IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ユニチカ株式会社の特許一覧

<>
  • 特許-難燃性樹脂組成物およびその製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-06
(45)【発行日】2023-09-14
(54)【発明の名称】難燃性樹脂組成物およびその製造方法
(51)【国際特許分類】
   C08L 77/00 20060101AFI20230907BHJP
   C08L 1/02 20060101ALI20230907BHJP
   C08K 5/5313 20060101ALI20230907BHJP
   C08K 7/00 20060101ALI20230907BHJP
   C08J 5/04 20060101ALI20230907BHJP
【FI】
C08L77/00
C08L1/02
C08K5/5313
C08K7/00
C08J5/04 CFG
【請求項の数】 4
(21)【出願番号】P 2020532318
(86)(22)【出願日】2019-07-17
(86)【国際出願番号】 JP2019028127
(87)【国際公開番号】W WO2020022153
(87)【国際公開日】2020-01-30
【審査請求日】2022-01-13
(31)【優先権主張番号】P 2018137661
(32)【優先日】2018-07-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004503
【氏名又は名称】ユニチカ株式会社
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(72)【発明者】
【氏名】中井 美穂
(72)【発明者】
【氏名】野口 彰太
(72)【発明者】
【氏名】熊澤 頌平
(72)【発明者】
【氏名】上川 泰生
【審査官】久保田 葵
(56)【参考文献】
【文献】国際公開第2009/031284(WO,A1)
【文献】国際公開第2011/126038(WO,A1)
【文献】特開2014-156677(JP,A)
【文献】特開2014-208820(JP,A)
【文献】国際公開第2017/169494(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L1/00-101/14
C08K3/00-13/08
(57)【特許請求の範囲】
【請求項1】
ポリアミド樹脂(A)35~79質量%、平均繊維径が1~1000nmであるセルロース繊維(B)0.45~30質量%、ホスフィン酸金属塩(C)15~40質量%、およびセルロース繊維以外の強化材(D)0~35質量%からなる難燃性樹脂組成物であって、
ホスフィン酸金属塩(C)が、下記一般式(I)または(II)で表される化合物である、難燃性樹脂組成物:
【化1】
【化2】

(式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基を表す;Rは、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アリールアルキレン基、または、アルキルアリーレン基を表す;Mは、カルシウムイオン、アルミニウムイオン、マグネシウムイオンまたは亜鉛イオンを表す;mは2または3である;n、aおよびbは、2×b=n×aの関係式を満たす整数である)。
【請求項2】
セルロース繊維以外の強化材(D)が、繊維状強化材、針状強化材および板状強化材からなる群から選択される1種以上の強化材である、請求項1に記載の難燃性樹脂組成物。
【請求項3】
前記ポリアミド樹脂(A)の含有量が62~79質量%であり、
前記セルロース繊維(B)の含有量が1~8質量%であり、
前記セルロース繊維(B)の平均繊維径が40~80nmである、請求項1または2に記載の難燃性樹脂組成物。
【請求項4】
請求項1~のいずれかに記載の難燃性樹脂組成物を製造する方法であって、
前記セルロース繊維(B)の存在下に、前記ポリアミド樹脂(A)を構成するモノマーの重合反応をおこなった後、セルロース繊維(B)が分散されたポリアミド樹脂(A)を、前記ホスフィン酸金属塩(C)および前記強化材(D)とともに溶融混練する、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリアミド樹脂を含む難燃性樹脂組成物およびその製造方法に関する。
【背景技術】
【0002】
エンジニアリング樹脂の中で、ポリアミド樹脂は、耐熱性が高く、成形流動性が極めてよいという特徴によって、電子・電気用途、OA機器用途、自動車用途等に広く使われている。これらの用途では難燃性が要求され、難燃性ポリアミド樹脂組成物が多用される。
【0003】
ポリアミド樹脂を難燃化する手法としては、フィラー無添加のポリアミド樹脂についてはメラミンシアヌレートを配合する方法が主流である。この方法では、ハロゲンを使用していない点で、環境負荷は小さいが、フィラー無添加のため強度や剛性が不十分である。強度および剛性を向上させるために、ガラス繊維や無機フィラーを添加したポリアミド樹脂では、メラミンシアヌレートの難燃効果は低いので、難燃剤として臭素化ポリスチレンと酸化アンチモンを配合した組成が主流となっている。しかし、この組成では、臭素がハロゲンのため、環境負荷が高いという問題がある。
【0004】
近年、ガラス繊維や無機フィラーを添加したポリアミド樹脂では、非ハロゲンのリン系難燃剤を配合した組成が検討されている。例えば、特許文献1では、ポリアミド樹脂と無機フィラーとリン酸メラミンとホスフィン酸金属塩からなる樹脂組成物が提案されている。しかし、リン系難燃剤で特に難燃効果の高いホスフィン酸金属塩では、溶融加工時において、押出機のスクリューやダイス、また成形機のスクリューや金型などの金属部品を激しく摩耗するという耐金属腐食性の問題があった。またフィラーによって金型転写性が悪化することによる成形品外観の問題もあった。
【0005】
摩耗量を低減するためや外観を向上するために、ガラス配合量や無機フィラー配合量を少なくした場合も、難燃規格UL94の燃焼試験において、ドリッピング現象が生じ、V-1,V-0の難燃レベルが達成できなくなって難燃性が低下するという問題があった。また、ドリッピングを防止するために、例えば特許文献2のようにフィブリル形成能を有するポリテトラフルオロエチレン樹脂を配合するという方法もあるが、ハロゲンであるフッ素を含有するため、やはり環境負荷の問題があった。なお、UL94規格のV-0とは米国Under Writers Laboratories Inc.で定められた規格において、着火が起こり難く、難燃性に優れていると認定される評価ランクである。V-1は、V-0の次に難燃性が高い評価ランクである。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2007-231094号公報
【文献】特開2014-47308号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、前記の問題点を解決しようとするものであり、従来のポリアミド系難燃樹脂組成物に比べて、機械特性、剛性、外観特性、難燃性および耐金属腐食性が優れ、また環境負荷も小さい樹脂組成物を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ポリアミド樹脂に特定のセルロース繊維とホスフィン酸金属塩、さらに場合によっては無機フィラーを配合することにより、上記目的が達成されることを見出し、本発明に到達した。
【0009】
すなわち、本発明の要旨は、下記の通りである。
