(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-05
(45)【発行日】2023-09-13
(54)【発明の名称】熱可塑性ウレタンおよびエチレン酢酸ビニルコポリマーの混合物
(51)【国際特許分類】
C08L 31/04 20060101AFI20230906BHJP
C08L 75/04 20060101ALI20230906BHJP
【FI】
C08L31/04 S
C08L75/04
(21)【出願番号】P 2021521248
(86)(22)【出願日】2019-10-16
(86)【国際出願番号】 US2019056527
(87)【国際公開番号】W WO2020081675
(87)【国際公開日】2020-04-23
【審査請求日】2022-10-13
(32)【優先日】2018-10-17
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】513156456
【氏名又は名称】ブラスケム アメリカ インコーポレイテッド
【氏名又は名称原語表記】BRASKEM AMERICA,INC.
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100119013
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100123777
【氏名又は名称】市川 さつき
(74)【代理人】
【識別番号】100111796
【氏名又は名称】服部 博信
(74)【代理人】
【識別番号】100212509
【氏名又は名称】太田 知子
(72)【発明者】
【氏名】クリシュナスワミー ラジェンドラ ケイ
【審査官】越本 秀幸
(56)【参考文献】
【文献】特開平10-195256(JP,A)
【文献】特開2018-062550(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08K 3/00-13/08
(57)【特許請求の範囲】
【請求項1】
バイオベース炭素供給源から生成されたエチレンをベースにしてもよい、10~85質量%のエチレン-酢酸ビニルコポリマー、
15~90質量%の熱可塑性ポリウレタン、および
0~10質量%の相溶化剤
を含み、少なくとも200℃の融点を有する
エラストマー組成物
であって、エラストマー組成物中のエチレン-酢酸ビニルコポリマーと熱可塑性ポリウレタンの和が総エラストマー組成物の90~100質量%である、エラストマー組成物。
【請求項2】
バイオベース炭素供給源から生成されたエチレンをベースにしてもよい、10~85質量%のエチレン-酢酸ビニルコポリマー、
15~90質量%の熱可塑性ポリウレタン、および
0~10質量%の相溶化剤
を含み、エチレン-酢酸ビニルコポリマーを除いて同じ成分を同じ質量%含み、エチレン-酢酸ビニルコポリマーを熱可塑性ポリウレタンに置き換えたエラストマー組成物と比較して、少なくとも200%の引張弾性率の上昇を有する
エラストマー組成物
であって、エラストマー組成物中のエチレン-酢酸ビニルコポリマーと熱可塑性ポリウレタンの和が総エラストマー組成物の90~100質量%である、エラストマー組成物。
【請求項3】
10~85質量%のエチレン-酢酸ビニルコポリマー、
15~90質量%の熱可塑性ポリウレタン、および
0~10質量%の相溶化剤
を含む、エラストマー組成物であって、
少なくとも200℃の融点を有し、
少なくとも20MPaの引張弾性率を有する
エラストマー組成物
であって、エラストマー組成物中のエチレン-酢酸ビニルコポリマーと熱可塑性ポリウレタンの和が総エラストマー組成物の90~100質量%である、エラストマー組成物。
【請求項4】
前記エチレン-酢酸ビニルコポリマーが、1%~100%のバイオベース炭素含有量を有する、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項5】
前記エチレン-酢酸ビニルコポリマーが、少なくとも50%のバイオベース炭素含有量を有する、請求項4に記載のエラストマー組成物。
【請求項6】
前記エチレン-酢酸ビニルコポリマー中の酢酸ビニル含有量が、2~40質量%の範囲である、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項7】
前記熱可塑性ポリウレタンが、ポリエステル系またはポリエーテル系である、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項8】
前記熱可塑性ポリウレタンが、少なくとも部分的にバイオベースである、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項9】
前記熱可塑性ポリウレタンが、少なくとも30%のバイオベース炭素含有量を有する、請求項8に記載のエラストマー組成物。
【請求項10】
少なくとも40%のバイオベース炭素含有量を有する、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項11】
前記相溶化剤が、存在し、有機過酸化物、エチレン-メチルアクリレート-グリシジルメタクリレート(EMA-GMA)ターポリマー、スチレンアクリロニトリル(SA)-エポキシ、ポリ(プロピレンカーボネート(PPC)-ジオール)、またはそれらの組合せを含む、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項12】
前記エチレン-酢酸ビニルコポリマーが、5g/10分(190℃/2.16kg)を超えるメルトフローレートを有し、かつ、シラングラフトエチレン-酢酸ビニルコポリマーではない、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項13】
10~40質量%のエチレン-酢酸ビニルコポリマー、
60~90質量%の熱可塑性ポリウレタン、および
0~5質量%の相溶化剤
を含む、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項14】
15~35質量%のエチレン-酢酸ビニルコポリマー、
65~85質量%の熱可塑性ポリウレタン
を含む、請求項13に記載のエラストマー組成物。
【請求項15】
