明した
図1の例と同じである。裏金層2の表面に多孔質金属部6を設けることにより、摺動層3と裏金層2の接合強度を高めることができる。すなわち、多孔質金属部6の空孔部に摺動層3を構成する組成物が含浸することによるアンカー効果により裏金層2と摺動層3との接合力の強化が可能になる。
【0026】
多孔質金属部6は、Cu、Cu合金、Fe、Fe合金等の金属粉末を金属板や条等の表面上に焼結することにより形成することができる。多孔質金属部6の空孔率は20~60%程度であればよい。多孔質金属部6の厚さは0.05~0.5mm程度とすればよい。この場合、多孔質金属部6の表面に含浸被覆される摺動層3の厚さは0.05~0.4mm程度となるようにすればよい。ただし、ここで記載した寸法は一例であり、本発明がこの値の限定されるものではなく、異なる寸法に変更することも可能である。
【0027】
摺動部材が略円筒形状または略半円筒形状を有することができる。その場合、摺動層3が内面側、裏金層2が外面側になり、内面が摺動面7となる。略円筒形状とは、厳密に断面が円形の円筒形状でなくてもよい。その他、略円筒形状は、例えば溝や孔を有してもよく、軸線方向端部にフランジを有してもよい。略半円筒形状も、厳密に断面が半円形の円筒形状でなくてもよい。略半円筒形状は、例えば軸線方向等の溝や孔を有してもよく、軸線方向端部にフランジを有してもよい。
【0028】
次に、測定方法について説明する。
繊維状粒子の平均粒径の測定方法
繊維状粒子の平均粒径は、電子顕微鏡を用いて(下記に説明する)摺動部材の略円筒形状または略半円筒形状の軸方向断面(軸方向に垂直かつ摺動面に垂直な断面、この断面を「摺動面に垂直な断面」という)の複数箇所の電子像を200倍で撮影し、繊維状粒子の平均粒径を測定する。摺動部材の略円筒形状または略半円筒形状の軸方向は下記の製造方法に説明するロールを通過する方向である。具体的には、繊維状粒子の平均粒径は、得られた電子像を一般的な画像解析手法(解析ソフト:Image-Pro Plus(Version4.5);(株)プラネトロン製)を用いて、各繊維状粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。ただし、電子像の撮影倍率は200倍に限定されないで、他の倍率に変更してもよい。
なお、裏金層の表面に多孔質金属部を有する場合には、裏金層の表面は凹凸状となる。この場合、摺動層と裏金層との界面は、撮影画像中で裏金層(多孔質金属部)の表面の最も摺動面側に近くに位置する凸部の頂部として、前記頂部から摺動面に平行に仮想線を引き、その仮想線と摺摺面間での繊維状粒子の平均粒径を算出する。
【0029】
繊維状粒子の平均アスペクト比の測定方法
繊維状粒子のアスペクト比は、摺動部材の摺動面を、マイクロスコープを用いて200倍で画像を撮影し、繊維状粒子の平均アスペクト比を測定する。具体的には、繊維状粒子の平均粒径は、得られた画像から、マイクロスコープに付帯された解析ソフト(デジタルマイクロスコープ VHX-7000:キーエンス製)を用いて、各繊維状粒子の長軸の長さLと短軸の長さSの比(長軸の長さL/短軸の長さS)の平均として求める(
図3参照)。なお、繊維状粒子の長軸の長さLは、上記画像中の繊維状粒子の長さが最大となる位置での長さを示し、繊維状粒子の短軸の長さSは、この長軸の長さLの方向に直交する方向での長さが最大となる位置での長さを示す。
ただし、マイクロスコープ画像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。
【0030】
繊維状粒子のナノインデンター硬さの測定方法
繊維状粒子のナノインデンター硬さ(MPa)は、ナノインデンターを用いて、試験力を1mN、試験力到達時間、保持時間、除荷時間を各10秒に設定し、先端形状がダイヤモンドチップから成る正三角錐バーコビッチ圧子を使用して、付帯の光学顕微鏡を用いて、摺動層の断面の合成樹脂中の繊維状粒子の箇所を確認しながら、その繊維状粒子の中心に圧子を押し込み、その時の圧子が押し込まれた際の硬度(MPa)を任意にて各5点の箇所を測定後、平均値を算出した。
【0031】
上記に説明した摺動部材について、製造工程に沿って以下に詳細に説明する。
(1)原材料繊維状粒子の準備
