(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-06
(45)【発行日】2023-09-14
(54)【発明の名称】ディープラーニングを使用して無標識蛍光画像をデジタル染色する方法及びシステム
(51)【国際特許分類】
G01N 33/48 20060101AFI20230907BHJP
G06T 1/00 20060101ALI20230907BHJP
G06T 5/00 20060101ALI20230907BHJP
G01N 21/64 20060101ALI20230907BHJP
【FI】
G01N33/48 M
G06T1/00 295
G06T5/00
G01N21/64 E
(21)【出願番号】P 2020552396
(86)(22)【出願日】2019-03-29
(86)【国際出願番号】 US2019025020
(87)【国際公開番号】W WO2019191697
(87)【国際公開日】2019-10-03
【審査請求日】2022-02-07
(32)【優先日】2018-03-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592110646
【氏名又は名称】ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】オズキャン,アイドガン
(72)【発明者】
【氏名】リヴェンソン,イエール
(72)【発明者】
【氏名】ワン,ホンダ
(72)【発明者】
【氏名】ウェイ,ジェンソン
【審査官】高田 亜希
(56)【参考文献】
【文献】国際公開第2013/187148(WO,A1)
【文献】米国特許出願公開第2015/0119722(US,A1)
【文献】米国特許出願公開第2014/0270457(US,A1)
【文献】欧州特許出願公開第02921990(EP,A2)
【文献】米国特許出願公開第2013/0077875(US,A1)
【文献】NESLIHAN BAYRAMOGLU ET AL,Towards Virtual H&E Staining of Hyperspectral Lung Histology Images Using Conditional Generative Adversarial Networks,2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW),IEEE,2017年10月22日,64-71,ISR D3/ESR D1
【文献】BURLINGAME ERIK A ET AL,SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks,PROGRESS IN BIOMEDICAL OPTICS AND IMAGING,,SPIE,2018年03月06日,10581,1058105,ESR D2
【文献】HAN LIANG ET AL,Transferring Microscopy Image Modalities with Conditional Generative Adversarial Networks,2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW),IEEE,2017年07月21日,851-859,ESR D3
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/48 -33/98
G06T 1/00
G06T 5/00
G01N 21/64
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
無標識試料のデジタル染色顕微鏡画像を生成する方法であって、
計算デバイスの1つ又は複数のプロセッサを使用して画像処理ソフトウェアにより実行される、トレーニングされたディープニューラルネットワークを提供するステップであって、前記トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する
自己蛍光画像又は画像パッチを用いてトレーニングされる、提供するステップと、
蛍光顕微鏡、1以上の励起光源、および1以上の放射フィルタを使用して前記試料の
1つ以上の自己蛍光画像を取得するステップであって、蛍光は内因性フルオロフォア又は前記試料内の周波数シフト光の他の内因性エミッタから発せられる、取得するステップと、
前記試料の
1つ以上の前記自己蛍光画像を前記トレーニングされたディープニューラルネットワークに入力するステップと、
前記トレーニングされたディープニューラルネットワークが、化学染色された前記同じ試料の対応する明視野画像と実質的に均等な前記試料の前記デジタル染色顕微鏡画像を出力するステップと、
を含むことを特徴とする方法。
【請求項2】
請求項1に記載の方法において、
前記トレーニングされたディープニューラルネットワークは畳み込みニューラルネットワークを含むことを特徴とする方法。
【請求項3】
請求項1に記載の方法において、
前記ディープニューラルネットワークは、敵対的生成ネットワーク(GAN)モデルを使用してトレーニングされることを特徴とする方法。
【請求項4】
請求項1に記載の方法において、
前記ディープニューラルネットワークは、前記一致した化学染色画像又は画像パッチと前記同じ試料の
自己蛍光画像又は画像パッチとの間の統計学的変換を学習するように構成された生成ネットワークと、前記試料のグランドトルース化学染色画像と前記試料の前記出力されたデジタル染色顕微鏡画像とを区別するように構成された識別ネットワークを使用してトレーニングされることを特徴とする方法。
【請求項5】
請求項1に記載の方法において、
前記試料は、哺乳類組織、植物組織、細胞、病原体、体溶液塗抹、又は関心のある他の物体を含むことを特徴とする方法。
【請求項6】
請求項1に記載の方法において、
前記ディープニューラルネットワークは、
取得された1つ以上の前記自己蛍光画像の前記試料タイプと同じタイプの試料を用いてトレーニングされることを特徴とする方法。
【請求項7】
請求項1に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、
1つ以上の前記自己蛍光画像の入力から1秒未満でデジタル染色顕微鏡画像を出力することを特徴とする方法。
【請求項8】
請求項1に記載の方法において、
前記試料は非固定組織試料を含むことを特徴とする方法。
【請求項9】
請求項1に記載の方法において、
前記試料は固定組織試料を含むことを特徴とする方法。
【請求項10】
請求項
9に記載の方法において、
前記固定組織試料はパラフィンに埋め込まれることを特徴とする方法。
【請求項11】
請求項1に記載の方法において、
前記試料は新鮮組織試料を含むことを特徴とする方法。
【請求項12】
請求項1に記載の方法において、
前記試料はin vivoで撮像された組織を含むことを特徴とする方法。
【請求項13】
請求項1に記載の方法において、
1以上の前記励起光源は紫外線光又は近紫外線光を発することを特徴とする方法。
【請求項14】
請求項
1に記載の方法において、
複数の
放射フィルタが、前記トレーニングされたディープニューラルネットワークに入力される複数の
自己蛍光画像を捕捉するのに使用されることを特徴とする方法。
【請求項15】
請求項
14に記載の方法において、
前記複数の
自己蛍光画像は、異なる波長又は波長範囲の光を発する複数の励起光源により取得されることを特徴とする方法。
【請求項16】
請求項1に記載の方法において、
1つ以上の前記自己蛍光画像は、コントラスト強調、コントラスト反転、前記トレーニングされたディープニューラルネットワークに入力される前の画像フィルタリングから選択される1つ又は複数の線形又は非線形画像事前処理演算を受けることを特徴とする方法。
【請求項17】
請求項
16に記載の方法において、
1つ以上の前記自己蛍光画像及び1つ以上の事前処理された画像は一緒に、前記トレーニングされたディープニューラルネットワークに入力されることを特徴とする方法。
【請求項18】
請求項1に記載の方法において、
前記同じ試料の前記複数の一致した化学染色及び
自己蛍光画像又は画像パッチは、トレーニング中、レジストレーションを受け、前記レジストレーションは、回転を補正する大域的レジストレーションプロセス及び前記一致した化学染色画像及び
自己蛍光画像において見つけられた局所特徴を一致させる続く局所レジストレーションプロセスを含むことを特徴とする方法。
【請求項19】
請求項1に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、1つ又は複数のGPU又はASICを使用してトレーニングされることを特徴とする方法。
【請求項20】
請求項1に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、1つ又は複数のGPU又はASICを使用して実行されることを特徴とする方法。
【請求項21】
請求項1に記載の方法において、
前記試料の前記デジタル染色顕微鏡画像は、
前記試料の1つ以上の前記自己蛍光画像を取得した後、リアルタイム又は準リアルタイムで出力されることを特徴とする方法。
【請求項22】
請求項
1に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、転送学習を使用して第2の組織/染色組合せに更に最適化された第1の組織/染色組合せからの初期ニューラルネットワーク重み及びバイアスを使用して前記第2の組織/染色組合せに向けてトレーニングされることを特徴とする方法。
【請求項23】
請求項
21に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、複数の組織/染色組合せに向けてトレーニングされることを特徴とする方法。
【請求項24】
請求項
21に記載の方法において、
前記トレーニングされたディープニューラルネットワークは、所与の組織タイプの2つ以上の化学染色タイプに向けてトレーニングされることを特徴とする方法。
【請求項25】
無標識試料のデジタル染色顕微鏡画像を生成する方法であって、
計算デバイスの1つ又は複数のプロセッサを使用して画像処理ソフトウェアにより実行される、トレーニングされたディープニューラルネットワークを提供するステップであって、前記トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する