<1> ポリアミド樹脂(A)35~85質量%、平均繊維径が10μm以下であるセルロース繊維(B)0.45~30質量%、ホスフィン酸金属塩(C)4.5~40質量%、およびセルロース繊維以外の強化材(D)0~35質量%からなる難燃性樹脂組成物。
<2>
ホスフィン酸金属塩(C)が、下記一般式(I)または(II)で表される化合物であることを特徴とする<1>に記載の難燃性樹脂組成物:
【化1】
【化2】
(式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基を表す;Rは、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アリールアルキレン基、または、アルキルアリーレン基を表す;Mは、カルシウムイオン、アルミニウムイオン、マグネシウムイオンまたは亜鉛イオンを表す;mは2または3である;n、aおよびbは、2×b=n×aの関係式を満たす整数である)。
<3> セルロース繊維以外の強化材(D)が、繊維状強化材、針状強化材および板状強化材からなる群から選択される1種以上の強化材である、<1>または<2>に記載の難燃性樹脂組成物。)
<4> 前記ホスフィン酸金属塩(C)の含有量が8~40質量%である、<1>~<3>のいずれかに記載の難燃性樹脂組成物。
<5> 前記セルロース繊維(B)の平均繊維径1~1000nmであり、
前記ホスフィン酸金属塩(C)の含有量が15~40質量%である、<1>~<4>のいずれかに記載の難燃性樹脂組成物。
<6> 前記ポリアミド樹脂(A)の含有量が62~79質量%であり、
前記セルロース繊維(B)の含有量が1~8質量%であり、
前記セルロース繊維(B)の平均繊維径が40~80nmである、<5>に記載の難燃性樹脂組成物。
<7> <1>~<6>のいずれかに記載の難燃性樹脂組成物を製造する方法であって、
前記セルロース繊維(B)の存在下に、前記ポリアミド樹脂(A)を構成するモノマーの重合反応をおこなった後、セルロース繊維(B)が分散されたポリアミド樹脂(A)を、前記ホスフィン酸金属塩(C)および前記強化材(D)とともに溶融混練する、方法。
【発明の効果】
【0010】
本発明によれば、従来のポリアミド系難燃樹脂組成物に比べて、機械特性、剛性、外観特性、難燃性および耐金属腐食性が優れ、また環境負荷も小さい樹脂組成物を提供することができる。
本発明の樹脂組成物は、ハロゲン化合物およびアンチモン化合物を含まないことにより、環境への負荷が小さい。
【図面の簡単な説明】
【0011】
図1】実施例における耐金属腐食性の評価方法を説明するための、二軸混練押出機およびダイスの模式的断面図である。
【発明を実施するための形態】
【0012】
本発明の難燃性樹脂組成物は、ポリアミド樹脂(A)に対して、セルロース繊維(B)とホスフィン酸金属塩(C)を含有する樹脂組成物である。本発明の難燃性樹脂組成物はさらにセルロース繊維以外の強化材(D)およびその他の添加剤を含有してもよい。
【0013】
本発明に用いるポリアミド樹脂(A)とは、アミノ酸、ラクタムまたはジアミンとジカルボン酸とから形成されるアミド結合を有する重合体のことである。
【0014】
アミノ酸としては、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸が挙げられる。
【0015】
ラクタムとしては、例えば、ε-カプロラクタム、ω-ラウロラクタムが挙げられる。
【0016】
ジアミンとしては、例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,8-ビス(アミノメチル)トリシクロデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジンが挙げられる。
【0017】
ジカルボン酸としては、例えば、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ジグリコール酸が挙げられる。
【0018】
本発明で用いるポリアミド樹脂の具体例としては、ポリカプロアミド(ポリアミド6)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカメチレンアジパミド(ポリアミド116)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリトリメチルヘキサメチレンテレフタルアミド(ポリアミドTMHT)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ポリアミド6T/6I)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ポリアミドジメチルPACM12)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ポリアミド11T(H))が挙げられ、これらの共重合体や混合物であってもよい。中でも、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、およびこれらの共重合体や混合物が好ましく、摺動性が高いことから、ポリアミド6がより好ましく、機械特性が高いことから、ポリアミド66がより好ましい。
【0019】
ポリアミド樹脂の分子量は、特に限定されず、例えば、後述する相対粘度が達せいされるような分子量を有していればよい。
【0020】
ポリアミド樹脂は、公知の重縮合法または、さらに固相重合法を併用する方法で製造することができるし、または市販品として入手することもできる。ポリアミド樹脂の市販品として、例えば、ユニチカ社製のA1030BRL(ポリアミド6)およびユニチカ社製のA125(ポリアミド66)が挙げられる。
【0021】
本発明の樹脂組成物を構成するポリアミド樹脂(A)の含有量は35~85質量%であることが必要であり、機械特性、剛性、難燃性、耐金属腐食性および/または外観のさらなる向上の観点から、好ましくは40~85質量%、より好ましくは50~85質量%、さらに好ましくは62~85質量%、最も好ましくは62~79質量%である。ポリアミド樹脂(A)の含有量が少なすぎる場合は、樹脂成分が少なすぎるため、溶融混練が困難となる。ポリアミド樹脂(A)の含有量が多すぎる場合は、十分な難燃性を得ることができない。ポリアミド樹脂(A)の含有量は本発明のポリアミド樹脂を含む難燃性樹脂組成物の全量に対する値である。詳しくは、ポリアミド樹脂(A)の含有量は、ポリアミド樹脂(A)、セルロース繊維(B)、ホスフィン酸金属塩(C)およびセルロース繊維以外の強化材(D)の合計量を100質量%としたときの値である。
【0022】
本発明においてセルロース繊維(B)は後述する特定の平均繊維径を有するセルロース繊維である。本発明の難燃性樹脂組成物はセルロース繊維(B)を後述のホスフィン酸金属塩(C)とともに含有することにより、機械特性が十分に向上するだけでなく、難燃性も十分に向上する。難燃性樹脂組成物がセルロース繊維(B)またはホスフィン酸金属塩(C)の一方のみを含有しても、十分な難燃性は得られない。
【0023】
セルロース繊維としては、例えば、木材、稲、綿、麻、ケナフ等に由来するセルロース繊維の他に、バクテリアセルロース、バロニアセルロース、ホヤセルロース等の生物由来のセルロース繊維も含まれる。また、セルロース繊維には、再生セルロース、セルロース誘導体も含まれる。
【0024】