セミグラファイトである繊維状粒子の原材料は、例えば、コールタールから製造されたハードカーボン(難黒鉛化性炭素)の繊維のもの(ハードカーボンファイバー)を1800℃から2000℃未満の温度で焼成し黒鉛化度を70~80%にしたものなどがあげられる。一般的にカーボンファイバーと呼ばれる製品はナノインデンター硬さが5000MPaを越えるものが大半であり、本発明には使用できない。また、一般的にグラファイトと呼ばれる製品はナノインデンター硬さが500MPa未満になることがほとんどで耐摩耗性が著しく欠如しており、本発明に使用できない。なお、繊維状粒子の原材料は、上記で示したものに限定されない。例えば他の熱処理時間で調整することも可能である。なお、原材料の平均粒径(円相当径)は150~350μmであるものを用いた。
【0032】
(2)合成樹脂粒子の準備
原材料である合成樹脂粒子は、繊維状粒子の平均径の50~500%の平均粒径を有するものを用いることが好ましい。合成樹脂としては、上記の説明したとおり、PTFE、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上からなるものを用いることができるが、とりわけ合成樹脂はPTFEが好ましい。あるいは、PTFEと溶融フッ素樹脂であるPFA、FEP、PVDF、ETFE及びPVFから選ばれる1種または2種以上を0%超40%体積以下とからなるものを用いることができる。
【0033】
(3)混合
合成樹脂粒子と繊維状粒子、固体潤滑剤、及び充填材を所定の割合で撹拌混合し、得られた混合物100重量%に対して有機溶剤を10~25重量%添加し、さらに撹拌混合する。なお、合成樹脂、繊維状粒子、固体潤滑剤、充填材は撹拌混合方法に限定されないで、例えば熱を加えて溶融混練するなどの他の混合条件で調整することも可能である(実施例9を参照)。
【0034】
(4)裏金層
裏金層としては、Fe合金、Cu、Cu合金、Al、Al合金等の金属板を用いることができる。多孔質金属部を有する場合には、多孔質金属部は裏金層と同じ組成を有することも、異なる組成または材料を用いることも可能である。
【0035】
(5)被覆工程
混合後の樹脂組成物を裏金層上に被覆する。被覆方法としては、裏金層の一方の表面、あるいは裏金層上の多孔質金属部に樹脂組成物を載せたまま所定の一定の間隙を有するロール間を通過させることができる。
【0036】
(6)乾燥・焼成工程
組成物を被覆した裏金層は、組成物中の有機溶剤を乾燥させるための加熱、および組成物中の樹脂を焼成するための加熱を施して摺動部材を得る。これらの加熱条件は、使用した樹脂に対して一般に用いられる条件を採用できる。
【0037】
上記工程で得られた摺動部材について、その後、所望の製品形状に加工する。例えば、略円筒形状または略半円筒形状の軸受の場合には、所定のサイズになるように所定の一定の間隙を有するロール間に通してサイジングを行い、次に摺動部材の樹脂組成物が内径側となるように円筒形状に成形する。その際に、上記のロールを通過する方向が概ね略円筒形状または略半円筒形状の周方向になるように成形する。
【実施例】
【0038】
本発明による裏金層および摺動層を有する摺動部材の実施例1~9および比較例10~17を以下に示すとおり作製した。実施例1~9および比較例10~17の摺動部材の摺動層の組成は、表1に示すとおりである。表1の「合成樹脂」の欄は、合成樹脂内でのPTFE,PEEK、PVFの体積割合を示し、「添加剤」の欄は、摺動層全体に対する各添加剤の体積割合を示している。
【0039】
【表1】
*合成樹脂内での組成(体積比率)を示す。
**添加剤の摺動層内での体積比率を示す。
比較例17の括弧内の数値は球状黒鉛粒子の測定値である。
【0040】
表1に示す摺動部材の摺動層に分散させた繊維状粒子の原材料は、実施例1~9および比較例10~12、15、16が平均粒径が約200μm、比較13が平均粒径が約30μm、比較例14が平均粒径が約300μmの粒子であった。なお、比較例17の摺動部材の摺動層には、繊維状粒子ではなく、平均粒径が約50μmの球状黒鉛粒子の原材料を用いた。
【0041】
また、表1に示す摺動部材の摺動層に分散させた繊維状粒子の原材料のナノインデンター硬さは、実施例1~9、比較例10~14では1000~5000MPa、比較例15が500MPa、比較例16が10000MPaであった。比較例17における球状黒鉛粒子の原材料は、ナノインデンター硬さが100MPaであった。上記原材料の硬さは、摺動層に分散させた後の摺動層断面における各粒子をナノインデンターで測定しても同じ値となった。
【0042】