自己蛍光画像又は画像パッチを用いてトレーニングされる、提供するステップと、
蛍光顕微鏡を使用して前記試料の
1つ以上の第1の自己蛍光画像を取得するステップであって、第1の波長又は波長範囲の蛍光が、内因性蛍光又は前記試料内の周波数シフト光の他の内因性エミッタから発せられる、取得するステップと、
蛍光顕微鏡を使用して前記試料の
1つ以上の第2の自己蛍光画像を取得するステップであって、第2の波長又は波長範囲の蛍光が、内因性蛍光又は前記試料内の周波数シフト光の他の内因性エミッタから発せられる、取得するステップと、
前記試料の
1つ以上の前記第1の自己蛍光画像及び1つ以上の前記第2の自己蛍光画像を前記トレーニングされたディープニューラルネットワークに入力するステップと、
前記トレーニングされたディープニューラルネットワークが、化学染色された前記同じ試料の対応する明視野画像と実質的に均等な前記試料の前記デジタル染色顕微鏡画像を出力するステップと、
を含むことを特徴とする方法。
【請求項26】
請求項
25に記載の方法において、
1つ以上の前記第1の自己蛍光画像及び1つ以上の前記第2の自己蛍光画像は、異なる解像度を使用して取得されることを特徴とする方法。
【請求項27】
請求項
25に記載の方法において、
前記試料は、組織、細胞、病原菌、体溶液塗抹、又は関心のある他の物体を含むことを特徴とする方法。
【請求項28】
化学的に染色されていない試料のデジタル染色顕微鏡画像を生成するシステムであって、
計算デバイスを備え、前記計算デバイスは、前記計算デバイスで又は前記計算デバイスにより実行される画像処理ソフトウェアを有し、前記画像処理ソフトウェアは、前記計算デバイスの1つ又は複数のプロセッサを使用して実行されるトレーニングされたディープニューラルネットワークを含み、前記トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する
自己蛍光画像又は画像パッチを用いてトレーニングされ、前記画像処理ソフトウェアは、
1以上の放射フィルタを使用して1以上の放射波長帯域において取得された前記試料の1つ以上の自己蛍光画像を受信し、化学染色された前記同じ試料の対応する明視野画像と実質的に均等な前記試料の前記デジタル染色顕微鏡画像を出力するように構成されることを特徴とするシステム。
【請求項29】
請求項
28に記載のシステムにおいて、
前記トレーニングされたディープニューラルネットワークは畳み込みニューラルネットワークを含むことを特徴とするシステム。
【請求項30】
請求項
29に記載のシステムにおいて、
前記トレーニングされたディープニューラルネットワークは、敵対的生成ネットワーク(GAN)モデルを使用してトレーニングされることを特徴とするシステム。
【請求項31】
請求項
28に記載のシステムにおいて、
前記試料の
前記1つ以上の自己蛍光画像を取得するように構成された蛍光顕微鏡を更に備えることを特徴とするシステム。
【請求項32】
請求項
31に記載のシステムにおいて、
複数のフィルタを更に備え、複数の
自己蛍光画像が異なるフィルタを使用して取得されることを特徴とするシステム。
【請求項33】
請求項
31に記載のシステムにおいて、
前記蛍光顕微鏡は、異なる波長又は波長帯域の光を発する複数の励起光源を備えることを特徴とするシステム。
【請求項34】
請求項
30に記載のシステムにおいて、
前記GANモデルは、前記一致した化学染色画像又は画像パッチと前記同じ試料の
自己蛍光画像又は画像パッチとの間の統計学的変換を学習するように構成された生成ネットワークと、前記試料のグランドトルース化学染色画像と前記試料の前記出力されたデジタル染色顕微鏡画像とを区別するように構成された識別ネットワークを使用してトレーニングされることを特徴とするシステム。
【請求項35】
請求項
30に記載のシステムにおいて、
前記GANモデルは、前記取得された
1つ以上の前記自己蛍光画像の前記試料と同じ試料タイプの試料を用いてトレーニングされることを特徴とするシステム。
【請求項36】
請求項
28に記載のシステムにおいて、
前記トレーニングされたディープニューラルネットワークは、
1つ以上の前記自己蛍光画像の入力から1秒未満でデジタル染色顕微鏡画像を出力することを特徴とするシステム。
【請求項37】
請求項
31に記載のシステムにおいて、
前記蛍光顕微鏡の励起光源は、紫外線光又は近紫外線光を発することを特徴とするシステム。
【請求項38】
請求項
31に記載のシステムにおいて、
1つ以上の前記自己蛍光画像は、フィルタセットを使用してフィルタリングされた放射帯域又は放射波長範囲で取得されることを特徴とするシステム。
【請求項39】
請求項
38に記載のシステムにおいて、
前記フィルタセットは、前記蛍光顕微鏡と併用されるように構成された複数のフィルタの1つを含むことを特徴とするシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2018年3月30日付けで出願された米国仮特許出願第62/651,005号明細書の優先権を主張するものであり、この米国仮特許出願を参照により本明細書に援用する。優先権は米国特許法第119条及び任意の他の妥当な法律に準拠して主張される。
【0002】
技術分野は、一般的には、非染色(すなわち、無標識)組織の撮像に使用される方法及びシステムに関する。特に、技術分野は、非染色又は非標識組織の画像のデジタル染色又は仮想染色にディープニューラルネットワーク学習を利用する顕微鏡方法及びシステムに関する。機械学習アルゴリズムの一種であるニューラルネットワークでのディープラーニングを使用して、無標識組織切片の画像をデジタル染色して、染色又は標識された同じ試料の顕微鏡画像に均等な画像にする。
【背景技術】
【0003】
組織試料の顕微鏡撮像は、種々の疾患の診断に使用される基本的なツールであり、病理学及び生物科学の主力をなす。組織切片の臨床的に確立された判断基準画像は、組織標本をホルマリン固定パラフィン包埋(FFPE)し、薄いスライス(通常約2~10μmまで)に切片化し、標識/染色し、ガラススライドに載せ、次に例えば明視野顕微鏡を使用したその顕微鏡撮像が行われることを含む大変なプロセスの結果である。これらのステップは全て複数の試薬を使用し、不可逆的な影響を組織にもたらす。異なる撮像モダリティを使用してこの作業フローを変える努力が最近なされてきた。例えば、二光子蛍光、第二高調波発生、第三高調波発生、及びラマン散乱に基づいて非線形顕微鏡法を使用して新鮮な非パラフィン包埋組織試料を撮像した試みがなされてきた。他の試みは制御可能なスーパーコンティニウム源を使用して、新鮮な組織試料の科学解析のマルチモーダル画像を取得する。これらの方法は、大半の状況で容易に利用可能ではないことがある超高速レーザ又はスーパーコンティニウム源を使用する必要があるとともに、光学信号がより弱いことに起因して比較的長いスキャン時間を要する。これらに加えて、染色試料へのUV励起を使用することにより又は短波長での生物組織の蛍光放射を利用することにより、非切片組織試料を撮像する他の顕微鏡方法も出現している。
【0004】
実際には、蛍光信号は、内因性フルオロフォアから発せられた蛍光を利用することにより組織試料を撮像する幾つかの独自の機会を生み出す。そのような内因性蛍光シグネチャが、生物標本の機能的属性及び構造的属性にマッピングすることができる有用な情報を有し、したがって、診断及び研究目的で広く使用されていることが実証されている。これらの労力の主なフォーカス分野の1つは、異なる生物分子と異なる条件下にあるそれらの構造的属性との関係の分光学的調査である。これらの十分に特徴付けられた生物学的組成の幾つかはとりわけ、ビタミン類(例えば、ビタミンA、リボフラビン、チアミン)、コラーゲン、コエンザイム、脂肪酸を含む。
【0005】
上述した技法の幾つかは、例えば、種々のコントラストメカニズムを使用して組織試料中の細胞タイプ及びサブ細胞構成要素を識別する独自の能力を有するが、病理学者及び腫瘍分類ソフトウェアは一般に、「判断基準」染色組織試料を調べて、診断決定を行うように訓練される。これに部分的に動機付けられて、上記技法の幾つかは、組織に埋め込まれた種々の染料の平均スペクトル応答を表す経験的に決定された定数を使用して画像の蛍光強度を組織容積当たりの染料濃度に関連付ける線形近似に基づく疑似ヘマトキシリン-エオジン(H&E)画像を作成するように強化されている。これらの方法は、組織試料の仮想H&E画像を作成するために、外因性染色も使用して蛍光信号コントラストを強化する。
【発明の概要】
【0006】
一実施形態では、化学的に染色されていない組織(又は他の試料)から得られた蛍光画像を使用して、無標識の薄い組織切片又は他の試料のデジタル又は仮想染色に使用されるトレーニングされたディープニューラルネットワークを利用するシステム及び方法が提供される。化学的に染色されていない組織とは、組織の組織化学的染色に使用される標準染色又は標識がないことを指す。化学的に染色されていない組織の蛍光は、自然発生若しくは内因性フルオロフォア又は照明周波数(すなわち、周波数シフト光)とは異なる周波数の光の他の内因性エミッタからの組織の自己蛍光を含み得る。化学的に染色されていない組織の蛍光は、外因的に追加された蛍光標識又は光の他の外因性エミッタからの組織の蛍光を更に含み得る。試料は、広視野蛍光顕微鏡(又は標準の蛍光顕微鏡)等の蛍光顕微鏡を用いて撮像される。顕微鏡は、標準の近UV励起/放射フィルタセット又は当業者に既知の他の励起/放射光源/フィルタセットを利用し得る。幾つかの実施形態では、デジタル又は仮想染色は、好ましいオン実施形態では、トレーニングされたディープニューラルネットワークを使用することにより試料の取得された1つの蛍光画像に対して実行される。
【0007】
一実施形態では、トレーニングされたディープニューラルネットワークは、敵対的生成ネットワーク(GAN)モデルを使用して、特定の組織学的染色を用いて標識した後の組織試料の対応する明視野顕微鏡画像に一致するようにトレーニングされる畳み込みニューラルネットワーク(CNN)である。この実施形態では、非染色試料(例えば、組織)の蛍光画像がトレーニングされたディープニューラルネットワークに入力されて、デジタル染色画像を生成する。したがって、この実施形態では、組織化学的染色及び明視野撮像ステップは完全に、デジタル染色画像を生成するトレーニングされたディープニューラルネットワークの使用で置換される。本明細書に説明するように、トレーニングされたニューラルネットワークにより実行されるネットワーク推測は高速であり、幾つかの実施形態では、例えば、40×対物レンズを使用する約0.33mm×約0.33mmの撮像視野の場合、標準のデスクトップコンピュータを使用して1秒未満である。組織のスキャンに20×対物レンズを使用すると、ネットワーク推測時間1.9秒/mm2が達成された。