本発明において、セルロース繊維は、強化材としてのみならず燃焼時のドリップ防止剤としての効果もある。機械特性のみならず難燃性にも優れた樹脂組成物とするには、セルロース繊維を凝集させることなく、樹脂組成物中に均一に分散させることが好ましい。そのために使用するセルロース繊維としては、最終的に樹脂組成物中に均一に分散できるものであれば、化学的に未変性のものでも、化学的に変性させたものでも、特に限定されない。セルロース繊維は予めポリアミド樹脂中に分散させて用いることが好ましい。セルロース繊維を予めポリアミド樹脂中に分散させる場合、セルロース繊維とポリアミド樹脂を構成するモノマーとを均一に混合させ、ポリアミド樹脂の重合を行う方法を用いることが好ましい。このような方法を選択する場合、セルロース繊維は、ポリアミド樹脂を構成するモノマーとの親和性が高い未変性のセルロース繊維や、セルロース由来の水酸基の一部が親水性または疎水性の置換基で置換された変性セルロース繊維であることが好ましい。親水性の置換基としては、例えば、カルボキシル基、カルボキシメチル基、リン酸エステル基、等が挙げられる。疎水性の置換基としてはシリルエーテル基、アセチル基等が挙げられる。
【0025】
本発明において、セルロース繊維の平均繊維径はできる限り小さい方が望ましい。セルロース繊維の平均繊維径が小さいほど、マトリクス樹脂中にセルロース繊維が強固にネットワーク構造を形成し、機械特性が向上する。
【0026】
難燃性樹脂組成物中に含有されるセルロース繊維は、平均繊維径が10μm以下であることが必要であり、難燃性のさらなる向上の観点から、中でも平均繊維径は1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましく、100nm以下であることが特に好ましい。平均繊維径が10μmを超えるセルロース繊維では、マトリクス樹脂中でネットワーク構造が形成されにくいことにより、樹脂組成物の機械特性や難燃性が大きく損なわれてしまう。平均繊維径の下限は特に限定するものではないが、セルロース繊維の生産性を考慮すると1nm以上とすることが好ましい。セルロース繊維の平均繊維径は、機械特性、剛性、難燃性、耐金属腐食性および/または外観のさらなる向上の観点から、好ましくは1~1000nm、より好ましくは5~500nm、さらに好ましくは40~80nm、特に好ましくは40~70nmである。
【0027】
樹脂組成物中のセルロース繊維の平均繊維径を10μm以下とするためには、ポリアミド樹脂に配合するセルロース繊維として、平均繊維径が10μm以下のものを用いることが好ましい。このような平均繊維径が10μm以下のセルロース繊維としては、セルロース繊維を引き裂くことによってミクロフィブリル化したものが好ましい。ミクロフィブリル化する手段としては、ボールミル、石臼粉砕機、高圧ホモジナイザー、高圧粉砕装置、ミキサー等の各種粉砕装置を用いることができる。セルロース繊維としては、市販されているものとして、例えば、ダイセルファインケム社製の「セリッシュ」を用いることができる。
【0028】
平均繊維径が10μm以下のセルロース繊維として、セルロース繊維を用いた繊維製品の製造工程において、屑糸として出されたセルロース繊維の集合体を用いることもできる。繊維製品の製造工程とは紡績時、織布時、不織布製造時、その他、繊維製品の加工時等が挙げられる。これらのセルロース繊維の集合体は、セルロース繊維がこれらの工程を経た後に屑糸となったものであるため、セルロース繊維が微細化したものとなっている。
【0029】
また、平均繊維径が10μm以下のセルロース繊維として、バクテリアが産出するバクテリアセルロース繊維を用いることもでき、例えば、アセトバクター族の酢酸菌を生産菌として産出されたものを用いることができる。植物のセルロース繊維は、セルロースの分子鎖が収束したもので、非常に細いミクロフィブリルが束になって形成されているものであるのに対し、酢酸菌より産出されたセルロース繊維はもともと幅20~50nmのリボン状であり、植物のセルロース繊維と比較すると極めて細い網目状を形成している。
【0030】
さらに、平均繊維径が10μm以下のセルロース繊維として、例えば、N-オキシル化合物の存在下にセルロース繊維を酸化させた後に、水洗、物理的解繊工程を経ることにより得られる、微細化されたセルロース繊維を用いてもよい。N-オキシル化合物としては各種あるが、例えば、Cellulose(1998)5,153-164に記載されているような2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル(2,2,6,6-Tetramethylpiperidine-1-oxyl radical)(以下、「TEMPO」と略称する。)等が好ましい。このような化合物を触媒量の範囲で反応水溶液に添加する。この水溶液に共酸化剤として次亜塩素酸ナトリウムや亜塩素酸ナトリウムを加え、臭化アルカリ金属を加えることにより反応を進行させる。水酸化ナトリウム水溶液等のアルカリ性の化合物を添加してpHを10付近に保持し、pHの変化が見られなくなるまで反応を継続する。反応温度は室温で構わない。反応後、系内に残存するN-オキシル化合物を除去することが好ましい。洗浄は濾過、遠心分離等、各種方法を採用することができる。その後、上記したような各種粉砕装置を用い、物理的な解繊工程を経ることで微細化されたセルロース繊維を得ることができる。なお、上記方法により得られたセルロース繊維は、セルロース由来の水酸基の一部がカルボキシル基で置換された変性セルロース繊維である。
【0031】
本発明の樹脂組成物中のセルロース繊維は、平均繊維径と平均繊維長との比であるアスペクト比((平均繊維長)/(平均繊維径))が10以上であることが好ましく、50以上であることがより好ましく、100以上であることがさらに好ましい。アスペクト比が10以上であることにより、得られる樹脂組成物の機械特性および難燃性が向上しやすくなる。
【0032】
本発明の樹脂組成物を構成するセルロース繊維(B)の含有量は0.45~30質量%であることが必要であり、0.5~30質量%であることが好ましい。セルロース繊維の含有量が0.45質量%未満である場合は、十分な機械特性および難燃性を得ることができない。一方、セルロース繊維の含有量が30質量%を超える場合は、セルロース繊維を樹脂組成物中に含有させることが困難となり、また溶融樹脂の流動性が悪化するため樹脂組成物の成形性が低下したり難燃性が悪化したりする場合がある。セルロース繊維の含有量は、難燃性のさらなる向上の観点から、好ましくは1~10質量%である。セルロース繊維の含有量は、機械特性、剛性、難燃性、耐金属腐食性および外観のさらなる向上の観点から、好ましくは1~8質量%であり、より好ましくは2~6質量%である。セルロース繊維(B)の含有量は本発明のポリアミド樹脂を含む難燃性樹脂組成物の全量に対する値である。詳しくは、セルロース繊維(B)の含有量は、ポリアミド樹脂(A)、セルロース繊維(B)、ホスフィン酸金属塩(C)およびセルロース繊維以外の強化材(D)の合計量を100質量%としたときの値である。
【0033】
本発明に用いるポリアミド樹脂の相対粘度は、機械特性、剛性、難燃性、耐金属腐食性および/または外観のさらなる向上の観点から、溶媒として96%硫酸を用いて、温度25℃、濃度1g/100mLで測定した場合において、1.5~5.0であることが好ましく、1.7~4.0であることがより好ましい。セルロース繊維を予めポリアミド樹脂に分散させる場合は、当該セルロース繊維を分散させたポリアミド樹脂の相対粘度が上記範囲内であることが好ましい。
【0034】
セルロース繊維は水との親和性が非常に高く、平均繊維径が小さいほど水に対して良好な分散状態を保つことができる。また、水を失うと水素結合により強固にセルロース繊維同士が凝集し、一旦凝集すると凝集前と同様の分散状態をとることが困難となる。特にセルロース繊維の平均繊維径が小さくなるほどこの傾向は顕著となる。したがって、セルロース繊維は水を含んだ状態でポリアミド樹脂に配合することが好ましい。そこで、本発明においては、重合後のポリアミド樹脂にセルロース繊維を溶融混練等で配合してもよいが、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応をおこなうことにより、セルロース繊維を予めポリアミド樹脂に配合する方法を採ることが好ましい。このような製造法により、ポリアミド樹脂中にセルロース繊維を凝集させずにより一層、均一に分散させることが可能となる。