実施例1~4および比較例10における合成樹脂の原材料としてPTFE粒子、実施例5~8、比較例11~17における合成樹脂の原材料としてPTFE粒子およびPVF粒子を用いた。これらの粒子は、平均粒径が、原材料である繊維状粒子の平均粒径に対して125%であるものを用いた。また実施例9における合成樹脂の原材料としてPEEK粒子を用いた。この粒子は、平均粒径が、原材料である繊維状粒子の平均粒径に対して150%であるものを用いた。
実施例6および実施例8に添加した固体潤滑剤(MoS2、WS2)の原材料粒子は、平均粒径が繊維状粒子原材料の平均粒径に対して30%の粒子を用い、実施例7および実施例8に添加した充填材(CaCO3)の原材料粒子は、平均粒径が繊維状粒子の平均粒径に対して25%のものを用いた。
【0043】
上記の原材料(実施例9を除く)を表1に示す組成比率で撹拌混合して、樹脂組成物を作製した。実施例9は、表1に示す組成比率で溶融混練して、樹脂組成物のシートを作製した。
【0044】
次に撹拌混合後の樹脂組成物をFe合金製の裏金層の一方の表面に被覆したのち、ロールにて組成物を所定の厚さにした。なお、実施例1~4及び比較例10~12の裏金層はCu合金を用い、実施例5~9及び比較例13~17は表面にCu合金の多孔質焼結部を有するFe合金を用いた。
次に、組成物中の有機溶剤を乾燥する加熱処理および組成物の合成樹脂を焼成する加熱処理を施して摺動部材を作製した。作製された実施例1~8および比較例10~15の摺動部材の摺動層の厚さは0.10mmであり、裏金層の厚さは1.9mmであった。実施例9の摺動部材の摺動層の厚さは0.25mmであり、裏金層の厚さは1.75mmであった。
【0045】
作製された実施例1~9および比較例10~17の各摺動部材は、上記に説明した測定方法による摺動層中に分散する繊維状粒子または球状黒鉛粒子の平均粒径および平均アスペクト比の測定を行い、その結果を表1の「平均粒径」欄および「平均アスペクト比」欄に示した。また、上記に説明した方法で繊維状粒子または球状黒鉛粒子のナノインデンター測定を行い、その結果を表1の「ナノインデンター硬さ」欄に示した。
【0046】
各実施例および各比較例の部材を摺動層を内側にして円筒形状に形成し、表2に示す条件で摺動試験を行った。各実施例および各比較例の摺動試験後の摺動層の摩耗量を表1の「摩耗量」欄に示す。また、各実施例および各比較例は、摺動試験後の相手軸の表面の複数箇所を、粗さ測定器を用いて表面の傷の発生の有無を評価した。相手軸の表面に深さが5μm以上の傷が測定された場合には「有」、測定されなかった場合には「無」とし、表1の「傷有無」欄に示した。
【0047】
【0048】
表1に示す結果から分かるとおり、実施例1~9は、比較例10~17に対して、摺動試験後の摺動層の摩耗量が少なかった。さらに、実施例1~9は、摺動試験後の相手軸の表面に傷の発生は観察されなかった。
【0049】
比較例10は、繊維状粒子の平均アスペクト比が3と小さすぎるために、摺動面から繊維状粒子が脱落し、摩耗量が多くなったものと考えられる。
【0050】
比較例11は、摺動層における繊維状粒子の体積割合が0.5%と低すぎるために、繊維状粒子の耐摩耗性効果が少なく、摺動層の摩耗量が多くなったと考えられる。反対に比較例12は、繊維状粒子の体積割合が20%と高すぎるために、摺動層の摩擦が大きくなり、摺動時の発熱によって摺動層の摩耗量が多くなったと考えられる。
【0051】
比較例13は、繊維状粒子の平均粒径が3μmと小さすぎるために、摺動面から繊維状粒子が脱落し、摩耗量が多くなったと考えられる。比較例14は、繊維状粒子の平均粒径が70μmと大きすぎるために、相手軸の表面に深い傷が発生したと考えられる。
【0052】
比較例15は、繊維状粒子のナノインデンター硬さが500MPaと低いために、耐摩耗効果が得られず、摩耗量が多くなったと考えられる。比較例16は、炭素繊維を用いたため繊維状粒子のナノインデンター硬さが10000MPaと高くなり、繊維状粒子の部分的な摩耗及びせん断がされず、繊維状粒子全体が摺動面から脱落するために、摩耗が促進されて摩耗量が多くなり、さらに、脱落した繊維状粒子が摺動面と相手軸の間に入り相手軸の表面に深い傷を発生させたと考えられる。
【0053】
比較例17は、球状黒鉛粒子を用いたために、粒子のナノインデンター硬さが100MPaと非常に低く、また、粒形状が球状であるため、摺動層の強度を高める効果が不十分であり、そのために、耐摩耗効果が全く得られず、摩耗量が多くなった。