【0008】
自己蛍光を使用するディープラーニングベースのデジタル/仮想組織学的染色方法は、唾液腺、甲状腺、腎臓、肝臓、肺、及び皮膚を含む無標識のヒト組織試料を撮像することにより実証されており、トレーニングされたディープニューラルネットワークの出力は、3つの異なる染色、すなわち、H&E(唾液腺及び甲状腺)、ジョーンズ染色(腎臓)、及びマッソントリクローム(乾燥及び肺)を用いて標識された同じ試料の画像と実質的に一致する均等な画像を作成した。トレーニングされたディープニューラルネットワークの入力画像は、標準フィルタセットを有する従来の蛍光顕微鏡により捕捉されるため、この手法は、組織化学的染色プロセスを全体的に迂回し、時間及び付随するコストを節減して、非染色組織試料を病理学及び組織学用途に使用する変換潜在性を有する。これは、労働力、試薬、及び染色プロセスに関わる追加時間等のコストを含む。例えば、本明細書に記載されるデジタル又は仮想染色プロセスを使用して近似された組織学的染色では、組織切片の各染色手順は平均で約45分(H&E)及び2~3時間(マッソントリクローム及びジョーンズ染色)かかり、労働力を含む推定コストは、H&Eでは$2~5であり、マッソントリクローム及びジョーンズ染色では>$16~35である。さらに、これらの組織化学的染色プロセスの幾つかは、時間の影響を受けやすいステップを必要とし、専門家が顕微鏡下でプロセスを監視することが求められ、それにより、プロセス全体を長引かせ、比較的高コストにするのみならず、面倒なものにもする。本明細書に開示されるシステム及び方法は、これらの全ての染色ステップを迂回し、より高度な免疫化学及び分子解析に使用することができ、例えば、カスタマイズされた治療を促進する非染色組織標本での関心のあるサブ領域のマイクロマーキング等の後の解析のために非標識組織切片を保存できるようにもする。さらに、これらの試料の幾つかに対応するホールスライドイメージ(WSI)でのこの手法の染色の有効性は、デジタル/仮想染色技法を用いた組織病理学的特徴を認識することが可能な病理学者のグループによりブラインド評価され、同じ試料の組織的染色画像との高度な一致を達成した。
【0009】
さらに、このディープラーニングベースのデジタル/仮想組織学的染色枠組みは、他の励起波長又は蛍光フィルタセット及び追加の内因性コントラストメカニズムを利用する他の顕微鏡法モダリティ(非線形顕微鏡法等)にも広く適用することができる。実験では、切片化され固定された組織試料を使用して、標準の組織化学的染色プロセスの結果と有意味な比較を提供することが可能であった。しかしながら、提示される手法は非固定非切片化組織試料にも上手く機能し、潜在的に、高速診断又は遠隔病理診断用途に向けて手術室又は生検の現場での使用に適用可能にする。臨床用途を超えて、この方法は、組織学分野並びに生命科学研究及び教育における適用に幅広く利することができる。
【0010】
一実施形態では、無標識試料のデジタル染色顕微鏡画像を生成する方法は、計算デバイスの1つ又は複数のプロセッサを使用して実行される画像処理ソフトウェアを使用して実行される、トレーニングされたディープニューラルネットワークを提供するステップであって、トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する蛍光画像又は画像パッチを用いてトレーニングされる、提供するステップを含む。無標識試料は、組織、細胞、病原体、体溶液塗擦標本、又は関心のある他の微小物体を含み得る。幾つかの実施形態では、ディープニューラルネットワークは、1つ又は複数の組織タイプ/化学染色タイプ組合せを使用してトレーニングし得る。例えば、これは、染色#1、染色#2、及び染色#3等を有する組織タイプAを含み得る。幾つかの実施形態では、ディープニューラルネットワークは、複数の染色で染色された組織を使用してトレーニングし得る。
【0011】
試料の蛍光画像は、トレーニングされたディープニューラルネットワークに入力される。トレーニングされたディープニューラルネットワークは次に、試料の入力蛍光画像に基づいて試料のデジタル染色顕微鏡画像を出力する。一実施形態では、トレーニングされたディープニューラルネットワークは畳み込みニューラルネットワーク(CNN)である。これは、敵対的生成ネットワーク(GAN)モデルを使用するCNNを含み得る。試料の蛍光入力画像は、蛍光顕微鏡及び励起光源(例えば、UV又は近UV放射光源)を使用して取得される。幾つかの代替の実施形態では、複数の蛍光画像がトレーニングされたディープニューラルネットワークに入力される。例えば、1つの蛍光画像を第1のフィルタリング波長又は波長範囲で取得し得、一方、別の蛍光画像を第2のフィルタリング波長又は波長範囲で取得し得る。次に、これらの2つの蛍光画像はトレーニングされたディープニューラルネットワークに入力されて、1つのデジタル/仮想染色画像を出力する。別の実施形態では、取得された蛍光画像は、単独で又は取得された蛍光画像と組み合わせてトレーニングされたディープニューラルネットワークに入力し得るコントラスト強調、コントラスト反転、画像フィルタリングから選択される1つ又は複数線形又は非線形事前処理演算を受け得る。
【0012】
例えば、別の実施形態では、無標識試料のデジタル染色顕微鏡画像を生成する方法は、計算デバイスの1つ又は複数のプロセッサを使用して画像処理ソフトウェアにより実行される、トレーニングされたディープニューラルネットワークを提供するステップであって、トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する蛍光画像又は画像パッチを用いてトレーニングされる、提供するステップを含む。試料の第1の蛍光画像が蛍光顕微鏡を使用して取得され、第1の放射波長又は波長範囲の蛍光が、内因性フルオロフォア又は試料内の周波数シフト光の他の内因性エミッタから発せられる。試料の第2の蛍光画像が蛍光顕微鏡を使用して取得され、第2の放射波長又は波長範囲の蛍光が、内因性フルオロフォア又は試料内の周波数シフト光の他の内因性エミッタから発せられる。第1及び第2の蛍光画像は、異なる励起/放射波長組合せを使用することにより取得し得る。次に、試料の第1及び第2の蛍光画像はトレーニングされたディープニューラルネットワークに入力され、トレーニングされたディープニューラルネットワークは、化学染色された同じ試料の対応する明視野画像に実質的に均等な試料のデジタル染色顕微鏡画像を出力する。
【0013】
別の実施形態では、化学的に染色されていない試料のデジタル染色顕微鏡画像を生成するシステムは、計算デバイスを含み、計算デバイスは、計算デバイスで又は計算デバイスにより実行される画像処理ソフトウェアを有し、画像処理ソフトウェアは、計算デバイスの1つ又は複数のプロセッサを使用して実行されるトレーニングされたディープニューラルネットワークを含む。トレーニングされたディープニューラルネットワークは、複数の一致した化学染色画像又は画像パッチ及び同じ試料の対応する蛍光画像又は画像パッチを用いてトレーニングされる。画像処理ソフトウェアは、試料の1つ又は複数の蛍光画像を受信し、化学染色された同じ試料の対応する明視野画像と実質的に均等な試料のデジタル染色顕微鏡画像を出力するように構成される。
【図面の簡単な説明】
【0014】
【
図1】
図1は、一実施形態により、試料の非染色顕微鏡画像から試料のデジタル/仮想染色出力画像を生成するのに使用されるシステムを概略的に示す。
【
図2】
図2は、非染色組織の蛍光画像を使用するディープラーニングベースのデジタル/仮想組織学的染色動作の概略表現を示す。
【
図3】
図3A~
図3Hは、化学染色されたH&E試料に一致するデジタル/仮想染色結果を示し、最初の2列(
図3A及び
図3E)は、非染色唾液腺組織切片の自己蛍光画像を示し(ディープニューラルネットワークへの入力として使用される)、3列目(
図3C及び
図3G)は、デジタル/仮想染色結果を示し、最後の列(
図3D及び
図3H)は、組織化学的染色プロセス後の同じ組織切片の明視野画像を示し、
図3C及び
図3Dの両方の評価は、皮下繊維脂肪組織内の湿潤性腫瘍細胞の小島を実証し、なお、核小体(
図3C及び
図3Dにおける矢印)とクロマチンテクスチャとの区別を含め、原子核細部は両パネルにおいて明確に理解され、同様に、
図3G及び
図3Hでは、H&E染色は、湿潤性扁平上皮癌を実証し、隣接する間質中の浮腫粘液変化(
図3G及び
図3Hにおけるアスターリスク)との繊維形成反応は、染色/パネルの両方で明確に識別可能である。
【
図4】
図4A~
図4Hは、化学染色ジョーンズ試料に一致するデジタル/仮想染色結果を示し、最初の2列(
図4A、
図4E)は、非染色腎臓組織切片の自己蛍光画像を示し(ディープニューラルネットワークへの入力として使用される)、3列目(
図4C及び
図4G)は、デジタル/仮想染色結果を示し、最後の列(
図4D、
図4H)は、組織化学的染色プロセス後の同じ組織切片の明視野画像を示す。
【
図6】
図6Aは、結合損失関数とランダム初期化及び転送学習初期化の反復回数とのグラフを示し、
図6Aは、転送学習を使用して優れた収束がいかに達成されるかを示し、新しいディープニューラルネットワークは、唾液腺組織切片から学習した重み及びバイアスを使用して初期化されて、H&Eを用いた甲状腺組織の仮想染色を達成し、ランダム初期化と比較して、転送学習ははるかに高速の収束を可能にし、より低い極小も達成する。
図6Bは、ランダム初期化及び転送学習の両方の学習プロセスの異なる段階におけるネットワーク出力画像を示し、提示された手法を新しい組織/染色組合せに変換することへの転送学習の影響をよりよく示す。
図6Cは、対応するH&E化学染色明視野画像を示す。
【
図7】
図7Aは、DAPIチャネルのみを使用した皮膚組織の仮想染色(H&E染色)を示す。
図7Bは、DAPI及びCy5チャネルを使用した皮膚組織の仮想染色(H&E染色)を示し、Cy5は、生体分子の標識に使用される遠赤蛍光標識シアニン染料を指す。