0.5~5質量%の相溶化剤
を含む、請求項13に記載のエラストマー組成物。
【請求項16】
少なくとも40MPaの引張破断応力を有する、請求項14に記載のエラストマー組成物。
【請求項17】
エチレン-酢酸ビニルコポリマーを除いて同じ成分を同じ質量%含み、エチレン-酢酸ビニルコポリマーを熱可塑性ポリウレタンに置き換えたエラストマー組成物と比較して、少なくとも10%の引張破断応力の上昇を有する、請求項14に記載のエラストマー組成物。
【請求項18】
天然ゴム、合成ゴム、またはそれらの混合物を含むゴム成分をさらに含む、請求項1から3のいずれか1に記載のエラストマー組成物。
【請求項19】
請求項1から3のいずれか1に記載のエラストマー組成物から形成された成形製品。
【請求項20】
フットウェア製品、自動車用製品、家具製品、繊維製品、スポーツ/レクリエーション製品、または家庭用電子製品である、請求項19に記載の成形製品。
【請求項21】
靴底または靴の部品、薄膜、管、ファイバー、ケーブル、耳標、自動車用部品、自動車部品、ホース、ベルト、減衰部材、ひじ掛け、家具部材、スキーブーツ、ストッパー、ローラー、スキーゴーグル、パウダースラッシュ、アンテナおよびアンテナの下部、把手、筐体、スイッチ、またはクラッディングおよびクラッディング部材である、請求項20に記載の成形製品。
【請求項22】
前記熱可塑性ポリウレタンが、少なくとも部分的にバイオベースである、請求項1に記載のエラストマー組成物。
【請求項23】
前記熱可塑性ポリウレタンが、少なくとも30%のバイオベース炭素含有量を有する、請求項22に記載のエラストマー組成物。
【請求項24】
前記熱可塑性ポリウレタンが、少なくとも部分的にバイオベースである、請求項2に記載のエラストマー組成物。
【請求項25】
前記熱可塑性ポリウレタンが、少なくとも30%のバイオベース炭素含有量を有する、請求項24に記載のエラストマー組成物。
【発明の詳細な説明】
【技術分野】
【0001】
優先権の主張
本出願は、米国特許法第119条(e)の下で、その全体が参照により本明細書に組み込まれる、2018年10月17日に出願された米国仮出願第62/746,914号の優先権を主張する。
本発明は、熱可塑性ポリウレタン成分およびエチレン-酢酸ビニル成分を含む、エラストマー組成物に関する。
【背景技術】
【0002】
熱可塑性ポリウレタンは、高い耐摩耗性、高いせん断強度、および高い弾性などの有益な特性によって、スポーツ用品に使用されてきた。これらの良好な特性にもかかわらず、スポーツ用フットウェア産業は、より環境に優しい材料を探し続けている。部分的にバイオベースの熱可塑性ウレタンが、ある市販の運動靴において開発された。しかし、多くの市販のバイオベースの熱可塑性ウレタンのバイオベース含有量は、約30%のみである。
したがって、純粋な熱可塑性ポリウレタンをベースにしたエラストマー組成物に匹敵またはそれより良好な性能を維持しながら、純粋な熱可塑性ポリウレタンをベースにしたエラストマー組成物より高いバイオベース炭素含有量を有する、環境的に持続可能なエラストマー組成物を開発する必要性が未だに当技術分野にはある。
【発明の概要】
【0003】
本発明の一態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物に関する。エチレン-酢酸ビニルコポリマーは、バイオベース炭素供給源から生成されたエチレンをベースにしてもよい。
本発明の別の態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物から形成された成形製品であって、エチレン-酢酸ビニルコポリマーは、バイオベース炭素供給源から生成されたエチレンをベースにしてもよい、成形製品に関する。
本発明の別の態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物に関する。エラストマー組成物は、少なくとも200℃の融点を有する。エラストマー組成物は、少なくとも20MPaの引張弾性率を有する。
本発明の別の態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物から形成された成形製品であって、エラストマー組成物は、少なくとも200℃の融点および少なくとも20MPaの引張弾性率を有する、成形製品に関する。
本発明のさらなる態様、利点および特徴が本明細書に記載され、それらは、以下の試験において当業者にとって部分的に明白になるか、または本発明の実施によって理解され得る。本出願において開示された発明は、態様、利点および特徴のいかなる特定のセットまたは組合せにも限定されない。述べられた態様、利点および特徴の様々な組合せが、本出願に開示された発明を作り上げていると考えられる。
【図面の簡単な説明】
【0004】
【
図1】熱可塑性ポリウレタン(TPU)およびエチレン-酢酸ビニル(EVA)成分の混合物を、それぞれ、15/85、30/70、45/55、55/45、70/30、85/15、および100/0(すなわち、純粋なTPU)のTPU/EVA質量比で含有するエラストマー組成物についての融解ピーク温度および結晶化ピーク温度の結果を示す図である。
【
図2】TPUおよびEVA成分の混合物を、それぞれ、15/85、30/70、45/55、55/45、70/30、および85/15のTPU/EVA質量比で含有するエラストマー組成物についての溶融粘度|η*|値を示す図である。
【
図3】TPUおよびEVA成分の混合物を、それぞれ、30/70、45/55、55/45、および70/30のTPU/EVA質量比で含有するエラストマー組成物についてのtanδ値を示す図である。
【
図4】相溶化剤のない同じ組成物についてのtanδ値と比較した、TPU/EVA質量比が70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についてのtanδ値を示す図である。
【
図5】TPUおよびEVA成分の混合物を、それぞれ、0/100(すなわち、純粋なEVA)、15/85、30/70、45/55、55/45、70/30、85/15、および100/0(すなわち、純粋なTPU)のTPU/EVA質量比で含有するエラストマー組成物についての引張伸びの結果を示す図である。
【