【0035】
本発明の樹脂組成物の製造方法においては、ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応をおこなうことにより、セルロース繊維を予めポリアミド樹脂中に分散させることができる。
【0036】
セルロース繊維を予めポリアミド樹脂中に分散させるに際し、セルロース繊維の水分散液は、平均繊維径が10μm以下のセルロース繊維を水に分散させたものであり、水分散液中におけるセルロース繊維の含有量は、水100質量部に対して、0.01~100質量部とすることが好ましい。セルロース繊維の水分散液は、精製水とセルロース繊維とをミキサー等で撹拌することにより得ることができる。そして、セルロース繊維の水分散液とポリアミド樹脂を構成するモノマーとを混合しミキサー等で撹拌することにより、均一な分散液とする。その後、分散液を加熱し、150~270℃まで昇温させて撹拌することにより重合反応させる。このとき、分散液を加熱する際に徐々に水蒸気を排出することにより、セルロース繊維の水分散液中の水分を排出することができる。なお、上記ポリアミド樹脂の重合時においては、必要に応じてリン酸や亜リン酸等の触媒を添加してもよい。そして、重合反応終了後は、得られた樹脂組成物を払い出した後、切断してペレットとすることが好ましい。
【0037】
セルロース繊維としてバクテリアセルロースを用いる場合においては、セルロース繊維の水分散液として、バクテリアセルロースを精製水に浸して溶媒置換したものを用いてもよい。バクテリアセルロースの溶媒置換したものを用いる際には、溶媒置換後、所定の濃度に調整したものを、ポリアミド樹脂を構成するモノマーに混合し、上記と同様に重合反応を進行させることが好ましい。
【0038】
上記方法においては、平均繊維径が10μm以下のセルロース繊維を水分散液のまま重合反応に供することになるため、セルロース繊維を分散性が良好な状態で重合反応に供することができる。さらに、重合反応に供されたセルロース繊維は、重合反応中のモノマーや水との相互作用により、また上記のような温度条件で撹拌することにより、分散性が向上し、繊維同士が凝集することがなく、平均繊維径が小さいセルロース繊維が良好に分散した樹脂組成物を得ることが可能となる。なお、上記方法によれば、重合反応前に添加したセルロース繊維よりも、重合反応終了後に樹脂組成物中に含有されているセルロース繊維の方が、平均繊維径が小さくなることがある。
【0039】
さらに上記方法においては、セルロース繊維を乾燥させる工程が不要となり、微細なセルロース繊維の飛散が生じる工程を経ずに製造が可能であるため、操業性よく樹脂組成物を得ることが可能となる。またモノマーとセルロース繊維を均一に分散させる目的として水を有機溶媒に置換する必要がないため、ハンドリングに優れるとともに製造工程中において化学物質の排出を抑制することが可能となる。
【0040】
本発明の難燃性樹脂組成物は、難燃剤としてホスフィン酸金属塩(C)を含有する。
本発明におけるホスフィン酸金属塩(C)の含有量は、4.5~40質量%、特に5~40質量%であることが必要である。ホスフィン酸金属塩(C)の含有量は、機械特性、剛性、難燃性、耐金属腐食性および/または外観のさらなる向上の観点から、好ましくは8~40質量%、より好ましくは15~40質量%、さらに好ましくは15~30質量%、最も好ましくは15~25質量%である。ホスフィン酸金属塩(C)の含有量が、4.5質量%未満であると、樹脂組成物に、必要とする難燃性を付与することが困難となる。一方、ホスフィン酸金属塩(C)の含有量が、40質量%を超えると、樹脂組成物は、難燃性に優れる反面、耐金属腐食性が低下するとともに、溶融混練が困難となることがあり、また得られる成形体は機械的特性が不十分となることがある。ホスフィン酸金属塩(C)の含有量は本発明のポリアミド樹脂を含む難燃性樹脂組成物の全量に対する値である。詳しくは、ホスフィン酸金属塩(C)の含有量は、ポリアミド樹脂(A)、セルロース繊維(B)、ホスフィン酸金属塩(C)およびセルロース繊維以外の強化材(D)の合計量を100質量%としたときの値である。
【0041】
本発明のホスフィン酸金属塩(C)としては、下記一般式(I)で表されるホスフィン酸金属塩、および一般式(II)で表されるジホスフィン酸金属塩が挙げられる。機械特性、剛性、難燃性、耐金属腐食性および/または外観のさらなる向上の観点から、下記一般式(I)で表されるホスフィン酸金属塩が好ましい。
【0042】
【化3】
【0043】
【化4】
【0044】
式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基であることが必要で、炭素数1~8のアルキル基またはフェニル基であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-オクチル基、フェニル基であることがより好ましく、エチル基であることがさらに好ましい。難燃性のさらなる向上の観点から、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~5(特に1~3)のアルキル基であることがより好ましい。RとRおよびRとRは互いに環を形成してもよい。
【0045】
は、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アリールアルキレン基、または、アルキルアリーレン基であることが必要である。直鎖もしくは分岐鎖の炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、イソプロピリデン基、n-ブチレン基、tert-ブチレン基、n-ペンチレン基、n-オクチレン基、n-ドデシレン基が挙げられる。炭素数6~10のアリーレン基としては、例えば、フェニレン基、ナフチレン基が挙げられる。アルキルアリーレン基としては、例えば、メチルフェニレン基、エチルフェニレン基、tert-ブチルフェニレン基、メチルナフチレン基、エチルナフチレン基、tert-ブチルナフチレン基が挙げられる。アリールアルキレン基としては、例えば、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基が挙げられる。
【0046】
Mは、金属イオンを表す。金属イオンとしては、例えば、カルシウムイオン、アルミニウムイオン、マグネシウムイオン、亜鉛イオンが挙げられ、アルミニウムイオン、亜鉛イオンが好ましく、アルミニウムイオンがより好ましい。
【0047】
m、nは、金属イオンの価数を表す。mは2または3である。aは金属イオンの個数を表し、bはジホスフィン酸イオンの個数を表し、n、aおよびbは「2×b=n×a」の関係式を満たす整数である。
【0048】
一般式(I)のホスフィン酸金属塩および一般式(II)のジホスフィン酸金属塩は、それぞれ、対応するホスフィン酸やジホスフィン酸と、金属炭酸塩、金属水酸化物または金属酸化物を用いて水溶液中で製造され得る。一般式(I)のホスフィン酸金属塩および一般式(II)のジホスフィン酸金属塩は通常、モノマーとして存在するが、反応条件に依存して、縮合度が1~3のポリマー性ホスフィン酸塩の形として存在してもよい。
【0049】