図7Cは、対応する組織学的染色(すなわち、H&Eを用いて化学的に染色)された組織を示す。
【
図8】
図8は、化学染色プロセス後の同じ試料の明視野画像に関する非染色組織試料の自己蛍光画像の視野マッチング及びレジストレーションプロセスを示す。
【
図9】
図9は、GANを使用した仮想染色ネットワークのトレーニングプロセスを概略的に示す。
【
図10】
図10は、一実施形態による生成器及び識別器の敵対的生成ネットワーク(GAN)アーキテクチャを示す。
【発明を実施するための形態】
【0015】
図1は、試料22の入力顕微鏡画像20からデジタル染色画像40を出力するシステム2の一実施形態を概略的に示す。本明細書に説明されるように、入力画像20は、蛍光染色又は標識で染色又は標識されていない試料22(一実施形態では、組織等)の蛍光画像20である。すなわち、入力画像20は、試料22により発せられた蛍光が1つ又は複数の内因性フルオロフォア又は周波数シフト光を含む他の内因性エミッタの結果である試料22の自己蛍光画像20である。周波数シフト光は、入射周波数(又は波長)と異なる別の周波数(又は波長)で発せられる光である。内因性フルオロフォア又は周波数シフト光の内因性エミッタは、分子、化合物、複合体、分子種、生体分子、色素、及び組織等を含み得る。幾つかの実施形態では、入力画像20(例えば、未処理の蛍光画像)は、コントラスト強調、コントラスト反転、画像フィルタリングから選択される1つ又は複数の線形又は非線形事前処理演算を受ける。システムは、1つ又は複数のプロセッサ102と、トレーニングされたディープニューラルネットワーク10(例えば、1つ又は複数の実施形態において本明細書に説明されるように畳み込みニューラルネットワーク)を組み込んだ画像処理ソフトウェア104とを含む計算デバイス100を含む。計算デバイス100は、本明細書に説明されるように、パーソナルコンピュータ、ラップトップ、モバイル計算デバイス、又はリモートサーバ等を含み得るが、他の計算デバイス(例えば1つ若しくは複数のグラフィック処理ユニット(GPU)を組み込んだデバイス)又は他の特定用途向け集積回路(ASIC)を使用することもできる。GPU又はASICを使用して、トレーニング及び最終画像出力を加速化することができる。計算デバイス100には、デジタル染色画像40の表示に使用されるモニタ又はディスプレイ106が関連付けられ得、又は接続することができる。ディスプレイ106は、デジタル染色画像40の表示及び閲覧するためにユーザにより使用されて、グラフィカルユーザインターフェース(GUI)の表示に使用し得る。一実施形態では、ユーザは、例えば、GUIを使用して、特定の試料22の複数の異なるデジタル/仮想染色間を手動でトリガー又はトグルすることが可能であり得る。代替的には、異なる染色間のトリーが又はトグルは、計算デバイス100により自動的に行うことができる。好ましい一実施形態では、トレーニングされたディープニューラルネットワーク10は畳み込みニューラルネットワーク(CNN)である。
【0016】
例えば、本明細書に記載される好ましい一実施形態では、トレーニングされたディープニューラルネットワーク10は、GANモデルを使用してトレーニングされる。GANトレーニングされたディープニューラルネットワーク10では、2つのモデルがトレーニングに使用される。データ分布を捕捉する生成モデルが使用され、一方、第2のモデルは、試料が生成モデルからではなくトレーニングデータから来る確率を推定する。GANに関する詳細は、Goodfellowら著、Generative Adversarial Nets.,Advances in Neural Information Processing Systems,27,pp.2672-2680(2014年)に見出し得、これは参照により本明細書に援用される。ディープニューラルネットワーク10(例えば、GAN)のネットワークトレーニングは、同じ又は異なる計算デバイス100実行し得る。例えば、一実施形態では、パーソナルコンピュータを使用してGANをトレーニングし得るが、そのようなトレーニングは相当量の時間が掛かり得る。このトレーニングプロセスを加速するために、1つ又は複数の専用GPUをトレーニングに使用し得る。本明細書に説明されるように、そのようなトレーニング及びテストは、市販のグラフィックスカードから得られるGPUで実行された。ディープニューラルネットワーク10がトレーニングされると、ディープニューラルネットワーク10は、トレーニングプロセスに使用された計算リソースよりも計算リソースが少ないものを含み得る異なる計算デバイス110で使用又は実行し得る(しかし、トレーニングされたディープニューラルネットワーク10の実行にGPUを統合することもできる)。
【0017】
画像処理ソフトウェア104は、Python及びTensorFlowを使用して実装することができるが、他のソフトウェアパッケージ及びプラットフォームを使用することもできる。トレーニングされたディープニューラルネットワーク10は、特定のソフトウェアプラットフォーム又はプログラミング言語に限定されず、トレーニングされたディープニューラルネットワーク10は、任意の数の市販のソフトウェア言語又はプラットフォームを使用して実行し得る。トレーニングされたディープニューラルネットワーク10を組み込むか、又はトレーニングされたディープニューラルネットワーク10と協働する画像処理ソフトウェア104は、ローカル環境又は移動クラウド型環境で実行し得る。幾つかの実施形態では、画像処理ソフトウェア104の幾つかの機能(例えば、画像正規化)は、ある特定の言語又はプラットフォームで実行し得、一方、トレーニングされたディープニューラルネットワーク10は別の特定の言語又はプラットフォームで実行し得る。それにも関わらず、両動作は画像処理ソフトウェア104により実行される。
【0018】
図1に見られるように、一実施形態では、トレーニングされたディープニューラルネットワーク10は、非標識試料22の1つの蛍光画像20を受信する。他の実施形態では、例えば、複数の励起チャネルが使用される(本明細書におけるメラニン考察参照)場合、トレーニングされたディープニューラルネットワーク10に入力される非標識試料22の複数の蛍光画像20があり得る(例えば、チャネル毎に1つの画像)。蛍光画像20は、非標識組織試料22の広視野蛍光画像20を含み得る。広視野とは、より小さな視野(FOV)のスキャンにより広視野(FOV)が得られることを示すことを意味し、広FOVは10~2,000mm
2の範囲のサイズである。例えば、走査型蛍光顕微鏡110により、より小さなFOVを取得し得、走査型蛍光顕微鏡110は画像処理ソフトウェア104を使用してより小さなFOVを一緒にデジタル的にステッチングして、より広いFOVを作成する。広FOVは、例えば、試料22のホールスライドイメージ(WSI)を取得するのに使用することができる。蛍光画像は撮像デバイス110を使用して取得される。本明細書に記載される蛍光実施形態では、これは蛍光顕微鏡110を含み得る。蛍光顕微鏡110は、試料22を照明する励起光源と、フルオロフォア又は試料22に含まれる周波数シフト光の他の内因性エミッタにより発生された蛍光を捕捉する1つ又は複数の画像センサ(例えば、CMOS画像センサ)を含む。蛍光顕微鏡110は、幾つかの実施形態では、複数の異なる波長又は波長範囲/帯域の励起光で試料22を照明する能力を含み得る。これは、複数の異なる光源及び/又は異なるフィルタセット(例えば、標準UV又は近UV励起/放射フィルタセット)を使用して達成し得る。加えて、蛍光顕微鏡110は、幾つかの実施形態では、異なる放射帯域をフィルタリングすることができる複数のフィルタセットを含み得る。例えば、幾つかの実施形態では、異なるフィルタセットを使用して異なる放射帯域でそれぞれ捕捉される複数の蛍光画像20を捕捉し得る。
【0019】
試料22は、幾つかの実施形態では、基板23上又は内に配置される組織の一部を含み得る。基板23は、幾つかの実施形態では、光学的に透明な基板を含み得る(例えば、ガラス又はプラスチックスライド等)。試料22は、ミクロトームデバイス等を使用して薄い切片に切断される組織切片を含み得る。組織22のこの薄い切片は、明視野照明下で限られた振幅コントラスト変調を有する弱散乱位相物体と見なすことができる。試料22は、カバーガラス/カバースリップあり又はなしで撮像し得る。試料は冷凍切片又はパラフィン(ワックス)切片を含み得る。組織試料22は固定(例えば、ホルマリンを使用して)されてもよく、又は固定されなくてもよい。組織試料22は、哺乳類(例えば、ヒト若しくは動物)組織又は植物組織を含み得る。試料22は、他の生物学的試料及び環境試料等を含むこともできる。例には、粒子、細胞、細胞内小器官、病原体、又は関心のある他のマイクロスケール物体(マイクロメートルサイズの寸法以下を有するもの)がある。試料22は体溶液又は組織の塗抹を含み得る。これらは、例えば、血液塗抹、パパニコロウ塗抹、すなわちPap塗抹を含む。本明細書に説明されるように、蛍光ベースの実施形態では、試料22は、蛍光し、蛍光顕微鏡デバイス110により捕捉される1つ又は複数の自然発生又は内因性フルオロフォアを含む。大半の植物組織及び動物組織は、紫外線光又は近紫外線光で励起すると、幾らかの自己蛍光を示す。内因性フルオロフォアは、例示として、コラーゲン等のタンパク質、エラスチン、脂肪酸、ビタミン類、フラビン、ポルフィリン、リポフスチン、コエンザイム(例えば、NAD(P)H)を含み得る。幾つかの任意選択的な実施形態では、外因性追加蛍光標識又は光の他の外因性エミッタを追加することもできる。本明細書に説明されるように、試料22は、周波数シフト光の他の内因性エミッタを含むこともできる。
【0020】
トレーニングされたディープニューラルネットワーク10は、入力画像20に応答して、デジタル染色又は標識出力画像40を出力又は生成する。デジタル染色出力画像40は、トレーニングされたディープニューラルネットワーク10を使用して染色出力画像40にデジタル的に統合された「染色」を有する。組織切片が関わる等の幾つかの実施形態では、トレーニングされたディープニューラルネットワーク10は熟練したオブザーバー(例えば、熟練した組織病理学者)には、化学染色された同じ組織切片試料22の対応する明視野画像と実質的に均等に見える。実際に、本明細書に説明されるように、トレーニングされたディープニューラルネットワーク10を使用して得られた実験結果は、熟練した病理学者が両染色技法(化学染色vsデジタル/仮想染色)を用いて組織病理学的特徴を認識することができ、両技法が高度に一致し、明確に好ましい染色技法がない(仮想vs組織学的)ことを示す。組織切片試料22のこのデジタル又は仮想染色は、組織化学的染色動作が行われなかったにも関わらず、まるで組織切片試料22が組織化学的染色を受けたかのように見える。