図6】TPUおよびEVA成分の混合物を、それぞれ、0/100、15/85、30/70、45/55、55/45、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張破断応力の結果を示す図である。
【
図7】TPUおよびEVA成分の混合物を、それぞれ、0/100、15/85、30/70、45/55、55/45、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張弾性率の結果を示す図である。
【
図8】TPUおよびEVA成分の混合物を、それぞれ、0/100、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張ひずみ硬化の結果を示す図である。
【
図9】対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物 - 混合物+OP、E-MA-GMAターポリマー - 混合物+E-MA-GMA、またはSA-エポキシ - 混合物+SA-エポキシ)を含有するエラストマー組成物についての引張伸びの結果を示す図である。
【
図10】対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についての引張破断応力の結果を示す図である。
【
図11】対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についての引張弾性率の結果を示す図である。
【発明を実施するための形態】
【0005】
本発明は、熱可塑性ポリウレタン(TPU)成分およびエチレン-酢酸ビニル(EVA)成分を含むエラストマー組成物に関するものであり、両成分とも、バイオベース炭素含有量を有してもよい。エラストマー組成物は、EVA成分のない同じエラストマー組成物と比較して、より高い融点および改善された引張特性を有する。
本発明の一態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物に関する。エチレン-酢酸ビニルコポリマーは、バイオベース炭素供給源から生成されたエチレンをベースにしてもよい。
本発明の別の態様は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む、エラストマー組成物に関する。エラストマー組成物は、少なくとも200℃の融点を有する。エラストマー組成物は、少なくとも20MPaの引張弾性率を有する。
【0006】
ポリ(エチレン-酢酸ビニル)(PEVA)としてもまた知られるEVAコポリマーは、エチレンと酢酸ビニルとのコポリマーである。EVAコポリマーは、
【化1】
の構造を有し得る。当業者にとって既知のEVAコポリマーのいずれの種類も、本明細書において使用するのに適切である。例えば、酢酸ビニル(VA)含有量および材料の使用方法に違いがある、EVAコポリマーの3つの典型的な種類は、熱可塑性材料として加工される低VA含有量(およそ4%まで)をベースにしたEVAコポリマー、熱可塑性エラストマー材料として加工される中VA含有量(およそ4~30%)をベースにしたEVAコポリマー、およびエチレン-酢酸ビニルゴムとして使用されている高VA含有量(33%超またはさらに40%超も)をベースにしたEVAコポリマーなどであり、本明細書において使用するのに全て適切である。
EVAコポリマー中のVA含有量は典型的に、約2~約40質量%の範囲であり、残りはエチレン含有量である。例えば、EVAコポリマー中のVA含有量は、約2~約35質量%、約12~約33質量%、約15~約30質量%の範囲であり得る。
【0007】
本明細書で使用されるとき、用語「バイオベース」は、化石炭素資源ではなく、生物材料または農業資源から供給された炭素含有量の部分を有する材料のことである。
適切なEVAコポリマーは、バイオベースのものを含む。EVAコポリマーのバイオベース炭素含有量は典型的に、エチレン成分由来である。バイオベースのエチレン(または、再生可能なエチレン)は典型的に、エタノールから作られ、脱水処理後、エチレンになる。エタノールは、いずれの植物由来の材料からも生成できる。例えば、エタノールは、様々なバイオベースの原料、例えば、これらに限定されるわけではないが、トウキビ、サトウキビ、甜菜、小麦粒等からのデンプンまたは糖を発酵させることによって生成できる。エタノールはまた、様々なセルロースの原料、例えば、草、木、藻類、またはその他の植物の酵素による分解から生成できる。
EVAコポリマー中でバイオベースのエチレンを使用することは、多くの利点を有する。1つの恩恵は、バイオベースのエチレンを使用することで生成されたEVAコポリマーが、環境保護のためになり、環境に優しいことである。例えば、生成された環境保護ポリエチレン1トン毎におよそ2.15トンのCO2を隔離でき、これは、成長する間にサトウキビによって吸収されるCO2から、生成過程を通じて排出されるCO2をマイナスしたものである。EVAコポリマー中のバイオベースのエチレンはまた、伝統的なポリエチレンと同じ廃棄物の流れでリサイクルできる。
【0008】
EVAコポリマーは、約1%~約100%のバイオベース炭素含有量を有し得る。EVAコポリマー中でのバイオベースのエチレンの使用は、非常に高いバイオベース炭素含有量のEVAコポリマーを生成できる。例えば、EVAコポリマーは、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、または実質的に100%のバイオベース炭素含有量を有し得る。EVAコポリマーのバイオベース炭素含有量は、当業者にとって既知の方法によって試験できる。例えば、EVAコポリマーは、14Cについて分析的に試験できる。バイオベース炭素含有量は、ASTM D6866によって定められた手順に従って測定できる。
【0009】
TPUコポリマーは、ジイソシアネート、鎖延長剤または短鎖ジオール、およびポリオールまたは長鎖ジオールの反応によって形成された、ハードおよびソフトブロックまたは領域を含有するブロックコポリマーである。当業者にとって既知のTPUコポリマーのいずれの種類も、本明細書において使用するのに適切である。TPUコポリマーの様々な種類は、上記の反応成分の比、構造、および/または分子量を変化させることによって生成でき、TPUコポリマーの構造を材料の所望の最終特性に微調整できる。例えば、ハードブロックのソフトブロックに対するより大きい割合は、より硬いTPUをもたらすことになり、一方で、ソフトブロックのハードブロックに対するより大きい割合は、より柔軟なTPUをもたらすことになる。