上記一般式(I)で表されるホスフィン酸塩の具体例としては、例えば、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛が挙げられる。中でも、難燃性、電気特性のバランスに優れることから、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛が好ましく、ジエチルホスフィン酸アルミニウムがより好ましい。
【0050】
また、ジホスフィン酸塩の製造に用いるジホスフィン酸としては、例えば、メタンジ(メチルホスフィン酸)、ベンゼン-1,4-ジ(メチルホスフィン酸)が挙げられる。
【0051】
上記一般式(II)で表されるジホスフィン酸塩の具体例としては、例えば、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-ジ(メチルホスフィン酸)カルシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)マグネシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)アルミニウム、ベンゼン-1,4-ジ(メチルホスフィン酸)亜鉛が挙げられる。中でも、難燃性、電気特性のバランスに優れることから、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛が好ましい。
【0052】
ホスフィン酸金属塩(C)の具体的な商品としては、例えば、クラリアント社製「Exolit OP1230」、「Exolit OP1240」、「Exolit OP1312」、「Exolit OP1314」「Exolit OP1400」が挙げられる。
【0053】
本発明の難燃性樹脂組成物は、セルロース繊維以外の強化材(D)を含有しなくてもよいし、または含有してもよい。
【0054】
セルロース繊維以外の強化材(D)としては、繊維状強化材が挙げられる。繊維状強化材としては、例えば、ガラス繊維、炭素繊維、ボロン繊維、アスベスト繊維、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維、アラミド繊維、ポリベンズオキサゾール繊維、ケナフ繊維、竹繊維、麻繊維、バガス繊維、高強度ポリエチレン繊維、アルミナ繊維、炭化ケイ素繊維、チタン酸カリウム繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、玄武岩繊維が挙げられる。中でも、機械的特性の向上効果が高く、ポリアミドとの溶融混練時の加熱温度に耐え得る耐熱性を有し、入手しやすいことから、ガラス繊維、炭素繊維、アラミド繊維が好ましい。ガラス繊維の具体的な商品名としては、例えば、日東紡社製「CS3G225S」、日本電気硝子社製「T-781H」が挙げられ、炭素繊維の具体的な商品名としては、例えば、東邦テナックス社製「HTA-C6-NR」が挙げられる。繊維状強化材は、単独で用いてもよいし、併用してもよい。
【0055】
繊維状強化材の繊維長および繊維径は、特に限定されないが、繊維長は0.1~7mmであることが好ましく、0.5~6mmであることがより好ましい。繊維状強化材の繊維長を0.1~7mmとすることにより、成形性に悪影響を及ぼすことなく、樹脂組成物を補強することができる。また、繊維径は3~20μmであることが好ましく、5~13μmであることがさらに好ましい。繊維径を3~20μmとすることにより、溶融混練時に折損させることなく、樹脂組成物を効率よく補強することができる。断面形状としては、例えば、円形、長方形、楕円、それ以外の異形断面等が挙げられるが、中でも円形が好ましい。
【0056】
セルロース以外の強化材(D)として、繊維状強化材の他に、針状強化材、板状強化材を使用してもよい。例えば、繊維状強化材の代わりに、または繊維状強化材に加えて、針状強化材および/または板状強化材を使用してもよい。特に繊維状強化材と、針状強化材および/または板状強化材を併用することで、成形体の反りを小さくしたり、難燃試験時の耐ドリップ性を向上させたりすることができる。針状強化材としては、ウォラストナイト、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硫酸マグネシウムウィスカなどが挙げられる。板状強化材としては、タルク、マイカ、ガラスフレークなどが挙げられる。
【0057】
本発明の難燃性樹脂組成物は、機械特性および剛性のさらなる向上の観点から、セルロース以外の強化材(D)を含むことが好ましく、より好ましくは繊維状強化材および/または板状強化材、さらに好ましくは繊維状強化材(特にガラス繊維)を含む。
【0058】
樹脂組成物におけるセルロース繊維以外の強化材(D)の含有量は、加工時の耐金属腐食性を向上させるために、35質量%以下(すなわち0~35質量%)である必要があり、25質量%以下であることが好ましい。強化材(D)の含有量が35質量%を超えると、樹脂組成物を溶融混練で製造する場合の押出機のノズル、スクリュー、バレルなどの金属部品の腐食、成形加工時の射出成形機のノズル、スクリュー、バレル等の金属部品の腐食、金型の腐食、および押出成形のダイスの腐食等が問題となる場合がある。さらに成形品の外観が問題となる場合がある。セルロース繊維以外の強化材(D)の含有量は、機械特性および剛性のさらなる向上の観点から、1質量%以上であることが好ましく、より好ましくは4質量%以上であり、さらに好ましくは10質量%以上である。特に、本発明の難燃性樹脂組成物が板状強化材を含む場合、機械特性、剛性、難燃性および耐金属腐食性のさらなる向上の観点から、板状強化材の含有量は10~33質量%であることが好ましく、より好ましくは20~33質量%である。セルロース繊維以外の強化材(D)を2種以上の強化材を含む場合、それらの合計含有量が上記範囲内であればよい。セルロース繊維以外の強化材(D)の含有量は本発明のポリアミド樹脂を含む難燃性樹脂組成物の全量に対する値である。詳しくは、セルロース繊維以外の強化材(D)の含有量は、ポリアミド樹脂(A)、セルロース繊維(B)、ホスフィン酸金属塩(C)およびセルロース繊維以外の強化材(D)の合計量を100質量%としたときの値である。
【0059】
本発明の難燃性樹脂組成物は、難燃助剤をさらに含有してもよい。難燃助剤としては、例えば、窒素系難燃剤、窒素-リン系難燃剤、無機系難燃剤、ヒドラジン系化合物等が挙げられる。
【0060】
窒素系難燃剤としては、メラミン系化合物、シアヌル酸またはイソシアヌル酸とメラミン化合物との塩等が挙げられる。メラミン系化合物の具体例として、メラミンをはじめ、メラミン誘導体、メラミンと類似の構造を有する化合物、メラミンの縮合物等であり、具体的には、メラミン、アンメリド、アンメリン、ホルモグアナミン、グアニルメラミン、シアノメラミン、ベンゾグアナミン、アセトグアナミン、サクシノグアナミン、メラム、メレム、メトン、メロン等のトリアジン骨格を有する化合物、およびこれらの硫酸塩、メラミン樹脂等を挙げることができる。シアヌル酸またはイソシアヌル酸とメラミン化合物との塩とは、シアヌル酸類またはイソシアヌル酸類とメラミン系化合物との等モル反応物である。
【0061】
窒素-リン系難燃剤としては、例えば、メラミンまたはその縮合生成物とリン化合物とから形成される付加物(メラミン付加物)、ホスファゼン化合物を挙げることができる。
前記メラミン付加物を構成するリン化合物としては、リン酸、オルトリン酸、ホスホン酸、ホスフィン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げられる。メラミン付加物の具体例として、メラミンホスフェート、メラミンピロホスフェート、ジメラミンピロホスフェート、メラミンポリホスフェート、メレムポリホスフェート、メラムポリホスフェートが挙げられ、中でも、メラミンポリホスフェートが好ましい。リンの数は、2以上であることが好ましく、10以上であることがより好ましい。