【0021】
図2は、典型的な蛍光ベースの実施形態に関わる動作を概略的に示す。
図2に見られるように、非染色組織切片等の試料22が取得される。これは、生検B等を通して生体組織から取得し得る。非染色組織切片試料22は次に、蛍光顕微鏡110を使用した蛍光撮像を受け、蛍光画像20を生成する。この蛍光画像20は次に、トレーニングされたディープニューラルネットワーク10に入力され、トレーニングされたディープニューラルネットワーク10は次に、組織切片試料22のデジタル染色画像40を即座に出力する。このデジタル染色画像40は、実際の組織切片試料22が組織化学的染色を受けた場合の同じ組織切片試料22の明視野画像の見た目によく類似する。
図2は、組織切片試料22が組織化学的染色44を受け、その後、従来の明視野顕微鏡法撮像46が続き、染色組織切片試料22の従来の明視野画像48を生成する従来のプロセスを示す(破線矢印を使用して)。
図2に見られるように、デジタル染色画像40は実際の化学染色画像48によく類似する。本明細書に記載されるデジタル染色プラットフォームを使用して、同様の解像度及び色プロファイルが得られる。このデジタル染色画像40は、
図1に示されるように、コンピュータモニタ106に示され又は表示され得るが、デジタル染色画像40が任意の適したディスプレイ(例えば、コンピュータモニタ、タブレットコンピュータ、モバイル計算デバイス、携帯電話等)に表示可能なことを理解されたい。GUIをコンピュータモニタ106に表示し得、それにより、ユーザはデジタル染色画像40を閲覧し、任意選択的にデジタル染色画像40と対話し得る(例えば、ズーム、カット、ハイライト、マーキング、及び露出調整等)。
【0022】
実験-組織試料の自己蛍光仮想染色を使用した無標識組織のデジタル染色
組織切片試料22及び染色の異なる組合せを使用して、本明細書に記載されるシステム2及び方法をテストし、実証した。CNNベースのディープニューラルネットワーク10のトレーニングに続き、ディープニューラルネットワーク10にトレーニングセット又は検証セットで使用された画像と重複しない無標識組織切片22の自己蛍光画像20を供給することにより、その推測をブラインドテストした。
図4A~
図4Hは、デジタル/仮想染色されて、同じ試料22のH&E染色明視野画像48(すなわち、グランドトルース画像)と照合された唾液腺組織切片の結果を示す。これらの結果は、無標識組織切片22の蛍光画像20を、H&E染色組織から予期される正確な配色を示し、類上皮細胞、細胞核、核小体、間質、及びコラーゲン等の種々の構成要素を含む明視野均等画像40に変換するシステム2の能力を実証している。
図3C及び
図3Dの両方の評価は、H&E染色が、皮下繊維脂肪組織内の湿潤性腫瘍細胞の小島を実証することを示す。なお、核小体(矢印)とクロマチンテクスチャとの区別を含め、原子核細部は両パネルにおいて明確に理解される。同様に、
図3G及び
図3Hでは、H&E染色は湿潤性扁平上皮癌を実証する。隣接する間質中の浮腫粘液変化(アスターリスク)との繊維形成反応は、両染色で明確に識別可能である。
【0023】
次に、ディープネットワーク10は、2つの異なる染色、すなわち、ジョーンズメテナミン銀染色(腎臓)及びマッソントリクローム染色(肝臓及び肺)を用いて他の組織タイプをデジタル/仮想染色するようにトレーニングされた。
図4A~
図4H及び
図5A~
図5Pは、これらの組織切片22のディープラーニングベースのデジタル/仮想染色の結果をまとめたものであり、組織化学的染色プロセス後に捕捉された同じ試料22の明視野画像48に非常によく一致する。これらの結果は、トレーニングされたディープニューラルネットワーク10が、無標識標本(すなわち、いかなる組織化学的染色も有さない)の1つの蛍光画像20から、異なる組織タイプに使用される異なるタイプの組織学的染色の染色パターンを推測することが可能なことを示す。
図3A~
図3Hと同様に同じ全体的結論で、ニューラルネットワーク出力画像
図4C及び
図5Gが、化学染色後に捕捉された同じ組織試料22の明視野画像48(
図5D及び
図5H)に現れるのと一貫するように、幹細胞、類洞腔、コラーゲン、及び脂肪滴(
図5G)に対応する組織学的特徴を正確に明らかにすることが病理学者によっても確認された。同様に、
図5K及び
図5Oにおいて報告されたディープニューラルネットワーク出力画像40(肺)が、化学染色後に撮像された同じ組織試料22の明視野画像48(
図6L及び
図6P)に現れるように、脈管、コラーゲン、及び肺胞腔に対応する、染色された組織学的特徴を一貫して明らかにすることも同じ専門家により確認された。
【0024】
ホルマリン固定パラフィン包埋(FFPE)又は冷凍切片の何れかであった複数のタイプの組織での複数のタイプの状況を診断するために、トレーニングされたディープニューラルネットワークからのデジタル/仮想染色出力画像40を標準の組織化学的染色画像48と比較した。結果を以下の表1にまとめる。4人の委員会認定病理学者(仮想染色技法を認識していなかった)による15の組織切片の解析は、専門的オブザーバー間の診断に臨床的に有意な差がないとして定義される100%非メジャー不一致(non-major discordance)を実証した。「診断までの時間」は、オブザーバー2の画像毎に平均10秒からオブザーバー3の画像毎に276秒とオブザーバー間でかなり変動した。しかしながら、オブザーバー内変動は非常に小さく、仮想スライド画像40及び組織学的染色スライド画像48の両方で診断までの時間が等しかった、すなわち、画像毎に約10秒であったオブザーバー2を除く全てのオブザーバーで仮想染色スライド画像40を用いた診断までの時間が短くなる傾向があった。これらは、2つの画像モダリティ間で非常に類似した診断有用性を示す。
【0025】
ホールスライドイメージ(WSI)の染色有効性のブラインド評価
組織切片及び染色における差を評価した後、専用染色組織学的作業フローにおいて仮想染色システム2の能力をテストした。特に、肝臓組織切片の15個の無標識試料及び腎臓の13個の無標識組織切片の自己蛍光分布を20×/0.75NA対物レンズを用いて撮像した。肝臓及び腎臓の全ての組織切片は、異なる患者から取得され、小さな生検及びより大きな切除の両方を含んだ。全ての組織切片はFFPEから取得されたが、カバースリップされなかった。自己蛍光スキャン後、組織切片をマッソントリクローム(4μm肝臓組織切片)及びジョーンズ染色(2μm腎臓組織切片)を用いて組織学的に染色した。次にWSIをトレーニングセット及びテストセットに分割した。肝臓スライドコホートでは、7つのWSIを仮想染色アルゴリズムのトレーニングに使用し、8つのWSIをブラインドテストに使用し、腎臓スライドコホートでは、6つのWSIをアルゴリズムのトレーニングに使用し、7つのWSIをテストに使用した。研究病理学者には、各WSIの染色技法は隠され、異なる染色の品質について1~4の番号等級を適用するように求めた:4=完璧、3=非常に良い、2=許容可能、1=許容不可能。第2に、研究病理学者は、同じスコアスケール(1~4)を特定の特徴:原子核細部(ND)、細胞質細部(CD)、及び肝臓のみの細胞外線維化(EF)について適用した。これらの結果を以下の表2(肝臓)及び表3(腎臓)にまとめる(勝者は太字)。データは、病理学者が両染色技法で組織病理学的特徴を認識することが可能であり、両技法が高度に一致し、明確に好ましい染色技法がない(仮想vs組織学的)ことを示す。
【0026】
ネットワーク出力画質の定量化
次に、
図3A~
図3H、
図4A~
図4H、
図5A~
図5Pに提供される視覚的比較を超えて、まず、化学的に染色された試料22と、いかなる標識/染色も使用せずにディープニューラルネットワーク10を使用して合成されたデジタル/仮想染色画像40の明視野画像48間のピクセルレベル差を計算することにより、トレーニングされたディープニューラルネットワーク10の結果を定量化した。以下の表4に、YCbCr色空間を使用した組織タイプ及び染色の異なる組合せのこの比較をまとめており、ここで、クロマ成分Cb及びCrは全体的に色を定義し、Yは画像の輝度成分を定義する。この比較の結果により、これらの2組の画像間の平均差が、クロマチャネル(Cb,Cr)及び輝度チャネル(Y)でそれぞれ約5%未満及び約16%未満であることが明らかである。次に、第2の尺度、すなわち、一般に、基準画像と比較して人間のオブザーバーが画像に与えるスコアを予測するのに使用される構造的類似性指標(SSIM)を使用して、比較を更に定量化した(本明細書における式8)。SSIMは0~1の範囲であり、ここで、1は同一画像のスコアを定義する。このSSIM定量化の結果も表4にまとめられており、ネットワーク出力画像40と化学的に染色した試料の明視野画像48との間の強い構造的類似性を非常によく示している。
【0027】
制御されないばらつき並びに組織化学的染色プロセス及び関連する脱水ステップ及び清掃ステップ中に組織が受ける構造的変化があるため、化学的に染色された組織試料22の明視野画像48が実際には、ネットワーク出力画像40のこの特定のSSIM及びYCbCr解析の真の判断基準を提供しないことに留意すべきである。画像の幾つかで気付いた別のばらつきは、自動顕微鏡スキャンソフトウェアが2つの撮像モダリティに異なるオートフォーカス平面を選択したことである。これらの全てのばらつきは、2組の画像(すなわち、無標識組織のネットワーク出力40vs組織学的染色プロセス後の同じ組織の明視野画像48)の絶対定量的比較に幾らかの問題を生み出す。
【0028】
染色標準化
デジタル/仮想染色システム2の興味深い副産物は、染色標準化であることができる。換言すれば、トレーニングされたディープニューラルネットワーク10は「共通染色」カラー化方式に収束し、それにより、組織学的染色組織画像48におけるばらつきは、仮想染色組織画像40よりも大きくなる。仮想染色のカラー化は専らそのトレーニングの結果であり(すなわち、トレーニングフェーズ中に使用された判断基準組織学的染色)、新しい染色カラー化を用いてネットワークを再トレーニングすることにより、病理学者の好みに基づいて更に調整することができる。そのような「改善」されたトレーニングは、最初から作成することもでき、又は転送学習を通して加速することができる。ディープラーニングを使用したこの潜在的な染色標準化は、試料準備の異なる段階における人から人へのばらつきの悪影響を改善し、異なる臨床研究所間で共通のグラウンドを生み出し、臨床医の診断作業フローを強化すると共に、特に自動組織転移検出又は異なるタイプの癌の等級付け等の新しいアルゴリズムの開発を助ける。