【0010】
適切なTPUコポリマーは、ポリエステル系、例えば、アジピン酸エステルから主に由来するポリエステル系、またはポリエーテル系、例えば、テトラヒドロフラン(THF)エーテルを主にベースにするポリエーテル系であり得る。好例となるTPUコポリマーは、Epamould(Epaflex Polyurethanes S.r.l.、イタリア)、Epaline(Epaflex Polyurethanes S.r.l.)、Epacol(Epaflex Polyurethanes S.r.l.)、Pakoflex(Epaflex Polyurethanes S.r.l.)、Elastollan(登録商標)(BASF、ミシガン)、Pearlthane(登録商標)(Lubrizol、オハイオ)、Pearlthane(登録商標)ECO(Lubrizol)、Estane(登録商標)(Lubrizol)、Pellethane(登録商標)(Lubrizol)、Desmopan(登録商標)(Covestro、ドイツ)、New power(登録商標)(New power industrial limited、香港)、Irogran(登録商標)(Huntsman、テキサス)、Avalon(登録商標)(Huntsman)、Exelast EC(Shin-Etsu Polymer Europe B.V.、オランダ)、Laripur(登録商標)(C.O.I.M.S.p.A.、イタリア)、Isothane(登録商標)(Greco、台湾)、Zythane(商標)(Alliance Polymers & Services、ミシガン)、およびTPU95A(Ultimaker、オランダ)である。
【0011】
適切なTPUコポリマーはまた、バイオベースのものを含む。一実施形態において、熱可塑性ポリウレタンは、少なくとも部分的にバイオベースである。TPUコポリマーは、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、または少なくとも80%のバイオベース炭素含有量を有し得る。
【0012】
バイオベースのEVAコポリマーを少なくとも部分的にバイオベースであるTPUコポリマーと混合することによって、純粋なTPU成分のみを含有するエラストマー組成物に比べて、エラストマー組成物のバイオベース炭素含有量を増加させることができる。したがって、エラストマー組成物は、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、または少なくとも90%の、全体としてのバイオベース炭素含有量を有し得る。
【0013】
EVA成分をTPU成分と混合させることによってまた、エラストマー組成物の質量を低減させて、軽質量の最終生成物を生成できる。これは、TPUコポリマーの密度が典型的に、約1.05~約1.20g/cm3の範囲であり、一方で、EVAコポリマーの密度が典型的に、約0.92~約0.95g/cm3の範囲であって、TPUコポリマーの密度より有意に低いことに起因する。
【0014】
エラストマー組成物中のTPU成分およびEVA成分は、EVA成分の酢酸ビニルとTPU成分中のウレタン基との間の相互作用または反応性に恐らく起因して、お互いに親和性があり得る。
エラストマー組成物はまた、1種または複数の相溶化剤を含んで、2種のポリマー成分を一緒に混合することを促進できる。適切な相溶化剤としては、有機過酸化物、相溶化エチレンコポリマー、エポキシ樹脂およびスチレンベースのポリマーを含む相溶化剤、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリシロキサンポリオール、およびそれらの組合せが挙げられる。
【0015】
適切な有機過酸化物としては、これらに限定されるわけではないが、3-ヒドロキシ-1,1-ジメチルブチルペルオキシネオデカノエート、α-クミルペルオキシネオデカノエート、t-アミルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、2-ヒドロキシ-1,1-ジメチルブチルペルオキシネオヘプタノエート、α-クミルペルオキシネオヘプタノエート、t-ブチルペルオキシネオヘプタノエート、ジ-(2-エチルヘキシル)ペルオキシジカーボネート、ジ-(n-プロピル)ペルオキシジカーボネート、ジ-(sec-ブチル)ペルオキシジカーボネート、t-アミルペルオキシピバレート、t-ブチルペルオキシピバレート、ジ-イソ-ノナノイルペルオキシド、ジ-ドデカノイルペルオキシド、3-ヒドロキシ-1,1-ジメチルブチルペルオキシ-2-エチルヘキサノエート、ジ-デカノイルペルオキシド、2,2’-アゾビス(イソブチロニトリル)、ジ-(3-カルボキシプロピオニル)ペルオキシド、2,5-ジメチル-2,5-ジ-(2-エチルヘキサノイルペルオキシ)ヘキサン、ジベンゾイルペルオキシド、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、t-ブチルペルオキシ(シス-3-カルボキシ)プロペノエート、1,1-ジ-(t-アミルペルオキシ)シクロヘキサン、1-ジ-(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1-ジ(t-ブチルペルオキシ)シクロヘキサン、o-t-アミル-o-(2-エチルヘキシル)モノペルオキシカーボネート、o-t-ブチル-o-イソプロピル-モノペルオキシカーボネート、o-t-ブチル-o-(2-エチルヘキシル)モノペルオキシカーボネート、ポリエステルテトラキス(t-ブチルペルオキシカーボネート)、2,5-ジメチル-2,5-ジ-(ベンゾイルペルオキシ)ヘキサン、t-アミルペルオキシアセテート、t-アミルペルオキシベンゾエート、t-ブチルペルオキシイソノナノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート、ジ-t-ブチルジペルオキシフタレート、2,2-ジ-(t-ブチルペルオキシ)ブタン、2,2-ジ-(t-アミルペルオキシ(amyloperoxy))プロパン、n-ブチル4,4-ジ-(t-ブチルペルオキシ)バレラート、エチル3,3-ジ-(t-アミルペルオキシ(amyloperoxy))ブチレート、エチル3,3-ジ-(t-ブチルペルオキシ)ブチレート、ジクミルペルオキシド、α,α’-ビス-(t-ブチルペルオキシ)ジ-イソプロピルベンゼン、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキサン、ジ-(t-アミル)ペルオキシド、t-ブチルα-クミルペルオキシド、ジ-(t-ブチル)ペルオキシド、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)-3-ヘキサン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリペルオキシノナン(triperoxinonane)、およびそれらの混合物が挙げられる。