ホスファゼン化合物の具体的な商品としては、例えば、伏見製薬所社製「ラビトルFP-100」、「ラビトルFP-110」、大塚化学社製「SPS-100」、「SPB-100」などが挙げられる。
【0062】
無機系難燃剤としては、例えば、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物;ホウ酸亜鉛;リン酸アルミニウム等のリン酸塩;亜リン酸アルミニウム等の亜リン酸塩;次亜リン酸カルシウム等の次亜リン酸塩;アルミン酸カルシウムなどが挙げられる。これら無機系難燃剤は、難燃性および耐金属腐食性のさらなる向上、どちらの目的で配合しても構わない。
【0063】
ヒドラジン系化合物としてはヒンダードフェノール構造を有するヒドラジン系化合物が好ましく、具体的には、下記式(III)で表される化合物が挙げられる。
【0064】
【化5】
【0065】
ヒンダードフェノール構造を有するヒドラジン系化合物の具体的な商品としては、例えば、アデカ社製「CDA-10」、ビーエーエスエフ社製「IRGANOX MD 1024」などが挙げられる。
【0066】
本発明の難燃性樹脂組成物には、必要に応じてその他の安定剤、着色剤、帯電防止剤、炭化抑制剤等の添加剤をさらに含有してもよい。着色剤としては、酸化チタン、酸化亜鉛、カーボンブラック等の顔料、ニグロシン等の染料が挙げられる。安定剤としては、ヒンダートフェノール系酸化防止剤、硫黄系酸化防止剤、光安定剤、銅化合物からなる熱安定剤、アルコール類からなる熱安定剤等が挙げられる。炭化抑制剤は、耐トラッキング性を向上させる添加剤であり、金属水酸化物、ホウ酸金属塩等の無機物や、上記の熱安定剤等が挙げられる。
【0067】
本発明において、セルロース繊維を上記したようにポリアミド樹脂に予め分散または配合する場合、本発明の難燃性樹脂組成物は、重合後のセルロース繊維含有ポリアミド樹脂にセルロース繊維以外の原料を配合する方法により製造することができる。本発明において、重合後のセルロース繊維含有ポリアミド樹脂にセルロース繊維以外の原料を配合する方法は、特に限定されないが、溶融混練する方法が好ましい。溶融混練法としては、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いる方法が挙げられる。溶融混練温度は、ポリアミド樹脂が溶融し、かつその他の成分が分解しない領域から選ばれる。溶融混練温度は、高すぎると、ポリアミド樹脂(A)やセルロース繊維(B)が分解するだけでなく、ホスフィン酸金属塩(C)も分解するおそれがあることから、ポリアミド樹脂(A)の融点をTmとすると、(Tm-20℃)~(Tm+50℃)であることが好ましい。
【0068】
本発明の難燃性樹脂組成物の製造に際しては、本発明の難燃性樹脂組成物を様々な形状に加工することができる。本発明の難燃性樹脂組成物を様々な形状に加工する方法としては、溶融混合物をストランド状に押出しペレット形状にする方法や、溶融混合物をホットカット、アンダーウォーターカットしてペレット形状にする方法や、シート状に押出しカッティングする方法、ブロック状に押出し粉砕してパウダー形状にする方法が挙げられる。
【0069】
本発明の難燃性樹脂組成物を用いて成形することができる。本発明の難燃性樹脂組成物の成形方法としては、例えば、射出成形法、押出成形法、ブロー成形法、焼結成形法が挙げられ、機械的特性、成形性の向上効果が大きいことから、射出成形法が好ましい。
【0070】
射出成形機としては、特に限定されず、例えば、スクリューインライン式射出成形機またはプランジャ式射出成形機が挙げられる。射出成形機のシリンダー内で加熱溶融されたポリアミド樹脂組成物は、ショットごとに計量され、金型内に溶融状態で射出され、所定の形状で冷却、固化された後、成形体として金型から取り出される。射出成形時のヒータ設定温度は、ポリアミド樹脂(A)の融点(Tm)以上にすることが好ましいが、セルロース繊維の熱分解や金属腐食を抑えるために300℃以下で成形することが好ましい。
【0071】
なお、難燃性樹脂組成物の加熱溶融時には、十分に乾燥された本発明の難燃性樹脂組成物ペレットを用いることが好ましい。難燃性樹脂組成物ペレットは、含有する水分量が多いと、射出成形機のシリンダー内で発泡し、最適な成形体を得ることが困難となることがある。射出成形に用いる難燃性樹脂組成物ペレットの水分率は、難燃性樹脂組成物100質量部に対して、0.3質量部未満であることが好ましく、0.1質量部未満であることがより好ましい。
【0072】
本発明の難燃性樹脂組成物は、機械物性、剛性、難燃性および耐金属腐食性に優れており、また高い流動性で外観特性に優れた各種部品を成形することができる。
【実施例
【0073】
以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。なお、得られた樹脂組成物の評価は以下の方法によりおこなった。
【0074】
A.評価方法
(1)平均繊維径
凍結ウルトラミクロトームを用いて、実施例/比較例で得られた樹脂組成物のペレットから厚さ100nmの切片を採取し、切片染色を実施後、透過型電子顕微鏡(日本電子社製JEM-1230)を用いて観察をおこなった。電子顕微鏡画像からセルロース繊維(単繊維)の長手方向に対する垂直方向の長さを測定した。このとき、垂直方向の長さのうち最大のものを繊維径とした。同様にして任意の10本のセルロース繊維(単繊維)の繊維径を測定し、10本の平均値を算出したものを平均繊維径とした。
なお、セルロース繊維の繊維径が大きいものについては、ミクロトームにて10μmの切片を切り出したものか、そのままの状態で、実体顕微鏡(OLYMPUS社製 SZ-40)を用いて観察をおこない、得られた画像から上記と同様にして繊維径を測定し、平均繊維径を求めた。
【0075】
(2)難燃性
実施例/比較例で得られ、かつ十分に乾燥した樹脂組成物をファナック製射出成形機(α-100iA)にて、成形温度280℃、金型温度100℃で試験片を成形し、表1のUL94(米国Under Writers Laboratories Inc.で定められた規格)の評価基準に従って測定した。なお試験片の厚みは1.6mmおよび0.8mmとした。ここでは、V-1以上を合格とした。また、難燃性の測定時の総残炎時間も示した。例えば、難燃レベルが同じV-0であったとしても、総残炎時間が短い方が、難燃性が優れていることを示す。
・難燃性の総合評価
◎:難燃レベルがV-0であり、かつ総残炎時間が25秒以下であった;
○:難燃レベルがV-0であり、かつ総残炎時間が25秒超であった;
△:難燃レベルがV-1であった(実用上問題なし);
×:難燃レベルがV-2であった(実用上問題あり)。
【0076】
【表1】
【0077】
(3)曲げ強度(機械特性)および曲げ弾性率(剛性)
実施例/比較例で得られ、かつ十分に乾燥した樹脂組成物を、射出成形機(日精樹脂工業社製 NEX110-12E)を用いて成形温度260℃、金型温度60℃で射出成形し、ISO規格3167に記載の多目的試験片A型を得た。
得られた多目的試験片の曲げ強度および曲げ弾性率を、ISO178準拠の3点支持曲げ法(支点間距離:64mm、試験速度:2mm/分、試験雰囲気:23℃、50%RH、絶乾状態)にて測定した。
・曲げ強度
◎:110MPa≦曲げ強度;
○:105MPa≦曲げ強度<110MPa;
△:100MPa≦曲げ強度<105MPa(実用上問題なし);
×:曲げ強度<100MPa(実用上問題あり)。
・曲げ弾性率
◎:4.0GPa≦曲げ弾性率;
○:3.5GPa≦曲げ弾性率<4.0GPa;
△:3.0GPa≦曲げ弾性率<3.5GPa(実用上問題なし);