【0029】
他の組織染色組合せへの転送学習
転送学習の概念を使用して、改善された性能、すなわち、トレーニング費用/損失関数においてよりよい極小に達しながらも、新しい組織及び/又は染色タイプのトレーニング手順ははるかに高速に収束することができる。これは、異なる組織-染色組合せから予め学習されたCNNモデルディープニューラルネットワーク10が、ディープニューラルネットワーク10の初期化に使用されて、新しい組合せの仮想染色を統計学的に学習することができることを意味する。
図6A~
図6Cは、そのような手法の好ましい属性を示す:新しいディープニューラルネットワーク10は、非染色甲状腺組織切片の自己蛍光画像20を仮想染色するようにトレーニングされ、唾液腺のH&E仮想染色に向けて前にトレーニングされた別のディープニューラルネットワーク10の重み及びバイアスを使用して初期化された。トレーニングフェーズで使用される反復回数の関数としての損失尺度の進化は、新しい甲状腺ディープネットワーク10が、
図6Aに示されるようにランダム初期化を使用して一からトレーニングされた同じネットワークアーキテクチャと比較してより低い最小に高速に収束することを明らかに実証している。
図6Bは、学習プロセスの異なる段階におけるこの甲状腺ネットワーク10の出力画像40を比較し、提示される手法を新しい組織/染色組合せに高速で適合させる転写学習の影響を更に示す。ネットワーク出力画像40は、例えば6,000回以上の反復でのトレーニングフェーズ後、細胞核が、甲状腺乳頭カルシノーマを示唆する不規則な輪郭、原子核溝、及びクロマチン蒼白化を示し、細胞がまた、軽度から中等度の量の好酸性顆粒状細胞形質を示し、ネットワーク出力画像における血管結合組織コアが、リンパ球及び血漿細胞を含む炎症細胞の増大を示すことを明らかにする。
図6Cは、対応するH&E化学染色明視野画像48を示す。
【0030】
異なる解像度での複数の蛍光チャネルの使用
トレーニングされたディープニューラルネットワーク10を使用する方法は、異なる組織組成での推測性能を高めるために、他の励起波長及び/又は撮像モダリティと組み合わせることができる。例えば、仮想H&E染色を使用した皮膚組織切片試料でのメラニン検出を試みた。しかしながら、ネットワークの出力は本明細書に記載される実験システムで測定されるDAPI励起/放射波長において弱い自己蛍光信号を提示するため、メラニンは、ネットワークの出力において明確に識別できなかった。メラニンの自己蛍光を高める潜在的な一方法は、試料が酸化性溶液中にある間、試料を撮像することである。しかしながら、例えば、メラニン信号を増強し、トレーニングされたディープニューラルネットワーク10において正確に推測することができるように、Cy5フィルタ(励起628nm/放射692nm)から発せられる追加の自己蛍光チャネルが利用されるより実用的な代替を使用した。DAPI及びCy5自己蛍光チャネルの両方を使用してネットワーク10をトレーニングすることにより、トレーニングされたディープニューラルネットワーク10は、
図7A~
図7Cに示されるように、試料でメラニンが発生した場所を首尾良く特定することができた。これとは対照的に、DAPIチャネルのみが使用された場合(
図7A)、ネットワーク10は、メラニンを含むエリアを特定することができなかった(エリアは白く見える)。換言すれば、Cy5チャネルからの追加の自己蛍光情報がネットワーク10により使用されて、背景組織からメラニンを区別した。
図7A~
図7Cに示される結果では、最も必要な情報が高解像度DAPIスキャンにおいて見つけられ、追加情報(例えば、メラニンの存在)をより低解像度のスキャンでエンコードすることができるとの仮説を立てたため、高解像度DAPIスキャン(20×/0.75NA)を補足するために、画像20はCy5チャネルではより低い解像度の対物レンズ(10×/0.45NA)を使用して取得された。このようにして、2つの異なるチャネルを使用し、チャネルの一方は、メラニン識別のためにより低解像度で使用した。これは、蛍光顕微鏡110を用いた試料22の複数のスキャン通過を必要とし得る。更に別のマルチチャネル実施形態では、複数の画像20をトレーニングされたディープニューラルネットワーク10に供給し得る。これは、例えば、コントラスト強調、コントラスト反転、及び画像フィルタリング等の線形又は非線形画像事前処理を受けた1つ又は複数の画像と組み合わせた未処理の蛍光画像を含み得る。
【0031】
本明細書に記載されるシステム2及び方法は、標準の蛍光顕微鏡110により捕捉された試料の1つの蛍光画像20(他の実施形態では、複数の蛍光チャネルが使用される場合、複数の蛍光画像20が入力される)及びフィルタセットを入力として使用する教師付きディープラーニング技法を使用して、無標識組織切片22をデジタル/仮想染色する能力を示す。この統計学的学習ベースの方法は、組織病理学における臨床作業フローを再構造する潜在性を有し、特に蛍光顕微鏡、非線形顕微鏡、ホログラフィック顕微鏡、誘導ラマン散乱顕微鏡、及び光学コヒーレンストモグラフィ等の種々の撮像モダリティから恩恵を受けて、組織試料22を組織化学的に染色する標準の慣行に対するデジタル代替を潜在的に提供することができる。ここで、方法は、固定非染色組織試料22を使用して、化学染色組織試料に対して有意味な比較を提供することが実証され、これは、ディープニューラルネットワーク10のトレーニング及び臨床的に承認された方法と突き合わせたネットワーク出力の性能のブラインドテストにとって極めて重要である。しかしながら、提示されるディープラーニングベースの手法は、いかなる標識又は染色も使用せずに、切片化されていない新鮮な組織試料(例えば、生検手順後の)を含め、異なるタイプ及び状態の試料22に広く適用可能である。トレーニングに続き、ディープニューラルネットワーク10は、例えば、UV又は深UV励起又は非線形顕微鏡法モダリティを使用して取得された無標識の新鮮な組織試料22の画像をデジタル/仮想染色するのに使用することができる。例えば、ラマン顕微鏡は非常に豊富な無標識生化学シグネチャを提供することができ、生化学シグネチャは、ニューラルネットワークが学習する仮想染色の有効性を更に高めることができる。
【0032】
トレーニングプロセスの重要な部分は、無標識組織試料22の蛍光画像20と組織化学的染色プロセス後の対応する明視野画像48(すなわち、化学的に染色された画像)とを照合することを含む。染色プロセス及び関連するステップ中、幾つかの組織構成要素が、トレーニングフェーズにおいて損失/費用関数をミスリードするように失われるか、又は変形することがあることに留意されたい。しかしながら、これは単にトレーニング及び検証関連の問題にすぎず、無標識組織試料22の仮想染色への十分にトレーニングされたディープニューラルネットワーク10の実施に対していかなる制限も課さない。トレーニング及び検証フェーズの品質を保証し、ネットワーク性能へのこの問題の影響を最小に抑えるために、2組の画像(すなわち、組織化学的染色プロセス前後の)間の許容可能な相関値についての閾値を確立し、トレーニング/検証セットから一致しない画像ペアをなくして、ディープニューラルネットワーク10が、化学染色プロセスに起因した組織形態への摂動ではなく、本物の信号を学習することを確実にする。実際には、トレーニング/検証画像データをクリーニングするこのプロセスは、繰り返し行うことができる:明らかに変更された試料の粗い排除で開始することができ、それに従って、トレーニングされるニューラルネットワーク10に収束することができる。この初期トレーニングフェーズ後、利用可能な画像セットにおける各試料の出力画像40は、対応する明視野画像48と突き合わせてスクリーニングされて、幾つかの追加の画像を拒絶し、トレーニング/検証画像セットを更にクリーニングするより改善された閾値を設定することができる。このプロセスの少数回の反復により、画像セットを更に改善することができるのみならず、最終的なトレーニングされたディープニューラルネットワーク10の性能を改善することもできる。
【0033】
上述した方法論は、組織学的染色プロセス後の幾つかの組織特徴のランダム損失に起因したトレーニング問題の幾つかを軽減する。実際に、これは、顕微鏡下で組織を観測する必要があることもある染色プロセスの繊細な手順の幾つかを専門家が扱う必要性なく、無標識方法で局所組織の組織学を保存するのがより容易であるため、組織化学的染色に関わる労働力及びコストがかかる手順をスキップする更なる動機を目立たせる。
【0034】
PCデスクトップを使用する場合、ディープニューラルネットワーク10のトレーニングフェーズは相当量の時間(例えば、唾液腺ネットワークでは約13時間)が掛かる。しかしながら、このプロセス全体は、GPUに基づく専用コンピュータハードウェアを使用することにより大幅に加速することができる。さらに、
図6A~
図6Cに既に強調されたように、転送学習は新しい組織/染色組合せのトレーニングフェーズへの「ウォームスタート」を提供し、プロセス全体を大幅に高速にする。ディープニューラルネットワーク10がトレーニングされると、試料画像40のデジタル/仮想染色が1回、非反復的に実行され、これは、最適な結果を達成するために、試行錯誤手法又は任意のパラメータ調整を必要としない。そのフィードフォワード及び非反復アーキテクチャに基づいて、ディープニューラルネットワーク10は、1秒未満(例えば、試料視野約0.33mm×0.33mmに対応して0.59秒)で仮想染色画像を高速で出力する。GPUに基づく更なる加速を用いる場合、デジタル/仮想染色画像40の出力においてリアルタイム又は準リアルタイム性能を達成する潜在性があり、手術室又はin vivo撮像用途で特に有用であり得る。
【0035】