【0016】
適切な相溶化エチレンコポリマーは、式E-X、E-Y、またはE-X-Yを有するものである(式中、Eは、エチレンであり、Xは、アルキルアクリレート、アルキルメタクリレート、アルキルビニルエーテル、一酸化炭素、二酸化硫黄、またはそれらの混合物(それぞれのアルキル基は、1~8個の炭素原子を独立して含有する)に由来する、α,β-エチレン性不飽和モノマーであり、Yは、TPUコポリマー成分および/またはEVAコポリマー成分と共有結合を形成できる反応基を含有する、α,β-エチレン性不飽和モノマーである)。一実施形態において、Xは、メチルアクリレート、エチルアクリレート、エチルメチルアクリレート、またはブチルアクリレートである。一実施形態において、Yは、グリシジルメタクリレート、グリシジルエチルアクリレート、またはグリシジルブチルアクリレートである。好例となる相溶化剤は、エチレン-メチルアクリレート-グリシジルメタクリレート(E-MA-GMA)ターポリマーである。
【0017】
エポキシ樹脂およびスチレンベースのポリマーを含む適切な相溶化剤は、エポキシ樹脂をスチレンベースのポリマーと混合することによって調製できる。使用される詳細なエポキシ樹脂は、塩酸を結合するのに充分な塩基性材料の存在下、エピクロロヒドリンなどのエポキシド含有化合物をグリセリンまたはビスフェノールなどの多価化合物と反応させることによって調製でき、エポキシ末端プレポリマーを形成する。エポキシはまた、過酢酸などの過酸化剤でのポリオレフィンのエポキシ化によって調製できる。多様なエポキシ樹脂が、広範なエポキシ含有量、分子量、軟化点および組成物で市販されていて、本明細書においてもまた使用できる。適切なスチレンベースのポリマーとしては、これらに限定されるわけではないが、スチレン、α-メチルスチレン、およびp-メチルスチレンのホモポリマー、スチレン-ブタジエンコポリマーゴム、エチレン-プロピレンコポリマーゴム、エチレン-プロピレン-ジエンターポリマーゴムなどのゴム様ポリマーで改変された耐衝撃性ポリスチレン、スチレン-無水マレイン酸コポリマー、スチレン-アクリロニトリルコポリマー、スチレン-アクリロニトリル-ブタジエンターポリマー、スチレン-メチルメタクリレートコポリマー等が挙げられる。好例となる相溶化剤は、スチレンアクリロニトリル(SA)-エポキシである。
【0018】
適切なポリカーボネートポリオールとしては、これらに限定されるわけではないが、ポリカーボネートジオール(例えば、ポリ(プロピレンカーボネート(PPC)-ジオール)またはポリカーボネートトリオールなどのポリカーボネートポリオール、ポリカプロラクトンポリオール、アルコキシ化ポリオール、およびそれらの混合物が挙げられる。ポリオールは、ジオール、トリオール、テトラオール、もしくはその他のいずれかのポリオール、またはそれらの組合せであり得る。好例となる相溶化剤は、ポリ(プロピレンカーボネート(PPC)-ジオールである。
適切なポリブタジエンポリオールとしては、限定されるわけではないが、約2~約3の範囲の平均ヒドロキシル官能価を有するヒドロキシル官能性ポリブタジエンが挙げられる。
適切なポリシロキサンポリオールとしては、限定されるわけではないが、末端またはペンダントのヒドロキシル基をもつポリシロキサン主鎖を有するそれらのポリマー、例えば、その全体を参照により本明細書に組み込まれる米国特許第5,916,992号に記載された、ポリブタジエンポリオールが挙げられる。
【0019】
エラストマー組成物中の熱可塑性ポリウレタンコポリマーの量は、総エラストマー組成物の約10~約85質量%、例えば、約10~約70質量%、約10~約55質量%、約10~約45質量%、約10~約40質量%、または約15~約35質量%の範囲であり得る。
エラストマー組成物中のエチレン-酢酸ビニルコポリマーの量は、総エラストマー組成物の約15~約90質量%、例えば、約30~約90質量%、約45~約90質量%、約55~約90質量%、約60~約90質量%、または約65~約85質量%の範囲であり得る。
【0020】
相溶化剤は、エラストマー組成物中に存在してもよく、総エラストマー組成物の約0~約10質量%、例えば、約0.1~約10質量%、約0.2~約8質量%、または約0.5~約5質量%の範囲の量であってもよい。
一実施形態において、エラストマー組成物は、約10~85質量%のエチレン-酢酸ビニルコポリマー、約15~90質量%の熱可塑性ポリウレタン、および約0~10質量%の相溶化剤を含む。
一実施形態において、エラストマー組成物は、約10~40質量%のエチレン-酢酸ビニルコポリマー、約60~90質量%の熱可塑性ポリウレタン、および約0~5質量%の相溶化剤を含む。
一実施形態において、エラストマー組成物は、約15~35質量%のエチレン-酢酸ビニルコポリマー、約65~85質量%の熱可塑性ポリウレタン、および約0~5質量%の相溶化剤を含む。
一実施形態において、エラストマー組成物は、約15~35質量%のエチレン-酢酸ビニルコポリマー、約65~85質量%の熱可塑性ポリウレタン、および約0.5~5質量%の相溶化剤を含む。
【0021】