×:曲げ弾性率<3.0GPa(実用上問題あり)。
【0078】
(4)耐金属腐食性
図1のように、二軸混練押出機(EX)(池貝社製PCM30)に、ダイス(D)を取り付け、通常押出機の鋼材として使用する金属プレート(MP)(材質SUS630、20×10mm、厚さ5mm、質量7.8g)を、溶融樹脂の流路(R)の上下に取り付け、1mmの隙間を設け、溶融樹脂が幅10mm、長さ20mmにわたって接するようにした。その間隙に、押出機バレル温度280℃、吐出7kg/hの条件で、実施例/比較例で得られ、かつ十分に乾燥した樹脂組成物を計25kgで押出した。押出後、金属プレート(MP)を取り外し、500℃の炉の中に10時間放置し、付着した樹脂を取り除いた後に質量を測定し、押出前後の質量変化により耐金属腐食性を測定した。重量変化が小さいほど、耐金属腐食性が優れていることを示す。
・質量変化率
◎:質量変化率≦0.06%;
○:0.06%<質量変化率≦0.10%;
△:0.10%<質量変化率≦0.20%(実用上問題なし);
×:0.20%<質量変化率(実用上問題あり)。
【0079】
(5)外観特性
実施例/比較例で得られ、かつ十分に乾燥した樹脂組成物を、射出成形機(日精樹脂工業社製 NEX110-12E)を用いて成形温度260℃、金型温度60℃で射出成形し、50×90×2mm厚みのプレートを成形した。目視で表面の状態を観察し、以下の基準で判定した。用途にもよるが○以上が望ましい。
◎:繊維状強化材の浮きが全くなく、かつ表面にざらつきが全くない(最良);
○:繊維状強化材の浮きまたは表面のざらつきの一方が僅かにあり、かつ他方が全くない(良好);
△:繊維状強化材の浮きが僅かにあり、かつ表面にざらつきが僅かにある(実用上問題なし);
×:繊維状強化材の浮きおよび/または表面のざらつきが目立つ(実用上問題あり)。
【0080】
B.原料
(1)ポリアミド樹脂
・PA6:ポリアミド6、ユニチカ社製 A1030BRL(ペレットP1として使用した)。
・PA66:ポリアミド66、ユニチカ社製 A125(ペレットP2として使用した)。
【0081】
(2)セルロース繊維
・KY100G:ダイセルファインケム社製 セリッシュKY100G、平均繊維径が125nmの未変性のセルロース繊維が10質量%含有された水分散液。
・KY100S:ダイセルファインケム社製 セリッシュKY100S、平均繊維径が140nmの未変性のセルロース繊維が25質量%含有された水分散液。
【0082】
・バクテリアセルロース(未変性のセルロース繊維):
0.5質量%グルコース、0.5質量%ポリペプトン、0.5質量%酵母エキス、0.1質量%硫酸マグネシウム7水和物からなる組成の培地50mLを、200mL容三角フラスコに分注し、オートクレーブで120℃、20分間蒸気滅菌した。これに試験管斜面寒天培地で生育させたGluconacetobacter xylinus(NBRC 16670)を1白金耳接種し、30℃で7日間静置培養した。7日後、培養液の上層に白色のゲル膜状のバクテリアセルロースが生成した。
得られたバクテリアセルロースをミキサーで破砕後、水で浸漬、洗浄を繰り返すことにより、水置換をおこない、平均繊維径が60nmのバクテリアセルロースが4.1質量%含有された水分散液を調製した。
【0083】
・屑糸(未変性のセルロース繊維):
不織布の製造工程において屑糸として出されたセルロース繊維の集合体に、精製水を加えてミキサーで撹拌し、平均繊維径が3240nmの未変性のセルロース繊維が6質量%含有された水分散液を調製した。
【0084】
・TEMPO触媒酸化セルロース(変性セルロース):
漂白後の針葉樹由来の未叩解クラフトパルプ(白色度85%)500g(絶乾)を、TEMPO 780mgおよび臭化ナトリウム75.5gを溶解した水溶液500mLに添加し、パルプが均一に分散するまで撹拌した。そこに次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように加えることで酸化反応を開始した。反応中は系内のpHが低下するため、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターにより濾過してパルプを分離し、十分に水洗することで酸化されたパルプを得た。上記の工程で得られた酸化パルプを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回処理して、平均繊維径が10nmのTEMPO触媒酸化セルロース繊維が1.0質量%含有された水分散液を調製した。
なお、TEMPO触媒酸化セルロース繊維をH-NMR、13C-NMR、FT-IR、中和滴定で確認したところ、セルロース由来の水酸基の一部がカルボキシル基で置換されていた。
【0085】
・エーテル変性セルロース:
針葉樹漂白クラフトパルプ(王子製紙社製、固形分25%)600gに水19.94kg添加し、固形分濃度が0.75質量%の水懸濁液を調製した。得られたスラリーの機械的解繊処理をビーズミル(アイメックス社製 NVM-2)を用いておこない、セルロース繊維を得た(ジルコニアビーズ直径1mm、ビーズ充填量70%、回転数2000rpm、処理回数2回)。遠心分離管一本あたりに、得られたセルロース繊維水分散液100gを入れ、遠心分離(7000rpm、20分)をおこない、上澄み液を除去し、沈殿物を取り出した。遠心分離管一本あたりに、アセトン100gを加えて、よく撹拌し、アセトン中に分散させ、遠心分離をおこない、上澄み液を除去し、沈殿物を取り出した。上記の操作をさらに二回繰り返し、固形分5質量%のセルロース繊維アセトンスラリーを得た。
撹拌羽根を備えた四つ口1Lフラスコに、得られたセルロース繊維アセトンスラリーをセルロース繊維の固形分が5gになるように投入した。N-メチル-2-ピロリドン(NMP)を500mL、トルエンを250mL加え、撹拌しながらセルロース繊維をNMP/トルエン中に分散させた。冷却器を取り付け、窒素雰囲気下、分散液を150℃に加熱し、分散液中に含まれるアセトン、水分をトルエンとともに留去した。その後分散液を40℃まで冷却し、ピリジン15mL、ヘキサメチルジシラザン(シリルエーテル化剤)25gを添加して窒素雰囲気下90分反応させ、エーテル変性セルロース繊維のNMP分散液を調製した。
得られたエーテル変性セルロース繊維のNMP分散液を遠心分離機によりセルロース繊維を沈殿させ水置換した。これを3回繰り返し、水で調製し、平均繊維径が100nmのエーテル変性セルロース繊維が1.0質量%含有された水分散液を調製した。
なお、エーテル変性セルロース繊維をH-NMR、13C-NMR、FT-IRで確認したところ、セルロース由来の水酸基の一部が疎水性のシリルエーテル基で置換されていた。
【0086】
(3)ホスフィン酸金属塩
・ジエチルホスフィン酸アルミニウム(クラリアント社製 Exolit OP1230)(当該化合物は、一般式(I)(式中、R=R=エチル基、m=3、M=アルミニウム)で表される化合物である。)
【0087】
(4)セルロース繊維以外の強化材
・GF ガラス繊維、日本電気硝子社製 ECS03T-262H、平均繊維径10μm
・CF 炭素繊維、東邦テナックス社製 HTA-C6-NR、平均繊維径7μm
・TALC タルク(日本タルク社製 ミクロエースK-1)、平均粒子径8μm
【0088】
製造例1
セルロース繊維の水分散液として、セリッシュKY100Gを用いて、これに精製水を加えてミキサーで撹拌し、セルロース繊維の含有量が3質量%の水分散液を調製した。