実施されるデジタル/仮想染色手順は、各組織/染色組合せに別個のCNNディープニューラルネットワーク10をトレーニングすることに基づく。CNNベースのディープニューラルネットワーク10に、異なる組織/染色組合せを有する自己蛍光画像20を供給する場合、所望のように実行しないであろう。しかしながら、これは制限ではなく、その理由は、組織学的用途では、組織タイプ及び染色タイプが関心のある各試料22で予め決定され、したがって、非標識試料22の自己蛍光画像20からデジタル/仮想染色画像40の作成に選択された特定のCNNは追加の情報又はリソースを必要としないためである。当然ながら、例えば、トレーニング時間及び推測時間の生じ得る増大を犠牲にして、モデルにおいてトレーニングされるパラメータ数を増大することにより、より一般的なCNNモデルを複数の組織/染色組合せについて学習することができる。別の手段は、同じ非標識組織タイプに対して複数の仮想染色を実行するシステム2及び方法の潜在性である。
【0036】
システム2の大きな利点は、かなり柔軟なことである。診断失敗が臨床的比較を通して検出される場合、それに従ってそのような失敗が発見された時にそのような失敗にペナルティを課すことにより、フィードバックに適応して、性能を統計学的に改善することができる。ネットワーク出力の性能の臨床的評価に基づくこの反復トレーニング及び転送学習サイクルは、提示される手法のロバスト性及び臨床的影響の最適化に役立つ。最後に、この方法及びシステム2は、仮想染色に基づいて関心のある領域を局所的に識別し、この情報を使用して、例えば、マイクロ免疫組織化学又はシーケンシングについて組織の続く解析をガイドすることにより、非染色組織レベルでのマイクロガイド分子解析に使用し得る。非標識組織試料でのこのタイプの仮想マイクロガイダンスは、疾患のサブタイプの高スループット識別を促進することができると共に、患者にカスタマイズされた治療の開発にも役立つ。
【0037】
試料準備
キシレンを使用して、ホルマリン固定パラフィン包埋2μm厚組織切片を脱パラフィン化し、Cytoseal(商標)(Thermo-Fisher Scientific,Waltham,MA USA)を使用して標準ガラススライドに載せ、その後、カバースリップ(Fisherfinest(商標),24×50-1,Fisher Scientific,Pittsburgh,PA USA)を配置した。非標識組織試料の初期自己蛍光撮像プロセス(DAPI励起及び放射フィルタセットを使用)に続き、スライドを次に、約48時間又は組織にダメージなくカバースリップを取り外すことができるまでキシレン中に配置した。カバースリップが取り外されると、スライドを無水アルコール、95%アルコールに浸漬し(約30回)、次に脱イオン水に約1分洗浄した。このステップに続き、H&E、マッソントリクローム、又はジョーンズ染色に使用される対応する染色手順が続いた。この組織処理パスは、手法のトレーニング及び検証のみに使用され、ネットワークがトレーニングされた後は必要ない。システム及び方法をテストするために、異なる組織及び染色組合せを使用した:唾液腺及び甲状腺組織切片はH&Eを用いて染色し、腎臓組織切片はジョーンズ染色を用いて染色し、肝臓及び肺組織切片はマッソントリクロームを用いて染色した。
【0038】
WSI研究では、FFPE2~4μm厚組織切片は、自己蛍光撮像段階中、カバースリップされなかった。自己蛍光撮像に続き、組織試料を上述したように組織的に染色した(肝臓組織切片ではマッソントリクローム及び腎臓組織切片ではジョーンズ)。組織切片をO.C.T.(Tissue Tek,SAKURA FINETEK USA INC)中に埋め込み、ドライアイスを有する2-メチルブタンに浸漬することにより、非染色冷凍試料を準備した。次に、冷凍切片を4μm切片にカットし、撮像されるまで冷凍庫に配置した。撮像プロセスに続き、組織切片を70%アルコールで洗浄し、H&E染色し、カバースリップした。Translational Pathology Core Laboratory(TPCL)から試料を取得し、UCLAのHistology Labにより準備した。糖尿病患者及び非糖尿病患者の腎臓組織切片をIRB 18-001029(UCLA)の下で取得した。患者関連情報を匿名化した後、全試料を取得し、既存の標本から準備した。したがって、この作業はケア又は試料収集手順の標準の慣行を妨げなかった。
【0039】
データ取得
モータ駆動ステージを装備した従来の蛍光顕微鏡110(1×83、Olympus Corporation,Tokyo,Japan)を使用して、無標識組織自己蛍光画像20を捕捉し、画像取得プロセスはMetaMorph(登録商標)顕微鏡オートメーションソフトウェア(Molecular Devices,LLC)により制御された。非染色組織試料を近UV光で励起させ、40×/0.95NA対物レンズ(Olympus UPLSAPO 40X2/0.95NA、WD0.18)又は20×/0.75NA対物レンズ(Olympus UPLSAPO 20X/0.75NA、WD0.65)と共にDAPIフィルタキューブ(OSFI3-DAPI-5060C、励起波長377nm/50nm帯域幅、放射波長447nm/60nm帯域幅)を使用して撮像した。メラニン推測の場合、10×/0.4NA対物レンズ(Olympus UPLSAPO10X2)と共にCy5フィルタキューブ(CY5-4040C-OFX、励起波長628nm/40nm帯域幅、放射波長692nm/40nm帯域幅)を使用して、試料の自己蛍光画像を更に取得した。露出時間約500msで科学的CMOSセンサ(ORCA-flash4.0 v2,Hamamatsu Photonics K.K.,Shizuoka Prefecture,Japan)を用いて各自己蛍光画像を捕捉した。2×倍率アダプタを装備した20×/0.75NA対物レンズ(Plan Apo)を使用したスライドスキャナ顕微鏡(Aperio AT,Leica Biosystems)を使用して、明視野画像48(トレーニング及び検証に使用される)を取得した。
【0040】
画像事前処理及び位置合わせ
ディープニューラルネットワーク10は、化学的に染色されていない組織試料22の自己蛍光画像20と、組織化学的に染色された同じ組織試料22の明視野画像48との間の統計学的変換を学習することを目的とするため、入力画像とターゲット画像(すなわち、非染色自己蛍光画像20と染色された明視野画像48)とのFOVを正確に一致させることが重要である。MATLAB(The MathWorks Inc.,Natick,MA,USA)で実施された大域的及び局所的画像レジストレーションプロセスを記述する全体方式は
図8において説明される。このプロセスの最初のステップは、非染色自己蛍光画像と化学染色明視野画像とを一致させる候補特徴を見つけることである。このために、各自己蛍光画像20(2048×2048ピクセル)をダウンサンプリングして、明視野顕微鏡画像の有効ピクセルサイズを一致させる。これにより、1351×1351ピクセルの非染色自己蛍光組織画像になり、これは、全てのピクセル値の下1%及び上1%を飽和させることによりコントラスト強調され、グレースケール変換されたホールスライドイメージのカラーマップをよりよく表すようにコントラスト反転される(
図8における画像20a)。次に、相関パッチプロセス60が実行され、1351×1351ピクセルパッチのそれぞれ1つをホールスライドグレースケール画像48aから抽出された同サイズの対応するパッチと相関付けることにより、正規化相関スコア行列が計算される。最高スコアを有するこの行列内のエントリは、2つの撮像モダリティ間で一致する可能性が最も高いFOVを表す。この情報(座標ペアを定義する)を使用して、元のホールスライド明視野画像48の一致するFOVはクロッピングされて(48c)、ターゲット画像48dを作成する。このFOV一致手順60に続き、自己蛍光画像20及び明視野顕微鏡画像48は粗くマッチングされる。しかしながら、これらは、同じ試料の入力画像とターゲット画像との間に僅かな回転角(約1~2度)をランダムに生じさせる2つの異なる顕微鏡撮像実験(自己蛍光、それに続いて明視野)での試料配置の僅かなミスマッチに起因して、個々のピクセルレベルではまだ正確にレジストレーションされていない。
【0041】
入力-ターゲット一致プロセスの第2の部分は、自己蛍光画像と明視野画像との間のこの僅かな回転角を補正する大域的レジストレーションステップ64を含む。これは、画像ペアから特徴ベクトル(記述子)及びそれらの対応するロケーションを抽出し、抽出された記述子を使用することにより特徴を一致させることにより行われる。次に、ランダムサンプルコンセンサス(RANSAC)アルゴリズムの一変形であるM推定サンプルコンセンサス(MSAC)アルゴリズムを使用して、一致したペアに対応する変換行列が見つけられる。最後に、この変換行列を元の明視野顕微鏡画像パッチ48dに適用することにより、角度補正画像48eが取得される。この回転の適用に続き、画像20b、48eは100ピクセル値(各側で50ピクセル)だけ更にクロッピングされて、回転角補正に起因した画像境界における未定義ピクセルに適応する。
【0042】
最後に、局所特徴レジストレーション動作68について、大から小へ対応するブロックを階層的に一致させることによる両組の画像(自己蛍光20bvs明視野48e)の局所特徴を一致させる弾性画像レジストレーション。ニューラルネットワーク71を使用して、大まかに一致した画像間の変換を学習する。このネットワーク71は、
図10におけるネットワーク10と同じ構造を使用する。少数の反復が使用され、したがって、ネットワーク71は正確なカラーマッピングのみを学習し、入力画像と標識画像との間のいかなる空間的変換も学習しない。このステップから計算された変換マップは最後に、各明視野画像パッチ48eに適用される。これらのレジストレーションステップ60、64、68の終わりに、自己蛍光画像パッチ20b及びそれらの対応する明視野組織画像パッチ48fは互いに正確に一致し、ディープニューラルネットワーク10をトレーニングするための入力及び標識ペアとして使用することができ、ネットワークが仮想組織学的染色の問題のみにフォーカスして学習できるようにする。
【0043】
20×対物レンズ画像(表2及び表3のデータ生成に使用された)の場合、同様のプロセスが使用された。自己蛍光画像20をダウンサンプリングする代わりに、明視野顕微鏡画像48は、低倍率画像と一致するように、元のサイズの75.85%にダウンサンプリングされた。さらに、これらの20×画像を使用してホールスライドイメージを作成するために、追加のシェード補正及び正規化技法を適用した。ネットワーク71に供給される前、スライド全体にわたる平均値を減算し、ピクセル値間の標準偏差で除算することにより、各視野を正規化した。これは、各スライド内及びスライド間の両方でネットワーク入力を正規化する。最後に、シェード補正を各画像に適用して、各視野の縁部で測定された低相対強度を解決した。