エラストマー組成物はまた、ゴム成分を含んでよい。ゴム成分は、天然ゴム(NR)、合成ゴム、またはそれらの混合物を含み得る。代表的な合成ゴム状ポリマーとしては、ジエン系合成ゴム、例えば、共役ジエンモノマーのホモポリマー、ならびにモノビニル芳香族モノマーおよびトリエンとの共役ジエンモノマーのコポリマーおよびターポリマーが挙げられる。好例となるジエンベースの化合物としては、これらに限定されるわけではないが、1,4-シス-ポリイソプレンおよび3,4-ポリイソプレンなどのポリイソプレン(IR)、ネオプレン、ポリスチレン、スチレンブタジエンゴム(SBR)、ポリブタジエン(BR)、1,2-ビニル-ポリブタジエン、ブタジエン-イソプレンコポリマー、ブタジエン-イソプレン-スチレンターポリマー、イソプレン-スチレンコポリマー、スチレン/イソプレン/ブタジエンコポリマー、スチレン/イソプレンコポリマー、スチレン-ブタジエンコポリマーエマルジョン、スチレン/ブタジエンコポリマー溶液、イソブチレンゴムなどのブチルゴム、エチレンプロピレンジエンモノマー(EPDM)またはエチレンプロピレンゴム(EPM)などのエチレン/プロピレンコポリマー、およびそれらの混合物が挙げられる。四塩化スズなどの多官能性重合調整剤、またはジビニルベンゼンなどの多官能性モノマーを使用することによって形成された分枝構造を有する、ゴム成分もまた、使用されてよい。さらなる適切なゴム成分としては、ニトリルゴム、アクリロニトリル-ブタジエンゴム(NBR)、シリコーンゴム(例えば、メチルビニルシリコーンゴム、ジメチルシリコーンゴム等)、フルオロエラストマー、アクリルゴム(アルキルアクリレートコポリマー(ACM)、例えば、エチレンアクリルゴム)、エピクロロヒドリンゴム、クロロプレンゴムなどの塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、水素化ニトリルゴム、水素化イソプレン-イソブチレンゴム、テトラフルオロエチレン-プロピレンゴム、およびそれらの混合物が挙げられる。
【0022】
エラストマー組成物中のゴム成分の量は、総エラストマー組成物の約0~約50質量%、例えば、約0.5~約40質量%、約1~約30質量%、または約5~約20質量%の範囲であり得る。
【0023】
エラストマー組成物はまた、ゴムが使用される用途のため、ゴムの代用品として使用できる。
【0024】
本発明によって上に考察されたエラストマー組成物は、優れた特性を示す。例えば、TPU成分およびEVA成分の両方を含むエラストマー組成物は、EVA成分のない同じエラストマー組成物と比較して、より速く結晶化し、その結果より高い融点をもたらす。TPU成分およびEVA成分の両方を含むエラストマー組成物はまた、EVA成分のない同じエラストマー組成物と比較して、溶融レオロジー(溶融粘度|η*|値によって測定される)を低下させた。最後に、TPU成分およびEVA成分の両方を含むエラストマー組成物はまた、EVA成分のない同じエラストマー組成物と比較して、改善された引張特性、例えば、上昇した引張弾性率、上昇したひずみ硬化、およびある特定のEVA濃度での上昇した引張破断応力を有する。
TPU成分およびEVA成分を混合することによって調製されたエラストマー組成物は、それだけで、または相溶化剤および/もしくはゴム成分と組み合わせて、少なくとも約198℃、少なくとも約200℃、少なくとも約201℃、少なくとも約202℃、少なくとも約203℃、または少なくとも約204℃の融点(融解ピーク温度)を得ることができる。
TPU成分およびEVA成分を混合することによって調製されたエラストマー組成物は、それだけで、または相溶化剤および/もしくはゴム成分と組み合わせて、ASTM規格D638で測定された、少なくとも約20MPa、少なくとも約35MPa、少なくとも約45MPa、少なくとも約50MPa、少なくとも約60MPa、少なくとも約66MPa、少なくとも約70MPa、または少なくとも約80MPaの引張弾性率を得ることができる。
TPU成分およびEVA成分を混合することによって調製されたエラストマー組成物は、それだけで、または相溶化剤および/もしくはゴム成分と組み合わせて、エチレン-酢酸ビニルコポリマーのない同じエラストマー組成物と比較して、少なくとも約200%、少なくとも約2.5倍、少なくとも約3.3倍、少なくとも約4倍、または少なくとも約5倍、引張弾性率を上昇させる。
TPU成分およびEVA成分を混合することによって調製されたエラストマー組成物は、それだけで、または相溶化剤および/もしくはゴム成分と組み合わせて、ASTM規格D638で測定された、少なくとも約35MPa、少なくとも約40MPa、少なくとも約45MPa、または少なくとも約50MPaの引張破断応力を得ることができる。
TPU成分およびEVA成分を混合することによって調製されたエラストマー組成物は、それだけで、または相溶化剤および/もしくはゴム成分と組み合わせて、エチレン-酢酸ビニルコポリマーのない同じエラストマー組成物と比較して、それに匹敵するまたは約1~25%上昇した引張破断応力を有し得る。
したがって、本発明の一態様はまた、上に記載のエラストマー組成物から形成された非常に多様な成形製品に関する。かかる成形製品は、当業者にとって既知の様々な方法によって、組み立て、外形を決め、型に入れて成形し、硬化できる。
【0025】
エラストマー組成物の文脈における全ての上記の説明および全ての実施形態は、成形製品に関連する本発明のこの態様に、適用可能である。
【0026】
適切な成形製品としては、これらに限定されるわけではないが、フットウェア製品、自動車用製品、家具製品、繊維製品、スポーツ/レクリエーション製品、または家庭用電子製品が挙げられる。好例となる成形製品としては、靴底または靴の部品、薄膜、管、ファイバー、ケーブル、耳標、自動車用部品、自動車部品、ホース、ベルト、減衰部材、ひじ掛け、家具部材、スキーブーツ、ストッパー、ローラー、スキーゴーグル、パウダースラッシュ、アンテナおよびアンテナの下部、把手、筐体、スイッチ、ならびにクラッディングおよびクラッディング部材が挙げられる。
【実施例】
【0027】
以下の実施例は、例証目的のみのためにあり、決して本発明の範囲を限定することを意図しない。
【0028】
(実施例1)
TPUおよびEVAを含有するエラストマー組成物の調製
使用された熱可塑性ポリウレタン(TPU)成分は、市販のPearlthane(登録商標)ECO12T95(Lubrizol、オハイオ)、バイオベース含有量が約32%の熱可塑性ポリウレタンであった。この部分的にバイオベースのTPUは、バイオベース含有量がない伝統的なTPUと同じ性能を有する。