このセルロース繊維の水分散液33.33質量部と、ε-カプロラクタム99質量部とを、均一な分散液となるまでさらにミキサーで撹拌、混合した。続いて、この混合分散液を重合装置に投入後、撹拌しながら240℃に加熱し、徐々に水蒸気を放出しつつ、0MPaから0.5MPaの圧力まで昇圧した。そののち大気圧まで放圧し、240℃で1時間重合反応をおこなった。重合が終了した時点で樹脂組成物をストランド状に払い出し、切断して、セルロース繊維をポリアミド樹脂に配合した樹脂組成物のペレットを得た。得られたペレットを95℃の熱水で処理し、精練をおこない、乾燥し、乾燥したセルロース繊維を配合したポリアミド樹脂組成物のペレットAを得た。
【0089】
製造例2および3
セルロース繊維の含有量を表2に示す値になるように、セリッシュKY100Gの配合量を変更する以外は、製造例1と同様の操作をおこない、乾燥したセルロース繊維を配合したポリアミド樹脂組成物のペレットBおよびCを得た。
【0090】
製造例4~8
表2のようにセルロース繊維の分散液を変更すること、およびセルロース繊維の含有量が表2に示す値になるようにセルロース繊維の分散液の配合量を変更すること以外は、製造例1と同様の操作をおこない、乾燥したセルロース繊維を配合したポリアミド樹脂組成物のペレットD~Hを得た。
【0091】
製造例9
製造例1で得られたセルロース繊維の含有量が3質量%の水分散液167質量部と、ポリアミド66塩95質量部とを、均一な溶液となるまでミキサーで撹拌、混合した。続いて、この混合溶液を230℃で撹拌しながら、内圧が1.5MPaになるまで加熱した。その圧力に到達後、徐々に水蒸気を放出しつつ、加熱を続けてその圧力を保持した。280℃に達した時点で、常圧まで放圧し、さらに1時間重合をおこなった。重合が終了した時点で樹脂組成物をストランド状に払い出し、切断して、セルロース繊維をポリアミド樹脂に配合した樹脂組成物のペレットを得た。得られたペレットを95℃の熱水で処理し、精練をおこない、乾燥し、乾燥したセルロース繊維を配合したポリアミド樹脂組成物樹脂組成物のペレットIを得た。
【0092】
製造例10~13
セルロース繊維の含有量が表2に示す値になるように、セリッシュKY100Gの配合量を変更する以外は、製造例1と同様の操作をおこない、セルロース繊維を配合したポリアミド樹脂組成物のペレットJ~Mを得た。
【0093】
製造例14
セルロース繊維の水分散液として、セリッシュKY100Gを用いて、これに精製水を加えてミキサーで撹拌し、セルロース繊維の含有量が3質量%の水分散液を調製した。
このセルロース繊維の水分散液1034質量部と、ε-カプロラクタム69質量部とを、均一な分散液となるまでさらにミキサーで撹拌、混合した。続いて、この混合分散液を重合装置に投入後、撹拌しながら240℃に加熱し、徐々に水蒸気を放出しつつ、0MPaから0.5MPaの圧力まで昇圧した。そののち大気圧まで放圧し、240℃で1時間重合反応をおこなった。しかし粘度が高すぎるため、重合装置から払い出すことが困難であった。
【0094】
【表2】
【0095】
実施例1
製造例2で作成したペレットBを80質量%とホスフィン酸金属塩20質量%を二軸押出機(東芝機械社製TEM26SS、スクリュー径26mm)の主ホッパーに供給し、260℃で溶融混練し、ストランド状に払い出し、切断して、樹脂組成物のペレットを得た。
【0096】
実施例2
ペレットJを75質量%とホスフィン酸金属塩20質量%を二軸押出機(東芝機械社製TEM26SS、スクリュー径26mm)の主ホッパーに供給し、260℃で溶融混練し、途中、サイドフィーダーよりセルロース以外の強化材5質量%を供給して溶融混練し、ストランド状に払い出し、切断して、樹脂組成物のペレットを得た。
【0097】
実施例3、5、6および14~18ならびに比較例1~5および11
表3または4のようにペレット、ホスフィン酸金属塩およびセルロース繊維の種類・配合割合を変更した以外は、実施例1と同様にして樹脂組成物のペレットを得た。
【0098】
実施例4および7~13および比較例6、8、9および14
表3または4のようにペレット、ホスフィン酸金属塩、セルロース以外の強化材の種類や配合割合を変更した以外は実施例2と同様にして樹脂組成物のペレットを得た。
【0099】
実施例19および比較例10
表4のようにペレット、ホスフィン酸金属塩の種類を変更し、温度を280℃に変更した以外は実施例1と同様にして、樹脂組成物のペレットを得た。
【0100】
比較例7
セルロース繊維の分散液KY110Gを、棚式凍結乾燥機として東京理化器械FD550を使用して-45℃にて凍結乾燥し、粉砕機を用いて粉末状にした。得られたセルロース繊維の粉末4質量%、ペレットP1を76質量%、およびホスフィン酸金属塩20質量%をドライブレンドし、二軸押出機の主ホッパーに供給して溶融混練する以外は、実施例1と同様の操作をおこない、樹脂組成物のペレットを得た。
【0101】
比較例12
表4のようにペレット、ホスフィン酸金属塩、セルロース繊維の種類および配合割合を変更した以外は、実施例2と同様にして溶融混練したが、ポリアミド樹脂の配合割合が少なすぎたために、ストランド引き取りが困難で樹脂組成物のペレットを採取することができなかった。
【0102】
比較例13
表4のようにペレット、ホスフィン酸金属塩、セルロース繊維の配合割合を変更した以外は、実施例1と同様にして溶融混練したが、ホスフィン酸金属塩の配合量が多すぎたために、ストランド引き取りが困難で樹脂組成物のペレットを採取することができなかった。
【0103】
各実施例または比較例における樹脂組成物の組成および各種評価結果を示す。
【0104】
【表3】
【0105】
【表4】
【0106】
【表5】
【0107】
【表6】
【0108】
実施例1~19は、機械物性、剛性、外観特性、難燃性および耐金属腐食性に優れている。
【0109】
比較例1~3は、セルロース繊維を含有していないため、または含有量が小さすぎるため、機械物性が低く、また難燃性も低い。
【0110】
比較例4、5は、難燃剤(すなわち、ホスフィン酸金属塩)を含有しないため、または含有量が小さすぎるため、難燃性が劣っている。
【0111】
比較例6は、ガラス繊維の含有量が大きすぎるため、耐金属腐食性および外観特性が劣っている。
【0112】
比較例7は、セルロース繊維の径が大きすぎるため、難燃性に劣っている。
【0113】
比較例8、9および10は、セルロース繊維を含有していないため難燃性が劣っている。
【0114】
比較例11は、ポリアミド樹脂の含有量が大きすぎるため、難燃性に劣っている。
【0115】
比較例14は、難燃剤(すなわち、ホスフィン酸金属塩)の含有量が小さすぎるため、難燃性に劣っている。
【0116】
例えば、実施例1、と比較例1、4および14との比較より、セルロース繊維とホスフィン酸金属塩との組み合わせにより、難燃性が相乗的に向上することがわかる。
【産業上の利用可能性】
【0117】
本発明の難燃性樹脂組成物を用いて得られた成形体は、自動車部品、航空機部品および鉄道車両用部品等の輸送機器部品、電気電子部品、雑貨、土木建築用品等広範な用途の成形体として使用できる。
自動車部品としては、例えば、サーモスタットカバー、インバータのIGBTモジュール部材、インシュレーター部材、エキゾーストフィニッシャー、パワーデバイス筐体、ECU筐体、ECUコネクタ、モーターやコイルの絶縁材、ケーブルの被覆材が挙げられる。
航空機部品および鉄道車両用部品としては、各種内外装部品に適用できる。
電気電子部品としては、例えば、コネクタ、LEDリフレクタ、スイッチ、センサー、ソケット、コンデンサー、ジャック、ヒューズホルダー、リレー、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、携帯用パソコン等の電気機器の筐体部品、抵抗器、IC、LEDのハウジングが挙げられる。
【符号の説明】
【0118】
EX:二軸混練押出機
D:ダイス
MP:金属プレート
R:流路
図1