【0044】
ディープニューラルネットワークのアーキテクチャ及びトレーニング
この作業では、GANアーキテクチャを使用して、無標識非染色自己蛍光入力画像20から化学染色試料の対応する明視野画像48への変換を学習した。標準の畳み込みニューラルネットワークベースのトレーニングは、ネットワークの出力とターゲット標識との間の損失/費用関数を最小化するように学習する。したがって、この損失関数69(
図9及び
図10)の選択は、ディープネットワーク設計の極めて重要な構成要素である。例えば、費用関数として単にl
2ノルムペナルティを選ぶことは、ネットワークが全てのもっともらしい結果の加重確率を平均するため、ぼやけた結果を生成する傾向があり、したがって、ネットワークの出力に望ましい鮮鋭な試料特徴を保存するようにネットワークをガイドするために、一般に追加の正則化項が必要である。GANは、ディープネットワークの出力画像が真であるか偽であるか(すなわち、仮想染色で正しいかそれとも誤っているか)を正確に分類することを目的とした基準を学習することによりこの問題を回避する。これは、望ましい標識と一貫しない出力画像を容認しないようにし、損失関数を目下のデータ及び望ましいタスクに適応させる。この目標を達成するために、GANトレーニング手順は、
図9及び
図10に示されるように、2つの異なるネットワークのトレーニングを含む:(i)この場合、非染色自己蛍光入力画像20と組織学的染色プロセス後の同じ試料12の対応する明視野画像48との間の統計学的変換を学習することを目的とする生成ネットワーク70及び(ii)染色組織切片の真の明視野画像と生成ネットワークの出力画像との区別の仕方を学習する識別ネットワーク74。最終的に、このトレーニングプロセスの望ましい結果は、非染色自己蛍光入力画像20を、同じ試料22の染色明視野画像48から区別不可能なデジタル染色画像40に変換するトレーニングされたディープニューラルネットワーク10である。このために、生成器70及び識別器74の損失関数69は、
のように定義され、式中、Dは識別ネットワーク出力を指し、z
標識は化学染色組織の明視野画像を示し、z
出力は生成ネットワークの出力を示す。生成器損失関数は、ピクセル毎のMSE損失及び結合生成器損失(l
生成器)のそれぞれ約2%及び約20%に適応する経験的に異なる値に設定される正則化パラメータ(λ,α)を使用して、標識に対する生成ネットワーク出力画像のピクセル毎の平均二乗誤差(MSE)、出力画像の全変動(TV)演算子、及び出力画像の識別ネットワーク予測のバランスを取る。画像zのTV演算子は、
として定義され、式中、p,qはピクセルインデックスである。式(1)に基づいて、識別器は、真の標識(すなわち、化学染色組織の明視野画像)を正確に分類する確率を最大化しながら、出力損失を最小化しようとする。理想的には、識別ネットワークはD(Z
標識)=1及びD(z
出力)=0の達成を目標とするが、生成器がGANにより首尾良くトレーニングされる場合、D(z
出力)は理想的には0.5に収束する。
【0045】
生成器ディープニューラルネットワークアーキテクチャ70を
図10に詳述する。入力画像20は、ダウンサンプリングパス及びアップサンプリングパスを使用して、種々の異なるスケールで種々の仮想染色タスクをネットワークが学習するのを助けるマルチスケールでネットワーク70により処理される。ダウンサンプリングパスは、それぞれ1つの残差ブロックを含む4つの個々のステップ(4つのブロック#1、#2、#3、#4)からなり、各ステップは特徴マップx
kを特徴マップx
k+1にマッピングし:
式中、CONV{.}は畳み込み演算子(バイアス項を含む)であり、k1、k2、及びk3は畳み込み層のシリアル番号を示し、LReLU[.]は、
として定義されるネットワーク全体を通して使用された非線形活性化関数(すなわち、漏洩正規化線形ユニット)である。
【0046】
ダウンサンプリングパスにおける各レベルの入力チャネル数は、1、64、128、256に設定され、一方、ダウンサンプリングパスにおける出力チャネル数は64、128、256、512に設定された。各ブロックの寸法ミスマッチを回避するために、特徴マップx
kはゼロパディングされて、x
k+1におけるチャネル数に一致させる。各ダウンサンプリングレベル間の接続は、4の係数(各方向で2重)で特徴マップをダウンサンプリングするストライドを2ピクセル有する2×2平均プール層である。4番目のダウンサンプリングブロックの出力に続き、別の畳み込み層(CL)は、アップサンプリングパスに接続する前、特徴マップの数を512として維持する。アップサンプリングパスは、4つの対称アップサンプリングステップ(#1、#2、#3、#4)からなり、各ステップは1つの畳み込みブロックを含む。畳み込みブロック演算は、特徴マップy
kを特徴マップy
k+1にマッピングし、
により与えられ、式中、CONCAT(.)は、チャネル数を統合する2つの特徴マップ間の連結であり、US{.}はアップサンプリング演算子であり、k4、k5、及びk6は畳み込み層のシリアル番号を示す。アップサンプリングパスにおける各レベルの入力チャネル数は1024、512、256、128に設定され、アップサンプリングパスにおける各レベルの出力チャネル数は256、128、64、32にそれぞれ設定された。最後の層は、32のチャネルをYCbCrカラーマップで表される3つのチャネルにマッピングする畳み込み層(CL)である。生成ネットワーク及び識別ネットワークは両方とも、パッチサイズ256×256ピクセルを用いてトレーニングされた。
【0047】
図10にまとめられた識別ネットワークは、入力画像40YCbCr、48YCbCrのYCbCr色空間に対応する3つの入力チャネルを受信する。この入力は次に、畳み込み層を使用して64チャネル表現に変換され、その後、以下の演算子
の5ブロックが続き、式中、k1、k2は畳み込み層のシリアル番号を示す。各層のチャネル数は3、64、64、128、128、256、256、512、512、1024、1024、2048であった。次の層は、パッチサイズ(256×256)に等しいフィルタサイズを有する平均プール層であり、2048エントリを有するベクトルを生成した。この平均プール層の出力は次に、以下の構造:
を有する2つの全結合層(FC)に供給され、式中、FCは学習可能な重み及びバイアスを有する全結合層を表す。第1の全結合層は2048エントリを有するベクトルを出力し、一方、第2の全結合層はスカラー値を出力する。このスカラー値はシグモイド活性化関数D(z)=1/(1+exp(-z))への入力として使用され、シグモイド活性化関数は、
図10の出力67に示されるように、識別ネットワーク入力が真/真正又は偽である確率(0~1)、すなわち、理想的にはD(Z
標識)=1を計算する。
【0048】
GAN全体を通して畳み込みカーネルは3×3に設定された。これらのカーネルは、標準偏差0.05及び平均0を有する切断正規分布を使用することによりランダムに初期化され、全てのネットワークバイアスは0として初期化された。学習可能パラメータは、生成ネットワーク70では1×10
-4及び識別ネットワーク74では1×10
-5の学習率を有する適応モーメント推定(Adam)オプティマイザを使用してバックプロパゲーション(
図10の破線矢印で示される)によりディープニューラルネットワーク10のトレーニングステージを通して更新された。また、識別器74の各反復で、生成ネットワーク70の4つの反復があり、標識への識別ネットワークの潜在的な過剰適合に続くトレーニング停滞を回避した。バッチサイズ10をトレーニングで使用した。
【0049】
全ての視野がネットワーク10を通過すると、ホールスライドイメージは、Fiji Grid/Collectionステッチングプラグイン(例えば、Schindelin,J.ら著、Fiji:an open-source platform for biological-image analysis.Nat.Methods 9,676-682(2012年)参照、これは参照により本明細書に援用される)を使用して一緒にステッチングされる。このプラグインは、各タイル間の厳密な重複を計算し、線形にブレンドして1つの大きな画像にする。全体的に、推測及びステッチングはそれぞれcm2毎に約5分及び約30秒かかり、ハードウェア及びソフトウェアの進歩を使用して実質的に改善することができる。病理学者に見せる前、自己蛍光画像又は明視野画像の何れかでピントぼけした切片又は大きな収差(例えば、ちり粒子に起因して)を有する切片は、クロッピングされる。最終的に画像は、病理学者による容易なアクセス及び閲覧のために、Zoomifyフォーマット(標準ウェブブラウザを使用して大きな画像を見られるようにするように設計されるhttp://zoomify.com/)にエクスポートされ、GIGAmacroウェブサイト(https://viewer.gigamacro.com/)にアップロードされた。
【0050】
実装詳細
トレーニングされたパッチ数、エポック数、及びトレーニング時間を含めたその他の実装詳細を以下の表5に示す。デジタル/仮想染色ディープニューラルネットワーク10は、Pythonバージョン3.5.0を使用して実装された。GANはTensorFlowフレームワークバージョン1.4.0を使用して実装された。使用された他のPhythonライブラリはos、time、tqdm、Pythonイメージングライブラリ(PIL)、SciPy、glob、ops、sys、及びnumpyであった。ソフトウェアは、Windows10オペレーティングシステム(Microsoft)を実行する、4.2GHz(Intel)のCore i7-7700K CPU及び64GBのRAMを有するデスクトップコンピュータで実装された。ネットワークのトレーニング及びテストは、デュアルGeForce(登録商標)GTX 1080Ti GPU(NVidia)を使用して実行した。
【0051】
本発明の実施形態について示し説明したが、本発明の範囲から逸脱せずに種々の変更を行い得る。したがって、本発明は、以下の特許請求の範囲及びその均等物への限定を除き、限定されるべきではない。