下記の実施例において使用されたエチレン-酢酸ビニルコポリマー(EVA)成分としては、ASTM-D1238規格で測定された、約8g/10分(190℃/2.16kg)のメルトフローレートを有する約19%の酢酸ビニル含有量を含有する、市販のEvateno(登録商標)8019PE(Braskem、ブラジル)があった。使用されたエチレン-酢酸ビニルコポリマー(EVA)としてはまた、ASTM-D1238規格で測定された、約6g/10分(190℃/2.16kg)のメルトフローレートを有する酢酸ビニル含有量が約28%の市販のEvateno(登録商標)HM728(Braskem、ブラジル)を含んだ。特に断りがなければ、19%の酢酸ビニル含有量を有する前者のEVAを、エラストマー組成物中に使用した。28%の酢酸ビニル含有量を有する後者のEVAを、「高VA」と呼ばれるエラストマー試料中で使用した。
好例となるエラストマー組成物を、それぞれ、15/85、30/70、45/55、55/45、70/30、および85/15のTPU/EVA質量比で、上記に考察されたTPUおよびEVA成分を混合することによって調製した。下記の様々な実施例において、ある特定のエラストマー組成物はまた、相溶化剤、例えば、有機過酸化物、エチレン-メチルアクリレート-グリシジルメタクリレート(E-MA-GMA)ターポリマー(例えば、LOTADER(登録商標)AX8900)、またはスチレンアクリロニトリル(SA)-エポキシ(例えば、JONCRYL(登録商標)ADR-4300)を含有した。
エラストマー組成物を調製するための成分の混練および押出を、18mmの二軸スクリュー押出機(Coperion GmbH、ドイツ)を使用して、8ゾーンの押出機で、以下の温度分布220/220/210/200/190/190/180/170(℃)を使用して、達成した。全ての試料を、10lbs/時の速度および300rpmのスクリュー速度で生成した。全ての材料を、混練する前に乾燥させた。
【0029】
(実施例2)
TPUおよびEVAを含有するエラストマー組成物の特性評価
この実施例において、実施例1によって調製されたエラストマー組成物の融解および結晶化、融解レオロジー、ならびに引張特性を特性評価した。
物理的および機械的試験の全てを、ASTM規格によって実施した。
融解および結晶化
融解および結晶化プロファイルを、TA1000示差走査熱量測定(DSC)を使用して収集した。試料を、10℃/分で溶融状態(220℃から)から冷却して、結晶化発熱を捉えた。引き続き加熱スキャンを、20℃/分で実施して、融解吸熱の詳細を捉えた。
酢酸ビニル含有量が約19%のEVAを使用して、TPUおよびEVA成分の混合物を、それぞれ、15/85、30/70、45/55、55/45、70/30、85/15、および100/0(すなわち、純粋なTPU)のTPU/EVA質量比で含有するエラストマー組成物についての融解ピーク温度および結晶化ピーク温度を、
図1に示す。
図1は、TPU成分が、EVA成分の存在下より速く結晶化して、エラストマー組成物が、増加した量のEVA成分を含有した場合、より高い融点をもたらしたことを示す。
融解熱[TPUハード]は、実施されたDSC試験からの観察に基づいて、0~70%の範囲のEVA濃度について一定(約4J/g)のままである。
【0030】
融解レオロジー
融解レオロジーデータを、ARESねじれレオメーターを使用して収集した。標準周波数掃引を、試料全てに対して220℃で実行した。メルトフローデータを、ASTM D1238規格で測定した。
酢酸ビニル含有量が約19%のEVAを使用して、TPUおよびEVA成分の混合物を、それぞれ、15/85、30/70、45/55、55/45、70/30、および85/15のTPU/EVA質量比で含有するエラストマー組成物についての溶融粘度|η
*|値を、
図2に示す。
酢酸ビニル含有量が約19%のEVAを使用して、TPUおよびEVA成分の混合物を、それぞれ、30/70、45/55、55/45、および70/30のTPU/EVA質量比で含有するエラストマー組成物についてのtanδ値を、
図3に示す。
TPU/EVA質量比が70/30(酢酸ビニル含有量約19%のEVAを使用した)のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についてのtanδ値を、相溶化剤のない同じ組成物についてのtanδ値と比較して、
図4に示す。使用された有機過酸化物の量は、0.05質量%の添加であった。使用されたSA-エポキシの量は、2質量%の添加であった。使用されたE-MA-GMAの量は、5質量%の添加であった。
【0031】
引張特性
全ての引張試験を、ASTM規格D638で測定した。アイゾット衝撃を、ASTM D256規格によって測定した。
図5は、酢酸ビニル含有量が約19%のEVAを使用した、TPUおよびEVA成分の混合物を、それぞれ、0/100(すなわち、純粋なEVA)、15/85、30/70、45/55、55/45、70/30、85/15、および100/0(すなわち、純粋なTPU)のTPU/EVA質量比で含有するエラストマー組成物についての引張伸びの結果を示す。
図6は、酢酸ビニル含有量が約19%のEVAを使用した、TPUおよびEVA成分の混合物を、それぞれ、0/100、15/85、30/70、45/55、55/45、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張破断応力の結果を示す。
図6に示されている通り、エラストマー組成物の引張破断応力は、純粋なTPUポリマーと比較して、エラストマー組成物中にEVA(15質量%)を混合した場合、約10MPa(約25%)上昇したが、エラストマー組成物中のEVAの量をさらに増加させた場合、引張破断応力は、再び下降した。
図7は、酢酸ビニル含有量が約19%のEVAを使用した、TPUおよびEVA成分の混合物を、それぞれ、0/100、15/85、30/70、45/55、55/45、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張弾性率の結果を示す。
図7に示されている通り、エラストマー組成物の引張弾性率は、純粋なTPUポリマーと比較して、エラストマー組成物中にEVA(15質量%)を混合した場合、約65MPa(4倍超)上昇し、約80MPaでピークになったが、エラストマー組成物中のEVAの量をさらに増加させた場合、引張弾性率は、再び下降した。しかし、EVA成分を有する全てのエラストマー組成物は、純粋なTPUポリマーより有意に高い引張弾性率特性を示した。
【0032】
図8は、酢酸ビニル含有量が約19%のEVAを使用した、TPUおよびEVA成分の混合物を、それぞれ、0/100、70/30、85/15、および100/0のTPU/EVA質量比で含有するエラストマー組成物についての引張ひずみ硬化の結果を示す。
図8に示されている通り、TPUおよびEVA成分の混合物を含有するエラストマー組成物のひずみ硬化は、純粋なTPUポリマーより大きかった。
【0033】
図9は、対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物 - 混合物+OP、E-MA-GMAターポリマー - 混合物+E-MA-GMA、またはSA-エポキシ - 混合物+SA-エポキシ)を含有するエラストマー組成物についての引張伸びの結果を示す。使用された有機過酸化物の量は、0.05質量%の添加であった。使用されたSA-エポキシの量は、2質量%の添加であった。使用されたE-MA-GMAの量は、5質量%の添加であった。
【0034】
図10は、対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についての引張破断応力の結果を示す。使用された有機過酸化物の量は、0.05質量%の添加であった。使用されたSA-エポキシの量は、2質量%の添加であった。使用されたE-MA-GMAの量は、5質量%の添加であった。
【0035】
図11は、対照(相溶化剤なしで、酢酸ビニル含有量が約19%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)および高VA(相溶化剤なしで、酢酸ビニル含有量が約28%のEVAを使用した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物を有する)の引張伸びの結果と比較した、TPU/EVA質量比が約70/30のTPUおよびEVA成分の混合物ならびに相溶化剤(それぞれ、有機過酸化物、E-MA-GMAターポリマー、またはSA-エポキシ)を含有するエラストマー組成物についての引張弾性率の結果を示す。使用された有機過酸化物の量は、0.05質量%の添加であった。使用されたSA-エポキシの量は、2質量%の添加であった。使用されたE-MA-GMAの量は、5質量%の添加であった。
本発明のまた別の態様は、以下のとおりであってもよい。
〔1〕バイオベース炭素供給源から生成されたエチレンをベースにしてもよい、約10~85質量%のエチレン-酢酸ビニルコポリマー、
約15~90質量%の熱可塑性ポリウレタン、および
約0~10質量%の相溶化剤
を含む、エラストマー組成物。
〔2〕前記エチレン-酢酸ビニルコポリマーが、約1%~約100%のバイオベース炭素含有量を有する、前記〔1〕に記載のエラストマー組成物。
〔3〕前記エチレン-酢酸ビニルコポリマーが、少なくとも50%のバイオベース炭素含有量を有する、前記〔2〕に記載のエラストマー組成物。
〔4〕前記エチレン-酢酸ビニルコポリマー中の酢酸ビニル含有量が、約2~約40質量%の範囲である、前記〔1〕に記載のエラストマー組成物。
〔5〕前記熱可塑性ポリウレタンが、ポリエステル系またはポリエーテル系である、前記〔1〕に記載のエラストマー組成物。
〔6〕前記熱可塑性ポリウレタンが、少なくとも部分的にバイオベースである、前記〔1〕に記載のエラストマー組成物。
〔7〕前記熱可塑性ポリウレタンが、少なくとも30%のバイオベース炭素含有量を有する、前記〔6〕に記載のエラストマー組成物。
〔8〕少なくとも40%のバイオベース炭素含有量を有する、前記〔1〕に記載のエラストマー組成物。
〔9〕前記相溶化剤が、存在し、有機過酸化物、エチレン-メチルアクリレート-グリシジルメタクリレート(EMA-GMA)ターポリマー、スチレンアクリロニトリル(SA)-エポキシ、ポリ(プロピレンカーボネート(PPC)-ジオール、またはそれらの組合せを含む、前記〔1〕に記載のエラストマー組成物。
〔10〕約10~40質量%のエチレン-酢酸ビニルコポリマー、
約60~90質量%の熱可塑性ポリウレタン、および
約0~5質量%の相溶化剤
を含む、前記〔1〕に記載のエラストマー組成物。
〔11〕約15~35質量%のエチレン-酢酸ビニルコポリマー、
約65~85質量%の熱可塑性ポリウレタン
を含む、前記〔10〕に記載のエラストマー組成物。
〔12〕約0.5~5質量%の相溶化剤
を含む、前記〔10〕に記載のエラストマー組成物。
〔13〕少なくとも200℃の融点を有する、前記〔1〕に記載のエラストマー組成物。
〔14〕少なくとも20MPaの引張弾性率を有する、前記〔1〕に記載のエラストマー組成物。
〔15〕エチレン-酢酸ビニルコポリマーのない同じエラストマー組成物と比較して、少なくとも200%の引張弾性率の上昇を有する、前記〔1〕に記載のエラストマー組成物。
〔16〕少なくとも40MPaの引張破断応力を有する、前記〔11〕に記載のエラストマー組成物。
〔17〕エチレン-酢酸ビニルコポリマーのない同じエラストマー組成物と比較して、少なくとも10%の引張破断応力の上昇を有する、前記〔11〕に記載のエラストマー組成物。
〔18〕天然ゴム、合成ゴム、またはそれらの混合物を含むゴム成分をさらに含む、前記〔1〕に記載のエラストマー組成物。
〔19〕前記〔1〕に記載のエラストマー組成物から形成された成形製品。
〔20〕フットウェア製品、自動車用製品、家具製品、繊維製品、スポーツ/レクリエーション製品、または家庭用電子製品である、前記〔19〕に記載の成形製品。
〔21〕靴底または靴の部品、薄膜、管、ファイバー、ケーブル、耳標、自動車用部品、自動車部品、ホース、ベルト、減衰部材、ひじ掛け、家具部材、スキーブーツ、ストッパー、ローラー、スキーゴーグル、パウダースラッシュ、アンテナおよびアンテナの下部、把手、筐体、スイッチ、またはクラッディングおよびクラッディング部材である、前記〔20〕に記載の成形製品。
〔22〕約10~85質量%のエチレン-酢酸ビニルコポリマー、
約15~90質量%の熱可塑性ポリウレタン、および
約0~10質量%の相溶化剤
を含む、エラストマー組成物であって、
少なくとも200℃の融点を有し、
少なくとも20MPaの引張弾性率を有する、
エラストマー組成物。